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Abstract

Recent advancements in large language mod-
els (LLMs) have shifted focus toward scal-
ing inference-time compute—improving per-
formance without retraining the model. A com-
mon approach is to sample multiple outputs
in parallel, and select one of these as the final
output. While existing work has focused on
English and specific domains, we study how
to robustly scale inference-time compute in
a multilingual, multi-task setting: spanning
open-ended generations, math and translation
tasks, for open models at 8B and 111B scale,
across seven languages. Our findings high-
light the need for tailored sampling and selec-
tion strategies. We propose novel solutions tai-
lored for this multi-faceted inference scenario,
demonstrating notable gains across languages
and tasks. Our methods achieve an average
+6.8 jump in win-rates for 8B models on m-
ArenaHard-v2.0 prompts in non-English lan-
guages against proprietary models like Gemini.
At larger scale, our 111B model shows a +9.0
improvement with just five samples compared
to single-sample decoding. These results em-
phasize the importance of language- and task-
aware approaches to democratize inference-
time improvements.

1 Introduction

Traditionally, if you wanted higher performance
from a machine learning model, you paid for it
with more training or data or parameters. A key
departure from this is the recent emphasis on scal-
ing up compute at inference time rather than at
training time (Wu et al., 2024a; Hooker, 2024;
Snell et al., 2025). The combination of growing
generative capabilities of large language models
(LLMs) paired with better sampling techniques has
spurred progress in inference-time compute strate-
gies. These strategies allow for improvements in
performance by spending more compute without
any alterations to the model itself. However, much

remains unknown about how to best search for
optimal solutions using inference compute alone,
especially for open-ended generative tasks (Zhang
et al., 2025b). Even less established is how to tailor
inference compute strategies to languages beyond
English, which are traditionally under-served by
state-of-the-art systems (Ustiin et al., 2024; Dang
et al., 2024b; Dash et al., 2025), and underrepre-
sented in LLM research.

In our work, our goal is to understand how
to most robustly scale inference compute across
languages for generative tasks. For a given
model, how can we best invest a fixed budget of
inference-time compute to improve performance
across all languages? We are most interested in
techniques that generalize across open-ended tasks
and formally verifiable tasks, and across languages.
Hence, our setting is extremely multi-task with
many different performance constraints to balance.

We focus on parallel scaling (Wang et al., 2023;
Welleck et al., 2024; Zhang et al., 2025b) which in-
creases inference-time compute by first generating
multiple outputs in parallel and then selecting one
of them as final output.! We can think of parallel
scaling as an endeavor to make the best lemon-
ade from an already grown lemon tree (the trained
model): First we carefully harvest lemons (generate
samples) and then pick the best of them (selection)
for the lemonade. These two stages, and how well
they are aligned, determine the power of inference
scaling (Stroebl et al., 2024; Brown et al., 2024;
Huang et al., 2025). Our work shows that we have
to depart from go-to solutions for English to ac-
count for language-specific variance. Our primary
contributions are the following:

1. Extensive study of existing methods. There are
many prior approaches to the problem (Ippolito

'This idea is known under many other names, e.g.
Best-of-N (Huang et al., 2025), “repeated-sampling-then-
voting” (Chen et al., 2025), or rejection sampling (Touvron
et al., 2023)
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et al., 2019; Shi et al., 2024; Snell et al., 2025),
such as Best-of-N (BoN) selection with a reward
model (RM), or Minimum Bayes Risk (MBR) de-
coding with pairwise LLM judgments, but they
have studied subsets of tasks and languages. We
empirically investigate sampling and selection in-
ference strategies under our massively multi-task
constraints, spanning two multilingual LLMs,
seven languages and three generative tasks (open-
ended generation, math, machine translation).

2. Novel risk-reducing sampling. We introduce a
novel hedged sampling method to better exploit
the diversity obtained through sampling under
increased softmax temperature. It specifically
benefits languages that come with a higher risk
of sample quality deterioration at high tempera-
tures. Opposed to prior works that recommend
either stochastic or deterministic sampling de-
pending on the task (Song et al., 2025), we show
that including both in the sample set is key to
multilingual generalization.

3. Improved selection strategies. We propose two
new selection strategies which capitalize on long-
context modeling and the versatility of cross-
lingual generation abilities of recent generalist
LLMs. We call these Checklisted One-Pass
Selection (CHOPS) and Cross-lingual MBR
(X-MBR). Using only five samples, we show
that they bring +17.3% (AYA EXPANSE 8B),
+9.4% (QWEN3 8B), +9.0% (COMMAND A) in-
crease in win rates on multilingual ArenaHard
v2.0 compared to single samples, often outper-
forming BoN with specialized RMs.

We distill our findings into a recipe for squeezing
the most out of multiple samples in a multilingual
and multifaceted generation paradigm, which we
coin the “Multilingual LL.Monade Recipe”. Our
findings have implications for the broader test-time
scaling landscape, as they demonstrate that careful
design of sampling and selection techniques can
bring important gains even at the low-end scale of
inference-time scaling for high-end multilingual
LLMs. Contrary to the trend of exploiting special-
ized RMs for single-task inference-time scaling,
generalist LLM judges bring robust improvements
even in challenging and diverse multi-task setups,
thanks to their versatility and adaptability.

Multilingual LL.Monade Recipe

Step 1: Use hedged sampling to generate N
samples.

Optional: Localize a reasonably high tempera-
ture (start 7 at 0.7-0.9) for different contexts.

Step 2: Use a multilingual LLM to select the
best sample, using CHOPS or X-MBR with aux-
iliary samples from a dominant language.
Optional: A small exploration of multilingual
LLM judges to find the best suited one.

In the following, we take apart the question on
how to optimize multi-sample inference, by first
investigating the sampling strategy (section 2), then
comparing multiple selection strategies (section 3).
We mark our newly introduced methods and their
empirical effects with 7, and contrast English re-
sults (o) with non-English (©) results.

2 How to Sample?

The first ingredient for successful test-time scaling
is the creation of a sample pool of sufficient quality:
At least one sample in the pool needs to be of higher
quality than what can be expected from a single
sample. Our research question is here: How to
create a sample pool with a strategy that is robust
across languages and tasks?

2.1 Methodology

Temperature Sampling Our first task is to create
a valuable pool of generations via stochastic sam-
pling. We explore different variants of temperature
sampling (Ackley et al., 1985) as it offers an intu-
itive way of steering the diversity and quality of the
generation pool. Temperature sampling divides the
logits for each token prediction by a fixed constant
7 > 0: softmax(ly/7). Under high temperatures
(7 > 1) the resulting probability distribution be-
comes more uniform, while at its extreme (close to
0), it becomes more unimodal. As a consequence,
higher temperatures generate a more diverse pool
of samples. The quality, however, varies depending
on the task, language, and model. At 0, sampling
becomes greedy decoding, picking the token with
the maximum likelihood at each decoding step,
which we refer to as 7 = 0 for simplicity.

~ Multi-Temperature Sampling Prior works in-
vestigated sampling the entire pool from the same
temperature (Du et al., 2025; Renze, 2024; Song
et al.,, 2025). When we have a large variety of
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tasks and languages, representing very different
subspaces of the data distribution that the model is
trained on, it might be impossible to set the temper-
ature optimally for all. For inputs that the model
is well trained on, higher temperatures can be tol-
erated without incurring loss of quality, while for
lesser trained inputs, lower temperatures are re-
quired to maintain quality. Alignment also plays a
role in that it stabilizes robustness under higher tem-
peratures for the inputs that the model sees during
alignment (Shi et al., 2024). To increase robust-
ness, we thus investigate composing the sample set
from outputs generated under mixed temperatures
7 € [0, 1]. These temperatures can either be chosen
randomly, or according to insights from a devel-
opment set. As we will show below, temperature
sensitivity varies across languages and tasks, so
random sampling from a reasonable range is bet-
ter than choosing just one potentially suboptimal
temperature for all settings. Tuning temperatures
individually per task and language is unrealistic
due to combinatorial explosion, especially with
massively multilingual and multitask goals.

~ Hedged Temperature Sampling As a varia-
tion of multi-temperature sampling, we propose
a hedged sampling strategy which additionally in-
cludes deterministic outputs from greedy search
(7 = 0) in this mix. This helps hedge risk because
even if there are lower-quality samples due to vari-
ance caused by higher temperatures, we can default
back to strong deterministic sample candidates for
aligned models (Song et al., 2025). Hedged sam-
pling is complementary to token-level techniques
that truncate the output space of individual stochas-
tic samples, e.g. by pruning low-probability tokens
with a fixed threshold (e-sampling) (Hewitt et al.,
2022; Freitag et al., 2023), or a dynamic threshold
based on the model’s confidence (min-p sampling)
(Minh et al., 2025). Hedging risks is particularly
important for multilingual applications, where the
risk tends to be higher in less dominant languages,
as we will show in the following experiments.

2.2 Experimental Setup

Multilingual Multi-tasking Open-ended genera-
tion tasks have received less attention in test-time
scaling works. It is harder to fit a single method or
reward model to the diverse challenges that open-
ended generations pose. Our goal here is to take a
wider view, which means considering both open-
ended tasks and tasks with underlying correctness.

Task Langs 8B Model Sampling  Selection
N=5
m Single o
8 en Aya
ArenaHard Expanse L Temp Judge
zh fr “ Multi _ MBR
MGSM Qwen3 Temp ©
ja ru '™ X-MBR
WMT + Hedging

gelles “ CHOPS

Figure 1: Overview of the multilingual multi-task
experimental scope. New methods are marked with 7.

The experimental setup is summarized in fig. 1. We
test AYA EXPANSE 8B (Dang et al., 2024b) and
QWEN3 8B (Yang et al., 2025a) models on 7 lan-
guages, selected for their inclusion in our target
benchmarks. We evaluate on three task types:

1. Open-ended generation (Arena): We mea-
sure win rates on m-ArenaHard v2.0% us-
ing GPT-40 (gpt-40-2024-05-13) as judge,
comparing against greedy decoding for intrin-
sic, and Gemini (gemini-2.0-flash) for ex-
trinsic comparison.

2. Mathematical reasoning (MGSM): We mea-
sure accuracy3 on MGSM (Shi et al., 2022).

3. Machine translation (WMT): We measure
translation quality from English with XComet-
XL (Colombo et al., 2023) on collections of
the yearly WMT task (Federmann et al., 2022;
Deutsch et al., 2025).

To properly measure generalization, we use sep-
arate data splits for development and testing, de-
scribed in table 6, together with full experimental
details in appendix A.

