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Abstract

Table retrieval, essential for accessing infor-
mation through tabular data, is less explored
compared to text retrieval. The row/column
structure and distinct fields of tables (including
titles, headers, and cells) present unique chal-
lenges. For example, different table fields have
varying matching preferences: cells may fa-
vor finer-grained (word/phrase level) matching
over broader (sentence/passage level) match-
ing due to their fragmented and detailed nature,
unlike titles. This necessitates a table-specific
retriever to accommodate the various match-
ing needs of each table field. Therefore, we
introduce a Table-tailored HYbrid Matching
rEtriever (THYME), which approaches ta-
ble retrieval from a field-aware hybrid match-
ing perspective. Empirical results on two ta-
ble retrieval benchmarks, NQ-TABLES and
OTT-QA, show that THYME significantly out-
performs state-of-the-art baselines. Compre-
hensive analyses have confirmed the differing
matching preferences across table fields and
validated the efficacy of THYME.

1 Introduction

Table retrieval is an important way for seeking in-
formation stored in tables, organized in rows and
columns (Cafarella et al., 2008; Jauhar et al., 2016;
Zhang and Balog, 2020). Its significance is evi-
dent in real-world applications: for instance, in the
Natural Questions dataset constructed from Google
queries targeting Wikipedia pages, table-based in-
formation needs account for 25.6% of all ques-
tions (Kwiatkowski et al., 2019). Retrieved tables
serve as the input of table-related tasks such as
question answering (Cafarella et al., 2008; Jauhar
et al., 2016) and fact verification (Chen et al.,
2020b). Despite extensive studies on unstructured
text retrieval, structured table retrieval remains
under-explored. We aim to enhance table retrieval
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performance to better serve table-related informa-
tion needs.

Table retrieval presents unique challenges com-
pared to text retrieval: (1) Text data are usually
unstructured, while tables have a structured format
with cells, rows, columns, and headers, suggest-
ing a table-specific encoding approach. (2) Unlike
documents whose sentence order matters, tables’
data entry order does not affect their information.
(3) Each row in a table is equally important, mak-
ing it challenging to compress table information
into dense representations. (4) Table cells contain
detailed information, often in words or phrases,
making local finer-grained matching more critical
than in document retrieval. Figure 1 shows an ex-
ample to illustrate the importance of local lexical
matching in table retrieval.

Query:  When does Avengers: Infinity War come out? 
Relevant:

Irrelevant:

Film U.S. release date Director(s) Producer(s)
Black February 16, 2018 Ryan Coogler Kevin Feige

...

Avengers: Infinity War  April 27, 2018 Anthony and Joe Russo Kevin Feige

Marvel Cinematic Universe: Phase Three

The Avengers Film Series (until 2016) 

Name Release dates Director(s) Box office Producer(s)

The Avengers April 11, 2012 (El Capitan Theatre)
May 4, 2012 (United States)

Joss 
Whedon $1.521 billion Kevin Feige

Avengers: Age of
Ultron

April 13, 2015 (Dolby Theatre)
May 1, 2015 (United States)

Joss 
Whedon $1.405 billion Kevin Feige

Figure 1: A case of table retrieval. It shows fine-grained
matching in cells is important.

Current table retrieval methods have investigated
various strategies, including: (1) condensing table
information by selecting cells (Herzig et al., 2020)
and row/column aggregation (Trabelsi et al., 2022)
and (2) specialized pre-training objectives for table
retrieval (Herzig et al., 2021; Chen et al., 2023).
However, these methods often compress tables into
dense representations, which may not capture the
semantics of parallel data rows and fine-grained
exact matching effectively.

We approach table retrieval from a field-aware
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hybrid matching perspective, integrating both
sparse and dense representations to adapt effec-
tively to various table fields. Sparse representations
(Formal et al., 2021) preserve detailed token-level
information, complementing the global semantics
carried in dense representations, which are particu-
larly well-suited for table cells. In contrast, dense
representations excel in handling unstructured text
fields, such as titles, aligning with proven effec-
tiveness in passage retrieval (Guo et al., 2025). A
key challenging issue is how to adaptively learn
the optimal representation and matching pattern for
each table field.

To this end, we introduce THYME, a Table-
tailored HYbrid Matching rEtriever for field-aware
hybrid matching. Using a shared encoder, we con-
struct dense and sparse representations for queries
and tables. The [CLS] embedding implicitly cap-
tures field importance/preference on coarse-grain
semantics through extensive Transformer interac-
tions. In contrast, sparse representations hold
greater potential for field-specific considerations
due to their explicit segmentation of content to-
kens by field. Therefore, we focus on learning
field-aware sparse representations, which can re-
flect field importance on fine-grained semantics.
Based on a shared encoder, sparse and dense repre-
sentations can be learned coordinately and finalize
the field suitability for coarse and fine grains of
semantics during relevance matching. Specifically,
for sparse representations of table bodies (head-
ers and cells), we employ mean pooling to retain
similar types of information within columns and
max pooling to extract the most important seman-
tics across columns. Then, we learn the field (title,
header, cell) importance of each token/dimension
in the sparse representation, and aggregate them dy-
namically for matching. The final relevance score
is computed as the sum of dense and sparse match-
ing scores. During training, we use a score dropout
strategy to enable adaptive learning across both lex-
ical (sparse) and semantic (dense) matching path-
ways.

