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Abstract

This paper introduces AFRIDOC-MT, a
document-level multi-parallel translation
dataset covering English and five African lan-
guages: Amharic, Hausa, Swahili, Yorub4, and
Zulu. The dataset comprises 334 health and
271 information technology news documents,
all human-translated from English to these
languages. We conduct document-level transla-
tion benchmark experiments by evaluating the
ability of neural machine translation (NMT)
models and large language models (LLMs) to
translate between English and these languages,
at both the sentence and pseudo-document
levels, the outputs being realigned to form
complete documents for evaluation. Our
results indicate that NLLB-200 achieves the
best average performance among the standard
NMT models, while GPT-40 outperforms
general-purpose LLMs. Fine-tuning selected
models leads to substantial performance gains,
but models trained on sentences struggle to
generalize effectively to longer documents.
Furthermore, our analysis reveals that some
LLMs exhibit issues such as under-generation,
over-generation, repetition of words and
phrases, and off-target translations, specifically
for translation into African languages.'

1 Introduction

The field of machine translation (MT) has seen
notable progress in the past years, with neural ma-
chine translation (NMT) models achieving close
to human performance in many high-resource lan-
guage directions (Vaswani et al., 2017; Akhbardeh
et al., 2021; Mohammadshahi et al., 2022; Yuan
et al., 2023; Kocmi et al., 2023; NLLB Team et al.,
2024). However, efforts have primarily been con-
centrated on sentence-level translation, without the
use of inter-sentential context.

'The data can be accessed on HuggingFace and GitHub.

In recent years, there has been interest in
document-level translation (i.e. the holistic trans-
lation of multiple sentences), where sentences are
translated with their context rather than in isolation.
Document-level translation is important in order to
capture discourse relations (Bawden et al., 2018;
Voita et al., 2018; Maruf et al., 2021), maintain con-
sistency and coherence across sentences (Herold
and Ney, 2023), particularly for technical domains,
but poses unique challenges, such as how to handle
longer documents (Wang et al., 2024b) given the
limited context size of translation models. Current
efforts have primarily focused on high-resource lan-
guage directions, where document-level datasets
are readily available (Lopes et al., 2020; Feng et al.,
2022; Wu et al., 2023; Wang et al., 2023; Wu et al.,
2024), and so far there has been no work on low-
resource African languages. Developing and evalu-
ating document-level MT systems for low-resource
languages is a useful and under-studied direction,
which requires the creation of datasets.

To fill this gap, we present AFRIDOC-MT, a
document-level translation dataset for English from
and into five African languages: Amharic, Hausa,
Swahili, Yorubd, and Zulu, created through the
manual translation of English documents. It con-
sists of 334 health documents and 271 tech docu-
ments. In addition, AFRIDOC-MT supports multi-
way translation, allowing translations not only be-
tween English and the African languages but also
between any two of the languages covered.

We conduct a comprehensive set of document
translation benchmark experiments on AFRIDOC-
MT, using sentence-level and pseudo-document
translation due to most models’ limited context
length, and then realigning them to form com-
plete documents. We evaluate performance us-
ing automatic metrics and compare the results of
encoder-decoder models with decoder-only LLMs
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https://huggingface.co/datasets/masakhane/AfriDocMT
https://github.com/masakhane-io/afridoc-mt

Dataset #Langs. Multiway Domain Type #Sents. #Docs.
TICO-19 (Anastasopoulos et al., 2020) 12 v health document-level 4k 30
MAFAND-MT (Adelani et al., 2022) 16 X news sentence-level 4k-35k -
FLORES-200 (NLLB Team et al., 2022) 42 v general sentence-level 3k -
NTREX-128 (Federmann et al., 2022) 24 v news sentence-level 1.9k -
AFRIDOC-MT (Ours) 5 v tech, health  document-level 10k 271-334

Table 1: Overview of highly related work, including for each dataset the number of African languages, the domain,
the kind of MT task they can be used for and the range of the sentence numbers for each language direction.

across both domains. Our results demonstrate that
NLLB-200, both before and after fine-tuning on
AFRIDOC-MT, excels in sentence translation, sur-
passing all other models. GPT-40 performs equally
well for sentences and pseudo-documents, while
other decoder-only models lag behind. In addi-
tion to automatic metrics, we use GPT-40 as a
judge, human evaluation, and qualitative assess-
ment to compare documents translation carried out
sentence-by-sentence and as pseudo-documents for
selected models. The evaluation shows that GPT-
40 is generally unreliable for assessing document
translations into African languages. However, we
observe agreement between other evaluation meth-
ods, all indicating that sentence-by-sentence trans-
lation results in better document-level translation
into African languages. We conduct additional
analyses of the models’ outputs to better under-
stand their behavior and why they under-perform
when translating pseudo-documents. They show
that LLMs often under-generate, contain repeti-
tions, and produce off-target translations, especially
when translating into African languages.

2 Related Work

MT Datasets for African Languages Several
MT datasets exist for African languages, including
web-mined datasets such as WikiMatrix (Schwenk
et al., 2021a) and CCMatrix (Schwenk et al.,
2021b). However, they have been adjudged to be
of poor quality for certain low-resource subsets,
including African languages (Kreutzer et al., 2022).
There are also well curated datasets for African lan-
guages including the Bible (McCarthy et al., 2020),
JW300 (Agi¢ and Vuli¢, 2019)> and MAFAND-
MT (Adelani et al., 2022), which are from religious
and news domains.

There exist several MT evaluation benchmark
datasets for African languages. They can be cate-
gorized into two kinds. First, evaluation datasets
specifically designed for translating into or from

’The dataset is no longer available for use.

African languages (Ezeani et al., 2020; Azunre
et al., 2021; Adelani et al., 2021, 2022, inter alia).
Second, benchmark datasets covering many lan-
guages, including African languages. For example,
TICO-19 (Anastasopoulos et al., 2020), NTREX-
128 (Federmann et al., 2022), FLORES-101 (Goyal
et al., 2022) and FLORES-200 (NLLB Team et al.,
2024) are a few such datasets. However, most of
these datasets are designed for sentence-level MT,
primarily drawn from religious or news domains,
although some consist of translated sentences orig-
inating from the same document. To the best of our
knowledge, only TICO-19, a health domain trans-
lation benchmark, has the potential to be used for
document-level MT, while it is restricted to topics
related to COVID-19. Table 1 gives a comparison
of the most relevant existing benchmarks.

Document-level Neural Machine Translation
Document-level NMT aims to overcome the limi-
tations of sentence-level systems by translating an
entire document as a whole. Similar to context-
aware NMT, which involves translating segments
with additional, localized context, it differs in
that it involves in principle translating an entire
document holistically. Both document-level and
context-aware MT allow for the possibility of im-
proving translation quality for context-dependent
phenomena such as coreference resolution (Miiller
et al., 2018; Bawden et al., 2018; Voita et al.,
2018; Herold and Ney, 2023), lexical disambigua-
tion (Rios Gonzales et al., 2017; Martinez Garcia
et al., 2019), and lexical cohesion (Wong and Kit,
2012; Garcia et al., 2014, 2017; Bawden et al.,
2018; Voita et al., 2019). Various methods have
been proposed to extend sentence-level models to
capture document-level context (Tiedemann and
Scherrer, 2017; Libovicky and Helcl, 2017; Baw-
den et al., 2018; Miculicich et al., 2018; Sun et al.,
2022). The emergence of LLMs, such as GPT-
3 (Brown et al., 2020), Llama (Dubey et al., 2024)
and Gemma (Gemma Team et al., 2024), has trans-
formed NLP, including for MT (Zhu et al., 2024a,c;

27771



Language Classification Spkrs. (M)
Ambharic [amh]  Afro-Asiatic/Semitic 57.6
Hausa [hau] Afro-Asiatic/Chadic 78.5
Swahili [swa] Niger-Congo/Bantu 71.6
Yorubd [yor] Niger-Congo/Volta-Niger 45.9
isiZulu [zul] Niger-Congo/Bantu 27.8

Table 2: Languages in the AFRIDOC-MT corpus, their
classification and number of speakers (in millions).

Lu et al., 2024). Pre-trained on vast amounts of
text, LLMs can effectively manage long-range de-
pendencies, making them in principle well-suited
for document-level translation. While these models
have shown promising results for high-resource
languages (Wu et al., 2023; Wang et al., 2023;
Wau et al., 2024), research remains limited for low-
resource languages (Ul Hagq et al., 2020).

3 AFRIDOC-MT Corpus

Languages and their characteristics We cover
five languages from the two most common African
language families: Afro-Asiatic and Niger-Congo.
Three languages belong to the Niger-Congo family:
Swahili (North-East Bantu), Yoruba (Volta-Niger)
and isiZulu (Southern Bantu). The other two lan-
guages belong to the Afro-Asiatic family: Amharic
(Semitic) and Hausa (Chadic). The choice of lan-
guages was based on geographical representation,
speaking population, and web coverage (which we
consider as a proxy for the potential performance
of existing models on these languages). Further-
more, each of these languages has over 20 million
speakers. All of them use the Latin script except
for Amharic, which uses the Ge’ez script. The
Latin-script languages use the Latin alphabet with
the omission of some letters and the addition of
new ones, and the use of diacritics (e.g., Yorubd).
The languages are tonal, except for Amharic and
Swahili. Just like English, all languages follow
the subject-verb-object word order. Refer to Ade-
lani (2022) for a comprehensive overview of the
characteristics of these languages. Table 2 shows
summarized details.

Data Collection and Preprocessing We scraped
English articles from the websites of Tech-
point Africa® and the World Health Organization
(WHO).*3 The articles cover different topics of dif-
ferent lengths with an average length of 30 and 37

3https://techpoint.africa/
4https ://www.who.int/health-topics
5https ://www.who.int/news-room/

sentences for health and tech respectively. While
our corpus is initially structured at the article level,
we aim to make it suitable for sentence-level trans-
lation tasks as well. To achieve this, we segmented
the raw articles into sentences using NLTK (Bird
et al., 2009). To ensure high segmentation quality,
we recruited a linguist and a professional translator
to verify the correctness of the segmentation and
make corrections as needed. Finally, we selected
334 and 271 English articles/documents from the
health and tech domains respectively, which repre-
sents 10k sentences each per domain.

Translation We translated the extracted 10k En-
glish sentences to the 5 African languages through
4 expert translators per language.® The translators
were recruited through a language coordinator who
is also a native speaker of the language. The 10k
sentences were distributed equally among the trans-
lators and the translations were done in-context
(i.e. the translators translated on the sentence level
but had access to the whole document). Due to the
domain-specific nature of the task, before starting
the translation process, we conducted a translation
workshop, during which three translation experts
shared their experiences in creating terminologies
and they also shared existing resources with the
translators including short translation guidelines
(Appendix A.1).

Quality Checks Quality control was conducted
using automated quality estimation, followed by
manual inspections by our language coordinators.
We also used Quality Estimation (QE), specifically
AfriCOMET (Wang et al., 2024a),” Given a trans-
lated sentence in any African language and its cor-
responding source English sentence, AfriCOMET
generates a score between 0 and 1, where 0 indi-
cates poor quality and higher values signify better
quality. The translators, in collaboration with the
language coordinators, were tasked with reviewing
instances that had quality estimation scores below
0.65. This step was essential to identify and correct
low-quality translations.

Figure 3 shows the distribution of final qual-
ity scores for five languages across both domains.
Manual inspection indicates that QE scores below
0.65 do not necessarily reflect poor translations,
consistent with Adelani et al. (2024b), likely due to

®Each translator was paid $1, 250 for 2, 500 sentences.
"https://huggingface.co/masakhane/
africomet-ge-stl
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Domain Train Dev. Test Min/Max/Avg
Number of documents

health 240 33 61 2/151/29.9
tech 187 25 59 8/247/36.9
Number of sentences

health 7041 977 1982

tech 7048 970 1982

Table 3: The number of documents and sentences in
AFRIDOC-MT, and (at the document level) minimum,
maximum and average sentences per document.

domain shift, translation length, and other factors,
which warrant further investigation.

AFRIDOC-MT data split We created train, de-
velopment (dev), and test splits for each domain. To
prevent data leakage, documents sharing sentences
with the same English translation were assigned to
the training set. The dev set contains 25-33 doc-
uments, and the test set 59-61 documents, drawn
from the remaining data. Table 4 shows the av-
erage number of whitespace-separated tokens per
sentence across domains and languages, including
English. The health domain has more tokens than
tech. Hausa and Yoruba are longer than English,
likely due to their descriptive nature, while Swahili
is similar in length. Ambharic and Zulu are relatively
shorter, reflecting interesting linguistic properties.
Table 3 provides additional data statistics. Table 3
shows some data statistics.

The health data is licensed under CC BY-NC-
SA 3.0, while the fech data is licensed under CC
BY-NC-SA 4.0.

4 Benchmark Experiments

Given the AFRIDOC-MT data, we conducted both
sentence- and document-level translation, evalu-
ating two types of models: encoder-decoder and
decoder-only models. While the majority of these
models are open-source, we also evaluated two pro-
prietary models of the same type. Our evaluation
primarily focuses on document-level translation,
reflecting the availability of our document-level
translation corpus. For completeness, we also con-
duct a series of sentence-level experiments, with
the results presented in Appendix C.

4.1 Models

Encoder-Decoder Models We evaluate five
kinds of open encoder-decoder model including
Toucan (Elmadany et al., 2024; Adebara et al.,

Domain  eng amh hau swa yor zul

Sentence

health 21.6 19.3 28.1 23.2 27.9 16.7
tech 17.8 15.6 22.2 18.0 23.7 13.4
Document

health 647.3 576.7 841.7 695.4 834.8 500.1
tech 658.2 575.0 821.6 665.4 873.4 4959

Table 4: The average number of tokens in AFRIDOC-
MT, both at sentence and document level.

2024), M2M-100 (Fan et al., 2020), NLLB-
200 (NLLB Team et al., 2024), MADLAD-
400 (Kudugunta et al., 2023), and Aya-101 (Ustiin
et al., 2024). Toucan is an Afro-centric multilin-
gual MT model supporting 150 African language
pairs. In comparison, M2M-100, NLLB-200, and
MADLAD-400 cover between 100 and 450 lan-
guage pairs. Aya-101, an instruction-tuned mT5
model (Xue et al., 2021), supports 100 languages
and can translate between various languages, in-
cluding those considered in AFRIDOC-MT.

Decoder-only Models We also evaluate open and
closed decoder-only models. Open models include
LLama3.1 (Dubey et al., 2024), Gemma?2 (Gemma
Team et al., 2024), their instruction-tuned variants,
and LLaMAX3 (Lu et al., 2024)—a LLama3-based
model further pre-trained on 100+ languages, in-
cluding several African ones. The closed models
include OpenAI GPT models (GPT-3.5 Turbo and
GPT-40) (OpenAl, 2024), which have been shown
to have document-level translation ability (Wang
et al., 2023). While their language coverage is not
well documented, they show some ability to handle
African languages (Adelani et al., 2024b; Bayes
et al., 2024), though far below their performance in
English, their primary training language.

We present the result of 12 models in total, in-
cluding the 1.2B version of Toucan, 1.3B and 3.3B
versions of NLLB-200, 3B and 13B versions of
MADLAD-400 and Aya-101 respectively. We also
have the 8B instruction tuned version of LLama3.1
(LLama3.1-IT), 9B version of Gemma-2 (Gemma2-
IT), and LLaMAX3-Alpaca.® We provide more
description of the models in Appendix B.1.

Supervised fine-tuning of the models For
sentence-level evaluation, we jointly fine-tune
NLLB-200 with 1.3B parameters on the 30 lan-
guage directions and on the two domains to make
the models more specialized. Similarly, we did
supervised fine-tuning (SFT) on LLaMAX3 and

8We refer to it as LLaMAX3-Alp in the results tables.
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LLama3.1 using the prompt augmentation ap-
proach from (Zhu et al., 2024b), as shown in Ap-
pendix B.4. We chose these two models because
LLaMAX3 is already adapted to several languages
including our languages of interest, and LLama3.1
because of its long context window. We perform
SFT on LLaMAX3 and LLama3.1 for document-
level translation, using pseudo-documents with
k=10. We refer to each system as {model_name}-
SFT},.°

4.2 Experimental Setup

Sentence-level Evaluation Given that our cre-
ated dataset can be used for sentence-level transla-
tion and as a baseline for document-level transla-
tion, we evaluate all models on the test splits for
each domain. We evaluate the translation models
(M2M-100, NLLB-200, and MADLAD-400) using
the Fairseq (Ott et al., 2019) codebase for (M2M-
100 and NLLB-200), and the Transformers (Wolf
et al., 2020) codebase for MADLAD-400. How-
ever, for other models including Aya-101, we use
the EleutherAl LM Evaluation Harness (1m-eval)
tool (Biderman et al., 2024) using the three tem-
plates listed in Table 23 of Appendix B.4.

Document-level Evaluation We also perform
document-level translation using a setup similar to
the sentence-level experiment, but only with mod-
els that meet context length requirements. An ini-
tial analysis showed that some models were unable
to process entire documents due to input length
limits, which were exceeded by token counts in
some languages (Amharic and Yorubd). To address
this, we adopted a similar approach to Lee et al.
(2022), splitting documents into fixed-size chunks
of k sentences to fit within token limits; the final
chunk may contain fewer than £ sentences. To se-
lect an appropriate chunk size, we conducted initial
tests with k& = 1 (sentence-level), 5, 10, and 25,
choosing £ = 10 for our experiments. We provide
results from this analysis in Table 11.