Budget Size for Parallel Scaling Compared to
prior works that investigate sample sizes in the hun-
dreds to thousands (Freitag et al., 2023; Song et al.,
2025; Huang et al., 2025), we focus on the lower
end of inference-compute scale. We set N = 5,
given that it is a more realistic workload for large
scale production systems (i.e. many inputs applied
with 5x the amount of the normal compute). Com-
plementing this view, we also observe that scaling
curves tend to have their steepest incline in the first
steps, i.e. the highest return for additional invested
compute, especially for imperfect selection meth-
ods (Brown et al., 2024; Chen et al., 2025). In

*Released at https://huggingface.co/datasets/
CoherelLabs/m-ArenaHard-v2.0

3We use simple-evals’s exact match metric https://
github.com/openai/simple-evals/tree/main
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Appendix E.4, we report similar findings on our
generative tasks when increasing /N up to 40: An
even larger inference budget does not necessarily
translate to much higher performance when looking
at metrics like win rates across languages.

Measuring Sample Pool Quality In order to
compare the effects of parallel scaling across tasks,
we introduce HOPE and RISK metrics, which in-
tuitively represent the hope and risk of scaling up
compared to the quality of a single sample. HOPE is
defined as the relative change between the score of
the best sample in the set y™ = arg max,ecy r(y)
and the evaluation score of the greedy output §:
% For RISK, we analogously compare
the relative change in evaluation score between
the worst sample y~ and the greedy output. For
open-ended generations, we query an in-house mul-
tilingual reward model that scores an average Re-
wardBench score of 76.1 on RewardBench2 (Malik
et al., 2025) to estimate the quality of individual
samples, while for the other tasks we evaluate the
samples against the reference with the respective
task metrics. We report HOPE and RISK averaged
across instances from each benchmark.

2.3 Results

Higher temperature sensitivity for non-English.
In classic single temperature sampling, we ded-
icate our entire inference budget to sampling at
one fixed temperature. Figure 2 compares how
best, worst and average performance differ across
all three tasks if we spend this budget at different
temperatures. We observe consistent trends: As
temperature increases, the gap between best-case
and worst-case outcomes widens. While higher
temperatures lead to improved best-case scenar-
ios, they also increase the chances of generating
lower-quality examples. Notably, the rate at which
variance increases is influenced by both the lan-
guage and the nature of the task, likely influenced
by their presence in training and alignment of the
underlying model. Comparing English against the
other languages, its average sample quality is more
stable even at higher temperatures (more euryther-
mal), while it drops earlier for other languages.
Likewise, best-sample quality continues to grow
till close to 7 = 1 for English, while it decays ear-
lier and steeper for other languages (here Japanese,
more languages in appendix C).

Higher risk and hope for non-English. Table 1
quantifies the HOPE of quality increases and RISK
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Figure 2: Quality under single temperature sampling
We evaluate best, worst and mean quality for N =
5 samples from AYA EXPANSE 8B for English (left,
replaced by French for WMT) and Japanese (right) on
each of the dev sets of the tasks (rows: Arena, MGSM,
WMT).

of quality drops of repeated sampling at 7 = 0.7.
First, the HOPE results highlight the significant
headroom achievable with just five samples if se-
lected optimally. Second, we can see that non-
English (©) sampling comes with higher HOPE
(37.2%) but at greater RISK (—44.5%) than English
(e). This illustrates the importance of balancing po-
tential gains against possible losses in parallel sam-
pling, particularly in multilingual settings where it
is more risky to sample at higher temperatures.

Setting Task HOPE  RISK
e English Arena 38.81 -51.49
MGSM 1190 -23.81

Average 25.36 -37.65

Non-English ~ Arena 55.51 -65.31
MGSM 1896 -23.70

Average 37.23 -44.50

Non-English  WMT 6.47 -11.64

Table 1: HOPE and RISK of sampling at 7 = 0.7,
relative to evaluation scores of greedy decoding for AYA
EXPANSE 8B. Values are reported as percentages.
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Greedy outputs are the best single-sample bet.
When inspecting the mean scores of samples from
different temperatures in Figure 2, it becomes clear
that the quality of greedy outputs (7 = 0) is always
greater or equal than the expected quality of outputs
sampled at higher temperatures. This is consistent
across setups, corroborating the recommendation
for greedy decoding by (Song et al., 2025). There-
fore, greedy decoding is our single-sample baseline
for measuring the benefits of scaling up.

I
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Figure 3: Single vs. multiple temperature sampling,
with and without hedging: Win rates over greedy out-
puts on mArenaHard with Judge MBR and N = 5 sam-
ples, averaged across models. Error bars show variance
across non-English languages. For single temperature,
we use 7 = 0.7; for multiple temperatures, we sample
uniformly from 7 € {0.0,0.3,0.7,0.8,0.9,1.0}. Hedg-
ing replaces one sample with the greedy output.

~ Multi-temperature sampling benefits English
Instead of attempting to tune temperatures for
each possible inference scenario, we use our bud-
get to sample across multiple temperatures, (7 €
[0.0,0.3,0.7,0.8,0.9,1.0]) by randomly picking
N = 5 values from this set uniformly without
replacement. We compare this against sampling
from a single temperature (7 = 0.7, highest best-
case performance on average across setups, see
Appendix E.1). To measure downstream effects,
we utilize Judge MBR as a selection technique
(details will follow in section 3) and measure m-
ArenaHard win rates for all sampling techniques
against greedy outputs. Figure 3 confirms that
there are indeed downstream benefits for random
multi-temperature sampling compared to single-
temperature sampling. However, these gains are
most pronounced for English +8.8% (compared to
Non-English with +1.4%), because other languages
have a higher RISK is at high temperatures (fig. 2)
included in the set.

~ Hedged sampling is best for non-English We
now test if hedging with a greedy sample in the pool
can help manage the higher RISK across languages

at high temperatures. Figure 3 visualizes the effect
of hedging for m-ArenaHard win-rates over greedy
outputs. When we combine 4 samples at 7 = 0.7
with the greedy output for the MBR method to
choose from (“Hedged Single”),* we find that this
safety net effectively increases win-rate deltas by
+1.73 in Non-English languages. This constitutes
the largest improvement over single temperature
sampling in non-English languages. Overall, sin-
gle temperature sampling with hedging balances
English and non-English performance best, so we
choose it as a base for our selection experiments.

Combination with probability pruning
Hedged sampling can further be combined with
techniques that reduce risk at the token level, such
as min-p (Minh et al., 2025). In our setup, min-p
provides additional gains over hedged sampling
alone in most test cases, see appendix E.2. The
improvements are most consistent for machine
translation, where similar probability pruning
techniques have previously been shown essential
for MBR (Freitag et al., 2023). We apply min-p
in final test set evaluations in the next section and
denote this combination with the subscript min-p.

3 How to Select?

Once we have sampled a pool of generations of
promising quality, our goal is to correctly identify
the best generation in the pool. The research ques-
tion is: How to select from a sample pool with a
strategy that is robust across languages and tasks?

3.1 Methodology

We briefly review multiple selection techniques of
varying complexity, and propose our own exten-
sions () that are particularly equipped for multi-
lingual generative tasks.

Maximum Likelihood Given a pool of samples
Y, the sample § with the highest likelihood un-
der the model distribution py(y | =) should be a
good candidate for selection when the model is
well calibrated (i.e. likelihood and quality corre-
late): § = argmaxycy py(y | ). This constitutes
an intrinsic metric that relies only on the model.

Best-of-N (BoN) introduces an extrinsic utility
metric U(y) to score each sample independently.
The sample with the highest utility score gets se-
lected: § = arg maxycy U(y). This approach re-

*The analysis in appendix C shows that MBR selects
greedy for 35.3% of prompts on average.
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lies on the utility metric being well aligned with
the task evaluation metric and well calibrated, i.e.,
rating outputs adequately on a common scale even
if scored independently. BoN is typically used
with specialized reward models (RM BoN) (Zhang
et al., 2024a; Ichihara et al., 2025; Pombal et al.,
2025; Son et al., 2025) or verifiers in math or code
tasks (Snell et al., 2025; Cobbe et al., 2021; Light-
man et al., 2024; Zhang et al., 2025a).

Minimum Bayes Risk (MBR) decoding
searches for the candidate ¢ that minimizes the
expected risk over the distribution of samples (Ku-
mar and Byrne, 2002, 2004; Eikema and Aziz,
2020, 2022). The risk R(y’) of a candidate ¢/ is
approximated with pairwise comparisons from the
sample pool: R(y') ~ ﬁ > yey L(y,y') where
L(y,y’) is a pairwise loss function measuring
the discrepancy between a candidate ¢ and and a
pseudo-reference 3'. MBR thus selects

L(y,y), (1)

where Y;, C Y is the hypothesis set, and Y, C Y
is the evidence set used to estimate the risk. As
Bertsch et al. (2023) highlighted, the evidence set
Y, aims to cover a representative portion of the
space for accurate risk estimation, while the hypoth-
esis set Y}, focuses on the narrower, high-quality
region to avoid considering low-quality candidates,
but they do not need to be identical.

For loss functions, there are many possible
implementations: When aligned well with the
task evaluation metric, it reduces the optimization-
evaluation gap and brings larger empirical
gains (Kovacs et al., 2024), which has made it a
popular method in machine translation and open-
ended generation (Fernandes et al., 2022; Freitag
et al., 2023; Wu et al., 2025). In this way, we can
optimize for pairwise comparisons under an LLM
judge at test time, such as win-rate evaluations.
When loss functions focus on similarity (e.g. token-
based similarity), MBR becomes the equivalent
to majority voting in classification tasks (Bertsch
et al., 2023). It selects the sample that is most con-
sistent with the evidence set, which relates it to the
notion of self-consistency (Wang et al., 2023; Shi
et al., 2024; Chen et al., 2025; Wang et al., 2025).

= Checklisted One-Pass Selection (CHOPS)
Most of the prior selection methods present con-
siderable computational costs: BoN requires N

model calls, and MBR even N? due to pairwise
comparisons. This may be a reasonable approach
for some latency-insensitive tasks, but we pursue
an alternate approach that reduces this efficiency
penalty. Capitalizing on the development of longer
context windows for LLMs, we prompt the model
to generate a checklist to help it then choose one
of the presented samples (see appendix D). This is
inspired by the success of rubrics to facilitate LLM
judge decisions (Kim et al., 2024) and the ability of
LLMs to generate prompt-specific checklists (Cook
et al., 2024), which help to adapt the judge on-the-
fly to diverse selection scenarios across languages
and tasks. CHOPS requires only one model for-
ward pass, fitting all samples into the input context
at once. An ablation in appendix E.3 confirms that
self-generated checklists are a essential component,
especially for non-verifiable tasks and non-English.