We evaluate THYME on table retrieval bench-
marks, NQ-TABLES (Herzig et al., 2021) and OTT-
QA (Chen et al., 2020a), showing that it outper-
forms state-of-the-art baselines, including sparse,
dense, and hybrid retrievers. Analyses confirm that
table titles prefer dense matching, while headers
and cells prefer sparse matching, and THYME ef-
fectively captures these preferences. Within the
RAG framework, THYME enhances the results of

various LLMs by providing more relevant tables.
Our studies indicate a promising way of elevating
table retrieval, which can shed light on future re-
search on this topic.

2 Related Work

2.1 Text Retrieval

Text retrievers can be classified into three types
based on representations used: sparse, dense, and
hybrid retrieval which incorporates them.

Sparse retrievers refer to models that use sparse
representations such as TF-IDF (Sparck Jones,
1972) and BM25 (Robertson and Walker, 1994).
Building on pre-trained language models (PLMs),
SparTerm (Bai et al., 2020) and SPLADE (Formal
et al., 2021) aim to generate term distributions over
vocabulary. Dense retrievers typically encode in-
puts to dense vectors using PLMs (Devlin et al.,
2019; Liu et al., 2019). Dense and Sparse retrieval
have complementary advantages. Dense retrieval
generally outperforms sparse retrieval, while the
latter can be more effective when limited training
data is available. Hybrid retrieval can combine
the advantages of them (Craswell et al., 2020; Ba-
jaj et al., 2018). A straightforward combining ap-
proach is to train two different types of retrievers
independently and then combine their outputs lin-
early to give a final relevance score(Chen et al.,
2021; Kuzi et al., 2020; Lin and Lin, 2021; Luan
et al., 2020; Guo et al., 2025; Shen et al., 2023).
There are some other ways to combine different
retrievers such as: CLEAR (Gao et al., 2020) utiliz-
ing boosting, UnifieR (Shen et al., 2023) leveraging
knowledge distillation.

2.2 Table Search

Table search has emerged as a fundamental re-
search challenge in structured data search(Cafarella
et al., 2008; Zhang and Balog, 2018; Bhagavatula
et al., 2013). To maintain both efficiency and effec-
tiveness, the table search is typically decomposed
into two phases: retrieval and reranking.

For table retrieval, PLMs exhibit limited per-
formance due to their primary training on textual
corpora. To improve PLMs’ comprehension of
tabular structures, TAPAS (Herzig et al., 2020)
and DTR (Herzig et al., 2021) utilize distinct
types of embeddings like row and column embed-
dings, to represent the structure of tables based on
BERT (Devlin et al., 2019). Alternatively, fine-
tuning PLMs on the table corpus can improve their
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comprehension of tables like UTP (Chen et al.,
2023). Given the complexity of table structure and
content, a single dense representation often fails
to capture fine-grained details. SSDR (Jin et al.,
2023) aims to represent both the query and table
through multiple vector representations and graph-
based methods (Wang et al., 2021) have also been
adapted for table retrieval.

Table reranking fundamentally differs from table
retrieval through its joint encoding of query-table
pairs, enabling more sophisticated interaction than
the independent processing of retrieval. Existing
approaches such as TaBERT (Yin et al., 2020), Stru-
BERT (Trabelsi et al., 2022) and others (Shraga
et al., 2020) improve results by emphasizing struc-
tural information during encoding.

Both retrieval and reranking tasks critically de-
pend on table structure representation, our work
takes a fundamentally different approach from ex-
isting complex architectures. Rather than designing
elaborate structural encoding methods, we investi-
gate domain-specific matching preferences to opti-
mize table retrieval performance.

3 Task Description

Let D = {(qi, T+
i )}Ni=1 be a labeled dataset, where

qi denotes an individual query and T+
i is a set of

tables {t+i } that are considered relevant to qi with
variable size per query. Table retrieval aims to train
a retriever to learn query-table relevance matching
considering table structure and fields. After train-
ing, this retriever is expected to understand how
the fields F = {title, headers, cells} align with
the information needs expressed in the query. Ulti-
mately, for any query q, the retriever can retrieve
relevant tables from a given collection.

4 Table-Tailored Hybrid Matching
Retriever (THYME)

In this section, we introduce THYME, a Table-
tailored HYbrid Matching rEtriever. Figure 2 illus-
trates the overall architecture. The model employs
dual representations: dense representations capture
semantic information from unstructured text (e.g.,
titles), and sparse representations preserve details
for fine-grained information needs. To effectively
capture the relevance matching patterns (lexical,
semantic, and at various granularities) across dif-
ferent fields, we incorporate matching preferences
of different fields, propose a field-aware lexical
matching mechanism, and craft a hybrid training

strategy. Note that we employ BIBERT (Lin et al.,
2021) and SPLADE (Formal et al., 2021) as the
backbones to calculate dense and sparse represen-
tations. Although other advanced backbones can
be alternatives to achieve better performance, our
focus is to study table-specific hybrid matching.
Next, we detail each component of THYME.