4.3 Evaluation Metrics

Evaluating document-level translation remains
challenging, as existing automatic metrics struggle
to capture improvements and account for discourse
phenomena (Jiang et al., 2022; Dahan et al., 2024),
and embedding-based metrics have not been ex-
plored in this context for African languages due

We denote models finetuned on sentences as

{model_name}-SFT or {model_name }-SFT;

to the lack of data. Hence, we realigned sentence-
level or pseudo-translation outputs into full doc-
uments, then computed BLEU (Papineni et al.,
2002) and chrF (Popovi¢, 2015) to create document
BLEU (d-BLEU) and document chrF (d-chrF).
Metrics were computed using SacreBLEU'? (Post,
2018) with bootstrap resampling (n = 1000) to
report 95% confidence intervals. We report d-
chrF scores for the best prompt per model and
language direction in the main text, as chrF bet-
ter captures the morphological richness of African
languages (Adelani et al., 2022), with full results
provided in Appendix C.

We use GPT-40 as a judge to evaluate translation
outputs, following recent work showing LLMs’ ef-
fectiveness in assessing translation quality and ana-
lyzing errors (Wu et al., 2024; Sun et al., 2025). Fol-
lowing Sun et al. (2025), we assess each translated
document’s fluency, content errors (CE), and cohe-
sion errors—specifically lexical (LE) and grammat-
ical (GE) errors—using GPT-40, with evaluation
limited to a few model outputs due to cost con-
straints (Appendix B.6). We also complement this
with human evaluation for direct assessment scores
(Appendix B.7) and qualitative analysis through
manual inspection (Appendix B.8).

5 Results

5.1 Sentence-level Evaluation

In Tables 5 and 6 we present d-chrF scores based
on the realigned documents, created by merging
the translated sentences into their corresponding
documents. We highlight our main findings be-
low, and sentence-level evaluation results using
sentence-level metrics are reported in Appendix C.

NLLB-200 outperforms all other encoder-
decoder models across languages and domains
On average the NLLB models obtain scores of
65.4/66.6 and 64.3/65.0 on health and tech domains
respectively, with 3.3B outperforming 1.3B except
when translating into Yorubd. When translating to
English, the worst performing model across the two
domains is Toucan. However, it gives better results
than MADLAD-400 and Aya-101 when translating
to African languages. Furthermore, translating to
African languages is significantly worse compared
to translating to English for all the models.

GPT-40 outperforms other decoder-only coun-
terparts GPT-40 on average outperforms other

10case:mixedleff:noltok:13a|smoo’ch:exp|v:2.3.1
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Model Size eng — X X — eng AVG
| amh hau swa yor zul Avg. amh hau swa yor zul Avg.

Encoder-Decoder ‘ ‘ ‘ ‘
Toucan 1.2B 33.81_2 57.61_4 70.3(),3 36.01_5 58.01(7 51.2 54.71_0 57.713 65.20_9 54.01_2 59-90.8 58.3 54.7
NLLB-200 13B | 49.815 64.722 75.50.8 45.110 69.01.3 60.8 | 69.41.3 65.31.7 75.308 66.31.1 73.20.0 69.9 65.4
MADLAD-400 3B 36.50.9 54.42.0 T4.209 19.109 57.114 483 | 68.91.1 63.816 76.10.s6 5l.drgs 68909 65.8 57.0
NLLB-200 33B | 53.019 65.222 76.T9.7 43.8:1 70.713 619 | 70913 66.51.7 77.007 67611 74710 713 66.6
Aya-101 13B 36.60.9 56.41.5 44.T24 31.214 58.608 45.5 | 64.61.1 61.51.4 70.80.8 57.91.3 67.40s 64.4 55.0
SFT on AFRIDOC-MT

NLLB-SFT 1.3B ! 559, 6749 81.30.7 61.5; ¢ 73.716 68.0 ! 72.4, > 67516 79207 718,11 76.50.9 73.5 1 70.7
Decoder-only ‘ ‘ f
Gemma2-IT 9B 20.1p7 56.41.4 T1.207 21.006 41.611 421 | 61.6p09 62.513 74.207 54.713 63909 634 52.7
LLama3.1-IT 8B 19.60.5 45914 63.700 19.706 28507 355 | 53.900 59.81.3 69.1p.9 53.413 54.01.1 58.0 46.8
LLaMAX3-Alp 8B 30.50.8 56.31.5 67.808 19.30.8 56.1g.90 46.0 | 63.31.0 62.41.3 71.708 56.11.1 65.30.90 63.8 54.9
GPT-3.5 - 20406 44309 T76.T0.6 21.309 BHl.looe 42.8 | 48309 52412 75.006 52.11.2 59.509 57.4 50.1
GPT-40 - 36.70.8 64.219 79806 29316 69.00.3 558 | 67.210 66.51.5 78.1lps 69.11.1 75110 T1.2 63.5
SFT on AFRIDOC-MT

LLaMAX3-SFT 8B 46.812 62.514 T73.10.0 57.510 67510 61.5 | 66.61.2 58916 73.111 64.715 70.510 66.8 64.1
LLama3.1-SFT 8B 45.61.1 61.815 T1.510 57.001.1 66.800 60.6 | 64.312 59.515 72.1ps 64.815 69.010 65.9 H 63.2

Table 5: Performance of the models in the Health domain, measured by d-chrF at the sentence-level, realigned to
the document-level. For each model and language, the best result from three prompt variations is reported.

Model Size eng — X X — eng AVG
| amh hau swa yor zul Avg. amh hau swa yor zul Avg.

Encoder-Decoder ‘ | I
Toucan 1.2B 32.01.6 59.51.7 66.11.7 37.12.0 58.51.4 50.7 54.01.6 59.91.5 64.11.4 54.31.3 59.61.2 58.4 54.5
NLLB-200 1.3B | 49.32.0 65.722 72316 43.001.3 70313 60.1 | 69.510 66.81.5 72.00.4 63.002 71.512 68.5 64.3
MADLAD-400 3B 37313 57.02.8 62129 21.310 58518 473 | 68.61.1 66.01.4 72114 53114 67.612 65.5 56.4
NLLB-200 33B | 52.224 65.423 72815 40.1;8 71.61.3 604 | 70910 67.7T15 73214 63911 72512 69.6 65.0
Aya-101 13B 37311 58923 42426 31414 58915 458 | 65.21.2 64.812 69.11.1 58513 67.11.1  64.9 55.4
SFT on AFRIDOC-MT

NLLB-SFT 1.3B ! 53454 67.9:- 76516 59.513 74.0, 5 66.2 ! 721,09 69.013 74114 67.5:1 74.31 1 714 1 68.8
Decoder-only ‘ I it
Gemma2-IT 9B 20.6p6 58.315 68.716 23.913 46518 43.6 | 61.11.3 65414 71512 56.713 63.811 63.7 53.7
LLama3.1-IT 8B 19.50.0 47813 63415 20.812 30413 364 | 51.00.3 61.01.4 66.01.3 53.51.2 52413 56.8 46.6
LLaMAX3-Alp 8B 30.31.1 58919 64917 22.008 58.61.7 46.9 | 63.41.4 64915 69.111 56.51.3 65.712 63.9 55.4
GPT-3.5 - 22.608 49215 72.616 23.010 53615 442 | 47415 56.51.3 T1.514 54.013 59911 579 51.0
GPT-40 - 36.912 65.223 75316 29415 Tl.114 556 | 67.210 69014 74414 66.41, 7341, T70.1 62.8
SFT on AFRIDOC-MT

LLaMAX3-SFT 8B 42815 62419 67.614 55215 66.00.2 588 | 63.00.2 53.51.9 67.512 57.31.3 66.81.3 61.6 60.2
LLama3.1-SFT 8B 41.617 61.820 66.413 54914 64.616 57.9 | 62.012 58615 67.172 61.313 65.613 62.9 H 60.4

Table 6: Performance of the models in the Tech domain, measured by d-chrF at the sentence-level, realigned to the
document-level. For each model and language, the best result from three prompt variations is reported.

decoder-only LMs, with average d-chrF scores
of 63.5 and 62.8 for health and tech respectively.
The next best performing decoder-only model is
LLaMAX3-Alpaca, with d-chrF scores of 54.9 and
55.4. Unlike other open decoder-based LLMs,
LLaMAX3-Alpaca was trained on African lan-
guages through continued pretraining and adapted
via instruction tuning. It outperforms Gemma2-IT
by +2.2 in the health domain and +1.7 in the tech
domain, particularly when translating into African
languages. In contrast, GPT-3.5 and LLama3.1-IT
are the worst performing models.

Fine-tuning models significantly improves trans-
lation quality We obtain improved performance
after fine-tuning NLLB-1.3B on AFRIDOC-MT,
and the resulting model outperforms the 3.3B ver-
sion without fine-tuning. Similarly, the SFT-based
LLMs (LLaMAX3 and LLama3.1) become the best
performing open LLMs and outperform their base-
lines (LLaMAX3-Alpaca and LLama3.1-IT) but
below GPT-40. Overall, our fine-tuned NLLB-200

model is the state-of-the-art model, and our fine-
tuned LLaMAX3 is competitive to GPT-4o.

5.2 Document-level Evaluation

In Tables 7 and 8 we present d-chrF scores based
on the best prompt per language for the transla-
tion output of the models when evaluated on the
realigned documents from pseudo-documents with
k =10 sentences per pseudo-document.

Pseudo-document translation is worse than
sentence-level translation when translating into
African languages Our results from pseudo-
document translation show a performance drop
across different models compared to sentence-
level translation, especially when translating into
African languages. However, GPT-40 demon-
strates similar and consistent performance in both
setups and domains. Additionally, we observe
that GPT-3.5 is the next best performing decoder-
only LLLM, which contrasts with its performance
in sentence-level translation. Gemma2-IT outper-

27775



Model Size eng —+ X X — eng AVG
| amh hau swa yor zul Avg. amh hau swa yor zul Avg.

Encoder-Decoder ‘ \ ‘ ‘
MADLAD-400 3B 27518 40223 46.63.4 15.1g8 43.62.6 34.6 63.316 62520 74409 44216 66.615 622 484
Aya-101 13B l 28.716 48523 34.734 18713 54914 37.1 l 61.61.7 62318 71209 56.121 69.00.0 64.0 “ 50.6
Decoder-only ‘ ‘ f
Gemma2-IT 9B 6.50.6 37.03.4 52936 6.405 12.010 23.0 | 36.53.0 51.834 65.030 44.829 56.13.3 50.8 36.9
LLama3.1-IT 8B 7.50.5 14.01.2  43.239 6.40.7 8.70.6 16.0 | 23.823 49.341 62.833 31.739 34.037 40.3 28.1
LLaMAX3-Alp 8B 11.40.9 28.929 40432 9.20.8 23.61.8 22.7 | 29.2o1 41.738 55.449 23.530 40.547 38.1 30.4
GPT-3.5 - 11.60.5 23.120 76.10.6 10.10.9 29.2o1 30.0 | 41.62.3 52.71.5 77.706 51.7T16 61.11.1 56.9 || 43.5
GPT-40 - 29.61.7 63819 80206 29.601 69516 545 | 6951 693,7; 81005 738.0 7821 744 64.4
SFT on AFRIDOC-M

LLaMAX3-SFT 8B 24116 29.032 42242 33828 33.731 326 | 22.618 22926 33.144 27.236 3l.567 275 30.0
LLama3.1-SFT 8B 25.218 31940 50.264 33.828 38.641 35.9 | 24.237 24141 33.75.4 30247 29.362 28.3 32.1
LLaMAX3-SFTis 8B 37822 51950 74435 52233 55.055 54.2 | 64.03.4 66.728 77.80.7 T1.810 T4.log T70.9 || 62.6
LLama3.1-SFT1o 8B 27.62.4 49.752 64.156 50.328 47.048 47.8 | 63.811 61.735 74435 68934 Tl41o 68.0 | 579

Table 7: Performance results of various models on the pseudo-documents (k =10) translation task (Health domain),
measured using d-chrF. The best prompt was selected for each language after evaluating three different prompts.

Model Size eng — X X — eng AVG
| amh hau swa yor zul Avg. amh hau swa yor zul Avg.

Encoder-Decoder ‘ ‘ ‘ ‘
MADLAD-400 3B 29.521 38343 31.T46 15111 44136 31.8 62.620 63.522 66.432 45924 63422 60.3 46.0
Aya-101 13B [ 30.115 55.0s2 B51.735 22317 55.010 42.8 [ 62514 65.5 68.81.s 55.72a 68410 64.2 “ 53.5
Decoder-only I I i
Gemma2-IT 9B 6.20_7 42.13,9 51.0;,3 6.60_8 15.41,7 24.3 35-94.8 50.14,(, 57.73_7 48.23_4 51.73_7 48.7 36.5
LLama3.1-IT 8B 7.40_9 15.31_9 43.344 6.21_1 8.80_7 16.2 26,120 48.73_4 59.02_7 34.43_2 34.73_1 40.6 28.4
LLaMAX3-Alp 8B 11410 32544 38141 12.004 26122 24.0 | 29429 51443 62425 24.736 48853 43.3 337
GPT-3.5 - 13.511  29.725 72116 12712 35129 326 | 38540 56.31.5 73.514 53.006 61.273 56.5 44.6
GPT-40 - 31.319 65125 75116 28.118 707,55 54.0 | 68.61.1 71.6:.4 765, 70.1:, 76.5,1 72.7 63.3
SFT on AFRIDOC-M

LLaMAX3-SFT 8B 21.720 29932 37.03.4 30.527 31.735 30.2 | 24.206 27.642 32345 28533 29.854 28.5 29.3
LLama3.1-SFT 8B 21.020 30.832 40.041 33.43s5 29331 30.9 | 23.955 28943 36.958 32243 32352 30.8 30.9
LLaMAX3-SFT;¢ 8B 37.72.1 58.65.1 68.33.0 49.341 60.939 550 | 65414 68513 73112 67.712 71.612 69.3 62.1
LLama3.1-SFTio 8B 23.71.9 47.052 58.656 49.738 43.845 44.5 | 60.927 65425 T7l.1li2 66312 66.440 66.0 55.3

Table 8: Performance results of various models on the pseudo-documents (k¥ =10) translation task (Tech domain),
measured using d-chrF. The best prompt was selected for each language after evaluating three different prompts.

forms LLaMAX3-Alpaca especially when translat-
ing into English, which also differs from the trends
observed in the sentence-level setup.

LLMs trained on longer documents are bet-
ter for long document translation Both LLama
models trained via SFT on sentences (LLama3.1-
SFT, and LLaMAX3-SFT) show a decline in perfor-
mance in the pseudo-document setting compared
to sentence-level translation. However, the same
models trained via SFT on pseudo-documents with
k=10 demonstrate significant improvements on
pseudo-documents. Interestingly, the LLaMAX3-
SFT1¢ model performs consistently well, achieving
results comparable to its sentence-level counter-
part on sentence-level tasks, and also outperform-
ing LLama3.1-SFTj, particularly when translating
into African languages.

5.3 GPT-40 based evaluation

Table 9 presents average GPT-40 evaluations for
fluency and content errors (CE) of realigned out-
puts from sentence-level and pseudo-document-
level tasks (k=10) across four models in the
health domain. When translating into English,

pseudo-document outputs are generally rated as
more fluent and show fewer content errors, except
for LLaMAX3-SFT4, which, when evaluated on
pseudo-documents, shows lower fluency but still
fewer content errors—an outcome that is counter-
intuitive. However, when translating into African
languages, the results are less consistent. Notably,
GPT-3.5 achieves a fluency score of 4.9 for both
fine-tuned versions of LLaMAX3-SFT—a score no
model achieved when translating into English. Ad-
ditionally, Yorub4, a language that had some of the
lowest d-chrF scores across models, achieved flu-
ency scores of 4.0 and 4.2 with the two LLaMAX3-
SFT versions. These inconsistencies raise concerns
about GPT-40’s reliability. Consequently, we focus
on human evaluation going forward. Full GPT-40
results are provided in Appendix C.3.

5.4 Human evaluation

In Table 10 we report average direct assessment
(DA) scores (on a scale from 0 to 100) from three
annotators per language for the health domain,
when translating into four African languages. For
each language, we used 30 documents across mod-
els and both domains to compute inter-annotator
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Model Setup eng — X X — eng
amh hau swh yor zul avg amh hau swh yor zul avg
Fluency
Aya-101 Sent 2.8 29 1.3 1.2 2.7 2.2 3.0 2.9 33 2.3 2.9 29
Docl0 | 2.5 29 1.8 1.4 3.1 2.3 3.6 32 3.8 2.9 33 34
GPT-3.5 Sent 1.1 1.4 4.9 1.1 1.5 20 | 3.0 2.5 3.6 2.6 2.6 29
Docl0 1.0 1.1 4.9 1.0 1.3 1.9 4.2 4.1 4.7 39 4.0 4.2
LLaMAX3-SFT; Sent 35 32 3.6 4.0 33 35 3.5 2.9 39 32 3.6 34
Docl0 1.7 23 32 2.7 24 2.5 3.0 2.6 3.1 32 3.1 3.0
LLaMAX3-SFTio Docl0 | 2.6 39 4.4 4.2 3.6 3.8 4.1 4.2 4.6 4.4 44 43
Content Error
Aya-101 Sent 9.0 9.1 9.5 82 137 99 158 17.1 175 238 19.1 187
Docl0 8.9 8.3 8.2 6.7 161 9.6 126 146 141 187 157 15.1
GPT-3.5 Sent 72 113 42 7.8 209 103 | 95 132 124 129 159 128
Docl0 | 3.3 7.4 39 4.1 10.1 5.8 6.6 9.2 7.1 9.0 108 85
LLaMAX3-SFT; Sent 100 9.5 123 123 124 113 | 115 96 11.8 122 125 115
Docl0 | 104 838 9.5 8.1 8.4 9.0 9.0 9.0 8.9 9.1 8.6 8.9
LLaMAX3-SFTo Docl0 | 7.3 146 105 103 121 11.0 | 87 9.6 89 102 94 9.4

Table 9: Document-level evaluation in the health domain, judged by GPT-40. Compares sentence- vs. document-
level outputs on Fluency (1-5 scale) and Content Errors (CE).
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Figure 1: Rate of under-generation, over-generation, and off-target translation in pseudo-document translation

(k = 10).

agreement. We obtained Krippendorff’s alpha
values of > 0.40, which are relatively low due
to the fine granularity of the evaluation scale.
Human evaluation results align closely with
d-chrF, which favors sentence-level translations
over pseudo-document translations when translat-
ing into African languages. Among the models,
LLaMAX3-SFT; receives higher ratings at the
sentence-level but is rated lower when translating
pseudo-documents. In contrast, LLaMAX3-SFT1g
receives slightly lower ratings than LLaMAX3-
SFT; at the sentence-level but is rated higher in
the pseudo-document setting. GPT-3.5 is gener-
ally rated as the weakest model across languages,
except for Swahili, where its performance is com-
paratively better (see Appendix C.4 for details).