= Crosslingual MBR (X-MBR) Orthogonal to
the motivation to reduce LLM judge calls, we pro-
pose a second selection method X-MBR, that is mo-
tivated by strong crosslingual transfer abilities of
LLMs. Building directly on the MBR paradigm, X-
MBR uses cross-lingual evidence to more robustly
select from target-language candidates. We hypoth-
esize that it will be easier for the judge to select the
best target language sample when it is presented
with higher-quality samples from other (more dom-
inant) languages. For an input z, X-MBR uses
the same hypothesis set as standard MBR, i.e. the
same five samples in the target language. The nov-
elty lies in the cross-lingual evidence set Y, that
extends original in-language evidence set Y. from
eq. (1) by a smaller set of cross-lingual samples
(M < N). These samples are generated by in-
structing the same LLM to respond in different “ev-
idence” languages (e.g. “Answer in English”, see
prompt in listing 2). Note that this does not require
prompt translation, it solely relies on cross-lingual
generation. We then pick the candidate from the
hypothesis set that accumulates the highest cross-
lingual support, with the same MBR selection cri-
terion as for classic MBR (eq. (1)), but including
additional cross-lingual comparisons by the LLM
judge between the hypothesis set Y7, and the set of
new cross-lingual samples Y, :

D

ye(Ye Uyez)

L(y,y). (2

¢y = arg min
y' €Yy

This exploits both the cross-lingual generation abil-
ities of the model that we sample from, as well as
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the cross-lingual comparison abilities of the judge
LLM. X-MBR requires generating N + M total
samples and performing N x (N + M) pairwise
comparisons, approximating O(N?) complexity.
It is an interesting direction which explores the
return on additional compute investment through
cross-lingual validation.

3.2 Experimental Setup

Baseline We compare against greedy decoding,
which in each generation step selects the token with
the highest model probability, resulting in determin-
istic and predictable output. This gives us a simple
yet effective comparison point (Song et al., 2025),
as we have empirically confirmed in section 2. In
this way we can quantify the benefits from scaling
the generation budget from 1 to 5 samples.

Sampling Strategy To ensure consistency in
comparisons since our goal is to isolate the best se-
lection techniques, all methods operate on the same
pool of N = 5 samples generated with hedged sam-
pling at 7 = 0.7.

Choice of Utility Metrics Some of the above
selection methods can be used with multiple util-
ity metrics or backbone models, such as BoN or
MBR. In order to disentangle the effect of the
method from the underlying utility metric, we com-
pare multiple instantiations of each. Concretely,
we benchmark two versions of MBR, 2-Shingle
MBR—which relies on the simple Jaccard similar-
ity of token-level bigrams (2-Shingles) from pairs
of generations>, and Judge MBR—which queries
an LLM judge for pairwise comparisons. In pre-
liminary experiments, we also explored using the
LLM judge for BoN vs the RM, but the LLM judge
did not perform competitively due to missing cali-
bration for generating absolute scores.

Choice of RM and Judge Model Based on prior
findings that the precision of the utility score can
have major impact on the success of inference-
scaling (Huang et al., 2025; Stroebl et al., 2024),
we aim to pick the best scoring open judge or
RM model for our experiments. For techniques
which use an LLM judge, we use Command A (Co-
here et al., 2025), an 111B model optimized for
multilingual performance supporting 23 languages.
Command A is scoring competitively to GPT-40
on mRewardBench (Gureja et al., 2024). For

5https ://nlp.stanford.edu/IR-book/html/
htmledition/near-duplicates-and-shingling-1.html

10 Language Group

I English
5 I Non-English
0 .—'_
” .j

Likelihood

Win A over greedy

Similarity INF-ORM Judge
MBR BoN MBR

Figure 4: mArenaHard win-rate comparisons to greedy
outputs for naive methods vs. RM- and LLM-based
approaches that select from 5 samples, averaged across
models. Error bars: variance across languages.

BoN RM, we choose the leader from the Re-
wardBench leaderboard (Lambert et al., 2024)
INF-ORM-Llama3.1-70B (Minghao Yang, 2024),
which is based on the multilingual Llama3.1 base.
It is trained on a mix of open-sourced preference
pairs (Liu et al., 2024) with difference magnitudes
determined by GPT-40 (Wang et al.). This RM is
a very strong competitor for any LLM judge ap-
proach, it is specifically engineered and trained to
perform generation scoring aligned with GPT-4o0.
Appendix B details the selection process of RM
and LLM judge. Each selection method with LLM
judge requires a specific prompt, which we list
in appendix D. For consistency, the instruction
prompts are always in English.

3.3 Developing the Best Selection Strategy

Naive approaches are not competitive. Figure 4
compares selection methods that do not rely on
LLM judges or RMs with those that do. We report
averages across models and languages with error
bars to show the variance between different lan-
guages. A full breakdown for the baseline methods
and judge based methods (with significance mea-
sures) are included in Table 13 and Table 12, re-
spectively. We observe that Maximum Likelihood
selection results in losses across the bench, sug-
gesting that the model’s internal probabilities are
not calibrated for win rate evaluation. Similarity-
based MBR, which selects the sample most similar
to others in the pool, only yields improvements
in English (e+5.6%) but performs comparably to
greedy in non-English ©. We suspect this is due
to the higher variance of quality for the samples in
the pool for non-English (higher RISK), which does
not sustain picking the most consistent sample.

BoN & judge-based selection outperform greedy.
RM BoN shows consistent improvements for both
groups (e+6.4%, ©+7.0%), establishing it as a
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Model MBR S-MBR En-MBR Zh-MBR R-MBR
Aya 11.20 12.00 - 15.20 13.20
e QWEN 320 9.20 - 20.00 4.40
Avg 7.20  10.60 - 17.60 8.80
AyA 813 1327 15.93 12.64 11.53
QWEN 8.13 6.07 9.87 8.40 7.53
Avg 813  9.67 12.90 10.52 9.53
Overall Avg  7.67  10.13 12.90 14.06 9.17

Table 2: Expanding MBR evidence sets: Comparison
of different sources of evidence for 3 additional samples
on m-ArenaHard: MBR: No additional samples, S: from
the same language, R: random samples across languages,
En: from English, Zh: from Chinese.

strong baseline. This corroborates recommenda-
tions by Wu et al. (2024b) to use reward models
crosslingually for BoN when they have a multilin-
gual LLM backbone. Judge-based MBR achieves
the highest deltas (e+7.2%, ©+8.1%), showing
that a general-purpose multilingual LLM judge can
outperform a specialized reward model. The flexi-
bility of using LLMs for pairwise comparisons in
the MBR setup aligns well with pairwise win rate
evaluations, but it requires N? comparisons.

= Better judgment with crosslingual evidence.
We extend the evidence set of MBR with M = 3
more samples, either (1) samples of the same lan-
guage (S-MBR), (2) a fixed language (English, Chi-
nese; En/Zh-MBR),° or (3) randomly chosen lan-
guages for all prompts (R-MBR). In table 2, we
compare these variants, all using the same candi-
dates for selection and only differ in the composi-
tion of the evidence set. S-MBR results in a slight
improvement of win rates (from +7.7% to +10.1%).
Sampling from random language (R-MBR) yields
similar results, indicating that there is no crosslin-
gual benefit. Key to success is sampling evidence
from dominant languages: Both En-MBR and Zh-
MBR result in significant improvement over both
greedy and the S-MBR baseline, particularly in
non-English languages (©). This shows that we
can effectively leverage the model’s multilingual
capabilities to enhance performance across all lan-
guages. It underscores the potential of multilingual
LLM judges to optimize available test-time com-
pute.

%We choose English and Chinese as instances of high-
resource languages that we assume are dominant languages
for both models.

Task Model RM BoNpjn., CHOPSyin., X*-MBRyin., Greedy

Ava ® 19.60 14.40 16.80 -
Arena 16.27 17.33 15.67 -
QWEN ° 2.00 7.60 8.80 -
5.87 8.27 9.40 -
Ava  ® 7.76 6.96 7.76 77.84
MGSM 9.59 6.19 7.92 69.55
QWEN . 3.04 1.84 0.64 94.96
3.65 2.19 3.85 84.41
AyAa 1.04 0.72 0.20 71.92
wMT QWEN 1.43 1.12 0.93 76.15

Table 3: Test set results: Quality gains over greedy
decoding by selecting from five samples (© hedged
7 = 0.7 and min-p with p = 0.2). X*-MBR uses
Chinese as evidence languages for English, and English
for the rest.

Arena RM BoN CHOPS X*-MBR Greedy
AvA vs Gemini 7.60 2.80 3.60 20.80
) 6.87 5.07 7.33 25.80

QWEN vs Gemini ° 1.60 2.80 0.40 38.40
6.00 5.00 6.33 42.07

Table 4: Open ended test results with extrinsic com-
parison: Gains in win rates against GEMINI 2.0 FLASH.

3.4 Testing in Multilingual Multitasking

Bringing it all together: Test set performance.
Table 3 compares test results for the LLM-judge
based aggregation methods based on hedged sam-
pling with 7 = 0.7 and min-p with p = 0.2 across
tasks and models. We find improvements over
the greedy baseline (i.e., the best single-sample
method) in all tasks and languages with magnitudes
of improvement that are substantial; considering
that we are working with as few as five samples.

= BoN vs CHOPS vs X-MBR For open-ended
in Table 3, both CHOPS and X-MBR outperform
RM BoN selection in most cases, with e.g., CHOPS
getting up to +17.3% (©) improvements in win
rates on Arena compared to the greedy sample. In
table 4, we additionally compare them against one
sample from the larger and more capable GEM-
INI 2.0 FLASH model. Even under this adversar-
ial comparison, gains for all three approaches are
notable, with X-MBR achieving the highest non-
English gains with an average of +6.8%. In close-
ended evaluation, we find significant gains across
all methods, even with strong greedy performance.
For MGSM, X-MBR achieves the highest gains for
non-English QWEN, +3.9% accuracy, where larger
cross-lingual performance gaps provide more room
for improvement. RM BoN performs particularly
well on WMT translation tasks with a +1.2 gain in
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Model RM BoN CHOPS X*-MBR
. 160 6.00 7.60
COMMAND A 747 1073 1040

Table 5: Self-improvement with parallel scaling:
COMMAND A generates samples and selects from them.
Win rates gains over the greedy single sample baseline.