4.1 Query Representation
Since query q is an unstructured text without spe-
cial processing, we directly obtain its dense and
sparse representation based on BIBERT (Lin et al.,
2021) and SPLADE (Formal et al., 2021) respec-
tively. The hidden state of [CLS] is represented as
the dense representation. The sparse representation
is obtained by applying max pooling over the entire
sequence:

Hq = Enc(q), Zq = Trans(Hq),

qcls = Hq[CLS],

qlex = max
i∈|q|

log(1 +ReLU(Wq[i])),
(1)

where qcls ∈ Rh and qlex ∈ R|V | represent the
dense and sparse query representations, respec-
tively, h is the dimension of outputs yielded by
Pre-trained Language Models (PLMs), |V | is the
size of the vocabulary used. Trans(·) is a linear
used to map the output of Enc(·) to the distribution
in the vocabulary space.

4.2 Table Serialization
To encode tables with PLMs, we explicitly annotate
structural components (titles, headers, and cells) us-
ing special tokens [TTL], [HEAD], and [CELL]
to maintain their distinct semantic and structural
roles. Given a table t with a title, n headers -
headersn, and cellm×n of m rows and n columns,
we serialize the table structure as follows:

t = [ [CLS], [TTL], title, [HEAD], header0,

. . . headern−1, [CELL], cell0,0, cell0,1, . . . ,

cellm−1,n−1, [SEP ] ].

4.3 Global Semantic Matching
The global semantics of a table, which encapsu-
lates its comprehensive information by integrating
all field-level data, are crucial for accurately ad-
dressing topic-related queries. With the field in-
dicator tokens in the input sequence marking the
field boundary, the self-attention mechanism en-
ables [CLS] embedding to aggregate the informa-
tion stored in each field as the global dense repre-
sentation. The dense representation of a table t is
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Rank Name Area Type

1 Superior 82,103km2 natural

2 Lake Huron 59,570 km2 natural

...
9 Lake Oahe ... ...

List of largest lakes of the United States by Area

Encoder

[TTL][CLS] [SEP][CELL][HEAD]

Table-Structure 
Pooling

List of largest lakes of 
the United States by 

Area

[Rank, Name, 
Area, Type]

[[1, Superior, 82103...], ... 
[9, Lake Oahe...]]
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Figure 2: Illustration of THYME. Headers can be regarded as a row of cells. In this context, we adopt the identical
pooling strategy that is applied to the cells. The query is treated in the same manner as the title of the table.

generated as follows:

tcls = Enc(t)[CLS]. (2)

We have also tried alternative pooling strategies
(mean and max over the entire sequence). However,
it does not perform better than simply using [CLS].
The semantic matching scores between the query
and the table are obtained in the following way:

ssem(q, t) = sim(qcls, tcls). (3)

We use the inner product as the similarity function
for semantic matching.

4.4 Field-aware Lexical Matching

The body of the table, including headers and cells,
mainly consists of words or phrases that lack coher-
ent semantics. We hope to construct sparse repre-
sentations for each field and obtain the final sparse
representations of tables with differentiated em-
phasis on these fields. To this end, we propose a
table-structure pooling mechanism and a mixture-
of-field-experts mechanism for field-level aggrega-
tion to facilitate fine-grained lexical matching.

Table-Structure Pooling. First, to obtain sparse
representations, the table t is transformed into a
sequence of logits Zt ∈ R|t|∗|V |:

Ht = Enc(t),Zt = Trans(Ht), (4)

where |t| is the length of tables and |V | is the num-
ber of tokens used by PLMs. Then, we employ
distinct pooling strategies for different table fields.
Max pooling excels at extracting fine-grained fea-
tures while mean pooling preserves every piece of

information in the sequence. Based on this pre-
sumption, for the title, headers, and cells, our
pooling strategies are as follows.

Title: Since the table title is unstructured text,
similar to queries, we use max pooling as in Formal
et al. (2021):

titlelex = max
t[i]∈title

log (1 +ReLU(Zt[i]) ), (5)

where i is the index of a token within the title of
table t.

Headers: Headers encode the relational schema
of tabular data. We use mean pooling for the to-
kens within each header and max pooling across
all headers to construct the sparse header represen-
tation:

headerjlex = mean
t[i]∈headerj

log (1 +ReLU(Zt[i]) ),

headerslex = max
1≤j≤n

headerjlex,
(6)

where headerj is the j-th header among n headers
in table t.

Cells: Cells in the same column share identical
properties indicated by the corresponding header.
The semantics carried in each cell within a col-
umn are equally important to represent the column,
so we first aggregate cell-level information within
each column through mean pooling. In contrast,
different columns are of different importance dur-
ing matching. For cross-column aggregation, we
employ max pooling over column representations
to emphasize discriminative features. The process
can be formalized as:

coljlex = mean
t[i]∈colj

log (1 +ReLU(Zt[i]) ),

cellslex = max
1≤j≤n

coljlex,
(7)
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where colj = cell0,j , cell1,j , · · · , cellm−1,j is the
j-th column of t which have m cells.