5.5 Qualitative evaluation

Our qualitative analysis, based on feedback from
native speakers who are also authors, indicates
that GPT-3.5 frequently over-generates in the

Model Setup amh hau swh yor zul
Sent | 146 296 665 75 92
GPT-3.5 Docl0 | 1.7 164 683 42 3.1
Sent | 645 815 579 651 48.1
LLaMAX3-SFTy 10 | 274 457 506 443 225
LLaMAX3-SFT1o Docl0 | 385 767 624 649 467

Table 10: Average DA score (scale 0-100) from the
human evaluators per language in the health domain.

pseudo-document setup by repeating words and
phrases—except in Swabhili, where it performs
best. However, for Yorub4, it often uses incon-
sistent or partial diacritics, resulting in inaccu-
racies. LLaMAX3-SFT; also exhibits repetition
in pseudo-document translations, likely due to a
length generalization problem (Anil et al., 2022),
and does so more than LLaMAX3-SFTq. For the
other four languages, LLaMAX3-SFT; with the
sentence-level setup was rated higher than other
models and configurations, owing to better context
preservation and fewer repetitions. These obser-
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Figure 2: Comparison of Average d-chrF scores across
models and pseudo-document lengths.

Health(X - En)
—— LLama3.1-SFT; —— GPT-3.5
LLama3.1-SFTs —— GPT-40
—— LLama3.1-S5FTyo N

vations are consistent with both d-chrF and DA
scores, although d-chrF scores tend to be inflated.

6 Discussion and Analysis

To better understand model behavior, we analyze
their pseudo-document (k = 10) translation out-
puts based on our findings and common issues in
document-level MT with LLMs (Wu et al., 2024,
Wang et al., 2024b). Additional results are provided
in Appendix D.

Are the outputs generated by translation mod-
els of appropriate length? We compare model
translations to the reference translations to iden-
tify empty outputs and cases of under- or over-
generation. We found that all models rarely gen-
erate empty translations (refer to Appendix D), al-
though GPT-3.5 and GPT-40 showed a slight ten-
dency to do so for Yorubd and Zulu, occurring
in under 10% of cases. To evaluate this we com-
pute the compute model output to reference trans-
lation length ratio across five models and for the
languages, for the evaluated models and took the
lowest 10th percentile, and this returns 73% and
upper percentile of 550%. However, we defined
under-generation as outputs <70% of reference
length, and over-generation as >143%. As shown
in Figures 1a and 1b and consistent with our qual-
itative findings, GPT-3.5 tends to over-generate
more in African languages except for Swahili,
while LLaMAX3-SFT; often under-generates as a
sentence-level model. Moreover, all models over-
generated by about 20% for Amharic, likely due to
its unique script.

Do LLMs generate translations in the correct
target languages? We evaluate whether these
models understand the task by generating outputs in
the target languages using the OpenLID (Burchell
et al., 2023) language identification model. Our re-
sults show that these models rarely generate outputs
in the wrong language when translating to English.
However, when translating to African languages,

there is a higher likelihood of incorrect language
translations, particularly with open models (see
Figures 1c and 1d). These off-target languages of-
ten include English, and other languages including
other African languages.

What is the effect of document length on trans-
lation quality? We compare average d-chrF
scores of selected models, including GPT-3.5/4 and
LLama3.1-SFT; (k =1, 5, 10), evaluated across
pseudo-document lengths of 1, 5, 10, 25, and full
length. As shown in Figure 2, d-chrF scores gen-
erally decline with increasing document length for
African language translations. The reverse transla-
tion direction shows a similar trend, except for GPT-
40, which improves with length. Models trained on
longer documents also generalize better to longer
inputs than those trained on sentences.

7 Conclusion

We introduce AFRIDOC-MT, a document-level
translation dataset in the health and tech domains
for five African languages. We benchmarked var-
ious models, fine-tuning selected ones. Due to
context length limits, documents were translated ei-
ther sentence by sentence or as pseudo-documents.
Outputs were evaluated using standard MT met-
rics, GPT-40 as a judge, and human direct as-
sessment. NLLB-200 was the strongest built-in
MT model, while GPT-40 outperformed general-
purpose LLMs. However, our DA and qualitative
analysis found GPT-40’s judgments inconsistent for
African languages, and sentence-by-sentence trans-
lation proved more effective for some languages.

8 Limitations

Choice of LLMs and Prompts We evaluated
only a small subset of the numerous multilingual
LLMs available. Our experiments were also limited
by the context length of the LLMs, particularly for
open LLMs. Except for LLama3.1, all other open
LLMs have a context length of 8192 tokens, while
encoder-decoder models were primarily based on
T5. This makes it difficult to use the context length
beyond a certain limit, making full document trans-
lation infeasible. Additionally, LLLMs are prone to
variance in performance based on the prompt. We
therefore evaluated them for translation using three
different prompts. However, it is possible that our
prompts were not optimal.
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Language Coverage Africa is home to thou-
sands of indigenous languages, many of which ex-
hibit unique linguistic properties. However, due to
the high cost of translation using human translators
and limited available funding, it is currently impos-
sible to cover all languages. As a result, we focused
on just five languages. We hope that future work
will expand this dataset to include more languages
and inspire the creation of additional datasets with
broader coverage for document-level translation.
Similarly, AFRIDOC-MT is a multi-way paral-
lel dataset. However, due to the cost of running
inference over three prompts and across all 30
translation directions for all the models evaluated,
most of our analysis is limited to translation tasks
between English and the five African languages.
While we fine-tuned NLLB-200, LLama3.1 and
LLaMAX3 on all 30 directions, we only provide
results from NLLB-200 for all directions both be-
fore and after fine-tuning for sentence-level and
pseudo-document tasks in the Appendix D.

Evaluation Metrics Quality evaluation in MT is
an open and ongoing area of research, especially
for document-level translation. Recent works have
proposed embedding-based metrics for evaluation
at both the sentence and document levels. While
this has been well explored for high-resource lan-
guage pairs, it remains underexplored for African
languages, although there is a tool, AfriCOMET,
that works for sentence-level evaluation in African
languages. However, we evaluated the document-
level translation outputs using ModernBERT-base-
long-context-ge-vI'!, trained on the WMT human
evaluation dataset across 41 language pairs, in-
cluding over 20 languages and three African lan-
guages (Hausa, Xhosa, and Zulu), two of which
are included to our work. However, the scores
were nearly identical across all models, offering
no meaningful differentiation. Hence, for our
document-level evaluation, in addition to lexical-
based metrics, we incorporated three other evalua-
tion approaches: using GPT-4o0 as a judge, human
evaluation, and qualitative analysis. GPT-40 was
employed to assess and rate the translation out-
puts of four models. While its ratings were consis-
tent for translations into English, the same was not
observed for translations into African languages,
likely due to the model’s limited understanding of
these languages. Therefore, we conducted a hu-

11https://huggingface.co/ymoslem/
ModernBERT-base-long-context-qge-vi

man evaluation for translations from English to
African languages, comparing only three models
due to cost constraints. However, we were unable
to recruit annotators for Zulu.

Model Coverage and Evaluation Focus While
we fine-tuned both NLLB-1.3B and LLaMAX3
models across all 30 language directions, due to
computational constraints and the high cost of qual-
itative evaluation, our detailed analysis focuses
only on translation between English and the 5
African languages. Nevertheless, we report quan-
titative results across all 30 directions for NLLB-
1.3B. We will make all fine-tuned models publicly
available to support future work, and we hope that
further research will explore the remaining transla-
tion directions in greater depth.

Translationese and English-Centric Bias A po-
tential limitation of our dataset is the influence of
translationese (Koppel and Ordan, 2011). Since
all source material translated originates in English,
translated sentences in African languages may ex-
hibit patterns such as unnatural syntax or overly
literal phrasing. Although we have not conducted
an analysis to quantify these effects, prior work sug-
gests that they can affect MT model performance,
generalization and evaluation including direct as-
sessment (Freitag et al., 2019; Edunov et al., 2020).
Furthermore, AFRIDOC-MT may reflect a bias to-
ward English in terms of structure, semantics, and
cultural framing. We leave a deeper investigation
of these issues to future work.

Ethics Statement

AFRIDOC-MT was created with the utmost con-
sideration for ethical standards. The English texts
translated were sourced from publicly available
and ethically sourced materials. The data sources
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spectives, with a focus on minimizing any potential
bias. Efforts were made to ensure the dataset does
not include harmful, biased, or offensive content
via manual inspection.
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A More details about AFRIDOC-MT

A.1 Translation guidelines

The translation guidelines, aside the details shared
at the workshop on translation and terminology
creation can be found below.

* Thank you for agreeing to work on this project.
Below is the link to access the data for transla-
tion. The files are in .csv format, and you can
open them using Google Sheets or Microsoft
Excel (for offline work).

* Each file contains 2500 sentences, and they
are named in the format of a serial number
followed by your first name.

* Please do not delete double empty rows, as
they serve to separate paragraphs. Also, avoid
deleting any rows, columns, or provided text.

* Use the language field to input the transla-
tions. It is essential not to rely on translation
engines, as our quality assurance process can
detect this. Depending on such tools may re-
sult in potential issues that you would need to
address, leading to additional work on your
part.

* We will provide a list of extracted terminolo-
gies soon so that you can harmonize how ter-
minologies are translated.

* Thank you for your attention to these guide-
lines. Should you have any questions, con-
cerns, or suggestions, feel free to contact us
or reach out to your language coordinator.
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Figure 3: Distribution of the quality estimation of of the translated sentences using COMET scores for the health

(top), tech (bottom).

A.2 Creation of pseudo-documents for
AFRIDOC-MT

Given that the translated documents vary in length
in terms of sentences and tokens, and consider-
ing the maximum token length limitations of the
different LLMs used, we adopted a chunking ap-
proach for document-level evaluation. In this
approach, documents were divided into smaller
pseudo-documents that fit within the maximum
length constraints of the models. To establish an
appropriate chunk size, each document was divided
into fixed-size chunks of k sentences, with the pos-
sibility that the final chunk may contain fewer than
k sentences. These sentence groups, referred to as
pseudo-documents, were used for document-level
translation.

We conducted an initial analysis, testing differ-
ent values for £ (5, 10, and 25), with k=1 serving
as our sentence-level setup. Table 11 presents the
resulting number of parallel pseudo-documents, as
well as the average number of tokens per pseudo-
document per language for the various model tok-
enizers, including the 95th percentile token count.
Our analysis revealed that Amharic and Yorubd
—languages with unique characteristics such as
non-Latin scripts and diacritics, respectively—had
the largest average token counts across the tok-
enizers. Additionally, the domain with the highest
number of average tokens for pseudo-document
varies from language to language.

To accommodate both languages in our exper-
iments, we chose pseudo-documents with k=10.
However, for the SFT models described in Ap-
pendix B.2, we used both k=5 and k=10.

B Experimental details

B.1 Evaluated Models
B.1.1 Translation Models

M2M-100 (Fan et al., 2020) is a transformer-based
multilingual neural translation model from Meta,
trained to translate between 100 languages, includ-
ing several African languages. It has three variants
of different sizes: 400M parameters, 1.2B parame-
ters, and 12B parameters. For our experiments, we
evaluated the 400M and 1.2B variants.

NLLB (NLLB Team et al., 2024) is a model sim-
ilar to M2M-100, with broader coverage, trained
to translate between just over 200 languages, in-
cluding more than 50 African languages. It also
has different sizes: 600M, 1.3B, 3.3B, and 54B
parameters. For this work, we evaluated the first
three variants.

MADLAD-400 (Kudugunta et al., 2023) is a
multilingual translation model based on the TS5 ar-
chitecture (Raffel et al., 2020), covering 450 lan-
guages, including many African languages. It was
trained on data collected from the Common Crawl
dataset. The dataset underwent a thorough self-
audit to filter out noisy content and ensure its qual-
ity for training MT models.

Toucan (Elmadany et al., 2024; Adebara et al.,
2024) is another multilingual but Afro-centric trans-
lation model based on the T5 architecture, covering
150 language pairs of African languages. It was
first pre-trained on large multilingual texts covering
over 500 African languages and then finetuned on
translation task covering over 100 language pairs.
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Languages/Split Models Full 25 sent. 10 sent. 5 sent.
Health Tech Health Tech Health Tech Health Tech
Sizes of data splits in AFRIDOC-MT pseudo-document
Train : 187 402 369 812 789 1506 1483
Dev 33 25 56 48 112 106 209 204
Test 61 59 | 108 106 | 224 227 417 418
Statistics of LLM tokens in AFRIDOC-MT pseudo-document training splits
NLLB-200 923.7/2017.6 941.9/1982.1 551.5/951.7 477.4/758.8 273.0/430.9 223.2/343.6 147.2/233.8 118.8/184.9
MADLAD-400 971.0/2095.2 991.4/2100.1 579.7/1017.1 502.4/797.8 287.0/449.3 235.0/362.0 154.7/245.0 125.0/196.9
en Aya-101 1008.2/2183.5 1020.5/2184.3 601.9/1038.0 517.2/820.2 241.9/372.6 160.7/255.0 128.7/199.0
LLama3 801.4/1788.0 842.5/1798.4 478.5/833.8 427.0/664.0 199.7/304.2 127.8/203.0 106.3/166.0
Gemma-2 802.9/1820.1 857.9/1857.6 479.3/841.0 434.8/689.6 203.4/314.0 128.0/205.0 108.2/169.0
ModernBERT 801.0/1800.7 862.7/1819.3 478.3/837.8 437.3/685.6 204.5/311.0 127.8/204.0 108.9/171.0
NLLB-200 1304.4/2785.8 1376.3/2888.7 778.8/1329.9 697.5/1130.8 385.6/592.0 326.2/520.0 207.9/328.0 173.5/282.9
MADLAD-400 | 1624.8/3393.6 1685.0/3487.4 970.0/1684.2 853.9/1380.4 480.2/750.0 399.4/640.2 258.9/413.8 212.5/342.9
am Aya-101 1887.4/3937.9 1934.7/4126.9 | 1126.8/1931.8  980.5/1598.0 557.9/855.4 458.5/722.0 300.8/477.8 244.0/390.0
LLama3 6798.0/13986.2  6829.6/14750.9 | 4058.5/6971.8  3461.1/5584.8 | 2009.3/3084.4 1618.7/2560.8 | 1083.3/1716.0 861.2/1379.9
Gemma-2 2817.9/5857.5 2868.4/6227.4 | 1682.1/2896.4  1453.2/2342.4 | 832.4/1267.8  679.3/1071.6 448.5/710.0 361.0/575.0
ModernBERT 7347.8/15045.1  7386.4/15952.3 | 4386.4/7544.1 3742.8/6035.8 | 2171.1/3331.2  1749.9/2760.4 | 1170.2/1851.0 930.6/1485.9
NLLB-200 1204.4/2713.7 1171.4/2463.0 719.0/1252.8 593.6/962.6 356.0/554.0 277.6/430.6 191.9/306.8 147.7/232.0
MADLAD-400 | 1297.1/2849.4 1260.5/2643.7 774.4/1359.7  638.8/1042.0 383.4/606.4 298.8/465.6 206.7/329.0 158.9/251.0
ha Aya-101 1614.9/3497.4 1535.3/3241.9 964.1/1672.3 778.0/1254.6 477.3/742.6 363.9/563.2 257.4/410.8 193.6/306.0
LLama3 1916.7/4012.9 1822.6/3917.9 | 1144.3/1988.8  923.7/1513.6 566.6/882.4 432.1/674.6 305.5/488.8 230.0/365.9
Gemma-2 1642.4/3568.9 1581.3/3373.4 980.6/1716.7  801.4/1297.8 485.5/757.4 374.8/584.0 261.8/417.8 199.4/317.8
ModernBERT 1998.5/4207.5 1916.8/4139.7 | 1193.1/2057.8  971.5/1575.8 590.8/916.9 454.4/701.0 318.6/510.8 241.8/382.9
NLLB-200 1100.8/2494.8 1094.8/2187.5 657.2/1145.9 554.8/896.4 325.4/517.0 259.5/409.6 175.4/280.0 138.1/218.0
MADLAD-400 | 1177.3/2629.9 1155.3/2293.9 702.8/1227.6 585.5/938.6 348.0/547.0 273.8/436.0 187.6/297.0 145.7/231.9
sw Aya-101 1345.3/2925.0 1311.0/2667.8 803.2/1390.9 664.4/1076.2 397.6/627.9 310.7/487.4 214.4/339.0 165.3/261.0
LLama3 1668.1/3605.0 1619.4/3364.9 995.9/1735.4  820.7/1330.0 493.1/771.4 383.9/599.8 266.0/418.0 204.3/323.0
Gemma-2 1413.3/3097.3 1377.1/2770.0 843.8/1467.7  697.9/1126.2 417.8/658.9 326.4/513.0 225.3/356.8 173.7/1277.9
ModernBERT 1757.9/3753.4 1719.7/3594.1 | 1049.5/1822.8  871.6/1421.0 519.7/810.0 407.7/632.0 280.2/441.0 217.0/342.8
NLLB-200 1702.6/3854.7 1724.8/3577.1 | 1016.5/1857.2  874.1/1428.6 503.2/814.7 408.8/644.6 271.3/443.8 217.5/348.9
MADLAD-400 | 1983.6/4470.9 1990.4/4136.7 | 1184.3/2137.5 1008.7/1650.2 586.3/939.4 A71.7/742.2 316.1/512.0 251.0/401.9
yo Aya-101 2729.2/5832.3 2659.8/5549.7 | 1629.4/2956.4 1347.9/2211.6 | 806.7/1292.4 630.4/988.0 434.9/704.0 335.4/544.0
LLama3 2945.8/6322.4 2880.0/5995.5 | 1758.6/3203.9  1459.4/2400.4 | 870.5/1406.0 682.5/1077.6 469.3/767.8 363.0/585.9
Gemma-2 2620.4/5745.5 2593.5/5406.9 | 1564.3/2867.7 1314.3/2143.8 | T774.4/1245.4 614.6/965.6 417.4/678.0 327.0/530.0
ModernBERT 3648.3/7780.9  3595.2/7600.6 | 2178.1/4002.0 1822.0/3020.4 | 1078.3/1761.4  852.1/1339.8 581.4/957.2 453.3/733.9
NLLB-200 1201.8/2513.3 1230.4/2555.7 717.5/1233.0 623.5/1016.6 355.2/554.3 291.6/461.2 191.5/300.0 155.1/250.0
MADLAD-400 | 1215.2/2524.0 1230.7/2519.6 725.5/1284.8 623.7/1007.2 359.2/557.8 291.7/465.6 193.7/305.5 155.2/251.0
zu Aya-101 1491.3/3012.2 1485.2/3180.8 890.3/1521.8 752.7/1213.0 440.8/688.9 352.0/554.4 237.7/372.8 187.3/298.9
LLama3 1921.7/3822.6 1834.3/3933.4 | 1147.3/1963.9  929.7/1512.4 568.1/885.4 434.9/689.2 306.4/475.8 231.5/373.0
Gemma-2 1787.5/3573.5 1703.0/3666.1 | 1067.2/1834.8  863.0/1416.2 528.3/819.4 403.6/637.6 284.9/447.8 214.8/343.9
MordernBERT 2073.7/4134.2 1965.8/4239.3 | 1238.1/2138.4  996.3/1625.6 613.0/956.3 466.1/737.0 330.6/515.8 248.0/399.0