XComet scores. Overall, both our proposed selec-
tion methods yield substantial gains, but CHOPS
might in practice be more attractive since it requires
less compute.

Successful extension to self-improvement. One
might think that the benefits of LLM judges for se-
lection vanish when there is less of a capability gap
between sampling model and selecting model (so
far 8B vs 111B). Therefore, in Table 5, we evaluate
a self-improvement scenario where we use the 111B
COMMAND A to both generate samples and per-
form selection for CHOPS and X-MBR. Not only
do we find consistent gains across languages, but
our new selection methods outperform RM BoN,
with CHOPS and X-MBR obtaining remarkable
deltas in Non-English ©of +10.7% and +10.4%, re-
spectively, compared to RM BoN’s modest +7.5%.

4 Related Work

Stochastic vs Deterministic Inference Early
LLM research suggested that diversity through
stochastic inference often comes at a cost of qual-
ity (Holtzman et al., 2020), benefiting some tasks
while hindering others (Holtzman et al., 2020;
Peeperkorn et al., 2024; Renze, 2024). Song et al.
(2025) found that closed-ended and verifiable tasks
favor deterministic decoding, while open-ended
generation benefits from stochastic sampling. Du
et al. (2025) use entropy measures to optimize the
temperature(excluding 7 = 0) across math and
coding tasks in English. In our work, we focus on
exploiting the variance in the smaller sample range
(N = b) across multiple generative tasks. We also
add the dimension of language that has previously
been ignored: Going beyond English and address
variance in higher temperature samples by hedging
it with deterministic inference.

Multilingual Test-time Scaling and Alignment
While most test-time scaling and alignment re-
search focuses on English, a few recent works have
explored multilinguality. Pombal et al. (2025) pro-
pose a multilingual judge LLM for BoN, showing

improvements in win rates across three languages.
Gupta and Srikumar (2025) also confirm the po-
tential benefits of RM BoN for multilingual open-
ended tasks across various model and sample sizes.
Our study expands on these previous RM BoN ex-
plorations with a broader set of tasks and novel
methods, specifically crafted for the challenges in
multilingual generation both on the sample gen-
eration and the selection side. What emerges as
a consistent pattern in their and our work is that
RMs appear to generalize well across languages
for parallel scaling, even if trained only on rewards
for English (Wu et al., 2024b). Similarly, Yong
et al. (2025) demonstrate cross-lingual scaling ben-
efits in math and STEM reasoning with a LLM
with a multilingual backbone tuned for English
reasoning. They show benefits of non-target lan-
guage reasoning/scaling, which is loosely related
to the effectiveness of crosslingual evidence for
X-MBR that we find in our experiments. With the
shared motivation to reduce imbalance across lan-
guages, Yang et al. (2025b) and Zhu et al. (2024)
use cross-lingual sample generation with a trans-
lation pipeline, while Yoon et al. (2024) combine
expert models for task and language expertise. Our
X-MBR approach achieves significant gains with-
out intermediate translation or experts, leveraging
the LLM’s cross-lingual generation capabilities.

5 Conclusion

We have conducted extensive experiments on three
generative tasks to compile a recipe for multilin-
gual parallel scaling that generalizes across both
tasks and models. Based on our insights on the im-
pact of temperature on sample pool quality, we de-
signed a hedged temperature sampling variant, and
combine it with selection methods tailored towards
multilingual judges. We propose two approaches
which improve upon existing methods: Checklisted
One-Pass Selection (CHOPS) and Cross-lingual
MBR (X-MBR). These techniques show consis-
tent cross-lingual gains in the benefits of test-time
scaling. This has not only implications for infer-
ence, but also for applications where multilingual
inference is an intermediate step in model improve-
ment, e.g. for synthetic data generation (Thakur
et al., 2024; Dang et al., 2024a; Odumakinde et al.,
2024) or distillation (Zhang et al., 2024b), test-time
alignment (Sun et al., 2024; Amini et al., 2025) or
model fine-tuning (Touvron et al., 2023; Snell et al.,
2025).
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Limitations

Reliance on judge alignment All methods that
use extrinsic signals (reward models or LLM
judges) for selecting from multiple sample are
bounded by their alignment with the evaluation met-
ric, as has previously been pointed out in (Stroebl
et al., 2024; Huang et al., 2025). Our methods do
not directly address this issue. By selecting the lat-
est and most generalist judge models for selection,
we hope that the effects of task-specific reward
hacking / mismatch are reduced.

Language selection Our selected languages are
all high-resource languages and well represented
throughout the stages of LLM training. Our study
does not cover the test case of generalizing to un-
derrepresented languages that are unsupported by
the model or not included in stages beyond base
model training. We can expect that both quality
of samples and LLM aggregation precision will be
significantly lower, so approaches like X-MBR that
leverage crosslingual knowledge might be more
promising.

Sample scale As explained in section 2, we fo-
cus on the low-end of test-time scaling in terms of
sample sizes, and prioritize spending compute on
potentially expensive selection methods. Scaling
up further N > 5 might be interesting for further
pushing the limits, but we instead focus on mak-
ing the most of few samples that already give us
substantial headroom. Scaling up N further poses
different challenges for bridging misalignments be-
tween selection methods and e.g. win rates, see
appendix E.4, so it might not be the most promis-
ing investment of additional compute.

Cost of selection method We found that a larger
generative model was needed to improve upon
the base model performance (based on prelimi-
nary explorations with mPrometheus (Pombal et al.,
2025)). In practice, it is more attractive to employ
a smaller judge model so that it does not dominate
the added inference cost. One solution would be to
distill the outputs of the large generative judge into
a smaller model.

Acknowledgments

We thank our colleagues at Cohere and Cohere
Labs for their help in refining the paper, in partic-
ular: Sander Land for the reward model scoring,

Thomas Euyang for the diagrams, Arash Ahmadian
for the discussions.

References

Arash Ahmadian Aakanksha, Beyza Ermis, Seraphina
Goldfarb-Tarrant, Julia Kreutzer, Marzieh Fadaee,
Sara Hooker, and 1 others. 2024. The multilingual
alignment prism: Aligning global and local prefer-
ences to reduce harm. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12027-12049.

David H. Ackley, Geoffrey E. Hinton, and Terrence J.
Sejnowski. 1985. A learning algorithm for boltz-
mann machines. Cognitive Science, 9(1):147-169.

Arash Ahmadian, Seraphina Goldfarb-Tarrant, Beyza
Ermis, Marzieh Fadaee, Sara Hooker, and 1 oth-
ers. 2024. Mix data or merge models? optimiz-
ing for diverse multi-task learning. arXiv preprint
arXiv:2410.10801.

Afra Amini, Tim Vieira, Elliott Ash, and Ryan Cotterell.
2025. Variational best-of-n alignment. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Amanda Bertsch, Alex Xie, Graham Neubig, and
Matthew Gormley. 2023. It‘s MBR all the way down:
Modern generation techniques through the lens of
minimum Bayes risk. In Proceedings of the Big
Picture Workshop, pages 108—122, Singapore. Asso-
ciation for Computational Linguistics.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Jianhao Chen, Zishuo Xun, Bocheng Zhou, Han Qi,
Qiaosheng Zhang, Yang Chen, Wei Hu, Yuzhong Qu,
Wanli Ouyang, and Shuyue Hu. 2025. Do we truly
need so many samples? multi-llm repeated sampling
efficiently scale test-time compute. arXiv preprint
arXiv:2504.00762.

Nuo Chen, Zinan Zheng, Ning Wu, Ming Gong, Dong-
mei Zhang, and Jia Li. 2023. Breaking language bar-
riers in multilingual mathematical reasoning: Insights
and observations. arXiv preprint arXiv:2310.20246.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Team Cohere, Arash Ahmadian, Marwan Ahmed, Jay
Alammar, Yazeed Alnumay, Sophia Althammer,
Arkady Arkhangorodsky, Viraat Aryabumi, Dennis
Aumiller, Raphaél Avalos, and 1 others. 2025. Com-
mand a: An enterprise-ready large language model.
arXiv preprint arXiv:2504.00698.

27568


https://doi.org/10.1016/S0364-0213(85)80012-4
https://doi.org/10.1016/S0364-0213(85)80012-4
https://openreview.net/forum?id=W9FZEQj3vv
https://doi.org/10.18653/v1/2023.bigpicture-1.9
https://doi.org/10.18653/v1/2023.bigpicture-1.9
https://doi.org/10.18653/v1/2023.bigpicture-1.9

Pierre Colombo, Nuno Guerreiro, Ricardo Rei, Daan
Van, Luisa Coheur, and André Martins. 2023.
xcomet: Transparent machine translation evaluation
through fine-grained error detection. Transactions of
the Association for Computational Linguistics.

Jonathan Cook, Tim Rocktischel, Jakob Foerster, Den-
nis Aumiller, and Alex Wang. 2024. Ticking all the
boxes: Generated checklists improve llm evaluation
and generation. arXiv preprint arXiv:2410.03608.

John Dang, Arash Ahmadian, Kelly Marchisio, Julia
Kreutzer, Ahmet Ustiin, and Sara Hooker. 2024a.
RLHF can speak many languages: Unlocking mul-
tilingual preference optimization for LLMs. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 13134—
13156, Miami, Florida, USA. Association for Com-
putational Linguistics.

John Dang, Shivalika Singh, Daniel D’souza, Arash
Ahmadian, Alejandro Salamanca, Madeline Smith,
Aidan Peppin, Sungjin Hong, Manoj Govindassamy,
Terrence Zhao, and 1 others. 2024b. Aya expanse:
Combining research breakthroughs for a new multi-
lingual frontier. arXiv preprint arXiv:2412.04261.

Saurabh Dash, Yiyang Nan, John Dang, Arash Ah-
madian, Shivalika Singh, Madeline Smith, Bharat
Venkitesh, Vlad Shmyhlo, Viraat Aryabumi, Walter
Beller-Morales, Jeremy Pekmez, Jason Ozuzu, Pierre
Richemond, Acyr Locatelli, Nick Frosst, Phil Blun-
som, Aidan Gomez, Ivan Zhang, Marzieh Fadaee,
and 6 others. 2025. Aya vision: Advancing the
frontier of multilingual multimodality. Preprint,
arXiv:2505.08751.