Mixture of Field Experts (MoFE). The sparse
representation of each field computed based on
Equation (5), (6), and (7), is a distribution over the
vocabulary tokens. The importance of each token
varies across different fields in representing the ta-
ble. We adopt a Mixture of Field Experts (MoFE)
mechanism to adaptively aggregate different field
sparse representations. Specifically, we use the
hidden states of [TTL], [HEAD], and [CELL]
to assess the importance of each token in the dis-
tribution corresponding to different fields during
matching. The final sparse representation tlex is
calculated according to:

tg = [Ht[TTL],Ht[HEAD],Ht[CELL]],

tf = [titlelex,headerslex, cellslex],

gf = Softmax(Trans(tg)),

tlex[i] =
∑

i∈|V |

|F |∑

j=1

gf [j][i] · tf [j][i],

(8)

where F represents the set of fields in the table, |F |
is the number of fields. tg ∈ R|F |×h is the list of
hidden states of [TTL], [HEAD], and [CELL],
tf ∈ R|F |×|V | is the sparse representations of dif-
ferent fields stacked, gf ∈ R|F |×|V | adjusts each
field of the inflow representation. The final sparse
representation is obtained by a weighted aggrega-
tion across fields, where gf [j][i] is the importance
score of the token i in field j, tf [j][i] is the lexical
feature (e.g., occurrence probability) of the token i
in field j.

We employ the inner product operation as the
similarity function, consistent with semantic match-
ing scores.

slex(q, t) = sim(qlex, tlex). (9)

4.5 Hybrid Training
To enable retrievers to effectively learn both global
semantic matching and field-aware lexical match-
ing concurrently, we implement a dropout training
strategy:

Matching Score Dropout. During training, we
compute the final relevance score as either the se-
mantic matching score ssem(q, t) with probability
psem or the lexical matching score slex(q, t) with
probability plex. For the remaining training steps,
we use the sum of them as the relevance score:

s(q, t) =





ssem(q, t), psem,

slex(q, t), plex,

ssem(q, t) + slex(q, t), 1− psem − plex.

(10)

This approach enables both independent and joint
learning of global semantic matching and field-
aware lexical matching, ensuring the development
of each component while promoting their effective
integration. In our experiments, we set psem =
plex since we consider them equally important for
matching.

Loss Function. We adopt the InfoNCE loss for
training (van den Oord et al., 2019). Specifically,
for a query qi in a batch, we pair a positive table t+i ,
with a set of random negative tables (positive tables
from the other queries in the batch, e.g., {t−i,j} for
query qj in the batch), the relevance loss for this
sample is computed as:

ℓrel = −log es(qi,t
+
i

)

es(qi,t
+
i

)+
∑

j e
s(qi,t

−
i,j

)
. (11)

We further employ the FLOPS regulariza-
tion (Paria et al., 2020) to constrain computational
complexity during the training process, the training
objective can be defined as follows:

ℓall =

{
ℓrel + (λqℓ

q
FLOPS + λtℓ

t
FLOPS), s(q, t) = slex(q, t),

ℓrel, otherwise.

(12)
The regularization weights (λq and λt) enforce spar-
sity constraints for queries and tables on lexical
matching, which is critical for fast retrieval.

During inference, we sum the semantic and lexi-
cal matching scores as the final relevance score:

s(q, t) = ssem(q, t) + slex(q, t). (13)

4.6 Efficiency Discussion
Let h be the dimension of the dense vectors yielded
by PLMs and d be the number of non-zero items in
sparse representations. During training, the com-
putational costs of the different retrievers are as
follows: single-vector dense retrievers like BIB-
ERT require O(|q|2h + |t|2h) for encoding, fol-
lowed by O(h2) for matching, |q| and |t| are the
lengths of the query and table sequence. Multi-
vector dense retrievers such as SSDRim incur the
same encoding cost of O(|q|2h+ |t|2h), but their
matching costs scale to O(αβh2), where α denotes
the number of vectors used to represent a query
and β is the number of vectors per tables. Simi-
larly, the total computational cost of SPLADE is
O(|q|2h+ |t|2h) +O(d2). Although d exceeds h
at initialization due to the large vocabulary size, it
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gradually approaches h under FLOPS regulariza-
tion. From the overall training process, SPLADE
costs about as much as BIBERT. For THYME, the
computational cost is O(|q|2h+|t|2h)+O(h2+d2).
This is slightly higher than that of BIBERT and
SPLADE. But it remains significantly lower than
that of multi-vector dense retrievers like SSDRim.

During inference, since the dense and sparse
representations are constructed independently, se-
mantic matching and exact matching can be done
in parallel. THYME does not introduce an addi-
tional time delay and is as efficient as its backbone
models, BIBERT and SPLADE.

5 Experimental Settings

5.1 Datasets

We conduct experiments on two standard table re-
trieval benchmarks:

• NQ-TABLES (Herzig et al., 2021) is a subset of
the Natural Questions (NQ) (Kwiatkowski et al.,
2019), collected from Wikipedia and search en-
gine logs.

• OTT-QA (Kostić et al., 2021) is an open-domain
multi-hop QA dataset from Wikipedia, contain-
ing both textual and tabular corpus. We use the
subset related to tables for retrieval evaluation.

The statistics of our benchmarks are shown in Ta-
ble 1. We also show representative samples of these
benchmarks in the Appendix B.