Table 11: AFRIDOC-MT Pseudo-document statistics. The number of translation instances in the data AFRIDOC-MT
pseudo-document splits. average and 95th percentile (average/95 percentile) of the AFRIDOC-MT document train
split tokenization statistics using the different LLM tokenizers.

B.1.2 Large Language Models

Aya-101  (Ustiin et al., 2024) is an instruction-
tuned mT5 model (Xue et al., 2021) designed to
handle both discriminative and generative multi-
lingual tasks. With 13B parameters, it covers 100
languages and is capable of translating between
a wide range of languages, including African lan-
guages.

Gemma2 (Gemma Team et al., 2024) is a
decoder-only LLM trained on billions of tokens
sourced from the web. The training data primar-
ily consists of English-language text, but it also
includes code and mathematical content. While
Gemma?2 has an English-centric focus, it also pos-
sesses multilingual capabilities. We evaluate the
base Gemma?2 model with 9B parameters, as well
as its instruction-tuned version.

LLama3.1 (Dubey et al., 2024) is another
decoder-only LLM trained on trillions of tokens
across multiple languages. It was fine-tuned using
existing instruction datasets as well as synthetically
generated instruction data to create its instruction-
tuned version. One advantage LLama3.1 has over

other models is its context window of 128K tokens,
the largest among all models considered in this
work, making it particularly suitable for document-
based tasks such as document-level translation. We
evaluate the base LLama3.1 model with 8B param-
eters, as well as its instruction-tuned version.

LLaMAX3 (Lu et al., 2024) is a multilingual
LLM built on the LLama3 with 8B parameters
as its base. It was trained on 102 languages, in-
cluding several African languages, through con-
tinued pretraining. Using an English instruction
dataset (Alpaca), it was further fine-tuned to create
LLaMAX3-Alpaca. We evaluated both models and
compared their performance across various tasks.

B.2 Supervised Finetuning

We perform supervised fine-tuning to tailor LLMs
for translation tasks. To train sentence-level
MT systems, we use all parallel sentences from
AFRIDOC-MT to construct the training set, en-
abling the LLMs to translate across multiple direc-
tions and domains. Following Zhu et al. (2024b),
we augment the parallel data with translation in-
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structions, which are randomly sampled from a pre-
defined set of 31 MT instructions for each training
example.'? To train document-level MT system:s,
we follow the same process, but train on longer
segments formed by concatenating multiple sen-
tences. When fine-tuning, we use a learning rate of
5¢~% and an effective batch size of 64. Models are
trained for only one epoch, as further training does
not result in improvements and may even lead to
performance degradation.

Similarly, we fine-tuned the 1.3B version of
NLLB-200 for sentence and pseudo-document
(with 10 sentences) translation using the
Fairseq (Ott et al., 2019) codebase. We used all
the training examples from 30 language directions
across both domains. The model was fine-tuned
for 50k steps using a learning rate of 5e >, token
batch size of 2048 and a gradient accumulation of
2. The checkpoint with the lowest validation loss
was selected as the best model for evaluation.

B.3 Evaluation setup

The models were evaluated using different tools.
For example, both the NLLB-200 and M2M-100
models were evaluated with the Fairseq codebase,
while Toucan and MADLAD-400 were evaluated
using the Hugging Face (HF) codebase. All other
LLMs, including LLama3.1 (both instruction-tuned
and SFT models), Gemma, and Aya-101, were eval-
vated using EleutherAl LM Evaluation Harness
(Im-eval) tool (Biderman et al., 2024). In all cases,
greedy decoding was used.

The models evaluated have different context
lengths. For encoder-decoder models, M2M-100
and NLLB have a maximum sequence length
of 1024 and 512 respectively. Aya-101 and
MADALAD, based on the T5 architecture, do not
have a pre-specified maximum sequence length, so
we fixed their maximum sequence length to 1024
for all experiments involving encoder-decoder mod-
els. However, for decoder-only models, Gemma
and LLaMAX3 (based on LLama3) have a max-
imum sequence length of 8192, while LLama3.1
has a maximum sequence length of 128K. Since
all the decoder-only models were evaluated using
LM Evaluation Harness, we used a similar setup
for them, selecting the maximum length based on
the specific needs of each model.

Table 12 shows the maximum number of gen-

12We use the same instruction set as described in (Zhu et al.,
2024b).

Setting X — eng eng — X
Sentence

sentence 512 512
Document

5 4096 4096

10 4096 4096

25 1024 8192 (11264)
Full 2048 16384 (32768)

Table 12: The maximum number of tokens set for
decoder-only LLMs when translating between English
and African languages, and vice versa. Special cases
for Amharic are indicated in brackets.

eration tokens we set when translating between
English and African languages. These numbers
were chosen based on the statistics from Table 11.
However, for Amharic, when translating pseudo-
documents with 25 sentences and full documents,
there were instances exceeding the 95th percentile
derived from the training statistics. Therefore, we
increased the token limit specifically for Ambharic.

B.4 Evaluation prompts

While the translation models we evaluated do not
require prompts, MADLAD-400, requires a prefix
of the form <2xx> token, which is prepended to
the source sentence. Here, xx indicates the target
language using its language code (e.g., “sw” for
Swahili). Similarly, Toucan uses just the target lan-
guage 1SO-693 code as prefix, which is prepended
to the source sentence (e.g., “swa” for Swahili). For
other models, including Aya-101, we used three dif-
ferent prompts for sentence-level translation and
document translation experiments. The main dif-
ference between the prompts for these tasks is the
explicit mention of “text” or “document” within
the prompt, as shown in Table 23. For the base
models Gemma2, Llama3.1, LLaMAX3, and Aya-
101, we prompted them directly using the respec-
tive prompts. However, for the instruction-tuned
versions of Gemma2 and Llama3.1, we used their
respective chat templates. For all Alpaca-based
models, including our SFT models, we used the
Alpaca template.

B.5 Evaluation metrics

We evaluate translation quality with BLEU (Pap-
ineni et al., 2002) and ChrF (Popovi¢, 2015) using
SacreBLEU!? (Post, 2018). We run significance
tests using bootstrap resampling and report the 95%

13case:mixedleﬁc:nol tok:13a|smooth:exp|v:2.3.1,
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confidence interval for the scores, based on a sam-
ple size of 1000. We also use AfriCOMET!# (Wang
et al., 2024a) to evaluate the quality of the trans-
lation outputs. We report the chrF scores of the
best prompt for each model and language direction
in the main paper, with all additional results pro-
vided in the Appendix C. For document-level ex-
periments, we evaluated the LLMs using the same
three prompts as in the sentence-level experiment.
For evaluation, we used BLEU and chrF scores but
excluded AfriCOMET due to its backbone model,
AfroXLM-R-L (Alabi et al., 2022; Adelani et al.,
2024a), having a context length of 512 tokens. This
made it impractical to compute COMET scores for
document-level outputs.

B.6 GPT-40 as an evaluator for machine
translation

We use GPT-4o to assess the quality of transla-
tion output, as demonstrated by Sun et al. (2025),
which shows a correlation with human judgment.
Due to the cost of this task, we limited our evalua-
tion to a few selected models, including Aya-101,
GPT-3.5, GPT-40, and LLaMAX3 fine-tuned on
AFRIDOC-MT sentences and pseudo-documents
of 10 sentences. We compared translations per-
formed at the sentence-level and pseudo-document
level in terms of fluency, content errors, and cohe-
sion errors—specifically lexical (LE) and grammat-
ical (GE) errors—using the same definitions as Sun
et al. (2025).

Below are the prompts used to evaluate docu-
ments using GPT-4o0 for fluency, content errors,
and cohesion errors—specifically lexical (LE) and
grammatical (GE) errors.

* Fluency: GPT-4o0 is prompted to rate the flu-
ency of a document on a scale from 1 to 5,
where 5 indicates high fluency and 1 repre-
sents low fluency. This evaluation is con-
ducted without providing any reference doc-
ument. For the final fluency score, we report
the average rating across all documents. Be-
low we provide the prompt used.

- x*Task*x: Evaluate the fluency of
the text.

- Scoring: Provide a score from 1 to
5, where:

- *x5%x%: The text is *xhighly
fluentx*, with no grammatical
errors, unnatural wording, or
stiff syntax.

- x*%4*x%x: The text is #**mostly
fluent**, with minor errors
that do not impede
understanding.

- *x3*%%x: The text is x*moderately
fluent*x*, with noticeable
errors that may slightly
affect comprehension.

- x*%2*x%: The text has #*xlow
fluencyx*, with frequent
errors that hinder
understanding.

- *x1*x%x: The text is x*not fluent
*%x, with severe errors that
make it difficult to
understand.

- **xExplanationx*: Support your
score with specific examples to
justify your evaluation.

### *xQutput Format:*x

Provide your evaluation in the
following JSON format:

I

{
"Fluency": {
"Score": "<the score>",
"Explanation": "<your
explanation on how you made
the decision>"
3
}

*xText to Evaluate:*x
<<hypothesis>>

Answer :

Please evaluate the fluency of the
following text in <<target>>.

### xxInstructions:xx*

“https://huggingface.co/masakhane/
africomet-stl-1.1

27791

* Accuracy: GPT-4 is prompted to identify and

list the mistakes, such as incorrect translations,
omissions, additions, and any other errors, by
comparing the model’s output to the reference
translation. After identifying these errors, we
count all of them and compute the average
across all documents, reporting that as the
content error (CE). Below is the prompt used.

Please evaluate the accuracy of the
following translated text in <<



https://huggingface.co/masakhane/africomet-stl-1.1
https://huggingface.co/masakhane/africomet-stl-1.1

target>> by comparing it to the
provided reference text.

### xxInstructions:xx*

- x*Task**: Compare the text to the
reference text.

- Identify Mistakes: List all
mistakes related to accuracy.

- Mistake Types:

- x*Wrong Translationxx*:
Incorrect meaning or
misinterpretation leading to

wrong information.

- x*0Omissionx*: Missing words,

phrases, or information
present in the reference
text.

- x*xAdditionx*: Extra words,
phrases, or information not

present in the reference
text.

- *x0thers#*x: Mistakes that are
hard to define or categorize

- xxNote*x: If the text expresses
the same information as the
reference text but uses
different words or phrasing, it
is **notx* considered a mistake.

- *x*xProvide a List**: Summarize all
mistakes without repeating the
exact sentences. Provide an
empty list if there are no
mistakes.

### xxOutput Format:xx

Provide your evaluation in the
following JSON format:

"Accuracy": {
"Mistakes": [

"<list of all mistakes in the
text with format’Mistake
Types: summarize the
mistake’, provide an empty

list if there are no

mistakes>"

*xReference Text:*x

<<reference>>
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*xText to Evaluate:x*

<<hypothesis>>

Cohesion: GPT-4 is prompted to rate
cohesion-related mistakes, including lexical
and grammatical errors, in the model’s output,
comparing it to the reference translation. We
count each error individually, compute the av-
erage across the documents, and report them
as lexical errors (LE) and grammatical rrrors
(GE). Below is the prompt template we used.

Please evaluate the cohesion of the
following translated text in
<<target>> by comparing it to
the provided reference text.

### *xInstructions:**

- *xTaskx*: Evaluate the cohesion of
the text.

- *xDefinition**: Cohesion refers to
how different parts of a text
are connected using language
structures like grammar and
vocabulary. It ensures that
sentences flow smoothly and the
text makes sense as a whole.

- Identify Mistakes: List all
mistakes related to cohesion.
- Separate the mistakes into:
- *xLexical Cohesion Mistakes#*x*:
Issues with vocabulary
usage, incorrect or missing
synonyms, or overuse of
certain words that disrupt
the flow.

- *xGrammatical Cohesion
Mistakesx*: Problems with
pronouns, conjunctions, or
grammatical structures that
link sentences and clauses.

- **Provide Lists*x: Provide
separate lists for lexical
cohesion mistakes and
grammatical cohesion mistakes.
Provide empty lists if there are

no mistakes.

### *xQutput Format:*x

Provide your evaluation in the
following JSON format:




"Cohesion": {
"Lexical Cohesion Mistakes": [
"<list of all mistakes in the
text one by one, provide
an empty list if there are
no mistakes>"

]7

"Grammatical Cohesion Mistakes":
L

"<list of all mistakes in the
text one by one, provide
an empty list if there are
no mistakes>"
]

*xReference Text:x*xx
<<reference>>
**xText to Evaluate:xx*

<<hypothesis>>

Fluency can only have values between 1 and 5.
However, the other metrics, including CE, GE, and
LE, do not have a specific range and can take on
any value because they are counts. Refer to (Sun
et al., 2025) for more details about these metrics.

B.7 Human Evaluation Setup

Beyond using GPT-40 as a judge, we also conduct
human evaluation on a subset of outputs from GPT-
3.5, LLaMAX3-SFTq, and LLaMAX3-SFT;q for
two domains, focusing specifically on translation
into five African languages due to cost constraints.
Translation into English was excluded, as existing
automatic metrics, including GPT-based evalua-
tions, are already reliable for this direction.

For the human evaluation, three native speak-
ers of the African languages—primarily translators
involved in the dataset creation—were recruited.
Each annotator was assigned 80 documents to eval-
uate, tasked with marking as many error spans as
possible and rating the overall quality on a scale
from O to 100. This annotation followed the error
span annotation (ESA) (Kocmi et al., 2024) proto-
col as implemented within the Appraise Evaluation
Framework (Federmann, 2018). To assess consis-
tency and inter-annotator agreement, 30 of the 80
documents were shared among all three annota-
tors. Table 13 shows statistics for 80 documents
sampled from the models in both domains for each
annotator. Each annotator was remunerated with

Full Shared

Model Setup
health tech health tech
Sent. 5 5 - 5
GPT-3.5 Pseudo. 5 5 - 5
Sent. 5 5 5 -
LLaMAX3-SFT, Pseudo. 5 5 5 ]
LLaMAX3-SFT1o Pseudo 5 5 5 5
Total 25 25 15 15

Table 13: The number of documents annotated by each
annotator for human direct assessment.
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Figure 4: Rate of off-target translation (k =10).

$55.15

B.8 Qualitative Analysis

Alongside the human direct assessment of the trans-
lation outputs, we shared a subset of the outputs
with one author per language, each a native speaker.
They were tasked with analyzing the outputs to an-
swer two key questions: (1) What common errors
or flaws do the models exhibit across different se-
tups? and (2) How fluent are the translation outputs
produced by the models across the various settings?
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Figure 5: Word repetition rate in the pseudo-document
translation (k =10).

