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Abstract

Inductive link prediction is emerging as a key
paradigm for real-world knowledge graphs
(KGs), where new entities frequently appear
and models must generalize to them without
retraining. Predicting links in a KG faces the
challenge of guessing previously unseen enti-
ties by leveraging generalizable node features
such as subgraph structure, type annotations,
and ontological constraints. However, explicit
type information is often lacking or incomplete.
Even when available, type information in most
KGs is often coarse-grained, sparse, and prone
to errors due to human annotation. In this work,
we explore the potential of pre-trained lan-
guage models (PLMs) to enrich node represen-
tations with implicit type signals. We introduce
TyleR, a Type-less yet type-awaRe approach
for subgraph-based inductive link prediction
that leverages PLMs for semantic enrichment.
Experiments on standard benchmarks demon-
strate that TyleR outperforms state-of-the-art
baselines in scenarios with scarce type an-
notations and sparse graph connectivity. To
ensure reproducibility, we share our code at
https://github.com/sisinflab/tyler.

1 Introduction

Knowledge graphs (KGs) represent complex rela-
tionships between entities in a structured, graph-
based format (Hogan et al., 2021). Their ability to
encode semantic information and support reason-
ing makes them valuable in a variety of applica-
tions, such as natural language processing (Peters
et al., 2019), recommendation systems (Wang et al.,
2024), and biomedical research (Gema et al., 2023).
However, KGs are notoriously incomplete: many
valid relations are absent, reducing their effective-
ness in downstream tasks (Rossi et al., 2021).

Link prediction aims to infer these missing rela-
tionships by analyzing the existing graph’s struc-
ture and patterns. Traditional link prediction meth-
ods aim to predict links among entities observed

during training. Although effective in static set-
tings, they are limited in dynamic environments
where new entities are incrementally introduced.
Inductive link prediction (ILP) addresses this chal-
lenge by aiming to generalize to previously unseen
entities, leveraging transferable features such as
structural information and type information.

Prior work has demonstrated that incorporating
entity type information can enhance generalization
capabilities of ILP models. For instance, Zhou et al.
(2023) explicitly integrate type annotations and on-
tological constraints into the learning process. Yet,
these methods face a critical bottleneck: available
explicit type information in real-world KGs is of-
ten coarse-grained, incomplete, or even erroneous.
This limitation is particularly acute when facing
structural sparsity. Consider, for instance, the
triple 〈Lionel Messi, playedFor, Barcelona
FC〉. A model might assign similar plausibility to
〈Cristiano Ronaldo, playedFor, Barcelona
FC〉 if both subject entities (i.e., Lionel Messi
and Cristiano Ronaldo) lack distinct neighbor-
hood information and are categorized only under
the broad type "Footballer". This highlights a
fundamental inadequacy of type-informed ILP ap-
proaches when explicit type signals are weak and
local graph structure is uninformative.

To address this gap, our idea is to leverage the
rich semantic knowledge captured by pre-trained
language models (PLMs). We hypothesize that
the semantic understanding these models acquire
during their extensive pre-training on vast textual
corpora (Petroni et al., 2019; Hao et al., 2023) of-
fers a pathway to a more fine-grained representa-
tion of entities. This "inner knowledge," encoded
within the PLM’s parameters, offers a dense repre-
sentation of diverse semantic facets. For example,
prompting a PLM like BERT (Devlin et al., 2019)
with "Paris is located in ," generates a hidden
representation for the missing token that (ideally)
enables it to correctly predict "France," reflecting
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the model’s "understanding" of Paris’s geographi-
cal location. We aim to utilize the implicit semantic
insights of PLMs to derive fine-grained entity repre-
sentations, overcoming limitations in explicit type
information. We start from these two observations:
(i) an entity can be described by a set of asser-
tions defining its properties; (ii) the same asser-
tions, when used as prompts for a PLM, can elicit
dense, multifaceted representations that implicitly
capture a "type-aware" understanding of the entity.
This potential led us to ask: Can PLM-derived en-
tity representations compensate for structural and
type sparsity in inductive knowledge graph com-
pletion? To investigate this question, we introduce
TyleR–Type-less yet type-awaRe–a novel inductive
link prediction framework that leverages PLMs to
embed implicit type-aware signals within node rep-
resentations, thus eliminating reliance on explicit
type annotations. Our contributions are:

1. We introduce a novel methodology for har-
nessing PLMs to derive and embed implicit
type semantics within an ILP model, thereby
enabling nuanced entity representations with-
out relying on explicit type data.

2. We demonstrate TyleR’s effectiveness on mul-
tiple benchmark datasets, showing its capa-
bility to perform competitively, especially in
settings with limited or coarse-grained type
information and sparse graph structures.

3. We conduct an empirical analysis investigat-
ing the interplay between PLM-derived se-
mantic features and varying levels of type and
structural sparsity, thereby characterizing the
resilience of our approach.

The remainder of the paper is organized as
follows: Section 2 introduces the idea behind
subgraph-based relational inference; Section 3 de-
tails the methodology; Section 4 describes the ex-
perimental setup and evaluation; Section 5 presents
the results; Section 6 reviews related work; and
Section 7 concludes with future directions.

2 Background and Motivation

Inductive link prediction aims to predict the likeli-
hood of triples (h, r, t), where h and t are unseen
entities. In practice, this is done by means of a scor-
ing function f(h, r, t). At training time, f is opti-
mized on the triples in a training graph Gtrain. At

test time, the same scoring function is used to pre-
dict the plausibility of triples (h′, r, t′) belonging
to a test graph Gtest, based on the triples in an in-
ference graph Ginf . Unlike traditional embedding-
based approaches, subgraph-based relation predic-
tion methods such as GraIL (Teru et al., 2020) can
be viewed as learning logical rules that capture
entity-independent relational semantics. For exam-
ple, one can derive the simple rule:

spouse_of(X,Y )∧lives_in(Y,Z)→lives_in(X,Z).

As demonstrated by Zhou et al. (2023), the rea-
soning capabilities of GraIL can be enhanced by
incorporating explicit type information about enti-
ties. This additional semantic context enables the
model to induce more precise and type-aware rules:

Employee(X)∧Department(Y )∧Office(Z)∧
∧part_of(X,Y )∧located_in(Y,Z)→works_in(X,Z).