NQ-TABLES OTT-QA
Train Test Train Test

Query Count 9,594 919 41,469 2,214
Avg. # Words. 8.94 8.90 21.79 22.82

Table
Count 169,898 169,898 419,183 419,183
Avg. # Row. 10.70 10.70 12.90 12.90
Avg. # Col. 6.10 6.10 4.80 4.80

# Relevant Tables per Query 1.00 1.05 1.00 1.00

Table 1: Statistics of benchmarks. Note that there are
919 unique queries and 966 query-table pairs in the test
set of NQ-TABLES.

5.2 Baselines

We compare THYME1 with the following base-
lines. Sparse Retrievers: BM25 (Robertson and
Walker, 1994) and SPLADE (Formal et al., 2021).
Dense Retrievers: We selected three groups of
dense retrievers as our baselines. (1) Single-vector
text retrievers, such as BIBERT (Lin et al., 2021)
and PRE-DPR (Wang et al., 2022), which had

1The code can be found at Github Repository.

been trained on text retrieval corpus with rele-
vance matching capability. (2) Single-vector ta-
ble retrievers, such as TAPAS (Herzig et al., 2020)
and DTR (Herzig et al., 2021). (3) Table retriev-
ers that use multi vectors, such as SSDRim (Jin
et al., 2023), which extracts multi vectors to repre-
sent both queries and tables. Hybrid Retrievers:
We introduced hybrid retrievers such as DHR (Lin
et al., 2023), along with two of our implementa-
tions: BIBERT-BM25sf to investigate the impact
of score fusion and BIBERT-SPLADEtf to analyze
the joint training of hybrid representations based
on a shared encoder. Details of baselines are shown
in the Appendix A.

Additionally, there are some methods, such as
TaBERT (Yin et al., 2020) and StruBERT (Tra-
belsi et al., 2022), which are not used as our base-
lines, since they are designed for table reranking,
not retrieval. There are also some LLM-based
retriever (BehnamGhader et al., 2024; Lee et al.,
2025) that achieve remarkable performance in text
retrieval. Due to resource constraints, we do not
choose these models as our baselines. THYME im-
proves the performance of table retrieval from the
perspective of field-aware hybrid matching. It is
orthogonal to backbones’ optimization and can be
integrated into different backbones to yield cumu-
lative performance improvements.

5.3 Evaluation Metrics

We use recall and normalized discounted cumu-
lative gain (NDCG) for evaluation. We apply a
cutoff at 50 for retrieved tables and report R@1,
R@10, and R@50 to show how many relevant ta-
bles are retrieved, following Herzig et al. (2020)
and Jin et al. (2023). Since high-ranking tables
in retrieval results serve as the inputs for down-
stream tasks (e.g., table comprehension, tableQA,
etc.), we use NDCG to evaluate whether relevant
tables are ranked in top positions. Given that
queries in our test set typically have only one an-
notated relevant table, NDCG@1 closely aligns
with R@1 and NDCG@50 shows limited discrimi-
native power due to minimal score variation. We
select NDCG@5 and NDCG@10 as our primary
evaluation metrics, as they provide practical rele-
vance to real-world applications where only the top
few results are examined. Statistical significance is
measured with two-tailed t-tests with p < 0.05.
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NQ-TABLES OTT-QA
NDCG@5 NDCG@10 R@1 R@10 R@50 NDCG@5 NDCG@10 R@1 R@10 R@50

Sparse BM25 25.52 27.12 18.49 36.94 52.61 35.09 37.45 23.98 51.94 69.11
SPLADE 58.46 61.27 38.43 83.13 95.25 76.31 77.55 64.45 89.39 95.89

Dense

BIBERT 61.73 63.16 44.49 84.87 94.16 70.28 72.49 57.05 86.45 94.26
PRE-DPR 63.05 66.13 45.32 85.84 95.44 67.92 70.00 53.43 85.95 93.22
TAPAS⋆ 61.08 63.89 43.79 83.49 95.10 70.44 72.72 56.05 86.72 94.49
DTR⋆ 49.13 52.70 31.72 74.63 91.10 57.23 59.30 42.14 75.93 87.58
SSDRim 62.31 65.02 45.47 84.00 95.05 69.81 71.76 56.96 86.22 93.55

Hybrid
DHR 61.16 64.32 43.67 84.65 95.62 75.27 76.65 63.64 88.48 95.30
BIBERT-BM25sf 53.81 57.19 35.87 79.63 94.56 71.36 73.29 59.49 86.81 94.67
BIBERT-SPLADEtf 63.24 66.25 45.62 86.72 95.62 76.90 78.30 64.72 91.01 96.34

THYME 65.72† 68.14† 47.78† 86.38 96.08 78.21† 79.58† 66.67† 91.10 96.16

Table 2: Overall table retrieval performance. Bold and underline indicate the best and suboptimal performance
respectively. We set the batch size to 144 for all methods, and the difference with the corresponding paper is denoted
by ⋆. Statistically significant (p < 0.05) improvements over BIBERT-SPLADEtf are marked with †.

6 Results and Discussion

6.1 Overall Retrieval Performance

Table 2 shows the performance of three groups of
baselines: sparse, dense, and hybrid retrievers, on
NQ-TABLES and OTT-QA. It shows that hybrid
retrievers perform better than dense and sparse re-
trievers. Even the simple combination of BIBERT
and SPLADE boosts the performance by a large
margin. Among all the methods, THYME per-
forms the best, significantly better than the SOTA
baselines, indicating its efficacy in conducting field-
aware hybrid matching.