C More experimental results

C.1 Sentence-level evaluation

Given that AFRIDOC-MT is a document-level
translation dataset, and due to the limited context
length of most translation models and LLMs, which
makes it impossible to translate a full document at
once, we opted to translate the sentences within
the documents and then merge them back to form
the complete document. This also serves as a base-
line for document-level translation. In the main
paper, we present the results for the best prompt

15 Annotation protocol.
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for each language pair and model using d-chrF. In
this section, we also provide the full results on the
merged documents using d-chrF and d-BLEU in
Tables 15 and 16. Furthermore, we present results
for evaluating just the sentences (without merging
them back into documents) using s-BLEU, s-chrF,
and s-COMET in Tables 17 and 18. In Figures 16
to 19, we provide plots that summarize some of the
results in the table for a few models. Although the
main findings are summarized in the main draft,
below are some other points we identify.

M2M-100 is not competitive Neither version
of M2M-100, which was once a state-of-the-art
translation model, is competitive with other trans-
lation models such as Toucan, NLLB-200, and
MADLAD-400, even when compared to models of
similar sizes, across all metrics at both the sentence
and document levels.

Base LLMs are not translators for African lan-
guages. Base LLMs without instruction tuning
and supervised fine-tuning, such as Gemma?2 and
LLaMAX3, do not show competitive translation
performance either. This can be explained by the
fact that they are just language models with limited
coverage of African languages. However, LLa-
MAX3, which was trained on more than 100 lan-
guages, including African languages, through con-
tinued pre-training, shows improved performance,
surpassing LLama3.1-IT.

Ambharic and Yoruba are the worst perform-
ing language directions. When translating from
English into African languages, our results show
that both Amharic and Yoruba perform the least
effectively. This may be attributed to specific prop-
erties of these languages, such as the use of non-
Latin script in Amharic and the use of diacritics
in Yoruba, which in turn increase the tokenization
rate of these languages by the different model tok-
enizers.

C.2 Document-level evaluation

For document-level evaluation, we split the doc-
uments into chunks of 10 sentences and translate
these chunks using the different models. In Ta-
bles 19 and 20 we provide the full results on the
merged pseudo-documents using d-chrF and d-
BLEU. And below are some other relevant points
from the results. It is important to note that we
also trained and evaluated NLLB-200 for pseudo-
document translation. However, due to its 512-
token maximum sequence length, it is not com-
petitive. Nevertheless, the results still show the
influence of fine-tuning. Below are other findings.

Gemma2-IT shows better translation per-
formance. Compared to the sentence-level
setup, where Gemma?2-IT and LLaMAX3-Alpaca
achieved similar performance on average, in the
pseudo-document setup, Gemma2-IT not only out-
performs LLaMAX3-Alpaca but also surpasses
GPT-3.5. Although we cannot provide an exact
explanation for this performance, we hypothesize
that its pre-training setup might be a contributing
factor.

Fine-tuning data has an impact on translation
quality. Our results show that both LLama3.1
and LLaMAX3 models, when fine-tuned on sen-
tences, performed significantly worse on pseudo-
document evaluations compared to the same mod-
els fine-tuned on pseudo-documents for both do-
mains. All these models were trained using a sim-
ilar setup, with the primary difference being the
data used for fine-tuning.

Language-specific performance trends Over-
all, no clear trend is observed in MT performance
across language family classes. However, Amharic
(anon-Latin script language) and Yorub4 (a heavily
diacriticitized language) result in the lowest chrF
scores, while Swahili—the most widely spoken
indigenous African language—performs best.

C.3 Findings from GPT-40 as a judge

In Tables 21 and 22 we present the average GPT-40
evaluation results for four models. When translat-
ing into African languages, there is no clear pattern:
for example, GPT-3.5, despite having the lowest
fluency score, also had the fewest content, lexical,
and grammatical errors, which is counterintuitive.
In contrast, when translating into English, the pat-
tern is clear and consistent: translations of pseudo-
documents show better fluency and fewer errors
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amh  hau  swa  yor zul amh  hau  swa -yor zul
Languages Languages
Model Setup amh hau swh yor zul
Sent 183 421 641 126 89
GPT-3.5 Docl0 | 48 323 585 69 17.5
Sent 58.1 860 62.1 66.1 52.0
LLaMAX3-SFTL  poero | 190 545 387 401 216

LLaMAX3-SFT1p Docl0 | 543 837 61.7 623 37.1

Table 14: Average DA score (scale 0—100) from three
human evaluators per language in the tech domain.

overall. These results suggest that using GPT-40
as a translation judge is not yet well-suited for low-
resource languages.

C.4 Findings from human evaluation

We were able to obtain DA scores from three anno-
tators for all the languages. For each language, we
calculated inter-annotator agreement using Krip-
pendorff’s alpha o over 30 document instances.
We obtained « scores of 0.46, 0.57, 0.40, and 0.81,
and 0.54 for Amharic, Hausa, Swahili, Yoruba, and
Zulu respectively. These are relatively low scores,
except for Yorubd. We present the average DA
scores in Tables 10 and 14 for the health and tech
domains, respectively. The results show that an-
notators rate documents translated at the sentence-
level as higher quality than those translated at the
pseudo-document level. Additionally, GPT-3.5 re-
ceived the lowest ratings among the three mod-
els. LLaMAX3-SFT;, a model trained on sentence-
level data, was rated the best across all languages
when evaluated on sentences. However, when eval-
uated on pseudo-documents, its performance was
rated lower than that of LLaMAX3-SFT;g. These
findings are consistent with the d-chrF scores for
the models, but they do not align with the evalua-
tions from GPT-4o as a judge.

D More discussion and analysis

What language benefits more from supervised
finetuning? We focus on the sentence-level task
and translated across all 30 directions for which
the model was trained, evaluating both NLLB-200
(1.3B) and its fine-tuned version using d-chrF. Fig-
ures 13 and 14 show performance improvements
after supervised fine-tuning of NLLB-200 for both
domains. The results shows that translating into
Yorubd, which is the direction with the lowest d-
chrF score from English among all the languages,
benefited the most. One major factor contribut-
ing to this is the presence of diacritics. Further-
more, looking at their actual performances and not
just the differences, our results show that trans-
lations into Swahili and English—both relatively
high-resource languages—yield higher BLEU and
chrF scores (see Figures 11 and 12), even after su-
pervised finetuning. Hence, there is much to be
done to improve translation performance between
low-resource language pairs.
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Model Size eng — X X —eng AVG
amh hau swa yor zul amh hau swa yor zul
BLEU
Encoder-Decoder
M2M-100 0.4B 0.8 0.9 25.6 0.6 3.2 | 6.7 5.8 32.6 II 9.2
M2M-100 1.2B 2.4 8.9 37.1 2.4 6.9 15.6 13.7 42.6 15.8
NLLB-200 0.6B 18.4 26.5 42.0 10.9 19.6 33.0 30.4 45.7 30.1
Toucan 1.2B 6.6 18.7 37.3 6.4 9.4 17.4 22.4 31.9 19.3
NLLB-200 1.3B 20.0 28.6 44.9 14.0 20.7 36.3 50.0 33.1
NLLB-200 3.3B 24.2 29.7 47.1 13.2 22.2 39.0 34.7 52.7 35.0
MADLAD-400 3B 8.0 14.9 42.2 2.3 9.0 36.3 30.6 51.7 25.0
MADLAD-400  7.2B 10.5 20.3 44.8 24 12.2 40.3 33.7 54. 27.2 46.6 29.3
Aya-101 13B 7.7/9.6/9.7 18.5/17.2/18.0 6.6/10.9/3.1 5.1/5.1/5.2 11.0/10.0/10.6 | 29.4/27.4/9.6  28.3/26.2/17.5 42.7/39.2/19.4  24.0/22.4/22.4  36.6/35.1/25.4 | 21.0/20.3/14.1
SFT on AFRIDOC-MT
NLLB-SFT 1.3B 27.7 31.7 55.4 31.7 27.6 42.1 37.3 56.5 45.1 51.1 40.6
Decoder-only
Gemma2 9B ‘ 0.2/0.4/0.0 0.9/1.3/0.1 0.8/0.6/0.2 0.3/0.4/0.2 0.3/0.0/0.2 ‘ 6.4/1.7/0.2 5.9/7.6/0.2 6.7/0.3/1.7 3.5/0.7/0.9 6.7/0.2/1.7 H 3.2/1.3/0.5
LLama3.1 8B 0.4/0.2/0.1 0.5/1.3/0.2 0.2/0.7/0.2 0.3/0.3/0.2 0.2/0.2/0.2 2.7/2.6/0.7 1.9/1.9/0.9 2.9/3.4/0.9 1.6/1.7/0.7 1.6/1.7/0.8 1.2/1.4/0.5
LLaMAX3 8B 2.8/0.1/1.8 1.6/1.8/1.2 2 5/0.6 0.3/0.3/1.3 0.9/1.0/0.8 5.6/2.6/0.6 2.0/1.9/1.0 3.0/2.7/0.6 1.6/1.4/0.8 2.5/2.1/0.9 2.3/1.7/1.0
LLama3.1-IT 8B 1.2/1.2/1.4 6.3/6.3/5.9 22.9/22.8/19.4 1.5/1.3/1.5 1.0/1.0/0.9 10.1/11.7/9.8  22.0/21.6/20.1  38.0/36.5/36.0  13.0/14.6/12.2  14.7/16.1/14.3 || 13.1/13.3/12.2
LLaMAX3-Alp 8B 4.9/4.9/5.0 15.3/15.2/16.0  28.2/29.8/16.2 2.5/2.4/2.6 7.3/7.3/7.7 24.1/24.2/23.4  25.8/26.9/25.5  40.9/41.6/39.0  16.3/17.1/15.8  30.2/31.4/29.7 || 19.6/20.1/18.1
GPT-3.5 - 1.8/0.6/0.5 6.2/1.1/1.0 45.4/45.5/44.5 2.2/0.2/0.3 6.1/1.6/2.1 6.3/7.0/5.8 11.8/11.8/12.1  46.4/45.7/45.4  12.0/13.2/11.5 2 /20.4 || 15.8/14.9/14.3
GPT-40 - 9.5/6.2/6.0 26.8/26.1/26.6  48.3/51.2/51.4 7.8/7.1/7.5 20.0/21.5/22.2 | 27.8/29.4/29.8  28.4/29.4/32.0  46.9/48.5/52.5  33.4/35.3/36.9 29.1/29.9/31.2
SFT on AFRIDOC-MT
LLaMAX3-SFT 8B 17.6/17.6/17.9  17.4/18.4/18.7  30.9/34.3/38.3  22.2/21.9/23.4 12.0/13.8/15.6 | 30.6/31.0/32.2 19.8/23.9/17.8 40.5/35.5/44.8  29.5/32.1/34.4  31.4/31.8/40.7 || 25.2/26.0/28.4
LLama3.1-SFT 8B 15.7/15.5/16.5  16.5/16.2/17.7  32.1/34.0/35.5  20.4/20.4/22.3  10.1/11.4/15.2 ' 13.1/15.3/29.3  14.1/22.3/24.6  19.8/15.4/42.8  23.2/25.7/33.8  22.2/27.6/37.3 " 18.7/20.4/27.5
CHRF |
Encoder-Decoder
M2M-100 0.4B 14.9 23.4 62.7 11.5 36.7 45.6 24.9 50.2 37.6
M2M-100 1.2B 22.4 44.3 70.3 17.6 50.8 54.8 58.8 47.5
NLLB-200 0.6B 48.8 62.7 74.0 42.6 68.1 66.9 63.3
Toucan 1.2B 33.8 57.6 70.3 36.0 58.0 54.7 54.7
NLLB-200 1.3B 49.8 64.7 75.5 45.1 69.0 69.4 65.4
NLLB-200 3.3B 53.0 65.2 76.7 43.8 70.7 70.9 67.6 747 66.6
MADLAD-400 3B 36.5 54.4 74.2 19.1 57.1 68.9 51.4 68.9 57.0
MADLAD-400  7.2B 39.8 59.7 75.2 . 61.9 715 65.6 . 60.6 X 60.6
Aya-101 13B | 32.0/36.6/36.6  55.4/56.4/55.6  35.2/44.7/28.5  30.9/31.2/29.7  58.5/58.5/58.6 | 64.6/63.7/23.3 61.5/61.2/48.8 70.8/69.8/43.2  57.9/57.3/55.3  66.9/67.4/53.7 | 53.4/54.7/43.3
SFT on AFRIDOC-MT
NLLB-SFT 1.3B ) 55.9 67.4 81.3 61.5 73.7 ) 72.4 67.5 79.2 71.8 76.5 ) 70.7
Decoder-only f i i
Gemma2 9B 5.9/12.7/0.6 18.8/24.8/8.8  15.5/18.6/10.3 5.8/14.0/6.3 15.6/4.7/7.3 43.3/22.2/7.2 39.8/46.4/6.3  38.2/10.2/16.5  33.8/23.1/12.7  39.8/7.7/23.9 25.6/18.4/10.0
LLama3.1 8B 14.2/13.0/1.1 14.5/23.9/9.3 9.2/18.0/8.8 5.8/9.8/3.5 12.5/15.1/10.3 | 34.4/34.0/16.7  22.6/23.4/17.5  23.5/27.0/17.2  23.0/23.8/16.9  19.6/20.8/16.8 | 17.9/20.9/11.8
LLaMAX3 8B 27.0/9.1/13.8  21.4/23.1/17.1  24.8/29.8/13.4 7.4/8.9/8.5 25.0/27.4/19.7 | 41.0/31.0/10.5  20.5/22.6/16.4  23.0/21.1/15.1  20.7/18.8/18.7  21.8/19.6/18.6 23.3/21.1/15.2
LLama3.1-IT 8B 19.4/19.6/19.5 4/45.9/43.8  63.6/63.7/57.3  18.2/17.0/19.7  28.4/28.5/28.0 | 51. .9/50.7  59.2/59.8/58.6  68.3/69.1/66.7  50. .4/49.2  51.6/54.0/51.6 || 45.6/46.5/44.5
LLaMAX3-Alp 8B 30.5/30.3/30.4  56.0/55.1/56.3  66.7/67.8/49.1 19.1/19.1/19.3  55.9/56.0/56.1 | 63.3/62.8/62.9 71.3/71.7/70.8  54.3/56.1/55.1 54.4/54.7/52.7
GPT-3.5 - 2 3.1/12.0  44.3/20.4/20.9  76.7/76.6/76.1 7.3/8.9 51.1/28. 5 47.4/48.3/47.9 74.8/75.0/74.5  50.9/52.1/50.6 49.8/43.1,

GPT-40 -
SFT on AFRIDOC-MT
LLaMAX3-SFT 8B
LLama3.1-SFT 8B

36.7/32.4/32.3

46.5/46.8/46.8
44.5/44.1/45.6

64.2/62.4/62.9

61.4/62.0/62.5
61.0/60.8/61.8

79.1/79.8/79.8

66.8/70.7/73.1
70.1/71.0/71.5

2
29.3/27.2/28.4

56.4/56.2/57.5
56.1/56.1/57.0

7
69.0/65.6/66.4 | 66.7/67.2/67.1

64.7/65.6/66.6

33.2/39.1/64.3

60.3/65.1/67.5
57.5/59.6/66.8 ‘

65.8/66.0/66.5

53.7/58.9/48.2
45.4/58.8/59.5

77.0/77.5/78.1

69.6/63.7/73.1
44.2/38.8/72.1

68.0/68.9/69.1

60.3/63.2/64.7
53.4/56.2/64.8

60.6/61.4/70.5
51.7/60.5/69.0 H

63.0/62.2/62.6

60.0/61.4/63.1
51.7/54.5/63.2

Table 15: Performance results of various models on the sentence-level task for the Health domain, measured using
document level metric d-BLEU and d-chrF.