Type-constrained rules enhance both accuracy
and interpretability in relational inference by reduc-
ing spurious predictions and enforcing semantic
validity. However, explicit type information is of-
ten incomplete or missing in real-world knowledge
graphs. To address this, we propose learning a
function τPLM , parameterized by a pre-trained lan-
guage model, that maps entities to implicit type rep-
resentations capturing their latent semantics. These
PLM-derived embeddings enable type-aware rea-
soning without explicit type labels and can be inte-
grated into the logical rule induction process. For
example, a type-aware rule may take the form:

τPLM(X)∧τPLM(Y )∧τPLM(Z)∧part_of(X,Y )∧
∧ located_in(Y,Z)→works_in(X,Z),

with τPLM(X), τPLM(Y ), and τPLM(Z) such that

τPLM(X) ≈ Employee(X),

τPLM(Y ) ≈ Department(Y ),

τPLM(Z) ≈ Office(Z),

where τPLM(·) for X is an approximation of the
logical statement Employee(·) while, for Y and Z,
τPLM(·) is an approximation of their types, Depart-
ment and Office, respectively (more details in Sec-
tion 3). This guides the rule induction process
towards more meaningful and generalizable pat-
terns, allowing us to infuse latent type semantics
into subgraph-based link prediction models, even
when explicit type information is absent.
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Figure 1: Overview of TyleR. The process begins with 1⃝ extracting the enclosing subgraph and 2⃝ applying a node
labeling strategy. Multi-faceted, semantic representations are then derived using a pre-trained language model 3a⃝,
3b⃝. Finally, a graph neural network 4⃝ integrates structural and semantic information to obtain the final prediction.

3 Methodology

In this section, we introduce TyleR (Type-less
yet type-awaRe inductive link prediction with pre-
trained language models). Building on Graph In-
ductive Learning (Teru et al., 2020), which infers
relations from local subgraph patterns, TyleR lever-
ages PLM-derived semantics to enrich node repre-
sentations. However, integrating PLMs into full-
graph models is computationally expensive due to
high-dimensional embeddings and large graph size.
TyleR adopts a subgraph-reasoning approach, re-
stricting triple scoring to compact and informative
subgraphs, making PLM integration tractable.

As illustrated in Figure 1, TyleR ’s pipeline con-
sists of four stages: 1⃝ extracting an enclosing
subgraph, 2⃝ structurally labeling nodes (follow-
ing GraIL (Teru et al., 2020)), 3a⃝, 3b⃝ enriching
nodes with PLM-based semantic embeddings, and
4⃝ feeding the enhanced subgraph into a GNN ar-

chitecture from Zhou et al. (2023). The following
sections provide further details on each step.

Subgraph Extraction 1⃝ Given a target triple
(u, rt, v), we define Nk(u) and Nk(v) as the sets of
k-hop neighboring nodes of u and v, respectively.
We also define a specific distance metric d(i, u) as
the shortest path from a node i to u that does not
pass through v, and d(i, v) is similarly the shortest

path distance from i to v that does not pass through
u. The enclosing subgraph of triple (u, rt, v) is
computed by (i) forming an initial set of candidate
nodes by taking the intersection Nk(u) ∩ Nk(v)
and (ii) pruning nodes that are either isolated (i.e.,
have no edges connecting it to other nodes within
the subgraph after this pruning step) or for which
d(i, u) > k or d(i, v) > k. The remaining nodes
and their edges form the enclosing subgraph.

Subgraph Labeling 2⃝ Each node i in the ex-
tracted subgraph is labeled with a pair of shortest
path distances (d(i, u), d(i, v)) to the target nodes
u and v, respectively, within the subgraph. This
pair captures the relative position of node i with
respect to the target nodes u and v. The final posi-
tional embedding h

pos
i is:

h
pos
i = one-hot(d(i, u))⊕ one-hot(d(i, v)), (1)

where ⊕ denotes the concatenation operator and
one-hot(·) is the one-hot encoding function. All
nodes in the enclosing subgraph are within k hops
of u or v, so h

pos
i ∈ R2k+2.

Semantic Enrichment 3a⃝ 3b⃝ Semantic enrich-
ment leverages a pre-trained language model
(PLM), supporting either masked token predic-
tion or next-token generation. A straightforward
approach for encoding entity type semantics in-
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volves prompting the PLM with an explicit query
to elicit the most plausible type for a given en-
tity. For masked language models (MLMs) (e.g.,
RoBERTa), this operation results in a prompt such
as “The type of Paris is [MASK]”, with the type
semantics encoded in the last hidden layer rep-
resentation of the [MASK] token; for causal lan-
guage models (CLMs) (e.g., Llama), this repre-
sentation corresponds to the last hidden represen-
tation of the final sequence token. However, re-
lying solely on representations derived from such
direct type queries can be suboptimal. Prior re-
search has shown that transformer-based represen-
tations tend to be highly anisotropic, often concen-
trated in narrow cones (Ethayarajh, 2019), which
can limit their discriminative utility. To address
this, we propose to refine type semantics through
multiple prompts, designed to extract different se-
mantic aspects. Given an entity i with textual
label li, we define a set of assertion prompts
P = {p1, p2, . . . , pn}, where each pk targets a
semantic facet of the entity (e.g., type, location,
membership). Each prompt pk(li) is processed by
the PLM ( 3a⃝) to yield a latent representation:

zpk,i = Extract(PLM(pk(li))). (2)

Here, PLM(·) denotes the forward pass of the lan-
guage model given an input prompt, and Extract(·)
selects the relevant hidden state (i.e., the [MASK]
token’s final hidden layer for MLMs or the last
token’s representation for CLMs). These represen-
tations zpk,i are refined and projected into a unified
space using an assertion-specific projection block:

zhpk,i = WpkLN(zpk,i) + bpk , (3)

where Wpk and bpk are specific learnable parame-
ters for each assertion prompt pk, and LN denotes
layer normalization (Ba et al., 2016). We aggregate
(AGGp(·)) the prompt representations with differ-
ent strategies such as sum, mean or concatenation:

z
agg
i = AGGp({zhpk,i}

n
k=1). (4)

The semantic embedding hsemi is obtained as:

hsem
i ≡ τPLM(i) = σ(WoReLU(z

agg
i )), (5)

where τPLM(i) is a function capturing the semantics
of i by aggregating multiple prompt-based repre-
sentations via a PLM (as introduced in Section 2),
and σ(·) is the sigmoid function. Given a node i,
we then construct the embedding h0i as ( 3b⃝):

h0
i = [hpos

i ⊕ hsem
i ]. (6)