We also have the following observations: (1)
Dense retrievers excel on NQ-TABLES, while
sparse retrievers perform better on OTT-QA. The
reason for this disparity is that queries in OTT-QA
are obtained by decontextualizing questions from
the closed-domain QA dataset, which contains
more detailed information compared with queries
in NQ-TABLES. Hybrid retrieval bridges this gap
through combined semantic and exact matching,
demonstrating robust performance across diverse
queries. THYME takes it a step further. It cali-
brates the retrieval preferences of various fields to
make it a compelling solution for table retrieval.
(2) THYME utilizes field indicator tokens in ta-
ble inputs to facilitate adaptive differentiation and
aggregation of information across different fields.
BIBERT achieves comparable results to TAPAS
using the same approach. This suggests that the
model can adaptively learn the structure of the ta-
ble, and neural models designed for tables may be
not necessary for retrieval. (3) PRE-DPR, trained
for text retrieval, also shows competitive perfor-
mance in table retrieval, which suggests that rel-
evance learned from text matching also benefits

table retrieval.

6.2 Analysis on Model Variants

To derive the sparse representations of the table,
we perform table-structure pooling and aggregate
these representations using MoFE. To evaluate the
impact of our design, we train and evaluate alter-
native variants for both components. For pooling
within the field, we also tried max or mean pooling
on all the tokens instead of the table-structure pool-
ing in THYME. For the aggregation over fields, we
attempted max and mean pooling. Notably, using
max/mean pooling both within and across fields
degrades to treating tables as unstructured text and
representing them with SPLADE. Table 3 shows
how the variants of THYME perform with the re-
vised sparse representations.

Pooling Aggregation NDCG@5 NDCG@10 R@10

Table-Structure MoFE 65.72 68.14 86.38

Max MoFE 62.18⋆ 64.52⋆ 85.79
Mean MoFE 60.61⋆ 63.96⋆ 85.09⋆

Max Max 61.44⋆ 64.19⋆ 85.42
Mean Mean 57.72⋆ 60.96⋆ 83.15⋆

Table 3: Comparisons of pooling and aggregation meth-
ods for sparse representations on NQ-TABLES. ‘⋆’ in-
dicates statistically significant differences (p<0.05) with
THYME (the first row).

We can see that (1) table structure in the sparse
representation can not be ignored; (2) max pooling
has better performance than mean pooling in terms
of sparse field representations, consistent with the
observations from SPLADE on text retrieval (For-
mal et al., 2021), but both are significantly worse
than our table-structure pooling approach and (3)
MoFE is better than using max or mean pooling to
aggregate the field representations, indicating field
importance in its final sparse representations are
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better learned.

6.3 Matching Preferences of Different Fields
To see whether table titles and bodies have dif-
ferent relevance matching preferences, we com-
pare THYME variants that selectively mask
dense/sparse representations of titles or bodies. For
instance, when only dense representations of titles
are used, their sparse representations are not ag-
gregated to the tables’ final sparse representations.
Table 4 shows the performance of these variants.
We can observe: (1) The absence of title sparse rep-
resentations results in a smaller degradation com-
pared to other variants; (2) Performance declines
more significantly when sparse representations of
table bodies are omitted than when dense repre-
sentations are removed; (3) THYME exhibits the
worst performance when only sparse title represen-
tations and dense body representations are used.
The comparison of different variants reveals that
titles benefit primarily from semantic matching,
whereas table bodies (headers and cells) depend
more critically on lexical matching.

Title Headers&Cells NDCG@5 NDCG@10 R@10

Dense, Sparse Dense, Sparse 65.72 68.14 86.83

Dense Dense, Sparse 63.97⋆ 67.18 86.72
Dense, Sparse Sparse 63.81⋆ 66.48⋆ 85.65⋆

Dense, Sparse Dense 57.98⋆ 61.14⋆ 82.48⋆

Sparse Dense 57.48⋆ 60.25⋆ 82.15⋆

Table 4: Study on the impact of representation types
of table fields on NQ-TABLES. ‘⋆’ marks the sta-
tistically significant difference (p<0.05) compared to
THYME (the first row).

7 Application in TableQA

In the era of LLMs, retrievers are often used
as a component of a retrieval-augmented gener-
ation (RAG) system to provide context for LLMs.
We evaluated THYME’s practical value in Open
Domain TableQA via RAG using Mistral (Jiang
et al., 2023), Llama3 (Grattafiori et al., 2024), and
Qwen2.5 (Qwen et al., 2025). NQ-TABLES con-
tains factual questions, relevant tables, and corre-
sponding answers. We measure the accuracy of
whether the LLMs’ outputs contain the ground-
truth answers. Results are shown in Table 5.