Model Size eng — X X — eng AVG

amh hau swa yor zul amh hau swa yor zul

BLEU

Encoder-Decoder
M2M-100 0.4B 1.1 1.7 22.6 1.0 47 | 7.1 29.0 II
M2M-100 1.2B 2.8 13.2 29.7 3.7 9.1 16.0 36.3
NLLB-200 0.6B 16.5 27.3 34.5 12.3 234 32.6 40.5
Toucan 1.2B 5.9 20.4 28.0 8.1 124 15.8 30.1
NLLB-200 1.3B 18.4 28.8 36.1 14.8 24.1 36.8 43.4
NLLB-200 3.3B 22.9 29.2 37.1 14.2 25.5 39.2 45.4
MADLAD-400 3B 7.8 16.2 22.2 2.7 11.1 35.8 43.8
MADLAD-400 7.2B 9.3 21.3 27.5 .3 . R 7.1 44. 23.7
Aya-101 13B 7.8/9.1/9.0 20.8/19.4/20.8 9.2/8.9/4.8 6.3/6.3/6.6 13.2/12.6/13.2 | 30.7/28.7/11.4  33.3/30.7/19.3  38.7/35.9/20.6  23.4/21.6/22.5 22.1/20.8/15.7
SFT on AFRIDOC-MT
NLLB-SFT 1.3B 23.1 31.7 43.0 2919 29.1 41.6 39.9 47.6 36.8 48.5 371
Decoder-only
Gemma2 9B | 0.2/0.4/0.0 1.3/1.5/0.1 0.9/0.9/0.2 0.3/0.6/0.1 0.3/0.1/0.2 | 5.2/1.2/0.2 5.2/6.4/0.6 5.0/0.5/0.9 3.4/1.3/0.5 6.1/0.7/0.8 I 2.8/1.4/0.4
LLama3.1 8B 0.3/0.2/0.1 0.7/1.4/0.3 0.3/0.4/0.2 0.3/0.3/0.2 0.3/0.3/0.2 1.9/2.4/0.5 1.8/2.0/0.8 2.3/3.2/0.6 1.5/1.6/0.6 1.4/1.5/0.6 1.1/1.3/0.4
LLaMAX3 8B 1.9/0.5/1.2 1.6/1.7/2.0 2.0/2.4/1.3 0.4/0.4/1.8 1.0/1.3/0.9 4.2/2.1/0.5 1.9/1.9/1.6 2.4/2.1/0.7 1.3/1.2/0.8 2.3/1.9/1.0 1.9/1.5/1.2
LLama3.1-IT 8B 1.3/1.2/1.2 7.6/7.7/6.9 19.7/19.4/16.1 2.0/1.8/1.9 1.2/1.3/1.2 8.0/9.1/8.2 24.6/23.4/23.0  34.0/31.7/32.2  13.1/13.9/12.3  15.2/14.3/14.2 12.7/12.4/11.7
LLaMAX3-Alp 8B 4.2/4.3/4.1 16.6/16.8/17.9  22.4/21.9/12.9 3.2/3.413.5 10.2/10.3/11.1 | 24. /25.3  30.1/30.8/30.4  37.0/37.3/37.0 16.7/17.3/16.6 19.7/20.1/19.1
GPT-3.5 - 1.9/0.8/0.7 9.2/2.4/2.7 35.7/35.4/34.9 3.5/0.6/0.7 7.9/3.0/2.9 6.1/5.8/5.3 17.6/17.1/16.4  41.6/40.2/40.8  13.5/13.3/12.1 16.0/14.2/13.8
GPT-40 7.9/5.7/5.4 28.4/27.3/27.5  40.3/39.8/40.5 7.7/7.3/7.4 26.0/25.1/25.4 | 31.1/29.9/30.3  37.6/35.1/37.1  46.9/42.9/46.6  32.0/30.5/31.8 30.4/28.7/29.8

SFT on AFRIDOC-MT
LLaMAX3-SFT 8B

11.8/12.2/12.3

16.6/17.1/18.5

19.9/22.0/26.1

19.1/18.9/20.9

10.2/12.9/15.3 | 25.9/26.2/27.9

15.8/20.1/15.1

29.8/23.1/35.4

22.0/23.7/23.6

25.6/26.3/35.2

19.7/20.3/23.0

LLama3.1-SFT 8B 10.3/10.4/11.0  14.6/15.2/17.5  20.2/20.9/24.0  18.4/17.9/20.5  8.9/10.8/14.5 8.8/9.0/26.5 12.5/19.4/24.5  19.9/14.3/35.0  16.3/17.2/28.2  22.9/24.8/33.6 " 15.3/16.0/23.5
CHRF |
Encoder-Decoder
M2M-100 0.4B 16.9 62.8 14.2 40.3 46.5 47.3 63.4 28.1 51.5 39.8
M2M-100 1.2B 24.2 68.2 20.9 52.9 56.1 57.2 67.8 58.6 49.3
NLLB-200 0.6B 47.7 71.4 41.4 70.0 67.0 65.0 70.2 69.3 62.7
Toucan 1.2B 32.0 66.1 37.1 58.5 54.0 59.9 64.1 59.6 54.5
NLLB-200 1.3B 49.3 72.3 43.0 70.3 69.5 66.8 72.0 71.5 64.3
NLLB-200 3.3B 52.2 72.8 40.1 71.6 70.9 67.7 73.2 72.5 65.0
MADLAD-400 3B 37.3 62.1 21.3 58.5 68.6 66.0 72.1 67.6 56.4
MADLAD-400 7.2B 39.7 60.6 66.2 X 63.5 70.5 67. R . 59.3
Aya-101 13B | 33.8/37.3 58.7/58.7/58.9  41.8/42.4/32.7  31.0/31.4/30.0  58.3/58.9/58.4 | 65.2/64.4/27.2  64.8/64.1/48.7  69.1/68.1/46.2  58.5/57.9/57.1  67.1/66.9/57.7 || 54.8/55.0/45.3
SFT on AFRIDOC-MT
NLLB-SFT 13B 53.4 67.9 76.5 59.5 74.0 ) 72.1 69.0 74.1 67.5 74.3 ) 68.8
Decoder-only ! ! U
Gemma2 9B 6.0/12.7/0.7 21.2/24.4/10.8  17.8/21.6/10.4 7.0/15.7/6.5 16.2/14.1/8.0 39.719.0/7.7  36.5/42.8/11.0  33.4/16.3/19.6  33.3/28.6/11.7  37.3/21.0/21.9 || 24.8/21.6/10.8
LLama3.1 8B 13.7/13.2/1.2 16.1/23.4/9.6 10.3/16.6/9.8 6.9/10.7/4.1 13.7/17.8/10.4 | 30.8/35.1/15.5  20.5/21.9/15.8  20.2/26.7/14.4  21.5/22.9/15.6  18.1/19.4/14.8 || 17.2/20.8/11.1
LLaMAX3 8B 25.5/19.4/10.7  21.1/22.2/18.5  23.0/26.9/16.0 7.9/9.6/10.7 23.8/26.7/25.0 | 36.2/28.3/9.9  18.8/22.6/16.7 20.4/19.8/16.8 18.8/17.4/19.1 19.9/18.0/18.9 || 21.5/21.1/16.2
LLama3.1-IT 8B 19.2/19.5/19.1  47.3/47.8/45.9  63.4/63.4/59.2  20.4/19.4/20.8  29.2/30.4/28.9 | 49.0/51.0/49.1  60.7/61.0/60.2  66.0/65.8/65.0 ~51.7/53.5/50.5 51.5/52.4/51.6 45.8/46.4/45.0
LLaMAX3-Alp 8B 30.1/30.2/30.3  58.5/58.1/58.9  64.9/64.0/49.4  21.7/21.8/22.0  58.0/58.0/58.6 | 62.9/63.4/63.0 64.7/64.9/64.6  68.8/69.1/68.9  55.6/56.5/55.8  65.4/65.7/65.4 || 55.1/55.2/53.7
GPT-3.5 - 22.6/16.4/15.6  49.2/29.6/31.8  72.6/72.6/T: 23.0/12.8/14.0  53.6/35.9/35.6 | 47.3/47.3/47.4  56.3/56.5/56.0 ~ 71.5/T1.4/T1.4  53.2/54.0/52.5  59.6/59.9/58.7 | 50.9/45.6/45.5
GPT-40 36.9/33.7/33.1  65.2/63.2/63.3  75.3/75.2 29.4/28.4/28.8  T1.1/68.2/68.0 | 67.2/67.2/66.9 69.1/68.7/68.9  74.4/73.7/74.2  66.2/66.3/66.4  73.4/72.9/73.2 || 62.8/61.7/61.8

SFT on AFRIDOC-MT
LLaMAX3-SFT 8B
LLama3.1-SFT 8B

42.0/42.6/42.8
40.3/40.3/41.6

60.9/61.3/62.4
59.8/60.2/61.8

62.7/65.4/67.6
64.2/65.1/66.4

54.0/54.2/55.2
53.9/53.7/54.9

56.4/62.9/66.0
54.1/58.4/64.6

60.5/61.0/63.0
22.5/23.7/62.0

46.5/53.5/43.2
40.8/53.4/58.6

61.4/52.8/67.5
47.2/40.0/67.1

55.0/57.3/55.2
44.7/47.2/61.3

55.2/56.7/66.8
54.1/57.3/65.6 H

55.5/56.8/59.0
48.2/49.9/60.4

Table 16: Performance results of various models on the sentence-level task for the Tech domain, measured using
document level metric d-BLEU and d-chrF.
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Model Size eng — X X — eng AVG

amh hau swa yor zul amh hau swa yor zul

BLEU
Encoder-Decoder
M2M-100 0.4B 0.6 0.7 24.1 0.6 2.7 5.2 4.3 30.8 8.3
M2M-100 1.2B 1.9 7.0 35.6 22 6.3 13.3 114 41.0 14.3
NLLB-200 0.6B 16.8 23.2 40.2 8.9 18.3 | 30.9 27.9 44.2 II 28.1
Toucan 1.2B 5.0 15.8 35.4 5.0 8.6 14.7 19.9 30.1 17.3
NLLB-200 1.3B 18.3 25.5 43.0 11.7 19.2 34.3 30.8 48.6 311
NLLB-200 3.3B 22.4 26.5 45.3 10.9 20.6 36.8 32.5 51.4 33.0
MADLAD-400 3B 7.1 12.0 40.6 2.1 8.2 34.0 28.2 50.4 23.4
MADLAD-400  7.2B 9.9 17.0 43.0 22 11.1 37.9 31.2 53.6 5. .
Aya-101 13B 6.7/8.4/8.6 15.5/14.9/15.2 6.0/10.2/3.0 3.8/3.8/3.9 10.2/9.6/9.8 27.3/26.3/8.7  26.1/25.4/15.7  41.3/39.7/18.5  22.0/21.5/20.4 19.4/19.5/12.8
SFT on AFRIDOC-MT
NLLB-SFT 1.3B 26.1 28.3 54.0 28.9 25.9 39.8 34.9 55.3 43.3 49.2 38.6
Decoder-only
Gemma2 9B 0.1/0.3/0.0 0.5/0.8/0.0 0.6/0.4/0.1 0.2/0.2/0.0 0.2/0.0/0.1 5.2/1.1/0.1 4.9/6.5/0.0 0.2/0.5 2.7/0.5/0.3 5.8/0.1/0.5 2.6/1.0/0.2
LLama3.1 8B 0.2/0.1/0.0 0.3/0.7/0.1 0.2/0.4/0.1 0.2/0.2/0.2 0.2/0.1/0.1 1.8/1.8/0.3 1.6/1.6/0.5 .6/3.0/0.6 1.2/1.2/0.4 1.1/1.2/0.4 0.9/1.0/0.3
LLaMAX3 8B ‘ 2.1/0.1/1.3 1.1/1.3/0.8 2.4/3.0/0.5 0.3/0.3/1.1 0.7/0.8/0.6 ‘ 4.5/1.7/0.5 1.7/1.3/0.6 2.7/2.3/0.5 1.3/1.0/0.5 2.2/1.7/0.6 H 1.9/1.3/0.7
LLama3.1-IT 8B 0.9/0.9/0.8 4.6/4.7/4.2 21.4/21.3/18.0 1.1/0.9/1.0 0.8/0.8/0.7 7.7/8.9/7.3 19.4/19.117.7  36.7/35.7/34.7  10.7/12.2/10.1  12.1/13.3/11.8 " 11.5/11.8/10.6
LLaMAX3-Alp 8B 4.1/4.1/4.1 12.7/12.3/13.2  26.9/28.5/15.1 2.4/2.3/2.4 6.7/6.7/7.0 21.5/21.6/20.9  23.4/24.4/23.3  39.7/40.4/37.8  13.8/14.4/13.2  28.1/29.3/27.5 17.9/18.4/16.4
GPT-3.5 - 1.4/0.4/0.3 4.4/0.8/0.7 43.6/43.6/42.8 1.9/0.2/0.2 5.3/1.4/1.8 4.3/4.413.6 9.5/9.3/9.2 45.5/45.3/44.5  10.2/10.8/9.3  18.3/19.9/18.0 || 14.4/13.6/13.0
GPT-40 - 8.4/5.0/5.0 24.8/23.4/23.5  48.3/49.7/49.9 7.0/6.2/6.6 19.8/20.1/20.7 | 26.8/27.6/27.8  27.9/28.7/30.1  48.3/49.6/51.8  33.6/35.0/35.7  42.9/44.2/45.7 | 28.8/28.9/29.7
SFT on AFRIDOC-MT
LLaMAX3-SFT 8B 16.2/16.1/16.3  13.6/14.5/14.7  29.2/32.8/36.0  19.2/18.8/20.0 11.1/12.8/14.0 | 27.4/27.7/28.8 16.9/20.7/15.4  38.3/33.5/42.1  27.1/29.6/31.9  29.0/29.3/37.7 || 22.8/23.6/25.7
LLama3.1-SFT 8B 14.6/14.3/14.9  13.3/12.9/13.9  31.3/33.0/33.3 18.1/17.9/19.2  9.4/10.7/13.6 | 11.3/13.3/25.8 12.0/19.3/21.3 18.6/14.4/40.4 21.4/23.8/31.3  20.7/25.9/34.3 | 17.1/18.6/24.8
CHRF

Encoder-Decoder H
M2M-100 0.4B 6.8 11.6 51.7 7.5 19.7 30.8 25.0 55.4 13.2 35.9
M2M-100 1.2B 13.9 28.9 61.7 134 33.8 41.2 37.0 63.6 18.6 46.2
NLLB-200 0.6B 41.6 49.7 66.1 30.9 56.5 57.9 52.2 66.4 52.1 63.2
Toucan 1.2B 23.7 43.3 61.1 24.2 42.4 41.4 44.8 56.4 39.8 48.1
NLLB-200 1.3B 42.6 52.2 68.2 34.0 57.7 61.1 54.6 69.7 56.6 66.3
NLLB-200 3.3B 46.3 52.9 69.5 32.6 59.8 62.9 56.2 71.8 58.1 68.2
MADLAD-400 3B 28.3 39.7 66.3 15.1 42.2 60.4 53.0 70.7 35.5 60.5
MADLAD-400  7.2B A 45. 67.5 47.5 63.6 55.3 73.0 e 65.7 .
Aya-101 13B | 23.6/28.0/28.0  40.3/42.1/41.0 ~ 25.6/33.5/19.4  17.7/18.2/17.7  43.6/43.9/43.8 | 54.6/54.3/18.0  50.0/50.3/37.2  63.8/63.5/35.9  44.0/44.1/41.6  58.0/59.4/44.4 | 42.1/43.7/32.7

SFT on AFRIDOC-MT

NLLB-SFT 1.3B 50.1 55.2 76.2 52.4 64.3 65.0 57.7 74.5 64.1 70.5 63.0
Decoder-only

Gemma2 9B ‘ 1.6/5.1/0.0 7.6/13.2/0.5 6.8/8.3/0.7 2.3/4.9/0.4 5.5/0.7/0.5 ‘ 31.2/8.7/1.0 28.7/34.6/0.6 27.4/7.1/1.2 20.0/13.8/1.2 30.3/5.2/2.7 H 16.1/10.2/0.9
LLama3.1 8B 4.8/4.3/0.4 6.1/11.6/5.7 5.5/8.2/5.6 2.6 2.9 5.7/5.8/5.9 21.7/21.2/8.0 16.6/17.3/9.5 19.3/21.7/9.8 14.9/15.5/9.0 12.5/13.5/9.1 11.0/12.3/6.6
LLaMAX3 8B 17.1/5.0/6.5 14.3/15.8/6.7 19.7/23.6/5.4 5.5/6.3/3.8 16.9/17.9/7.1 29.2/12.3/5.6 15.7/11.7/4.1 20.0/17.1/9.0 14.012.1/7.1 17.7/15.2/6.7 17.0/13.7/6.2
LLama3.1-IT 8B 8.8/8.9/8.7 28.7/29.0/26.5  50.9/51.2/43.2 8.5/7.9/8.7 14.9/14.8/14.1 | 33.4/35.7/32.7  44.7/45.4/44.0 ~ 59.6/60.6/57.8 ~ 33.6/35.7/32.1  34.2/36.4/34.5 | 31.7/32.6/30.2
LLaMAX3-Alp 8B 20.8/20.7/20.8  40.5/39.5/41.2  56.0/57.3/36.8  15.4/15.3/15.4  38.9/38., 1| 50.9/50.5/50.3  49.3/49.7/49.4  63.7/64.1/62.9  37. .8/37.8 42.6/42.9/40.7
GPT-3.5 - 10.9/6.3/5.8 27.2/12.2/12.2  69.3/69.3/68.5 12.9/4.0/4.6 32.2/16.8/19.8 | 26.8/28.3/26.9  33.9/33.3/33.0  69.0/69.4/68.4  32.5/33.8/31.8 4 43.1 || 35.9/31.8/31.4
GPT-40 - 28.2/24.7/24.6  52.4/49.9/50.3  74.0/74.2/74.1  22.2/20.4/21.2  58.6/53.8/54.6 | 57.2/57.5/57.3  56.3/56.4/56.4  73.3/73.7/73.5 59.5/60.4/60.3 68.7/69.1/68.9 || 55.1/54.0/54.1

SFT on AFRIDOC-MT
LLaMAX3-SFT 8B

38.2/38.4/38.4

44.3/45.0/46.0

55.7/60.3/63.4

43.9/43.7/45.3

44.8/50.1/53.3

52.7/53.6/54.9

39.7/44.6/36.1

60.4/54.3/64.6

49.4/52.1/54.0

50.1/50.7/60.3

47.9/49.3/51.6

LLama3.1-SFT 8B 35.7/35.3/36.7 44.9/44.3/45.0  60.6/61.3/61.1  44.2/43.9/44.9  42.6/44.5/52.4 * 24.0/28.9/51.8  32.7/44.1/45.2  35.9/30.9/63.2 42.6/45.2/53.6 40.9/48.8/58.0 = 40.4/42.7/51.2
COMET |

Encoder-Decoder

M2M-100 0.4B 19.6 58.3 21.5 32.5 66.0 23.5 35.4
M2M-100 1.2B 29.2 70.0 37.4 47.9 73.3 26.4 47.1
NLLB-200 0.6B 70.5 75.8 7L.5 68.7 77.2 68.2 72.2
Toucan 1.2B 56.3 72.6 64.1 62.1 70.7 56.9 63.1
NLLB-200 1.3B 717 77.3 72.9 70.5 78.9 71.4 73.9
NLLB-200 3.3B 72.8 7.5 70.8 71.3 79.7 72.9 74.3
MADLAD-400 3B 65.1 75.9 49.5 69.8 79.5 52.8 66.9
MADLAD-400  7.2B 69.1 77.1 55.0 69.2 71.9 . 65.6 4. 70.9
Aya-101 13B | 53.7/62.0/61.2  62.0/64.2/62.4 31.7/44.2/46.3  50.0/50.2/46.8  62.8/63.7/63.8 67.6/68.0/60.0  76.1/75.0/62.1  62.0/62.8/59.3  67.9/70.2/58.6 | 60.7/63.4/57.0