GNN Scoring 4⃝ As suggested by Zhou
et al. (2023), our base GNN follows the R-
GCN (Schlichtkrull et al., 2018) architecture. At
layer l, the embedding for a node i is computed as:

h
(l)
i = ReLU(W

(l)
0 h

(l−1)
i + a

(l)
i ), (7)

where W(l)
0 is a self-loop learnable matrix and a

(l)
i

is the AGGREGATE function, based on edge atten-
tion (Teru et al., 2020) and entity-relation composi-
tion (Vashishth et al., 2020):

a
(l)
i =

∑

r∈R

∑

j∈N r(i)

α
(l)
rrtji

W(l)
r (h

(l−1)
j − e(l−1)

r ),

(8)

where W
(l)
r is a relation-specific transformation

matrix at layer l, N r(i) is the set of outgoing neigh-
boring nodes of node i under relation r. We adopt
basis sharing (Schlichtkrull et al., 2018) as reg-
ularization for the W

(l)
r transformation matrices,

whereas e(l)r is the relation embedding at layer l:

e(l)r = W
(l)
rele

(l−1)
r . (9)

The edge attention weight α(l)
rrtji

quantifies the im-
portance of an edge (j, r, i) when inferring relation
rt at layer l.

α
(l)
rrtji

= σ(W(l)
α s

(l)
rrtji

+ b(l)α ), (10)

s
(l)
rrtji

= ReLU(W(l)
s [h

(l−1)
j ⊕ h

(l−1)
i

⊕ e(l−1)
r ⊕ e(l−1)

rt ] + b(l)
s ).

(11)

To obtain the final representation of a node, Teru
et al. (2020) suggest adopting JK-Connections (Xu
et al., 2018), i.e., by concatenating all the
intermediate-layer representations. After the ag-
gregation, the final score is computed as

f(u,rt,v)=W
T
f

L⊕

l=1

[h
(l)
G (u,rt,v)⊕ h(l)

u ⊕ h(l)
v ⊕ eLrt ],

(12)

where h
(l)
G (u, rt, v) is the subgraph representation,

obtained via average pooling over all node repre-
sentations at level l in the subgraph.

Loss Function We adopt a margin-based pair-
wise loss function, which aims at maximizing the
score on positive triples and minimizing the score
on randomly sampled negative triples:

L=
∑

(u,rt,v)∈G
max(0,fe(u

′,rt,v′)−fe(u,rt,v)+γ),

(13)
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where γ is a margin hyperparameter, (u, rt, v) is a
positive triple and (u′, rt, v′) is a negative triple.

4 Experimental Setup

In this section we detail our experimental setup, in-
cluding datasets, baselines, training and evaluation
details. Experiments were conducted with Python
3.8.19 and PyTorch 2.3.0, using an NVIDIA Am-
pere A100 GPU (64GB VRAM) and CUDA 12.1.

4.1 Datasets
We conduct experiments on YAGO21K-610 (Zhou
et al., 2023) and three FB15K-237 (FB237 in short)
variants (v1–v3) from Teru et al. (2020). Dataset
statistics are in Appendix A, Table 6. Dataset den-
sity, defined as 2|T |/|E| (Pujara et al., 2017), is
the lowest for YAGO21K-610 train (3.67) and in-
creases across FB237 variants (i.e., from 5.33 to
9.80). This pattern also holds for the inference
graphs (density ranging from 3.54 for YAGO21K-
610 to 5.92 for FB237-V3), allowing us to analyze
the impact of type information under varying graph
sparsity. For YAGO21K-610, we use the original
splits with the provided ontology graph and type
links; test entities are unseen during training, while
relations are shared. Each FB237 variant contains
disjoint train and inductive test graphs with dis-
tinct entities but shared relations. For each FB237
variant, we train on its designated training set and
evaluate using its corresponding "ind" (inductive)
set as the inference graph, with testing performed
on its test set. For YAGO21K-610, when evaluating
a specific target triple, the inference graph includes
all other test triples (excluding the target itself),
following Zhou et al. (2023). Since FB237 lacks
concept annotations, we build ontology graphs and
type links for all variants using Freebase-Wikidata
mappings (see Appendix A).

4.2 Metrics
We evaluate models using Mean Reciprocal Rank
(MRR) and Hits@K for K ∈ {1, 10}, averaging
over 5 evaluation runs. Following standard pro-
tocol (Teru et al., 2020), each positive test triple
is ranked against 50 negative triples generated by
randomly corrupting either its head or tail entity.

Tie resolution markedly affects these metrics.
While methods like random tie-breaking (Rossi
et al., 2021)—which randomly assign ranks among
tied entities—are prevalent, they can lead to an
overestimation of true model performance. This is-
sue is particularly evident in sparse settings where

ID Aspect Template

p1 type Paris is a type of
p2 geographic Paris is located in
p3 membership Paris is member of
p4 equivalence Paris is equivalent to
p5 difference Paris is different from
p6 similarity Paris is similar to

Table 1: Assertion prompts (p1-p6) used in the semantic
enrichment step (Section 3). These templates, with a
placeholder for the entity, are fed to the Pre-trained Lan-
guage Model to elicit representations capturing different
semantic aspects (type, geographic context, member-
ship, equivalence, difference, similarity) of the entity.

limited structural or type information leads to fre-
quent ties, an issue amplified by the candidate pool
of 50. To address these concerns and provide a
more stringent and reliable evaluation, we adopt a
strict tie-breaking strategy. This approach as-
signs the positive triple the highest (i.e., worst-
case/pessimistic) rank when its score is identical to
one or more negative triples.

4.3 Models

To isolate the contribution of our semantic-
enrichment module, we focus the comparison on
methods that share a similar subgraph-reasoning
backbone as Tyler. We evaluate TyleR against
GraIL (Teru et al., 2020), a type-agnostic baseline
that relies solely on subgraph structure, and the
ontology-enhanced method of Zhou et al. (2023),
which explicitly incorporates type information via
learnable embeddings and ontological constraints,
even though its effectiveness is tied to the avail-
ability and quality of type annotations and ontol-
ogy triples. We chose these baselines to enable
a focused and meaningful comparison: (1) GraIL
serves as the foundational type-agnostic framework
upon which many subsequent methods build (Chen
et al., 2021; Mai et al., 2021); (2) the method of
Zhou et al. (2023) exemplifies a type-enhanced ap-
proach, with few comparable models in literature.
In contrast, Tyler is designed for scenarios where
explicit type information is scarce as it is able to
infer implicit type semantics from PLMs. Our se-
mantic enrichment strategy, detailed in Section 3, is
model-agnostic and compatible with any PLM sup-
porting masked or causal language modeling. We
use RoBERTa-Large (Liu et al., 2019) and Llama3-
8B (Dubey et al., 2024) without fine-tuning, aggre-
gating representations from six manually crafted
assertion prompts (Table 1). To further evaluate
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Inductive LP Model FB237-V1 FB237-V2 FB237-V3 YAGO21K-610