When more results are used for augmentation,
QA performance becomes better as well. Due to
incomplete annotation of the relevant tables in the
NQ-TABLES, the tables retrieved by the model
that are not labeled as relevant may contain infor-
mation that is related to the query. This requires

Retriever LLM Accuracy
n=1 n=3 n=5

SPLADE
Mistral-7B 29.61 35.42 34.95
Llama3-8B 32.07 37.17 33.88
Qwen2.5-7B 31.90 35.79 37.35

BIBERT
Mistral-7B 32.93 33.46 35.30
Llama3-8B 32.40 33.03 34.17
Qwen2.5-7B 34.80 37.92 37.01

SSDRim

Mistral-7B 32.76 36.95 36.30
Llama3-8B 34.25 38.14 37.89
Qwen2.5-7B 33.42 39.27 39.66

BIBERT-SPLADEtf

Mistral-7B 32.67 33.59 35.71
Llama3-8B 32.66 34.67 34.55
Qwen2.5-7B 33.24 36.76 37.30

THYME
Mistral-7B 35.48 37.59 37.20
Llama3-8B 36.14 39.16 39.29
Qwen2.5-7B 37.28 40.28 41.20

Table 5: End-to-end tableQA performance. Bold indi-
cates the best performance.

the retriever to learn the relevance matching be-
tween queries and tables, rather than fitting the data.
Among existing table retrievers, THYME demon-
strates the best RAG performance.

8 Case Study

Figure 3 compares THYME with SOTA baselines
on a query about the 2018 Olympics opening cer-
emony time. Only THYME ranks the relevant
table at the top. “2018”, “Olympics”, “open-
ing”, and “ceremony” occur in the titles and/or
cells while “when” is semantically matched with
“Date” and “Time” in the relevant table. In con-
trast, the strongest baselines BIBERT-SPLADEtf ,
and SSDRim prioritize exact keyword matching
while neglecting the semantic matching to “when
for 2018” that needs date or time to answer. It
shows that THYME has successfully learned field-
aware hybrid matching.

Query:  When are the opening ceremonies for the 2018 Olympic Games?

Top-1 Retrieved Table  Relevant

Date Time Location Filmed by Venue

9 February
2018

20:00 – 22:20 
KST

(UTC+9)

Pyeongchang,
South Korea

Olympic
Broadcasting Services

Pyeongchang 
Olympic
Stadium 

2018 Winter Olympics opening ceremony

Olympic Games ceremonies

Opening ceremony
Summer 1896,1900,1904, ... 2016, 2020, 2024 ...

Winter 1924,1928,1932, ... 2014, 2018, 2022, 2026 ...

Closing ceremony
Summer 1896,1900,1904, ... 2016, 2020, 2024 ...

Winter 1924,1928,1932, ... 2014, 2018, 2022, 2026 ...

THYME

Top-1 Retrieved Table  Irrelevant

SSDRim  /
BIBERT-
SPLADEtf

Figure 3: Top-1 retrieved table from different retrievers.

9 Conclusion

In this work, we propose a retriever based on the ob-
servation that table cells could prefer local match-
ing of detailed information which differs from un-
structured text such as table titles. We tailor the rep-
resentations for tables and incorporate both dense
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and sparse representations to better suit the match-
ing needs at different granularities. Experimental
results show that our proposed method can adap-
tively balance the semantic and lexical matching
requirements among the table fields.

Limitations

This paper investigates the preferences in matching
across different fields in a table during the retrieval.
Tables represent a critical category of structured
data that coexists with other prevalent formats (e.g.,
HTML, PDF) in real-world information systems.
Our method demonstrates effectiveness for table-
structured data. How to extend it to a wider range
of data formats needs to be further explored.
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A Details of Baselines

Sparse Retrievers:

• BM25 (Robertson and Walker, 1994) is a well-
known retrieval method that estimates the rele-
vance of documents to a user query based on bag-
of-words representations and exact term match-
ing.

• SPLADE (Formal et al., 2021) is a sparse re-
triever based on BERT and one of the backbones
of our model. It maps a query or document to a
vector of the vocabulary size, where each dimen-
sion corresponds to the probability of a term.

Dense Retrievers:

• BIBERT (Lin et al., 2021) is a standard dense
retriever based on BERT. It is also one of the
backbones of our model. The hidden state of
[CLS] for a query and a document from BERT is
used to estimate the relevance score.

• PRE-DPR (Wang et al., 2022) is a text retriever
that has been fine-tuned with a large text corpus.

• TAPAS (Herzig et al., 2020) utilizes distinct
types of embeddings like row and column em-
beddings to represent structure. It is also pre-
trained on a large amount of tabular data and
fine-tuned on cell, row, and column-level tasks.
It is a universal table encoder that is widely used
in table-related tasks.

• DTR (Herzig et al., 2021) uses TAPAS as the
encoder and has been fine-tuned with relevant
data of tables and queries.

• SSDRim (Jin et al., 2023) is the state-of-the-art
(SOTA) table retriever, which extracts the vectors
of nouns to represent the query. For tables, it
constructs representations of rows and columns
by pooling, a part of which is sampled as the
representation of tables.

Hybrid Retrievers:

• BIBERT-BM25sf is a hybrid retrieval method
that obtains the relevance score by directly
adding the scores of semantic matching based
on BIBERT and exact matching from BM25.

• BIBERT-SPLADEtf is a simple fusion of BIB-
ERT and SPLADE. The outputs of both are used
to estimate semantic matching and lexical match-
ing respectively. Similar to BIBERT-BM25sf ,
the relevance score comes from the sum of the
semantic matching score and lexical matching
score.