SFT on AFRIDOC-MT

75.4

74.0

80.2

78.9

75.7

78.4

72.6

80.5

75.8

76.6

76.8

NLLB-SFT 1.3B
Decoder-only

Gemma2 9B
LLama3.1 8B
LLaMAX3 8B
LLama3.1-IT 8B
LLaMAX3-Alp 8B
GPT-3.5 -
GPT-40 -

SFT on AFRIDOC-MT
LLaMAX3-SFT 8B
LLama3.1-SFT 8B

17.2/18.8/10.1
15.2/15.0/19.4
34.3/28.2/28.1
20.3/20.2/20.0
45.9/46.0/45.8
22.4/22.9/21.9
55.5/56.5/56.5

66.8/67.3/66.5
61.1/61.9/62.5

27.0/37.5/12.7
20.0/25.9/22.6
27.1/27.8/23.9
43.1/42.8/39.4
60.9/60.5/61.6
35.0/34.7/34.6
71.1/68.1/68.9

67.2/67.5/67.2
63.9/64.4/66.6

27.7/31.1/13.0
24.9/25.0/25.8
31.8/43.7/25.9
61.2/61.7/56.0
68.9/69.7/57.9
78.0/78.1/77.0
79.6/80.1/80.2

65.6/68.3/71.5
66.0/67.4/68.5

16.2/25.9/11.6
14.8/20.0/17.9
22.9/27.4/22.9
30.8/29.5/31.9
45.2/45.2/45.1
36.2/33.2/34.9
54.3/51.5/52.1

74.5/74.6/75.1
73.7/73.9/74.3

21.1/16.3/12.7
20.5/21.3/23.9
32.6/39.6/26.2
24.4/24.2/24.2
.6/58.8/58.3
43.2/41.1/41.6
72.6/68.0/68.9

57.7/63.1/66.8
53.1/55.4/64.2

55.0/35.0/15.6
35.2/39.6/29.1
36.1/31.2/18.7
52.9/56.1/51.2
71.6/71.8/71.4
44.4/46.9/42.9
73.5/74.6/74.3

71.5/72.4/73.5
48.9/52.0/70.8

55.4/61.2/15.8
33.0/32.3/32.3
34.5/31.2/17.3
61.7/61.8/60.7
68.3/69.0/68.7
51.1/51.3/48.5
7T1.0/71.3/71.7

59.0/63.1/56.4
53.0/62.3/63.3

53.7/49.6/15.8
33.1/44.9/33.4
31.9/42.7/26.3
71.8/70.0/70.7
75.9/76.5/75.6
78.2/78.5/77.1
78.5/79.4/80.1

72.5/68.0/76.2
55.1/52.6/74.7

44.3/44.1/18.2
25.5/27.2/30.6
28.8/37.1/19.2
49.7/53.4/47.0
57.0/60.5/58.2
50.3/53.3/47.9
71.9/73.5/73.0

62.9/66.1/68.1
54.1/57.5/67.7

55.4/42.1/16.0
28.1/27.1/30.3
30.0/39.7/22.5
47.1/49.9/46.0

61.5/62.3/71.7
52.4/59.3/68.8

37.3/36.2/14.1
25.0/27.8/26.5
31.0/34.9/23.1
46.3/47.0/44.7
62.0/62.7/61.0
49.6/49.9/48.2
70.2/69.8/70.1

65.9/67.3/69.3
58.1/60.7/68.1

Table 17: Performance results of various models on the sentence-level task for the Health domain, measured using
sentence level metric s-BLEU, s-CHRF, and s-COMET.
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Model Size eng — X X — eng AVG

amh hau swa yor zul amh hau swa yor zul
BLEU
Encoder-Decoder
M2M-100 0.4B 0.9 1.2 20.9 0.9 4.0 5.5 26.7 1.4 12.9 8.3
M2M-100 1.2B 2.6 10.9 27.6 3.4 8.2 13.6 34.0 4.0 14.1
NLLB-200 0.6B 15.3 24.3 32.3 9.7 22.0 | 30.7 38.2 24.6 II 26.6
Toucan 1.2B 4.8 17.6 25.8 6.1 11.4 13.2 27.7 15.1 16.7
NLLB-200 1.3B 17.2 25.9 33.8 11.9 22.6 34.9 41.3 28.1 29.1
NLLB-200 3.3B 21.8 26.4 34.9 115 24.2 37.3 43.3 29.2 30.7
MADLAD-400 3B 7.0 13.7 20.3 2.4 9.8 33.4 41.6 13.7 21.0
MADLAD-400  7.2B 8.8 18.2 25.4 2.9 36.1 R . 4.
Aya-101 13B 6.8/7.9/7.8 18.1/17.6/18.0 8.5/8.4/4.5 4.9/5.0/5.2 12.2/12.1/12.3 | 28.5/27.9/10.6 36.8/36.2/19.1  21.0/20.5/19.9 20.3/20.1/14.2
SFT on AFRIDOC-MT
NLLB-SFT 1.3B 21.7 28.5 41.0 26.1 27.5 39.4 37.3 45.5 34.1 46.2 34.7
Decoder-only
Gemma2 9B 0.1/0.3/0.0 0.8/1.1/0.0 0.7/0.7/0.1 0.2/0.4/0.1 0.2/0.1/0.0 4.3/0.8/0.1 4.4/5.5/0.2 4.1/0.4/0.2 2.6/1.0/0.1 5.3/0.6/0.2 2.3/1.1/0.1
LLama3.1 8B 0.2/0.1/0.0 0.4/0.8/0.2 0.2/0.3/0.2 0.2/0.2/0.2 0.2/0.2/0.2 1.3/1.7/0.2 1.6/1.7/0.5 2.0/2.9/0.4 1.1/1.2/0.3 1.0/1.1/0.3 0.8/1.0/0.3
LLaMAX3 8B ‘ 1.4/0.3/0.8 1.2/1.3/1.5 1.7/2.0/1.1 0.3/0.3/1.4 0.9/1.0/0.7 ‘ 3.5/1.4/0.4 1.6/1.3/1.2 2.1/1.8/0.5 1.1/0.8/0.6 2.0/1.6/0.7 H 1.6/1.2/0.9
LLama3.1-IT 8B 1.0/0.9/0.9 5.8/6.1/5.3 17.8/17.7/14.6 1.4/1.3/1.3 1.1/1.1/1.0 5.9/6.8/6.0 22.1/21.1/20.6  32.0/30.4/30.1  10.7/11.3/9.9  12.5/11.8/11.6 = 11.0/10.8/10.1
LLaMAX3-Alp 8B 3.7/3.8/3.6 14.0/14.2/15.2  20.8/20.3/11.7 2.9/3.1/3.3 9.3/9.4/10.3 21.9/23.4/22.8  27.8/28.5/28.2  35.2/35.5/35.4  13.9/14.4/13.8  30.0/30.9/30.4 18.0/18.4/17.5
GPT-3.5 - 1.5/0.6/0.5 6.9/1.8/1.9 33.5/33.3/32.9 2.9/0.5/0.5 7.0/2.512.5 3.8/3.7/3.2 14.8/14.7/13.6 ~ 40.0/39.6/39.2  10.7/11.1/9.6 ~ 21.1/21.6/19.3 || 14.2/12.9/12.3
GPT-40 - 7.0/4.9/4.6 25.6/24.7/24.7  38.4/38.1/38.6 6.6/6.3/6.4 24.8/24.1/24.1 | 29.0/28.6/28.2  35.4/34.6/35.1  45.2/43.5/45.0  29.8/29.6/29.7  44.6/43.4/44.1 28.6/27.8/28.1
SFT on AFRIDOC-MT
LLaMAX3-SFT 8B 10.6/10.8/11.0  13.3/13.8/14.7  18.1/20.1/23.4  15.3/15.2/16.6 ~ 9.4/11.9/13.7 | 22.9/23.2/24.7 13.7/17.8/13.2 27.2/21.2/32.3  19.4/20.9/20.8  23.6/24.2/32.2 || 17.4/17.9/20.3
LLama3.1-SFT 8B 9.6/9.5/9.7 12.1/12.4/13.7  19.1/19.6/21.4  15.5/14.8/16.3  8.3/10.1/13.1 7.6/7.9/23.2 11.1/17.3/21.6 ~ 18.4/13.2/32.0  14.5/15.5/25.1  21.3/23.2/30.5 | 13.7/14.4/20.7
CHRF
Encoder-Decoder H
M2M-100 0.4B 8.9 14.9 50.3 10.1 22.7 31.7 31.1 52.9 36.7 27.5
M2M-100 1.2B 16.4 36.0 57.4 16.7 35.6 425 2.3 58.6 45.5 37.3
NLLB-200 0.6B 41.1 51.9 61.7 29.6 58.3 58.1 53.8 62.0 60.9 52.5
Toucan 1.2B 22.5 45.6 55.4 24.9 43.3 40.0 47.3 53.9 47.4 41.9
NLLB-200 1.3B 42.8 53.8 63.0 31.6 58.7 61.4 56.4 64.4 63.8 54.7
NLLB-200 3.3B 46.3 53.7 63.7 29.9 60.5 63.1 57.4 65.8 64.9 55.7
MADLAD-400 3B 29.1 43.0 51.5 16.6 43.6 60.0 55.6 64.6 58.3 45.9
MADLAD-400  7.2B 32.2 46.7 54.9 17.1 49.1 62.6 58.0 4. . A .
Aya-101 13B | 25.8/29.2/28.5  44.6/45.5/45.0  31.1/31.9/22.7  19.1/19.8/19.7  43.2/44.5/43.5 | 55.5/55.3/21.8  54.0/54.4/38.1 ~ 60.7/60.7/37.9  44.0/44.1/42.5 57.9/58.7T/4T.T | 43.6/44.4/34.7
SFT on AFRIDOC-MT
NLLB-SFT 1.3B 47.9 56.1 68.8 48.8 64.3 64.5 59.6 67.2 57.1 67.4 60.2
Decoder-only
Gemma2 9B 1.8/5.3/0.1 10.1/14.0/0.4 8.9/12.7/0.4 3.1/6.3/0.3 6.5/5.0/0.3 28.1/6.9/1.0 26.9/32.5/1.0 22.9/11.71.1 20.4/17.5/0.7 28.2/15.3/1.7 15.7/12.7/0.7

%
@

LLama3.1 4.7/4.3/0.4 7.4/12.1/5.9 6.0/5.6/6.1 3.4/4.4/3.2 5.9/6.2/6.0 18.7/21.4/6.8 15.5/16.5/8.8 16.2/21.1/8.6 14.1/14.9/8.3 11.7/12.7/8.3 10.3/11.9/6.2
LLaMAX3 8B 16.6/11.9/4.3 14.9/15.5/8.5 17.7/20.2/7.2 6.0/6.8/5.5 16.4/18.1/9.0 25.8/11.4/5.5 14.7/10.6/5.6 17.1/14.5/7.7 12.8/11.0/8.1 16.0/13.9/5.8 15.8/13.4/6.7

LLama3.1-IT 8B 8.8/8.9/8.5 30.6/30.9/28.7  49.0/49.1/44.2  10.3/9.9/10.2  15.4/16.2/15.1 | 30.8/32.5/30.8  46.5/46.6/45.9  55.8/55.8/54.5  34.0/35.0/32.6  34.0/34.5/33.8 || 31.5/31.9/30.4
LLaMAX3-Alp 8B 20.9/21.0/20.9 3/43.0/44.3  52.4/51 6.0  17.4/17.5/17.7  40.6/40.8/41.6 | 50.6/51.4/51.0  52.4/52.7/52.4 g 37. .9/38.1 )/54.5/54.1 42.9/43.1/41.6
GPT-3.5 - 12.4/8.4/8.0 31.8/19.0/20.0  63.4/63 15.4/7.9/8.4 35.1/22.3/22.3 | 26.4/27.1/26.2  38.4/38.9/37.7
GPT-40 - 28.6/26.1/25.4  53.5/51.5/51.5  67.2/67.2/67.3  22.3/21.4/21.4  60.0/56.5/56.4 | 57.3/57.7/57.0  59.8/60.0/59.6
SFT on AFRIDOC-MT
LLaMAX3-SFT 8B 33.1/33.7/33.9  44.3/44.6/45.6  48.4/51.7/54.4  39.6/39.9/41.0  40.2/46.2/49.8 | 47.9/48.3/50.6  34.7/40.5/32.5  49.9/42.0/56.6  42.2/44.1/42.8  44.2/45.4/55.3 || 42.4/43.6/46.3
LLama3.1-SFT 8B 31.5/31.2/32.4  43.8/44.1/44.9  50.9/52.2/52.5  40.6/40.1/40.9  38.6/42.5/48.5 ' 16.5/17.6/48.9  30.4/40.2/44.7  37.3/31.2/55.8  34.3/36.0/47.9 42.4/45.2/53.4 = 36.6/38.0/47.0

45.0/45.7/43.9 || 36.6/33.2/32.6
55.0/56.0/55.3  66.2/66.4/66.0 || 53.7/53.1/52.7

COMET |
Encoder-Decoder
M2M-100 0.4B 23.4 22.5 58.0 22.1 29.1 46.0 39.4 64.9 28.2 44.8 37.8
M2M-100 1.2B 34.2 42.2 67.1 37.7 42.9 57.7 54.4 70.4 32.1 54.4 49.3
NLLB-200 0.6B 69.1 69.5 72.7 70.0 72.0 72.8 69.3 74.1 66.5 71.0
Toucan 1.2B 54.7 63.1 67.2 64.3 61.4 60.7 64.3 68.8 58.4 60.3 62.3
NLLB-200 1.3B 69.4 70.9 73.1 70.2 72.8 75.1 713 75.6 69.1 72.6 72.0
NLLB-200 3.3B 71.2 70.2 73.4 66.6 73.2 76.0 TLT 76.0 70.3 73.2 72.2
MADLAD-400 3B 65.0 62.3 64.7 50.6 63.8 75.9 715 76.2 56.3 69.9 65.6
MADLAD-400  7.2B 67.8 64.9 66.5 56.7 68.3 77.4 X R 65.4 72.9 69.0
Aya-101 13B | 56.9/63.4/61.6  63.7/65.8/64.5 36.7/39.6/47.5 51.7/52.7/48.8  60.6/63.2/62.5 | 73.2/72.3/51.4 70.0/70.4/60.9 73.4/72.8/62.9 64.0/64.0/62.7 68.4/69.6/62.7 | 61.9/63.4/58.5
SFT on AFRIDOC-MT
NLLB-SFT 1.3B ) 74.1 73.3 76.4 78.1 73.9 ) 77.8 74.3 774 73.9 75.9 ) 75.5
Decoder-only ! ! U
Gemma2 9B 17.7/19.5/10.9  34.0/39.5/13.8  33.0/40.3/14.3  18.1/27.4/12.0  24.0/23.4/14.0 | 51.8/30.4/16.6 ~ 55.9/61.5/17.4  51.4/57.4/17.3  45.9/48.4/19.6  54.6/55.5/17.3 || 38.6/40.3/15.3
LLama3.1 8B 14.9/14.5/19.0  22.2/26.7/23.0  25.3/17.1/26.1  16.3/21.1/18.3  20.3/21.3/24.5 | 32.6/42.5/27.3 34.4/36.1/32.5 34.0/46.9/32.6  26.3/29.8/30.6  27.8/27.6/29.9 25.4/28.4/26.4
LLaMAX3 8B 33.8/32.3/26.1  29.6/28.1/24.3  33.4/41.9/26.3  25.8/29.5/22.7  33.2/41.5/27.2 | 35.3/30.2/18.7  37.9/30.1/17.9  34.4/39.6/24.1  31.2/36.6/20.2  32.6/38.9/21.9 || 32.7/34.9/23.0

LLama3.1-IT 8B 20.9/21.3/20.9  43.3/42.7/40.4  60.2/59.9/56.0  31.1/30.4/30.9  25.9/26.3/25.7 | 49.4/51.7/48.1 = 62.2/61.1/61.2  69.4/65.2/68.6  51.1/52.8/48.8  46.5/47.1/45.
LLaMAX3-Alp 8B 47.0/47.2/47.0  61.6/61.2/62.2  66.0/65.2/56.0  45.2/45.5/45.1  58.4/58.6/58.6 | 71.0/71.6/71.0  70.3/70.7/70.1  73.8/74.1/73.8  59.0/61.4/59.6  67.5/68.1/67.3 62.0/62.4/61.1
GPT-3.5 - 25.8/26.3/25.3  40.8/41.1/39.7  74.8/74.9/73.6  38.0/36.8/37.9  46.6/4. .3 | 45.7/48.5/44.6  55.7/56.8/54.1  75.3/75.2/74.4  53.4/55.9/51.4  59.5/60.5/58.1 || 51.6/51.9/50.3
GPT-40 - 57.5/58.4/58.5  71.4/69.4/69.1 T7.4/77.1/77.2 53.6/51.6/51.9  72.7/68.6/68.9 | 74.0/73.7/73.7 74.9/74.1/74.6  77.6/76.5/77.5 72.0/72.5/72.0 74.6/73.6/74.1 70.6/69.5/69.8
SFT on AFRIDOC-MT
LLaMAX3-SFT 8B 62.5/63.0/62.3  64.4/64.7/65.1  60.6/62.5/65.5 72.2/72.7/73.9 52.5/58.1/62.8 | 67.9/68.6/70.5 55.2/59.7/54.4 66.4/60.2/71.9  58.1/60.8/59.1 56.3/57.6/68.3
LLama3.1-SFT 8B 56.0/56.5/56.9  59.8/60.8/64.0  58.9/61.3/62.1 72.0/72.0/73.2 47.3/51.4/59.0 | 41.5/41.6/68.2 50.5/57.7/62.8 54.5/50.7/70.1  46.8/48.7/65.8  52.6/55.2/65.5