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

GraIL (Teru et al., 2020) .456 34.97 64.44 .618 50.46 82.70 .609 49.94 82.26 .661 62.76 68.68
Zhou et al. (2023) .398 27.85 64.55 .576 44.69 82.45 .554 41.85 81.42 .673 60.36 76.56
TyleR-RoBERTa-L (2025) .470 35.66 69.95 .602 47.51 83.28 .630 50.60 86.72 .660 58.26 79.68
TyleR-Llama3-8B (2025) .481 36.88 70.63 .610 49.37 82.01 .620 49.94 84.46 .651 59.70 69.30

Table 2: Link Prediction (LP) evaluation on multiple FB237 variants and YAGO21K-610. Best and second-best
scores are in bold and underlined, respectively. Evaluation uses the strictest tie-breaking policy (Section 4.2),
assigning the highest (worst) possible rank to the positive triple in case of ties.

PLM Aggregation MRR Hits@1 Hits@10

TyleR-RoBERTa-L TYPE-ONLY .442 32.93 66.49
TyleR-RoBERTa-L SUM .470 35.66 69.95
TyleR-RoBERTa-L MEAN .468 35.22 68.05
TyleR-RoBERTa-L CONCAT .455 34.10 67.76

TyleR-Llama3-8B TYPE-ONLY .477 37.12 68.29
TyleR-Llama3-8B SUM .481 36.88 70.63
TyleR-Llama3-8B MEAN .465 35.51 68.73
TyleR-Llama3-8B CONCAT .474 35.95 71.12

Table 3: Ablation study on the FB237-V1 dataset, evalu-
ating the impact of different Pre-trained Language Mod-
els and aggregation functions (Equation 4) for semantic
embeddings within TyleR. ’TYPE-ONLY’ uses only the
representation from the p1 prompt (Table 1).

the robustness of TyleR with respect to prompt se-
lection, we report the results on FB15K-237-V1
for both RoBERTa and Llama3-8B across varying
numbers of templates (Table 5). The prompt ag-
gregation function AGGp(·) was set to SUM, as
it yielded the most consistent results in our exper-
iments (Table 3). Moreover, SUM offers better
scalability by producing fixed-size outputs regard-
less of the number of prompts and may also help
regularize prompt-specific noise.

5 Results

Experiments aim to answer three core questions:

RQ1. Does explicit type information improve
subgraph-based inductive link prediction?

RQ2. Can PLMs enhance node representations for
subgraph-based inductive link prediction?

RQ3. Can PLMs mitigate type and structural spar-
sity challenges in inductive link prediction?

5.1 Type Information in Subgraph-Based
Inductive Link Prediction (RQ1)

Table 2 presents link prediction results across var-
ious models and datasets, emphasizing the role
of type information in inductive link prediction.
GraIL, which operates without type information,
performs competitively overall. It achieves strong

PLM MRR Hits@1 Hits@10

Llama3-8B (No GNN) .264 13.21 55.06

Table 4: Performance of Llama3-8B when directly
evaluating the likelihood of verbalized triples on the
YAGO21K-610 dataset by scoring them using the
(negated) model perplexity.

PLM Template Choice (pi) MRR Hits@1 Hits@10

TyleR-RoBERTa-L 1 (TYPE-ONLY) .442 32.93 66.49
TyleR-RoBERTa-L 1-2 .459 34.97 68.00
TyleR-RoBERTa-L 1-3 .451 34.87 65.32
TyleR-RoBERTa-L 1-4 .472 36.00 68.58
TyleR-RoBERTa-L 1-5 .468 35.32 69.46
TyleR-RoBERTa-L 1-6 (ALL) .470 35.66 69.95

TyleR-Llama3-8B 1 (TYPE-ONLY) .477 37.12 68.29
TyleR-Llama3-8B 1-2 .458 35.07 69.36
TyleR-Llama3-8B 1-3 .470 35.95 69.46
TyleR-Llama3-8B 1-4 .467 35.22 70.19
TyleR-Llama3-8B 1-5 .471 37.36 65.36
TyleR-Llama3-8B 1-6 (ALL) .481 36.88 70.63

Table 5: Ablation study on the FB237-V1 dataset, evalu-
ating the impact of chosen number of prompts (Equation
4) for semantic embeddings within TyleR. For all con-
figurations, the aggregation function was set to SUM.

results in both MRR and Hits@10, and obtains
the highest Hits@1 on the sparse YAGO21K-610
dataset. This suggests its ability to rank correct
entities precisely in low-density settings without
relying on type cues. When explicit type infor-
mation is incorporated, as in Zhou et al. (2023),
performance patterns shift: while Hits@10 often
remain competitive—or even surpass GraIL on
sparse datasets like YAGO21K-610 —Hits@1 con-
sistently decline. This indicates that explicit types
may mitigate sparsity by providing useful semantic
signals, but also introduce complexity that reduces
precision in top-ranked predictions. As dataset den-
sity increases, the performance gap between GraIL
and type-informed models narrows, and in some
cases, GraIL even outperforms the latter. This trend
suggests that explicit type information becomes
less helpful—and potentially detrimental—in
denser graphs, where structural cues are already
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sufficient. In contrast, implicit type information,
as leveraged by TyleR, generally leads to more
robust and consistent improvements. While not
always achieving the best Hits@1, models using
implicit types (TyleR variants) rank first or second
across most datasets for both Hits@10 and Hits@1.
These models show particular strength on sparse
datasets, such as YAGO21K-610, where the gap in
Hits@10 is most pronounced. This suggests that
implicit typing is more robust against topolog-
ical variations in the data, exhibiting a higher
generalization potential.

Addressing RQ1, the benefit of explicit type infor-
mation is dataset-dependent. It aids relational in-
ference in sparse graphs lacking rich topology, but
can add detrimental complexity in denser graphs.
Implicit type signals, however, consistently enhance
inference, mitigating structural sparsity.