• DHR (Lin et al., 2023) densifies the sparse repre-
sentation and concatenates it with the dense rep-
resentation to construct a single representation.
It is compatible with most retrieval frameworks.

B Case Overview of Benchmarks

To effectively visualize and compare the differ-
ences in queries between NQ-TABLES and OTT-
QA, we show samples from each of them in Fig-
ure 4 and Figure 5.

C Implementation Details

We initialize THYME, BIBERT, and SPLADE with
BERT-base. For the other baselines, we use the
released checkpoints for initialization. To ensure a
fair comparison, we maintain identical batch size,
learning rate, and training steps across all trained
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Website: https://en.wikipedia.org//w/index.php?title=Eagle_Creek_(Oregon)&amp;oldid=738892320

Query: What is the elevation of eagle creek oregon?

Answer: 344 ft (105 m)

Name Type Elevation Coordinate USGS Map GNIS ID
West Eagle Creek 
(Union County, 

Oregon)
Stream 4,426 ft (1,349 m) 45°01′10″N 

117°27′15″W Bennet Peak 1128826

Eagle Butte Creek 
(Lane County, 

Oregon)
Stream 1,765 ft (538 m) 43°47′34″N 

122°19′24″W
Huckleberry 

Mountain 1141461

Eagle Creek, 
Oregon

Populated 
Place 344 ft (105 m) 45°21′26″N 

122°21′32″W Estacada 1120258

...
West Eagle Creek 
(Union County, 

Oregon)
Stream 4,426 ft (1,349 m) 45°01′10″N 

117°27′15″W Bennet Peak 1128826

Relevant Table:
Eagle Creek (Oregon)

Figure 4: A case of NQ-TABLES.

Website: https://en.wikipedia.org//w/index.php?title=Eagle_Creek_(Oregon)&amp;oldid=738892320

Query: What is the elevation of eagle creek oregon?

Answer: 344 ft (105 m)

Name Type Elevation Coordinate USGS Map GNIS ID
West Eagle Creek 
(Union County, 

Oregon)
Stream 4,426 ft (1,349 m) 45°01′10″N 

117°27′15″W Bennet Peak 1128826

Eagle Butte Creek 
(Lane County, 

Oregon)
Stream 1,765 ft (538 m) 43°47′34″N 

122°19′24″W
Huckleberry 

Mountain 1141461

Eagle Creek, 
Oregon

Populated 
Place 344 ft (105 m) 45°21′26″N 

122°21′32″W Estacada 1120258

...
West Eagle Creek 
(Union County, 

Oregon)
Stream 4,426 ft (1,349 m) 45°01′10″N 

117°27′15″W Bennet Peak 1128826

Relevant Table:
Eagle Creek (Oregon)

Query: Which male athlete was born in Alabama and had a 400 meter 
time under 44.5 seconds?

Relevant Table:

Year Time Role Place

1966 44.82y Wendell Mottley (TTO) Kingston

1967 44.74+h Tommie Smith (USA) San Jose

...
1984 44.27 Alonzo Babers (USA) Los Angeles

...

2024 43.40 Quincy Hall (USA) Saint-Denis

Website: https://en.wikipedia.org/wiki/400_metres

Answer: Alonzo Babers

400 Metres

Figure 5: A case of OTT-QA.

models. With a batch size of 144 and a learning
rate of 1e − 5, we compare the performance of
the different models after 50 training epochs. For
THYME, we set psem = plex = 0.15 for matching
score dropout and λq = λt = 1e− 4 for FLOPS
regularization.

D Prompt for TableQA

The prompt we used in evaluating the effect of
different table retrievers on the answers generated
by LLM is shown in Figure 6.

System: You are a helpful assistant.
User: Answer the question based on the table provided, 
outputting the answer directly, not the reasoning process or 
other additional information. 
<Question>: Who is the owner of reading football club?
<Tables>: [Table 1]: Reading F.C., ['Full name', 'Nickname(s)', 
'Founded', 'Ground', 'Capacity', 'Owner', 'Chairman', 'Manager', 
'League', '2016–17', 'Website', '', '', 'Home colours'], [['Reading 
Football Club', 'The Royals', '1871; 147 years ago', 'Madejski 
Stadium', '24,161[1]', 'Dai Yongge and Dai Xiuli (majority)', 
'Sir John Madejski', 'Jaap Stam', 'Championship', 'Championship, 
3rd', 'Club website', '', 'Home colours Away colours', 'Away 
colours']].
<Answer>:

Assistant: Dai Yongge and Dai Xiuli

Figure 6: The prompt for tableQA.
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Figure 7: Impact of dropout rate.

E Hyper-parameter Sensitivity

Dropout Rate. During training, we introduce a
dropout strategy. To see how the dropout ratio
psem and plex (note that we set psem = plex) im-
pact the retrieval performance of THYME, we vary
the probability from 0% to 30% and examine how
Recall@10 changes. From Figure 7, we can see
the performance fluctuates on NQ-TABLES when
the ratio is set to larger values. However, the best
performance is always achieved when psem and
plex are above 0, which means our matching score
dropout strategy is beneficial.
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