Daniel Deutsch, Eleftheria Briakou, Isaac Caswell,
Mara Finkelstein, Rebecca Galor, Juraj Juraska, Geza
Kovacs, Alison Lui, Ricardo Rei, Jason Riesa, and
1 others. 2025. Wmt24++: Expanding the language
coverage of wmt24 to 55 languages & dialects. arXiv
preprint arXiv:2502.12404.

Weihua Du, Yiming Yang, and Sean Welleck. 2025. Op-
timizing temperature for language models with multi-
sample inference. arXiv preprint arXiv:2502.05234.

Bryan Eikema and Wilker Aziz. 2020. Is MAP decoding
all you need? the inadequacy of the mode in neural
machine translation. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4506—4520, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Bryan Eikema and Wilker Aziz. 2022. Sampling-based
approximations to minimum Bayes risk decoding
for neural machine translation. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 10978-10993, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Christian Federmann, Tom Kocmi, and Ying Xin. 2022.
NTREX-128 — news test references for MT evalua-
tion of 128 languages. In Proceedings of the First

Workshop on Scaling Up Multilingual Evaluation,
pages 21-24, Online. Association for Computational
Linguistics.

Patrick Fernandes, Anténio Farinhas, Ricardo Rei,
José G. C. de Souza, Perez Ogayo, Graham Neubig,
and Andre Martins. 2022. Quality-aware decoding
for neural machine translation. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1396—-1412,
Seattle, United States. Association for Computational
Linguistics.

Markus Freitag, Behrooz Ghorbani, and Patrick Fernan-
des. 2023. Epsilon sampling rocks: Investigating
sampling strategies for minimum Bayes risk decod-
ing for machine translation. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 9198-9209, Singapore. Association for
Computational Linguistics.

Ashim Gupta and Vivek Srikumar. 2025. Test-time
scaling with repeated sampling improves multilingual
text generation. Preprint, arXiv:2505.21941.

Srishti Gureja, Lester James V Miranda, Shayekh Bin
Islam, Rishabh Maheshwary, Drishti Sharma, Gusti
Winata, Nathan Lambert, Sebastian Ruder, Sara
Hooker, and Marzieh Fadaee. 2024. M-rewardbench:
Evaluating reward models in multilingual settings.
arXiv preprint arXiv:2410.15522.

John Hewitt, Christopher Manning, and Percy Liang.
2022. Truncation sampling as language model
desmoothing. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 3414—
3427, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Sara Hooker. 2024. On the limitations of compute
thresholds as a governance strategy. Preprint,
arXiv:2407.05694.

Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang,
Dylan J Foster, and Akshay Krishnamurthy. 2025. Is
best-of-n the best of them? coverage, scaling, and op-
timality in inference-time alignment. arXiv preprint
arXiv:2503.21878.

Yuki Ichihara, Yuu Jinnai, Tetsuro Morimura, Kenshi
Abe, Kaito Ariu, Mitsuki Sakamoto, and Eiji Uchibe.
2025. Evaluation of best-of-n sampling strategies for
language model alignment. Transactions on Machine
Learning Research.

Daphne Ippolito, Reno Kriz, Jodo Sedoc, Maria
Kustikova, and Chris Callison-Burch. 2019. Compar-
ison of diverse decoding methods from conditional
language models. In Proceedings of the 57th An-
nual Meeting of the Association for Computational

27569


https://doi.org/10.18653/v1/2024.emnlp-main.729
https://doi.org/10.18653/v1/2024.emnlp-main.729
https://arxiv.org/abs/2505.08751
https://arxiv.org/abs/2505.08751
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2022.emnlp-main.754
https://doi.org/10.18653/v1/2022.emnlp-main.754
https://doi.org/10.18653/v1/2022.emnlp-main.754
https://doi.org/10.18653/v1/2022.sumeval-1.4
https://doi.org/10.18653/v1/2022.sumeval-1.4
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2023.findings-emnlp.617
https://doi.org/10.18653/v1/2023.findings-emnlp.617
https://doi.org/10.18653/v1/2023.findings-emnlp.617
https://arxiv.org/abs/2505.21941
https://arxiv.org/abs/2505.21941
https://arxiv.org/abs/2505.21941
https://doi.org/10.18653/v1/2022.findings-emnlp.249
https://doi.org/10.18653/v1/2022.findings-emnlp.249
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2407.05694
https://arxiv.org/abs/2407.05694
https://openreview.net/forum?id=H4S4ETc8c9
https://openreview.net/forum?id=H4S4ETc8c9
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365

Linguistics, pages 3752-3762, Florence, Italy. Asso-
ciation for Computational Linguistics.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els. In Proceedings of the 2024 Conference on Empir-
ical Methods in Natural Language Processing, pages
43344353, Miami, Florida, USA. Association for
Computational Linguistics.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondrej Bojar, Anton Dvorkovich, Christian Feder-
mann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, and 1 others. 2024. Findings
of the wmt24 general machine translation shared task:
the 1lm era is here but mt is not solved yet. In Pro-
ceedings of the Ninth Conference on Machine Trans-
lation, pages 1-46.

Geza Kovacs, Daniel Deutsch, and Markus Freitag.
2024. Mitigating metric bias in minimum Bayes risk
decoding. In Proceedings of the Ninth Conference
on Machine Translation, pages 1063—1094, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Julia Kreutzer, Eleftheria Briakou, Sweta Agrawal,
Marzieh Fadaee, and Kocmi Tom. 2025. D\’ej\a
vu: Multilingual Ilm evaluation through the lens
of machine translation evaluation. arXiv preprint
arXiv:2504.11829.

Shankar Kumar and William Byrne. 2002. Minimum
bayes-risk word alignments of bilingual texts. In
Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing - Volume
10, EMNLP °02, page 140-147, USA. Association
for Computational Linguistics.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics:
HLT-NAACL 2004, pages 169-176, Boston, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
symposium on operating systems principles, pages
611-626.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin
Choi, Noah A. Smith, and Hannaneh Hajishirzi.
2024. Rewardbench: Evaluating reward models
for language modeling. https://huggingface.co/
spaces/allenai/reward-bench.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ion Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Ju-
jie He, Chaojie Wang, Shuicheng Yan, Yang Liu,
and Yahui Zhou. 2024. Skywork-reward: Bag of
tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451.

Saumya Malik, Valentina Pyatkin, Sander Land, Ja-
cob Morrison, Noah A Smith, Hannaneh Hajishirzi,
and Nathan Lambert. 2025. Rewardbench 2: Ad-
vancing reward model evaluation. arXiv preprint
arXiv:2506.01937.

Xiaoyu Tan Minghao Yang, Chao Qu. 2024. Inf-orm-
llama3.1-70b.

Nguyen Nhat Minh, Andrew Baker, Clement Neo,
Allen G Roush, Andreas Kirsch, and Ravid Shwartz-
Ziv. 2025. Turning up the heat: Min-p sampling for
creative and coherent LLM outputs. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Ayomide Odumakinde, Daniel D’souza, Pat Verga,
Beyza Ermis, and Sara Hooker. 2024. Multilingual
arbitrage: Optimizing data pools to accelerate multi-
lingual progress. arXiv preprint arXiv:2408.14960.

Max Peeperkorn, Tom Kouwenhoven, Dan Brown, and
Anna Jordanous. 2024. Is temperature the creativity
parameter of large language models? In Interna-
tional Conference on Computational Creativity.

José Pombal, Dongkeun Yoon, Patrick Fernandes, Ian
Wu, Seungone Kim, Ricardo Rei, Graham Neubig,
and André FT Martins. 2025. M-prometheus: A
suite of open multilingual 1lm judges. arXiv preprint
arXiv:2504.04953.

Matthew Renze. 2024. The effect of sampling temper-
ature on problem solving in large language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 7346-7356, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang,
Yifan Wang, Yujiu Yang, and Wai Lam. 2024. A
thorough examination of decoding methods in the era
of LLMs. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 8601-8629, Miami, Florida, USA. Association
for Computational Linguistics.

27570


https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.18653/v1/2024.emnlp-main.248
https://doi.org/10.18653/v1/2024.wmt-1.109
https://doi.org/10.18653/v1/2024.wmt-1.109
https://doi.org/10.3115/1118693.1118712
https://doi.org/10.3115/1118693.1118712
https://aclanthology.org/N04-1022/
https://aclanthology.org/N04-1022/
https://aclanthology.org/N04-1022/
https://huggingface.co/spaces/allenai/reward-bench
https://huggingface.co/spaces/allenai/reward-bench
https://openreview.net/forum?id=v8L0pN6EOi
[https://huggingface.co/infly/INF-ORM-Llama3.1-70B](https://huggingface.co/infly/INF-ORM-Llama3.1-70B)
[https://huggingface.co/infly/INF-ORM-Llama3.1-70B](https://huggingface.co/infly/INF-ORM-Llama3.1-70B)
https://openreview.net/forum?id=FBkpCyujtS
https://openreview.net/forum?id=FBkpCyujtS
https://kar.kent.ac.uk/105743/
https://kar.kent.ac.uk/105743/
https://doi.org/10.18653/v1/2024.findings-emnlp.432
https://doi.org/10.18653/v1/2024.findings-emnlp.432
https://doi.org/10.18653/v1/2024.emnlp-main.489
https://doi.org/10.18653/v1/2024.emnlp-main.489
https://doi.org/10.18653/v1/2024.emnlp-main.489

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, and 1 others.
2022. Language models are multilingual chain-of-
thought reasoners. arXiv preprint arXiv:2210.03057.

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling LLM test-time compute
optimally can be more effective than scaling param-
eters for reasoning. In The Thirteenth International
Conference on Learning Representations.

Guijin Son, Jiwoo Hong, Hyunwoo Ko, and James
Thorne. 2025. Linguistic generalizability of test-time
scaling in mathematical reasoning. arXiv preprint
arXiv:2502.17407.

Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen
Lin. 2025. The good, the bad, and the greedy: Eval-
uation of LL.Ms should not ignore non-determinism.
In Proceedings of the 2025 Conference of the Na-
tions of the Americas Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 4195-4206,
Albuquerque, New Mexico. Association for Compu-
tational Linguistics.

Milos Stanojevi¢, Amir Kamran, Philipp Koehn, and
Ondrej Bojar. 2015. Results of the wmt15 metrics
shared task. In Proceedings of the Tenth Workshop
on Statistical Machine Translation, pages 256-273.