5.2 Usefulness of PLM Representations for
Implicit Type Signal (RQ2)

The results in Table 2 provide compelling evidence
that PLMs can significantly enhance node represen-
tations in subgraph-based link prediction. However,
the impact of PLMs is not uniform across all
datasets. For example, on FB237-V1 and FB237-
V3, RoBERTa-L and Llama3-8B models exhibit
competitive performance, especially in terms of
Hits@1 and MRR, suggesting that PLMs provide
a strong inductive bias for relational reasoning. In
contrast, models without PLMs, like GraIL, show
lower performance on these datasets, particularly
regarding the Hits@10 metric. This highlights the
ability of PLMs to generalize and make more ac-
curate predictions in larger, more complex graphs,
where non-PLM models may struggle. Table 3
shows the impact of different aggregation strate-
gies on the FB237-V1 dataset, with SUM showing
the most consistent results. For example, Llama3-
8B with SUM outperforms GraIL across all metrics.
In addition, we compare the results of different ag-
gregation strategies with the scenario where only
the "type" prompt is considered (i.e., p1 in Table 1),
showing consistent improvements.

To comprehensively evaluate the utility of PLMs
in link prediction, we further explore the potential
of using LLMs directly. Specifically, we verbal-
ize all evaluation triples (including both positive
and negative candidates) in the form label(h) ⊕
label(r) ⊕ label(t). We then employ Llama3-8B
to score these verbalized triples based on their
(negated) sentence perplexity and report the result-

L <= 2 2 < L <= 37 37 < L <= 152 L > 152

20

40
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80

FB237-V1

L <= 1 1 < L <= 3 3 < L <= 24 L > 24

20

40

60

80

100

YAGO21K-610

GraIL Zhou et al. (2023)
TyleR (RoBERTa-L) TyleR (Llama3-8B)

Figure 2: Link Prediction (Hits@10) evaluation under
varying structural sparsity conditions (i.e., the num-
ber of edges L in the enclosing subgraph of the target
triple, including the target triple) on FB237-V1 (top)
and YAGO21K-610 (bottom).

ing rankings in Table 4. We exclude the FB15K-
237 variants from this evaluation due to the lack
of clear and consistent relational labels, which
makes verbalization unreliable. The performance
on YAGO21K-610, which is substantially lower
than that achieved by GNN-based approaches,
highlights the critical importance of incorporating
neighborhood structural information for this task.

Regarding RQ2, PLMs effectively enhance node
representations for subgraph-based inductive link
prediction. By providing richer semantic features,
models like RoBERTa-L and Llama3-8B improve
relational inference. Aggregating diverse PLM-
derived semantic embeddings (i.e., from different
prompts) boosts representation expressiveness.

5.3 Effect on Type and Structural Sparsity
(RQ3)

To investigate the effect of our approach on type
sparsity, we categorize entities into four groups
based on the number of explicit type annotations
they possess. Group 0 consists of entities with
no explicit type. Group 1 includes entities with

27199



0
(no type)

1
(coarse type)

>1
(1st)

>1
(2nd)

40

60

80

FB237-V1

0
(no type)

1
(coarse type)

>1
(1st)

>1
(2nd)

60

70

80

90

FB237-V2

0
(no type)

1
(coarse type)

>1
(1st)

>1
(2nd)

60

80

100

FB237-V3

GraIL Zhou et al. (2023) TyleR (RoBERTa-L) TyleR (Llama3-8B)

Figure 3: Hits@10 performance across four type sparsity groups for three FB237 variants, computed according to
the number of explicit types linked to each entity (details in Section 5.3). The groups, from left to right, represent
scenarios with an increasing number of explicit types associated with the known entity.

exactly one explicit type. The remaining entities
(those with more than one type) are split into two
additional groups based on the median number of
types in this subset: the lower 50% form the group
labeled “>1 (1st)”, and the upper 50% form “>1
(2nd)”. For each test triple, we determine the group
membership of the known entity (irrespective of
the type information available for the candidate
entities) and report the model performance in Fig-
ure 3. We report the average Hits@10 across the
three FB237 variants for each group. Group 0 rep-
resents the most type-sparse setting with entities
lacking any explicit type; in this scenario, both vari-
ants of TyleR consistently outperform the typeless
baseline GraIL across all dataset variants. This
reinforces the intuition that type signals derived
from PLMs can enhance inference capabilities
in sparse settings. For instance, on FB237-V1,
TyleR (RoBERTa-L) yields a 6.15% relative im-
provement over the non-PLM baselines, while on
FB237-V2, it achieves an even greater gain of
10.75% over GraIL. Interestingly, in the case of
entities with multiple types, TyleR continues to out-
perform the explicit-type-based method of Zhou
et al. (2023). This suggests that while explicit type
information is useful, its effectiveness may dimin-
ish when type annotations are noisy or overly nu-
merous, highlighting the need for better strategies
to aggregate multiple type signals.

We further analyze the role of implicit type in-
formation in addressing structural sparsity. For
this analysis, we consider the two datasets with the
lowest graph density: YAGO21K-610 and FB237-
V1. Evaluation triples are grouped into four bins
based on the number of edges in their enclosing

subgraphs, using percentiles to capture varying lev-
els of sparsity. Figure 2 presents Hits@10 across
these structural sparsity conditions. The results
indicate that PLM-based approaches, particularly
those using RoBERTa-L, demonstrate strong per-
formance in extremely sparse subgraphs. For exam-
ple, RoBERTa-L performs best in scenarios with
one or fewer edges (for YAGO21K-610) and more
than 152 edges (for FB237-V1), demonstrating
its robustness at both ends of the sparsity spec-
trum. However, in moderate sparsity settings (e.g.,
2 < L ≤ 37 in FB237-V1), models such as GraIL
and Zhou et al. (2023) perform comparably or bet-
ter, due to their reliance on structural patterns that
are still informative in such contexts.

Answering RQ3, PLM-based approaches such
as TyleR address both type and structural sparsity.
They consistently outperform baselines in scenarios
with minimal explicit type information or sparse
subgraph structures by inferring meaningful se-
mantics from PLMs. Although challenges persist
with moderate sparsity and noisy types, PLMs show
significant potential.

6 Related Work

Inductive Link Prediction. Inductive Link Pre-
diction (ILP) in Knowledge Graphs (KGs) aims to
infer missing links that involve entities unseen dur-
ing training, thereby enabling models to generalize
to evolving KGs. Unlike traditional embedding-
based models (Lin et al., 2015; Bordes et al., 2013;
Wang et al., 2014), inductive methods explicitly
handle unseen entities. Early approaches relied on
rule-based reasoning (Yang et al., 2017; Meilicke
et al., 2018), but graph neural networks (GNNs)
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soon became dominant (Hamilton et al., 2017),
with GraIL (Teru et al., 2020) leveraging enclosing
subgraph structures for relational inference. Exten-
sions include CoMPILE (Mai et al., 2021), empha-
sizing relational directionality, and TACT (Chen
et al., 2021), introducing relation-level reasoning.
Zhou et al. (2023) incorporate ontological data, but
assume complete type information, an assumption
that seldom holds in real-world KGs.

Entity Representation with Language Models.
Pre-trained language models (PLMs) capture fac-
tual and relational knowledge from large cor-
pora (Petroni et al., 2019; Brown et al., 2020), en-
coding rich entity semantics (Zhu et al., 2024) and
retrieving factual information via prompting (Wei
et al., 2023). This makes PLMs well-suited for
link prediction because they can enrich entity rep-
resentations. For example, KGBERT (Yao et al.,
2019) verbalizes triples as text and fine-tunes BERT
to classify their plausibility. Subsequent meth-
ods (Zhang et al., 2020; Daza et al., 2021; Wang
et al., 2021) integrate entity descriptions into KG
completion to induce embeddings for new entities
via PLMs. BERTRL (Zha et al., 2022) exemplifies
this trend by injecting GNN-discovered reasoning
paths into a BERT-based model. A promising di-
rection involves integrating LLMs with subgraph-
based methods to reduce model queries while pre-
serving structural reasoning. Li et al. (2025) pro-
pose CATS, a hybrid model that leverages latent
type cues and neighbor facts to fine-tune an LLM
for triple scoring, combining semantic understand-
ing with explicit subgraph evidence. Unlike prior
approaches that fine-tune PLMs, our method ex-
tracts semantic knowledge from a frozen PLM,
and we investigate how effectively such pre-trained
models enable a subgraph-reasoning module to cap-
ture the type semantics underlying each relation.

7 Conclusion

We present TyleR, a novel inductive link-prediction
approach designed to handle incomplete or noisy
type information. By leveraging pre-trained lan-
guage models (PLMs), TyleR enriches node repre-
sentations with implicit type signals, overcoming
the limitations of methods reliant on explicit anno-
tations. Experiments show that TyleR exhibits com-
petitive performance, particularly when type data
are sparse or unreliable. The results underscore
the potential of PLMs for semantic enrichment, en-
abling robust link prediction without complete type

supervision. Future work will examine domain-
specific PLMs, more embedding-aggregation strate-
gies, and broader applications to graph-based tasks.

Limitations

Our study employs a set of predefined prompts,
which, while effective for the scope of our experi-
ments, may not represent the most informative or
optimal configurations. More sophisticated strate-
gies for adaptive prompt selection or prompt tuning
could potentially enhance model performance. Ex-
ploring these approaches is left as a direction for
future research. Additionally, the hyperparameters
for our models were selected empirically, based
on extensive experimentation and informed judg-
ment. While this approach yielded strong results, it
may not guarantee optimal configurations. A more
systematic or exhaustive hyperparameter search
could lead to improved outcomes. Nonetheless, the
computational cost and complexity associated with
such procedures, particularly given the scale and re-
source demands of our training setup, render them
infeasible within the constraints of this study.
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Appendix

This appendix provides supplementary material to
support the main paper. It is organized as follows:

• Dataset Details (Appendix A): Provides a
summary table (Table 6) and further informa-
tion on the datasets used in our experiments.
The section includes the procedure for extract-
ing ontology graphs and entity-type links for
the FB237 variants, which initially lack such
annotations. It also details the methodology
for splitting ontology triples into training, val-
idation, and test sets.

• Hyperparameter Details (Appendix B): Out-
lines the hyperparameter settings employed
for training our proposed model, TyleR, as
well as the baseline models. Key parameters
such as learning rates, number of hops for sub-
graph extraction, embedding dimensions, and
early stopping criteria are specified to ensure
reproducibility.

• Examples of Predictions (Appendix C):
Presents a qualitative example (Table 7) com-
paring the link predictions made by TyleR
and baseline models for a specific target triple,
particularly in a scenario with a sparse en-
closing subgraph. This section illustrates how
different models rank candidate entities and
highlights the impact of the strict tie-breaking
strategy.

• Embedding Visualization (Appendix D): In-
cludes a 2D visualization of entity embed-
dings (obtained via PCA). This offers a quali-
tative insight into the learned representations
and their spatial distribution for a sample set
of entities (Figure 4 and Figure 5).

A Dataset Details

Table 6 provides a statistical overview of the
datasets utilized in our experiments, detailing their
key characteristics, including the number of enti-
ties, relations, triples, types, meta-relations, ontol-
ogy triples, type links, and textual labels.

The model from Zhou et al. (2023) relies on ex-
plicit entity-type pairs and an ontology graph for
training. FB237 initially lacks these annotations.
Therefore, we processed the FB237 variants to ex-
tract the necessary type information and construct
a corresponding ontology using the following pro-
cedure.

To construct the ontology graph for our experi-
ments we mapped all the freebase entities appear-
ing in the dataset to their Wikidata identifier, us-
ing the publicly available Freebase-Wikidata map-
pings 1. Using the public Wikidata API 2, we then
retrieved for every mapped entity its respective
textual label and the values associated with its “in-
stance of ” property, which indicates the type(s) an
entity is associated to. With the set of relevant con-
cepts established, we constructed the schema-level
ontology. For each concept identified in the previ-
ous step, its full set of concepts was fetched from
Wikidata.

A schema-level triple 〈Concept1 PropertyLabel
Concept2〉 was generated and added to our ontol-
ogy graph if, and only if, the target value of a Con-
cept (Concept2) was itself one of the recognized
concepts.

In the entity triples, the entities in the test set
do not appear in the train set and valid set, while
the relations in both the test set and valid set are
included in the train set. We train on the train
graph and test on the test graph. In addition, to
achieve ontology training, we randomly divide the
ontology triples into a train set, a valid set, and a
test set using hold-out splitting in the ratio of 80%,
10%, 10%, respectively.

B Hyperparameter Details

Baselines are trained using the hyperparameter set-
tings reported in their original papers. For our
model, we adopt the configuration from Zhou et al.
(2023) to ensure fair comparison, tuning only the
learning rate, which we set empirically to 1e-3. All
models are trained for 50 epochs with early stop-
ping (patience of 100 iterations) and a batch size of
16. We adopt the Adam optimizer. For all models,
the number of hops in the enclosing subgraph is 3.
We set the semantic embedding dimension to 24,
the layer-0 embedding dimension to 32, and the
margin γ in the loss function to 10.