Benedikt Stroebl, Sayash Kapoor, and Arvind
Narayanan. 2024. Inference scaling { F'} laws: The
limits of 1llm resampling with imperfect verifiers.
arXiv preprint arXiv:2411.17501.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang,
Jiahao Qiu, Ming Yin, Mengdi Wang, Peter Bartlett,
and Andrea Zanette. 2024. Fast best-of-n decoding
via speculative rejection. In The Thirty-eighth An-
nual Conference on Neural Information Processing
Systems.

Nandan Thakur, Jianmo Ni, Gustavo Hernandez Abrego,
John Wieting, Jimmy Lin, and Daniel Cer. 2024.
Leveraging LLMs for synthesizing training data
across many languages in multilingual dense retrieval.
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 7699-7724, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ahmet Ustiin, Viraat Aryabumi, Zheng-Xin Yong, Wei-
Yin Ko, Daniel D’souza, Gbemileke Onilude, Neel
Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid,
and 1 others. 2024. Aya model: An instruction

finetuned open-access multilingual language model.
arXiv preprint arXiv:2402.07827.

Junlin Wang, Shang Zhu, Jon Saad-Falcon, Ben Athi-
waratkun, Qingyang Wu, Jue Wang, Shuaiwen Leon
Song, Ce Zhang, Bhuwan Dhingra, and James Zou.
2025. Think deep, think fast: Investigating effi-
ciency of verifier-free inference-time-scaling meth-
ods. Preprint, arXiv:2504.14047.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi
Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev.
Helpsteer 2: Open-source dataset for training top-
performing reward models. In The Thirty-eight Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track.

Sean Welleck, Amanda Bertsch, Matthew Finlayson,
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia
Kulikov, and Zaid Harchaoui. 2024. From decoding
to meta-generation: Inference-time algorithms for
large language models. Transactions on Machine
Learning Research. Survey Certification.

Ian Wu, Patrick Fernandes, Amanda Bertsch, Seungone
Kim, Sina Khoshfetrat Pakazad, and Graham Neubig.
2025. Better instruction-following through minimum
bayes risk. In The Thirteenth International Confer-
ence on Learning Representations.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024a. Scaling inference com-
putation: Compute-optimal inference for problem-
solving with language models. In The 4th Workshop
on Mathematical Reasoning and Al at NeurIPS’24.

Zhaofeng Wu, Ananth Balashankar, Yoon Kim, Jacob
Eisenstein, and Ahmad Beirami. 2024b. Reuse your
rewards: Reward model transfer for zero-shot cross-
lingual alignment. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1332-1353, Miami, Florida, USA.
Association for Computational Linguistics.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Day-
iheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao
Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41
others. 2025a. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Wen Yang, Junhong Wu, Chen Wang, Chengqing Zong,
and Jiajun Zhang. 2025b. Language imbalance
driven rewarding for multilingual self-improving. In
The Thirteenth International Conference on Learning
Representations.

27571


https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://aclanthology.org/2025.naacl-long.211/
https://aclanthology.org/2025.naacl-long.211/
https://openreview.net/forum?id=348hfcprUs
https://openreview.net/forum?id=348hfcprUs
https://doi.org/10.18653/v1/2024.naacl-long.426
https://doi.org/10.18653/v1/2024.naacl-long.426
https://arxiv.org/abs/2504.14047
https://arxiv.org/abs/2504.14047
https://arxiv.org/abs/2504.14047
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=eskQMcIbMS
https://openreview.net/forum?id=7xCSK9BLPy
https://openreview.net/forum?id=7xCSK9BLPy
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu
https://openreview.net/forum?id=j7DZWSc8qu
https://doi.org/10.18653/v1/2024.emnlp-main.79
https://doi.org/10.18653/v1/2024.emnlp-main.79
https://doi.org/10.18653/v1/2024.emnlp-main.79
https://arxiv.org/abs/2505.09388

Zheng-Xin Yong, M Farid Adilazuarda, Jonibek
Mansurov, Ruochen Zhang, Niklas Muennighoff,
Carsten Eickhoff, Genta Indra Winata, Julia Kreutzer,
Stephen H Bach, and Alham Fikri Aji. 2025.
Crosslingual reasoning through test-time scaling.
arXiv preprint arXiv:2505.05408.

Dongkeun Yoon, Joel Jang, Sungdong Kim, Seungone
Kim, Sheikh Shafayat, and Minjoon Seo. 2024. Lang-
Bridge: Multilingual reasoning without multilingual
supervision. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7502—7522,
Bangkok, Thailand. Association for Computational
Linguistics.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024a.
Generative verifiers: Reward modeling as next-token
prediction. In The 4th Workshop on Mathematical
Reasoning and Al at NeurIPS’24.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2025a.
Generative verifiers: Reward modeling as next-token
prediction. In The Thirteenth International Confer-
ence on Learning Representations.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang,
Weixu Zhang, Zhihan Guo, Yufei Wang, Irwin King,
Xue Liu, and Chen Ma. 2025b. What, how, where,
and how well? a survey on test-time scaling in large
language models. arXiv preprint arXiv:2503.24235.

Yuanchi Zhang, Yile Wang, Zijun Liu, Shuo Wang,
Xiaolong Wang, Peng Li, Maosong Sun, and Yang
Liu. 2024b. Enhancing multilingual capabilities of
large language models through self-distillation from
resource-rich languages. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11189—
11204, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Wenhao Zhu, Shujian Huang, Fei Yuan, Shuaijie She,
Jiajun Chen, and Alexandra Birch. 2024. Question
translation training for better multilingual reasoning.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 8411-8423, Bangkok,
Thailand. Association for Computational Linguistics.

27572


https://doi.org/10.18653/v1/2024.acl-long.405
https://doi.org/10.18653/v1/2024.acl-long.405
https://doi.org/10.18653/v1/2024.acl-long.405
https://openreview.net/forum?id=CxHRoTLmPX
https://openreview.net/forum?id=CxHRoTLmPX
https://openreview.net/forum?id=Ccwp4tFEtE
https://openreview.net/forum?id=Ccwp4tFEtE
https://doi.org/10.18653/v1/2024.acl-long.603
https://doi.org/10.18653/v1/2024.acl-long.603
https://doi.org/10.18653/v1/2024.acl-long.603
https://doi.org/10.18653/v1/2024.findings-acl.498
https://doi.org/10.18653/v1/2024.findings-acl.498

A Detailed Experimental Setup

Models and Language Coverage For the multi-
lingual generative model, we consider two 8B mod-
els from different families: Aya-Expanse-8B (Dang
et al., 2024b) and Qwen3-8B (Yang et al., 2025a).
Aya-Expanse-8B is an open-weights multilingual
LLM supporting 23 languages. It employs a post-
training recipe focused on open-ended generative
tasks that includes supervised fine-tuning, multi-
lingual preference tuning (Aakanksha et al., 2024;
Dang et al., 2024a) and synthetic data optimiza-
tion (Odumakinde et al., 2024), and model merg-
ing (Ahmadian et al., 2024) to achieve strong com-
petitive performance on open-ended benchmarks
for models of this size. Qwen3-8B is an open-
source dense model from the Qwen3 model family,
supporting up to 119 languages and dialects. It
was post-trained through distillation from larger
models in the family and is used here in its “non-
thinking” mode without reasoning. We focus on a
subset of 7 languages which are covered by both
models: English, French, German, Japanese, Rus-
sian, Simplified Chinese, Spanish prioritized due to
their inclusion in generative benchmarks of interest.
For WMT, we translate from English into all other
languages.

Multi-Task Evaluation As outlined in section 1,
math and translation have attracted the majority of
research into test-time scaling, while open-ended
generation tasks have received less attention. It
is harder to fit a single method or reward model
to the diverse challenges that open-ended genera-
tions pose. Our goal here is to take a wider view,
which means considering both open-ended tasks
and tasks with underlying correctness. We use the
benchmarks summarized in Table 6 to measure the
following for our multilingual evaluations:

* Open-ended generation quality on m-
ArenaHard (Dang et al., 2024b), a translated
version of the English Arena-Hard-Auto v0.1(Li
et al., 2024) prompts. We measure win rate %
using GPT-40 (gpt-40-2024-05-13) as a judge,
which is the standard choice for this benchmark.
We also used m-ArenaHard-v2.0 as our main
test-set for open-ended evaluation. To create
the m-ArenaHard-v2.0 test set, we obtain the
750 prompts from Arena-Hard-v2.07 and use

7https://github.com/lmarena/arena—hard—auto/
blob/main/data/arena-hard-v2.0/

papluca/xIm-roberta-base-language-detection®
to perform language identification. Of these, the
498 identified as "English" were then translated
into target languages by using an in-house
state-of-the-art translation model.

* Mathematical reasoning For development, we
obtain the GSMS8K Parallel Translated Cor-
pus (Chen et al., 2023) and group them by the
original prompt. We then randomly select 250
prompt groups and select the same for all lan-
guages to avoid cross-lingual contamination. For
each math problem, the model is instructed in the
specific language to solve step-by-step and pro-
vide a final answer. Final answers are extracted
from the step-by-step solutions and evaluated
for accuracy using exact match to the correct
answer, following simple-evals °. We test on
MGSM (Shi et al., 2022), a manually translated
version of 250 grade-school math problems from
English GSMS8K (Cobbe et al., 2021).

* Translation quality We use the development
sets from WMT24 (Kocmi et al., 2024) for most
language pairs with the except of en-fr, which
we obtain from WMT15 (Stanojevic et al., 2015)
as our dev sets for machine translation and for the
test set we used the WMT24++ dataset (Deutsch
et al., 2025).

Model Serving: We use vLLM (Kwon et al.,
2023) to generate outputs from our 8B models
(AYA and QWEN), loading them with FP8 quanti-
zation and a maximum sequence length of 8,192
tokens. For the larger models (Command A and
Gemini 2.0 Flash), we use their dedicated hosted
APIs. For greedy decoding, we set top-k to 1, while
for multi-sample generation we obtain five comple-
tions at specified temperature and min-p values.