C Examples of Predictions

This section provides a qualitative example to il-
lustrate the behavior of TyleR in comparison to
baseline models, particularly in challenging scenar-
ios characterized by extreme structural sparsity. We
focus on a specific instance from the YAGO21K-
610 dataset where the enclosing subgraph for the

1https://developers.google.com/freebase
2https://www.wikidata.org/w/api.php

27204



Dataset Split Entities Relations Triples Types Meta Rel. Onto. Triples Type Links Text Labels

train 1594 180 4245 458 29 680 2163 1516
valid 567 103 489 124 15 86 756 539fb237_v1
test 550 102 492 113 13 85 764 517

fb237_v1_ind
train 1093 142 1993 458 29 680 1525 1041
valid 287 66 206 124 15 86 406 275
test 301 68 205 113 13 85 434 289
train 2608 200 9739 575 33 865 3586 2489
valid 1139 143 1166 160 15 109 1511 1083fb237_v2
test 1142 140 1180 153 16 108 1515 1094

fb237_v2_ind
train 1660 172 4145 575 33 865 2257 1561
valid 548 92 469 160 15 109 757 516
test 562 107 478 153 16 108 745 524
train 3668 215 17986 732 31 1060 5114 3484
valid 1882 183 2194 196 17 133 2575 1787fb237_v3
test 1871 179 2214 192 16 133 2520 1773

fb237_v3_ind
train 2501 183 7406 732 31 1060 3426 2379
valid 973 120 866 196 17 133 1275 920
test 981 128 865 192 16 133 1290 924
train 16357 30 30000 610 24 1983 4861 16357
valid 4388 21 3000 166 14 248 1783 4388YAGO21K-610
test 3938 25 6970 159 13 248 1898 3938

Table 6: Statistics of the datasets used in our experiments. The YAGO21K-610 (Zhou et al., 2023) dataset includes
ontology triples and entity-type links, while the FB237 dataset variants (Teru et al., 2020) are further processed to
extract ontology triples, type links and textual labels.

target triple lacks any connecting edges.
Table 7 presents the top-ranked predictions

for the target triple (Christos Kagiouzis,
isAffiliatedTo, Kastoria F.C.), where the
task is to predict the tail entity (Kastoria F.C.).
This triple was chosen because its 3-hop enclosing
subgraph presents a worst-case scenario for struc-
tural reasoning. Specifically, the subgraph contains
no path that could link the head entity (Christos
Kagiouzis) to the correct tail entity (Kastoria
F.C.), beside the target link. This lack of struc-
tural information within the subgraph presents a
significant challenge for models that heavily rely
on graph patterns. The evaluation follows the stan-
dard protocol (Section 4.2), where the correct tail
entity is ranked against 50 randomly corrupted neg-
ative samples. Crucially, as detailed in Section 4.2,
ranking employs the strict tie-breaking strategy, as-
signing the worst possible rank to the positive triple
in case of score ties.

C.1 Analysis

TyleR (RoBERTa-L). Despite the absence of di-
rect structural paths in the enclosing subgraph,
TyleR ranks the correct entity (Kastoria F.C.)
2nd. This strong performance is attributed to its
ability to leverage rich semantic information de-

rived from the PLM (RoBERTa-L). The PLM’s
understanding of entities and their likely affilia-
tions, learned from vast text corpora, allows TyleR
to infer plausible connections even when explicit
graph structure is missing. The top-ranked entity,
(Southern United FC), is also a football club, in-
dicating that TyleR correctly identifies the semantic
category of plausible tail entities for the relation
(isAffiliatedTo) with (Christos Kagiouzis)
(likely a footballer). The scores assigned by TyleR
are relatively distinct, suggesting a higher degree
of confidence in its ranking.

GraIL. In contrast, GraIL, which relies purely on
subgraph structures for relational inference, per-
forms poorly. It ranks the correct entity (Kastoria
F.C.) at 50th (last among the 50 candidates consid-
ered for ranking this positive triple). The identical
scores for all top 50 entities (all -11.888) indicate
that GraIL cannot differentiate between the can-
didates due to the lack of structural cues in the
enclosing subgraph. This highlights a key limi-
tation of purely structural methods in extremely
sparse settings.

Zhou et al. (2023). This model, which incorpo-
rates explicit type information and ontology rea-
soning, ranks the correct entity 16th. While this
is significantly better than GraIL, it falls short of
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Rank Triple Score

TyleR (RoBERTa-L)

1 Christos Kagiouzis → isAffiliatedTo → Southern United FC -1.951
2 Christos Kagiouzis → isAffiliatedTo → Kastoria F.C. (gold) -1.953
3 Christos Kagiouzis → isAffiliatedTo → Deltras F.C. -1.985
4 Christos Kagiouzis → isAffiliatedTo → Yunnan Hongta F.C. -1.998
5 Christos Kagiouzis → isAffiliatedTo → Chainat Hornbill F.C. -4.957
6 Christos Kagiouzis → isAffiliatedTo → Hoàng Anh Gia Lai F.C. -5.172
7 Christos Kagiouzis → isAffiliatedTo → Great Britain women’s Olympic football team -5.529
8 Christos Kagiouzis → isAffiliatedTo → APEP F.C. -5.604
9 Christos Kagiouzis → isAffiliatedTo → Basketball League Belgium -5.698

10 Christos Kagiouzis → isAffiliatedTo → Baltimore Blast (1980–92) -5.706

GraIL

41 Christos Kagiouzis → isAffiliatedTo → Darko Vukić -11.888
42 Christos Kagiouzis → isAffiliatedTo → Connecticut Pride -11.888
43 Christos Kagiouzis → isAffiliatedTo → Hoàng Anh Gia Lai F.C. -11.888
44 Christos Kagiouzis → isAffiliatedTo → Southern United FC -11.888
45 Christos Kagiouzis → isAffiliatedTo → Helgi Sigurðsson -11.888
46 Christos Kagiouzis → isAffiliatedTo → Conor Powell -11.888
47 Christos Kagiouzis → isAffiliatedTo → Samuel Cunningham (footballer) -11.888
48 Christos Kagiouzis → isAffiliatedTo → Ferdinand Daučík -11.888
49 Christos Kagiouzis → isAffiliatedTo → Ertan Demiri -11.888
50 Christos Kagiouzis → isAffiliatedTo → Kastoria F.C. (gold) -11.888

Zhou et al. (2023)

10 Christos Kagiouzis → isAffiliatedTo → SC 07 Bad Neuenahr 4.330
11 Christos Kagiouzis → isAffiliatedTo → Chicago Power 4.330
12 Christos Kagiouzis → isAffiliatedTo → Baltimore Blast (1980–92) 4.330
13 Christos Kagiouzis → isAffiliatedTo → Peristeri B.C. 4.330
14 Christos Kagiouzis → isAffiliatedTo → Deltras F.C. 4.330
15 Christos Kagiouzis → isAffiliatedTo → ADET 4.330
16 Christos Kagiouzis → isAffiliatedTo → Kastoria F.C. (gold) 4.330
17 Christos Kagiouzis → isAffiliatedTo → Łukasz Tumicz -6.757
18 Christos Kagiouzis → isAffiliatedTo → Ertan Demiri -6.757
19 Christos Kagiouzis → isAffiliatedTo → Ferdinand Daučík -6.757

Table 7: Example of ranking predictions on the YAGO21K-610 dataset for the target triple (Christos Kagiouzis,
isAffiliatedTo, Kastoria F.C.), when the tail is to be predicted. In this case, the target triple has no links in
the associated enclosing subgraph. As discussed in Section 4.2, ranking is done using the strict tie-breaking strategy.

TyleR’s performance. The explicit type information
likely provides some signal ("(Kastoria F.C.) is
a Club"). However, this explicit information might
be coarser-grained or less directly informative for
this specific prediction compared to the nuanced
semantic representations captured by TyleR. The
presence of many ties in the scores (e.g., ranks
10-16 all have score 4.330) suggests that while
types help narrow down possibilities, they do not
offer the same fine-grained discriminative power
as TyleR’s PLM-based semantic enrichment in this
particular sparse scenario.

This example underscores the advantage of
TyleR’s approach, particularly its semantic enrich-
ment stage using PLMs. By infusing node repre-
sentations with implicit type-aware signals, TyleR
can effectively reason about entity relationships
even when the local graph structure is uninforma-

tive, thereby mitigating the challenges posed by
structural sparsity.

D Embedding Visualization

This section provides a qualitative analysis of en-
tity embeddings through 2D visualization to illus-
trate how different models represent candidate en-
tities in a challenging link prediction task charac-
terized by structural sparsity. We utilize Principal
Component Analysis (PCA) to project the final-
layer GNN embeddings hL

v of 50 candidate tail
entities onto a 2D plane. The specific task visu-
alized is predicting the missing tail entity for the
triple <Andrei Gashkin, playsFor, ?> from
the YAGO21K-610 dataset. Notably, this example
is chosen for its extreme structural sparsity. The
enclosing subgraph constructed around the head
entity Andrei Gashkin and the correct tail entity
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FC KAMAZ Naberezhnye Chelny is very sparse.
Furthermore, for many of the 49 negative candi-
date entities considered alongside the correct tail,
their respective enclosing subgraphs (when con-
sidered with the head Andrei Gashkin) also lack
rich structural information, making it difficult for
models relying heavily on graph patterns to make
accurate distinctions. We compare the embeddings
generated by:

• The ontology-enhanced model from Zhou
et al. (2023), which leverages explicit type
information (Figure 4).

• Our proposed model, TyleR (RoBERTa-L),
which uses PLM-derived implicit type signals
(Figure 5).

D.1 Analysis
Figure 4 visualizes the PCA-projected embeddings
from the model by Zhou et al. (2023). In this visu-
alization:

• The correct tail entity, FC KAMAZ
Naberezhnye Chelny (highlighted or
labeled distinctly if possible in the actual
figure), is positioned among a cluster of other
football clubs and sports-related entities. For
instance, it might be spatially close to other
entities like SV Grödig or Egri FC if they
were among the candidates.

• The embeddings of many semantically sim-
ilar entities (e.g., various football clubs) are
tightly clustered. This suggests that while the
explicit type information used by this model
(e.g., "Football Club" type) helps group enti-
ties by their broad category, it may not provide
sufficient fine-grained discriminative power in
this structurally sparse scenario.

• The model appears to struggle to clearly dis-
tinguish FC KAMAZ Naberezhnye Chelny
from other plausible (same-type) but incorrect
candidate entities based solely on the explicit
type signals and the limited structural infor-
mation available in the sparse subgraph. The
representation reflects a general categorical
understanding rather than a nuanced, context-
specific one for the playsFor relation with
Andrei Gashkin.

Figure 5 displays the PCA-projected embeddings
from our TyleR-RoBERTa-L model for the same
set of 50 candidate entities.

• The correct tail entity, FC KAMAZ
Naberezhnye Chelny, is noticeably
more separated in the embedding space
compared to its representation in Figure 4.
While it would still likely be in a region
associated with sports entities, its position
relative to other incorrect candidate football
clubs is more distinct.

• This improved separation suggests that
TyleR’s semantic enrichment, derived from
RoBERTa-L, provides more nuanced and dis-
criminative features. The model benefits
from the implicit propagation of semantic in-
formation related to the head entity Andrei
Gashkin (a known footballer) through the
PLM’s understanding.

• The PLM’s pre-trained knowledge helps in-
fer a more fine-grained "type-awareness" and
contextual understanding for the playsFor re-
lation. Even with sparse explicit graph struc-
ture, TyleR can leverage the rich semantics
encoded by the PLM (and potentially GNN
mechanisms like self-loop connections that
reinforce entity identity) to better characterize
and differentiate the correct tail entity.

This visual comparison underscores the bene-
fit of TyleR ’s approach in handling structurally
sparse scenarios. The ontology-enhanced model
(Zhou et al. (2023)), while utilizing explicit types,
produces less distinguishable embeddings for se-
mantically similar entities when graph structure
is poor. In contrast, TyleR, by incorporating rich
implicit type signals from a pre-trained language
model, achieves a more fine-grained characteriza-
tion and better separation of the correct entity in
the embedding space. This highlights the potential
of PLM-derived semantic enrichment to compen-
sate for deficiencies in explicit type annotations
and structural connectivity, leading to more robust
inductive link prediction. This supports our pa-
per’s argument that implicit type signals enable a
more nuanced understanding, particularly crucial
in sparse settings.
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Figure 4: Visualization of last layer embeddings (using PCA) for the ontology-enhanced model of Zhou et al. (2023)
for 50 candidate entities when predicting the missing tail for triple <Andrei Gashkin, playsFor, ?>. For all the
50 candidates, there is no enclosing subgraph.
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Figure 5: Visualization of last layer embeddings (using PCA) for TyleR (RoBERTa-L) for 50 candidate entities
when predicting the missing tail for triple <Andrei Gashkin, playsFor, ?>. For all the 50 candidates, there is
no enclosing subgraph.
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