B Choosing Judge and Reward Model

Table 7 compares Multilingual Reward-
Bench (Gureja et al., 2024) scores for multiple
generative multilingual LLMs. We add benchmark
scores for Command A by running the official
code released with the benchmark.'? Remaining
scores are taken from prior reports (Gureja et al.,

8https://huggingface.co/papluca/
x1lm-roberta-base-language-detection

9https://github.com/openai/simple-evals/tree/
main

10https://github.com/Cohere—Labs—Community/
m-rewardbench, commit 5e5a0d3
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Name Data Splits (# Prompts per Language) Metric

dev devtest test
Arena m-ArenaHard (250/250) m-ArenaHard-v2.0 (498) Win rate
MGSM GSMB8K-instruct-parallel (250/250) MGSM (258) Accuracy
WMT  WMT24/15 dev (997/1.5k) NTREX (1997) WMT24++ (960) XComet-XL

Table 6: Overview of the benchmarks used in this work for open-ended generation (Arena), mathematical reasoning
(MGSM), and machine translation (WMT). We compile dev and devtest splits to prevent overfitting our sampling
and selecting methods to the test set. For WMT dev, French prompts were retrieved from WMT15 dev, the
remaining ones from WMT24 dev. For WMT24++ with originally 998 instances, we skip those marked as “bad

source”.
Model Avg
GPT-40' (gpt-40-2024-08-06) 81.1
GPT-40? (gpt-40-2024-11-20) 85.8
“Aya Expanse 8BT 652
Llama 3.1 70B! 75.5
Gemma 2 9B! 76.6
M-Prometheus-14B2 79.5
Qwen?2.5-14B-Instruct? 80.8
Command A (111B) 84.5

Table 7: Average accuracy on the M-RewardBench
across 24 languages, comparing open models of var-
ious sizes (below) to GPT-4o0 variants. ': Results are
copied from (Gureja et al., 2024), 2: from (Pombal
et al., 2025).

2024; Pombal et al., 2025). Table 8 details the
performance for Command A for each language.
According to this benchmark and the scores
reported in (Gureja et al., 2024) and (Pombal
et al., 2025), Command A is the best open judge,
scoring closely to GPT-40 (and even outperforming
an older variant).

There is further support in experiments by
Kreutzer et al. (2025) where its agreement with
pairwise human preferences from Chatbot Arena
battles in multiple languages is close to GPT-40’s,
with particular strengths in Chinese, Vietnamese,
French, Turkish and Dutch.

On the English RewardBench benchmark (Lam-
bert et al., 2024), classifier RMs are outper-
forming generative ones, so we pick the top-
performing open model as our RM for BoN,
INF-ORM-Llama3.1-70B (Minghao Yang, 2024),
which is based on the multilingual Llama3.1-70B
that supports English, German, French, Italian, Por-
tuguese, Hindi, Spanish, and Thai—which we sus-
pect yields the strong crosslingual generalization.

Language Accuracy

arb_Arab 84.61
ces_Latn 83.83
deu_Latn 85.08
ell_Grek 84.04
fra_Latn 85.36
heb_Hebr 83.62
hin_Deva 83.74
ind_Latn 84.35
ita_Latn 85.90
jpn_Jpan 84.94
kor_Hang 83.43
nld_Latn 86.32
pes_Arab 81.98
pol_Latn 84.91
por_Latn 86.30
ron_Latn 83.22
rus_Cyrl 84.12
spa_Latn 86.55
tur_Latn 82.96
ukr_Cyrl 83.83
vie_Latn 84.49
zho_Hans 84.59
zho_Hant 84.25
Avg 84.45

Table 8: Language breakdown of M-RewardBench
scores for Command A.
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C Temperature Sensitivity

Figure 5, fig. 6 and fig. 7 show how the score of
best, mean and worst samples as we increase the
temperature for m-ArenaHard, MGSM, and WMT,
respectively and we see consistent trends of HOPE
and RISK.

In Table 9 we report the significance across dif-
ferent sampling methods and we find that, for the
majority of languages, the standard error is low
with significant 95% Cls.

Finally, Table 10 presents a breakdown of how
frequently the greedy sample is selected by the
Judge MBR method within the hedge sampling
setup. We find that the greedy sample is chosen
approximately 35% of the time from a pool of
five samples, which significantly exceeds random
chance (20%) and demonstrate that the our hedging
intervention contributes meaningfully to the overall
quality of the samples pool.

D Selection Prompts

Listing 1 reports the judge prompt for CHOPS,
listing 2 and listing 3 show the prompt to generate
cross-lingual sample and the prompt to judge these
samples for X-MBR respectively.

E Ablations

E.1 Choosing Single Temperatures

One could tune the single temperature, but in prac-
tice, resources invested in such tuning might have
limited return. For our tasks and models, we mea-
sure the maximum HOPE at 7 = 0.7 of 48% but
it is close to the value at 7 = 0.8 and 7 = 0.9
of 47% and 45%, thus the effects of choosing one
over the other might be negligible. However, in
Table 11 we can that compare to the lower temper-
ature of 7 = 0.3 we see significantly higher hope
atT = 0.7.

E.2 Token-level hedging with min-p sampling

We consider min-p sampling as an additional token-
level hedging mechanism during generation. Fig-
ure 8 demonstrates that adding min-p consistently
improves performance across selection methods
compared to only Hedged Sampling. For multilin-
gual win-rates evaluation, min-p provides substan-
tial improvements for both RM BoN and CHOPS,
while machine translation tasks show more modest
but consistent benefits.

E.3 One-Pass Selection

Figure 9 compares our one-pass, checklisted se-
lection method (CHOPS) against a simpler one-
pass selection (OPS) setup without any ground-
ing checklist. We plot the average win rates over
greedy decoding for English eand non-English

languages. OPS achieves a high win rate
in ¢(+9.0%) but under-performs in ©(+5.3%),
whereas CHOPS gives a more balanced outcome
of +6.8% (e) and +7.1% (©©) win-rates over greedy.
Notably the checklisted is less in tasks like MGSM
where comparison criteria are more explicitly de-
fined, Figure 10.

E.4 Sample Size Scaling

In fig. 11 we compare reward scores for mArena-
Hard when sampling (f = 0.7, hedged) from Aya
Expanse 8B beyond only five samples. When re-
ward and selection metric are perfectly aligned, as
in Figure 11, there is smooth improvement up to
N = 40 for all languages.

However, we are working with imperfect selec-
tion methods that are not perfectly aligned with
the evaluation metric, so we do not expect these to
transfer to realistic use cases Huang et al. (2025);
Stroebl et al. (2024). Figure 12 illustrates this is-
sue, Win rate improvements over greedy are not
developing smoothly across languages, and some-
times even losing to greedy. We observe that RM
BoN is most reliable in its improvement with more
samples, likely because it evaluates all samples in
isolation and is thereby less affected by scale arti-
facts that limits pairwise (MBR) or direct (CHOPS)
comparisons.

Finally, Figure 13 compares CHOPS and RM-
BoN across 1-20 samples. CHOPS outperforms
RM-BoN at smaller scales (5-15 samples) but falls
behind at larger sample sizes. This indicates that
CHOPS is more sample-efficient at lower scales,
though its gains diminish at higher scales compared
to RM-BoN.

F Evaluation Results

Table 13 shows the breakdown of baseline compar-
isons on the development set for hedged sampling
(r=0.7, N =5).

Table 12 contains the breakdown into individual
languages and tasks for the test set evaluations of
hedged sampling (7 = 0.7, N = 5).
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Figure 5: Arena: Evaluation score under different temperatures with N = 5 samples.
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Figure 6: MGSM: Evaluation score under different temperatures with N = 5 samples.
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Figure 7: WMT Evaluation score under different temperatures with N = 5 samples.
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nnn

Please act as a fair judge. Based on the provided Instruction and Generated Texts in
{language}, analyse the Generated Texts step by step and reply with the index
of the best response.

(1) As a first step, write a tailored x*evaluation checklist for the Instruction#*x*
that was given to an AI assistant.

This evaluation checklist should be a list of questions that ask whether or not
specific criteria relevant to the Instruction were met by an AI assistants
response.

Each question in the checklist should measure one distinct aspect of quality.

Criteria covered by your checklist could be explicitly stated in the Instruction, or

be generally sensible criteria for the problem domain.

Factuality is always of high importance, but where relevant, the checklist should
also take language and culture-specific context into account.

Questions should be concise and the checklist should not include unnecessary entries

Avoid vague wording and instead evaluate specific aspects of a response.

(2) As a second step, **xcompare the Generated Texts**x with respect to the checklist.
Write a brief explanation of the evaluation.

(3) In the third step, **output the index of the best Generated Text** according to
the checklist evaluation.

## Output Format

Checklist: (each question should appear on a new line)
Q1: xxx

Q2: xxx

Explanation: xxx

Answer: [[ INDEX 1] (this should be an integer and nothing else; the index should be
enclosed in double brackets as indicated)

## Evaluation Information

**Instruction**
{message?}

*xGenerated Textsx*x
{generations}

Please analyse the Generated Texts according to a custom checklist and provide your
selected text according to the guidelines. Remember to stick to the requested
Output Format, providing the checklist questions and a short explanation and
return the index of your selection inside double brackets [[]1].

nnn

Listing 1: Prompt Used for Checklisted One Pass Selection (CHOPS)

nnn

Respond to the following instruction in {language_name}. Only return the answer in {
language_name?}.

{prompt}

Now Give your response following the above instruction ONLY in {language_name}.

nnn

Listing 2: Prompt Used for Cross-Lingual MBR (X-MBR)
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Model Sampling Language Std Error 95% CI

Chinese 0.055 0.20 - -0.01

English 0.055 0.20 - -0.02

French 0.054 0.21 --0.00

Hedged Random German 0.054 0.21 --0.01
Japanese  0.054 0.18 --0.03

Russian 0.055 0.15 - -0.06

Spanish 0.052 0.16 - -0.04

Chinese 0.058 0.15--0.07

English 0.058 0.23 - -0.00

French 0.057 0.13--0.10

Hedged German 0.058 0.18 - -0.05
Japanese  0.056 0.32-0.10

< Russian 0.057 0.22 - 0.00
Z Spanish  0.056 0.16 - -0.06
Chinese 0.057 0.28 - 0.06

English 0.057 0.19 - -0.04

French 0.058 0.19 - -0.03

Random German 0.058 0.19 - -0.04
Japanese  0.057 0.28 - 0.05

Russian 0.057 0.25-0.03

Spanish 0.057 0.10--0.12

Chinese 0.062 0.23 - -0.01

English 0.062 0.13--0.11

French 0.063 0.17 - -0.08

Single German 0.063 0.16 - -0.09
Japanese  0.063 0.24 - -0.01

Russian 0.062 0.19 - -0.05

Spanish 0.062 0.17 - -0.08

Chinese 0.060 0.25 - 0.02

English 0.061 0.23--0.01

French 0.061 0.11--0.13

Hedged Random German 0.061 0.23 - -0.01
Japanese  0.061 0.13--0.11

Russian 0.061 0.17 - -0.07

Spanish 0.060 0.07 - -0.16

Chinese 0.059 0.19 - -0.04

English 0.059 0.15--0.08

French 0.058 0.15--0.08

Hedged German 0.058 0.17 - -0.06
Japanese  0.057 0.15 - -0.07

z Russian 0.058 0.24 - 0.01
cay Spanish 0.057 0.28 - 0.06
Chinese 0.062 0.15--0.09

English 0.061 0.31-0.08

French 0.061 0.27-0.03

Random German 0.061 0.21 --0.03
Japanese  0.062 0.15--0.09

Russian 0.061 0.09 - -0.15

Spanish 0.061 0.19 - -0.05

Chinese 0.063 0.15--0.10

English 0.062 0.21--0.03

French 0.063 0.24 - -0.00

Single German 0.062 0.24 - -0.01
Japanese  0.063 0.16 - -0.09

Russian 0.063 0.18 - -0.06

Spanish 0.063 0.12--0.13

Table 9: Comparison of the significance of different temperature sampling methods across models and languages
using standard errors and 95% confidence intervals of the win-rates on m-ArenaHard with Judge MBR selection.
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Model | Chinese | English | French | German | Japanese | Russian | Spanish | Mean + Std
Aya 36.0 37.6 36.8 34.8 34.4 32.8 38.4 35.8+2.0
Qwen 39.2 36.8 35.2 32.0 30.8 35.2 36.4 35.1+29

Table 10: Frequency of Greedy sample selection in Hedge sampling (m-ArenaHard)

nnn

[Instruction]

Please act as an impartial multilingual judge and evaluate the quality of the
response provided by an AI assistant to the user question displayed below. In
addition to the user question, you are also given a reference answer that might
be written in another language. This is the best possible answer provided by a
human expert who might not speak the target language.

You should evaluate the assistants response based on this. A good assistants answer
should share the content and style of the reference answer, but it does not have

to match the language of the reference. Begin your evaluation by providing a
short explanation. Be as objective as possible.

After providing your explanation, you must rate the response on a scale of 1 to 10
by strictly following this format:

"[[rating]l]"”, for example: "Rating: [[5]1]1".

[Question]
{question}

[Reference Answer]
{reference}

[The Start of Assistants Answer]
{candidate}
[The End of Assistants Answer]

nnn

Listing 3: Prompt Used for Judging samples in X-MBR
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Setting Task Hope Risk

Temperature = 0.3

English Arena  30.60 -41.79
MGSM  7.14 -16.67
Average 18.87 -29.23

Non-English Arena  49.66 -52.52
MGSM 1445 -17.54
Average 32.06 -35.03

Temperature = 0.7

English Arena  38.81 -51.49
MGSM 11.90 -23.81
Average 25.36 -37.65

Non-English Arena  55.51 -65.31
MGSM 18.96 -23.70
Average 37.23 -44.50

Table 11: Hope (best-case improvement) and risk (worst-
case drop) of sampling at temperatures 0.3 and 0.7,
relative to greedy decoding, across tasks and languages
for Aya 8B. Values are reported as percentages.
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Figure 8: Effect of adding min-p sampling across dif-
ferent selection methods. Min-p provides consistent
improvements across both methods and tasks. Results
are on Arena (left) and WMT (right) dev splits, using
AYA.
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Figure 9: Comparison of CHOPS (with checklists) ver-
sus OPS (without checklists). Self-generated checklists
perform better on average across languages.
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Figure 10: CHOPS vs OPS on MGSM: comparing the
effect of check-listed selection on close ended tasks
show negligible differences.
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Figure 11: Reward Score Scaling as we increase the
sample size from from 1 sample to 40 samples.
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CHOPS Judge MBR Reward BoN  X-MBR  Greedy
Model Task Language
Arena  Chinese 1840+5.77 17.20£5.79 7.60+5.65 6.80+5.70 -
English 13.60+£5.63 6.40+5.78 5.20+549 13.20£5.72 -
French 13.20+5.92 7.60+£5.68 840+£5.65 6.80+5.68 -
German 11.60+5.75 520+£581 0.80+559 1640+5.43 -
Japanese 9.20+£5.83 4.00+5.65 -040+£5.58 10.40+£5.63 -
Russian 2.00+5.72 -520+5.67 8.80%546 1240+5.72 -
Spanish  24.00 £5.83 12.00+5.62 5.60+5.57 8.00+5.72 -
MGSM Chinese 8.56+2.59 7.36+£259 1396+246 12.16+2.59 68.64
English 7.76 £2.03 7.36+2.03 13.16+£230 9.36+193 77.84
N French 9.04+2.79 7.84+287 13.84+2.88 10.24+2.82 62.96
< German 5.12+£2.72 592+271 1032+£2.64 6.72+2.63 73.68
Japanese 6.56+2.75 6.16+£2.86 1036+2.89 9.36+2.75 68.64
Russian  6.08 £2.64 5.68+2.71 11.68+2.53 848+250 73.12
Spanish  8.96+2.41 856+235 1296+2.22 9.76+230 70.24
WMT  Chinese 0.53* 0.10 2.59 -1.05 76.09
French 0.39 0.09 2.55% -2.14%%* 79.91
German 0.17 0.04 0.86 -1.05%%%* 91.88
Japanese 1.12 0.65 3.03 -3.62%%* 78.99
Russian 0.60* 0.31 2.86* -2 73H* 82.51
Spanish 0.28%%* 0.01 1.68%** -0.74* 87.90
Arena  Chinese 0.80+6.13 -4.00+594 8.80+5.71 13.60+6.01 -
English 7.20+6.10 4.80+590 12.80+£5.58 9.60+5.88 -
French 8.00+6.08 1.20+£5.77 840+£5.60 18.40+5.79 -
German 8.80£5.96 -240+5.83 -040+5.71 12.00+5.90 -
Japanese 8.80+6.10 640565 8.80+5.82 4.40+5.72 -
Russian  8.00+£6.06 240+£584 3.60+£5.62 12.00+5.85 -
Spanish  8.00+£5.98 4.80+£5.73 16.00+£5.65 4.80+5.82 -
MGSM Chinese 3.04+2.41 3.04+£23 644+£222 424+225 83.76
. English -0.88+1.72 -0.88+1.80 2.12+1.60 -0.08+1.72 95.68
o French 248 +2.74 208+274 428+£272 288+£2.72 7992
5 German 2.56+2.48 2.16+£255 4.56+250 4.96+250 87.04
Japanese 3.28+2.59 3.68+261 648+250 4.88+2.61 80.72
Russian  1.36+2.3 256+241 396+225 296+232 89.04
Spanish 248 +2.15 248+2.17 528+220 448+2.15 86.72
WMT  Chinese 0.51%* -0.29 2.18%%* -0.23 78.42
French 1.75% 0.06 2.81%%% 0.09%* 77.71
German 0.87%* -0.43%*%* 1.56%%* -0.23 89.86
Japanese 1.69 -0.68 3.75% -0.60 74.36
Russian 2.2]%%* -1.68% 3.86%%* -1.26 77.64
Spanish 1.21%%* -0.36%* 2.24%%% 0.26 85.96

Table 12: Breakdown of test set results: Judge based Methods with Hedge sampling with 7 = 0.7. WMT
Significance: * p < 0.05, ** p < 0.01, *** p < 0.001. MGSM std-err are reported for the selection methods absolute

score (not the difference).

27581



30
I d
20
S
v 10 o
a . /
e \'5% >_§¢
2 0 —%
-10
.
CHOPS
30
20
\
(3 : . .
0 *
.
-10 -°
English XMBR
30
f X
20 . ®
iy 4 »,
NN
10 o x. & \c
.
"o e’ e,
0 \\
L/
d .
1 2 3 4 5 6 7 8 9
scale
Language
—e— English —e— French —e— Japanese —e— Russian

Reward BoN

Figure 12: Scaling pool sample size using 7 = 0.7
hedged sampling for selected languages with different
selection methods on mArenaHard dev set.

Win A over greedy
=
o

Selection Method
=== CHOPS
=== RM-BoN

1234567 891011121314151617181920

No. Samples

Figure 13: Win-rate gains from CHOPS and RM-
BoN with increasing sample size (1-20) across all non-
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Model Task Language Likelihood Sim. MBR BoN Judge MBR

Chinese 4.00 -6.40 5.20 4.00
English -7.60 10.40 12.00 11.20

French -15.20 0.40 14.80 1.60

m-ArenaHard German -12.80 -1.20 17.20 6.40
Japanese 0.80 -1.20 16.40 20.80
Russian -6.80 2.80 11.60 11.20

Spanish -6.00 3.60 4.00 4.80

Chinese 1.76 2.96 12.16 9.36
English 13.92 16.72 13.92 17.92

Aya French 2.16 2.56 4.56 4.96
MGSM German 0.80 2.00 6.40 4.80
Japanese -0.32 4.88 7.68 8.88

Russian -0.08 0.72 7.52 3.52

Spanish -0.08 1.52 6.72 4.72

Chinese 3.28 1.06 0.92 -0.07

French 0.61 -0.07 1.04 -0.09

German 0.42 0.39 0.32 0.04

WMT Japanese -0.19 0.10 -0.18 0.11
Russian 0.43 -0.07 1.08 0.15

Spanish -0.08 -0.42 1.49 0.08

Chinese -1.60 -2.40 3.20 7.20

English -7.20 0.80 0.80 3.20

French 1.60 -1.20 1.60 3.20

m-ArenaHard German -7.60 7.20 -4.00 5.20
Japanese -6.00 -1.20 7.20 4.00
Russian -1.60 -2.40 -1.60 12.40
Spanish -4.00 -1.20 8.80 16.80

Chinese -1.44 0.96 3.36 2.16

English -0.88 -0.48 2.32 0.32

Qwen French -1.20 0.40 2.00 1.60
MGSM German 0.72 1.12 2.72 1.52
Japanese 1.12 1.12 5.12 2.72

Russian 1.28 0.48 4.48 1.68

Spanish 0.00 -0.40 0.40 0.80

Chinese 0.26 -0.08 1.28 0.53

French 0.14 -0.28 1.17 0.52

German 0.80 0.27 1.99 1.37

WMT Japanese 0.51 0.17 1.941 1.61
Russian 0.68 0.26 2.27 1.11

Spanish 0.50 0.09 1.37 0.68

Table 13: Baseline vs. Judge MBR: breakdown by model, task, and language.
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