46.0/45.8/44.6

61.6/62.8/65.4
54.0/55.6/64.8

Table 18: Performance results of various models on the sentence-level task for the Tech domain, measured using
sentence level metric s-BLEU, s-CHRF, and s-COMET.
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Model Size eng — X X — eng AVG

amh hau swa yor zul amh hau swa yor zul

BLEU

Encoder-Decoder
Toucan 1.2B 2.6 9.3 174 3.2 45 | 8.6 8.0 18.1 8.2 II 9.2
NLLB-200 1.3B 4.7 8.0 13.7 2.7 8.2 6.1 10.7 20.8 9.9 10.1
NLLB-200 3.3B 5.2 5.6 14.2 2.3 7.4 121 16.0 26.9 12.7 12.6
MADLAD-400 3B 5.9 8.0 17.0 1.5 5.7 31.5 30.9 50.8 14.2 20.4
MADLAD-400 7.2B 1.4 5.5 13.9 1.5 4.3 20.4 12,5 41.7 4.4 9 X
Aya-101 13B 6.4/6.8/6.1 12.4/15.4/12.7 10.4/5.513.5 2.3/2.8/2.6 10.3/10.3/9.7 28.2/28.2/7.2  30.2/29.8/16.9  43.4/43.2/24.0  26.0/25.8/20.4  39.7/39.5/34.9 || 20.9/20.7/13.8
SFT on AFRIDOC-MT (5entence)
NLLB-SFT 1.3B 175 13.5 26.0 6.9 13.5 13.5 15.3 26.0 15.4 22.6 16.1
SFT on AFRIDOC-MT (pseudo-document with 10)
NLLB 1.3B ) 3 25.9 6.5 13.6 . 20.8 20.0 30.1 19.0 26.4 1 184
Decoder-only ! ! U
Gemma2-1T 9B ‘ 0.2/0.2/0.2 10.2/8.5/7.9 21.3/23.7/18.3 0.2/0.2/0.2 0.4/0.4/0.4 ‘ 8.5/9.7/6.0 21.6/22.9/18.8  37.2/40.2/33.6 12.5/14.7/9.4  24.8/27.6/21.7 H 13.7/14.8/11.6
LLama3.1-IT 8B 0.1/0.1/0.1 0.6/0.6/0.4 7.9/10.7/6.8 0.2/0.2/0.1 0.1/0.1/0.1 4.1 5.1 19.3/20.8/4.0 32.0/35.6/2.3 7.1 2 11.3/11.6/8.2 8.3/9.4/3.3
LLaMAX3-Alp 8B 0.7/0.6/0.6 3.0/3.1/3.2 6.1/7.3/6.3 0.4/0.4/0.3 1.0/1.1/1.1 6.3/5.0/7.5 14.1/11.5/12.4  25.5/25.2/25.2 2.6/2.6/2.3 8.7/11.8/10.2 6.8/6.9/6.9
GPT-3.5 - 0.4/0.5/0.4 1.1/1.2/1.3 45.5/45.1/45.2 0.2/0.3/0.3 1.6/1.9/1.9 4. 1/3.7 16.1/16.0/15.7  51.6/51.5/51.5  15.9/15.8/14.8  25.7/27.1/26.6 16.2/ /16.1
GPT-40 - 6.3/6.2/6.8 27.1/27.3127.4  52.4/52.9/52.6 7.4/7.418.3 22.6/22.4/22.1 | 35.4/35.2/35.6  37.5/38.1/38.1  57.8/57.9/58.2  46.0/45.6/46.0  52.5/53.0/53.0 || 34.5/34.6/34.8
SFT on AFRIDOC-MT (5entence)
LLaMAX3-SFT 8B 4.5/4.1/4.6 2.9/2.3/2.5 7.6/7.3/9.0 4.9/5.0/5.7 2.8/2.2/3.0 2.8/2.5/3.0 2.4/2.02.6 6.7/4.2/5.4 4.2/3.2/5.9 6.5/4.2/6.4 4.5/3.7/4.8
LLama3.1-SFT 8B 3.7/3.0/3.8 3.5/2.8/3.3 11.8/13.3/12.2 5.4/4.8/4.9 4.1/3.1/4.1 2.0/2.4/3.2 2.3/1.8/3.2 5.1/5.6/7.0 3.8/3.2/5.6 3.5/3.7/5.0 4.5/4.415.2

LLaMAX3-SFT 8B 10.8/9.5/10.0  10.6/10.3/11.9

SFT on AFRIDOC-MT (rseudu-documenl with 10)
LLama3.1-SFT 8B 4.8/4.9/5.0 8.0/10.0/10.2

35.6/34.0/39.9
26.8/24.6/26.2

18.5/15.8/17.9
16.4/15.8/15.3

9.9/9.4/8.9 ‘29.4/28.9/28.0 34.7/30.1/33.4
5.6/5.8/6.7 23.2/19.4/29.8  27.1/19.7/23.9

51.6/51.0/54.1
22.9/25.9/46.8

44.2/37.1/44.4
24.3/29.0/37.5

47.1/46.5/47.3 H 29.2/27.3/29.6
37.1/26.7/42.7 " 19.6/18.2/24.4

CHRF

Encoder-Decoder

Toucan 128 18.9 365 444 23.0 385 a1 12,0 452 39.7 3.3 372
NLLB-200 13B 25.0 355 104 195 388 307 37.1 169 347 126 35.1
NLLB-200 33B 25.6 30.4 102 18.4 35.4 39.7 445 53.6 38.2 50.7 377
MADLAD-400 3B 275 102 166 151 136 633 625 744 442 66.6 184
MADLAD-400  7.2B : ) 39.8 26.1 472 36.2 4. 17.2 : .
Aya-101 13B | 27.0/28.7/25.9 41.9/48.5/43.2 34.7/28.8/25.6 1T.1/18.7/18.0 54.2/54.9/52.7 | 61.6/61.1/16.1  62.3/62.0/44.7 TLTLOAS1  56.1/55.9/46.1 69.0/68.9/63.8 || 49.5/49.8/38.4
SFT on AFRIDOC-MT (sentence)

NLLB-SFT 13B 302 128 52.4 28.4 473 421 4358 52.4 126 50.3 432
SFT on AFRIDOC-MT (pseudo-document with 10) I I

NLLB 138, 312 124 52.2 277 a1 506 487 55.9 474 I
Decoder-only ' ' "

Gemma2-IT 9B 6.1/65/6.0  3T.0/B46/30.1 49.8/52.946.4  6.4/6.4/62  11.6/12.0/11.9 | 35.0/36.5/30.8 50.3/51.846.8 62.1/65.0/58.4 ALOM48/35.9 53.1/56.1/49.3 | 35.3/36.7/32.2
LLama3.I-IT 8B TATHTA  14013812.2 375432277  6.4/5.6/4.9 S.3/87/8.6 | 23.8/23.3/21.9  46.9/49.3/19.7 59.0/62.8/16.8 29.0/31.7/23.1 33.0/34.0127.0 | 26.5/28.0/16.9
LLaMAX3-Alp 8B | 1L4/11.1/11.2  28.9/28.6/28.5 35.9/404/325  9.2/8.0/84  22.1/22.3/23.6 | 28.0/28.0/20.2 54.1/51.9/55.4 2 23 37.7/40.5/39.9 | 20.3/20.4/20.2
GPT-3.5 - 1L3113/11.6 220224231 75.9/75.6/76.1  9.1/89/10.1  27.7/29.1/202 | 37.9/41.6/33.0 TTATTEATT SLIUSLG0.9  59.7/61.1/60.8 | 42.6/43.1/43.0
GPT-40 ~ | 29.3/128.4/20.6  63.0/63.4/63.8 80.1/80.2/80.0 27.7/27.6/29.6 69.5/69.2/68.8 | 69.5/69.3/69.5 SLOSLOSLO  T3.8/73.6/73.7 TT.I/TS.2T1.9 || 64.1/64.0/64.3

SFT on AFRIDOC-MT (sentence)

LLaMAX3-SFT 8B 22.2/22.8/24.1  29.0/25.9/26.8
LLama3.1-SFT 8B 25.2/22.7/25.2  31.8/29.2/31.9
SFT on AFRIDOC-MT (pseudo-document with 10)
LLaMAX3-SFT 8B 37.8/35.9/37.1  49.7/48.2/51.9
LLama3.1-SFT 8B ‘ 26.7/27.6/27.4  46.0/49.7/49.6

38.4/39.0/42.2
48.5/50.2/48.5

72.4/70.5/74.4
64.1/64.0/63.4

32.3/32.3/33.8
33.8/32.6/33.0

50.7/50.1/52.2
50.3/50.0/49.5

33.3/29.7/33.7
35.4/35.1/38.6

22.6/21.1/20.2
15.6/22.9/24.2

22.1/20.5/22.9
20.6/18.6/24.1

55.0/53.4/52.4
44.5/44.6/47.0

64.0/62.7/62.5
57.8/56.5/63.8

66.7/63.5/66.3
61.7/55.3/59.6

33.1/26.8/30.2
28.7/31.3/33.7

75.4/7T4.4/77.8
47.3/53.1/74.4

25.0/23.2/27.2
25.6/23.5/30.2

71.8/68.3/71.8
55.6/61.0/68.9

28.9/26.8/29.2

31.5/27.0/30.9
28.9/29.1/31.9

24.2/25.2/29.3

74.1/73.8/74.0
68.2/59.9/71.4

61.7/60.1/62.0
52.2/52.2/57.5

Table 19: Performance results of various models on the pseudo-document-level task for the Health domain, measured
using document level metric d-BLEU and d-CHRF.

Model Size eng — X X — eng AVG

amh hau swa yor zul amh hau swa yor zul

BLEU

Encoder-Decoder
Toucan 1.2B 2.2 11.2 13.2 4.1 7.4 | 8.6 17.9 10.4 II 10.5
NLLB-200 1.3B 5.1 11.2 14.0 2.7 9.8 5.8 21.9 8.1 10.5
NLLB-200 3.3B 5.1 7.2 11.9 2.2 7.4 10.7 26.5 10.3 11.5
MADLAD-400 3B 5.7 6.8 5.4 1.2 6.7 30.6 39.4 14.9 18.0
MADLAD-400  7.2B 1.2 4.7 5.0 1.5 4.3 B 31.6 6.7 11.4
Aya-101 13B 6.3/6.7/5.7 19.5/20.2/18.2 19.5/14.4/5.5 4.1/4.5/4.4 13.0/13.4/11.8 29.0/29.9/7.2 3¢ 39.8/39.8/25.6  25.1/25.5/22.6 23.2/23.0/16.2
SFT on AFRIDOC-MT (5entence)
NLLB-SFT 1.3B 7.8 17.1 24.3 74 15.3 11.7 19.5 25.5 13.6 23.4 16.6
SFT on AFRIDOC-MT (pseudo-document with 10)
NLLB 1.3B ) 24.2 74 15.2 ) 22.3 23.9 28.9 174 27.4 ) 19.3
Decoder-only ! ! U
Gemma2-IT 9B ‘ 0.2/0.2/0.2 11.4/11.6/8.7  18.8/21.0/14.3 0.3/0.3/0.3 0.7/0.7/0.8 ‘ 22.1/22.9/21.6 15.1/16.7/12.1  21.6/24.4/19.3 H 12.9/13.9/11.4
LLama3.1-IT 8B 0.2/0.1/0.1 9.6/8.8/9.5 0.2/0.2/0.2 0.2/0.1/0.1 19.4/19.7/2.2 8.9/10.2/4.5 8.7/8.8/6.0 8.4/8.5/2.9
LLaMAX3-Alp 8B 0.5/0.5/0.5 4.8/5.6/3.2 0.6/0.6/0.7 1.6/1.4/1.8 22.4/23.7/18.8 2 19.8/21.7/20.3 9.1/8.9/9.2
GPT-3.5 - 0.4/0.4/0.5 35.8/34.8/35.8 0.6/0.6/0.6 2.8/3.0/2.8 19.8/20.1/18.9 . 25.7/27.1/27.1 15.2/15.4/15.4
GPT-40 - 5.9/6.1/6.1 28.8/29.0/28.8  40.8/41.2/41.0 7.0/7.4/74 26.2/26.1/25.8 | 35.0/35.4/35.1  42.8/43.3/43.0  51.1/51.2/51.0  38.6/39.3/38.7  51.6/51.6/51.7 || 32.8/33.1/3:
SFT on AFRIDOC-MT (sentence)
LLaMAX3-SFT 8B 2.7/2.9/2.6 2.8/2.5/3.0 5.2/5.1/4.8 4.2/4.2/4.3 2.5/2.5/2.7 4.8/4.9/4.9 2.6/3.9/3.9 4.9/6.0/5.1 3.3/4.7/4.7 5.0/5.5/4.4 3.8/4.2/4.0
LLama3.1-SFT 8B 1.8/1.9/2.0 3.0/3.1/3.1 5.9/6.0/6.8 5.0/4.9/5.1 2.1/2.3/2.3 2.2/2.1/3.2 3.8/3.9/4.4 6.2/4.7/7.3 5.0/4.4/6.2 4.8/3.6/6.0 4.0/3.7/4.6

SFT on AFRIDOC-MT (pseudo-document with 10)
LLaMAX3-SFT 8B r 7.8/8.8/9.8 14.0/15.5/17.8

22.6/24.0/27.7

13.0/14.7/15.0

12.7/10.8/13.7 | 32.5/30.0/32.1  37.6/33.7/38.2

43.0/40.2/45.2

36.5/31.4/36.8

43.2/36.9/43.5 || 26.3/24.6/28.0

LLama3.1-SFT 8B 2.8/3.0/3.0 9.6/9.1/8.0 15.9/14.3/11.3  17.6/14.8/16.1 5.9/5.1/5.5 25.0/19.9/26.0  22.8/22.5/33.6  11.6/23.3/42.0  14.6/25.8/34.9  34.4/30.2/34.0 ~ 16.0/16.8/21.4
| CHRF | |

Encoder-Decoder

Toucan 1.2B 18.8 41.8 22.9 39.2 39.0

NLLB-200 1.3B 26.7 40.4 18.8 40.6 30.1

NLLB-200 3.3B 26.4 33.4 39.3 17.4 35.0 36.7

MADLAD-400 3B 29.5 38.3 31 15.1 44.1 62.6 66.4

MADLAD-400  7.2B 5.2 30. 33.1 14.2 27.7 46.3 40. 56.0 p 44. 32.2

Aya-101 13B | 29.1/30.1/26.1  54.0/55.0/51.2  51.7/45.3/30.5  21.5/22.3/21.8  53.3/55.0/51.2 | 61.4/62.5/16.7 65.3/65.5/50.9  68.8/68.7/51.7  55.6/55.7/51.5  68.1/68.4/64.7 | 52.9/52.9/41.6

SFT on AFRIDOC-MT (sentence)

NLLB-SFT 1.3B 31.4 47.9 54.7 30.2 49.8 38.8 47.0 53.0 41.3 50.8 44.5

SFT on AFRIDOC-MT (kysendo-docnmenl with 10) ‘ I

NLLB 1.3B | 32.8 48.0 54.6 29.6 49.9 | 524 524 56.3 471 54.8 n 47.8

Decoder-only ' ' "

Gemma2-IT 9B 5.7/6.2/5.7 39.9/42.1/34.5  46.7/51.0/38.7 6.6/6.6/6.4 14.9/14.8/15.4 | 34.7/35.9/34.0 ~ 49.4/50.1/48.2  55.4/57.7/53.6 ~ 45.7/48.2/40.7  48.4/51.7/45.8 34.7/36.4/32.3

LLama3.1-IT 8B 7.4/7.2/6.8 15.3/13.9/14.1  42.0/43.3/32.4 6.1/5.7/6.2 8.8/8.2/8.8 25.6/26.1/23.0  48.3/48.7/17.4  58.7/59.0/16.0 ~ 31.0/34.4/23.4  32.0/34.7/27.8 || 27.5/28.1/17.6

LLaMAX3-Alp 8B 10.9/10.8/11.4  30.5/27.8/32.5  35.5/38.1/29.0  11.2/11.5/12.0  26.1/24.1/26.0 | 28.5/29.4/29.0 ~ 50.4/51.4/48.5  58.5/54.3/62.4  22.5/24.7/21.8  48.7/48.3/48.8 || 32.3/32.0/32.1

GPT-3.5 - 13.2/13.4/13.5  28.7/28.7/29.7  72.1/71.7/72.0  12.4/12.2/12.7  33.8/35.1/33.8 | 36.8/38.5/38.5  56.2/56.3/54.5 T73.4/73.5/73.2 51.5/52.7/53.0  58.8/61.2/60.9 || 43.7/44.3/44.2

GPT-40 - 31.1/30.4/31.3  64.7/65.1/64.6  75.1/75.0/75.0 ~ 27.8/28.0/28.1  70.7/70.6/70.7 | 68.4/68.6/68.2 71.4/71.6/71.2 76.4/76.5/76.3 69.9/70.1/69.8 76.5/76.5/76.3 | 63.2/63.2/63.2

SFT on AFRIDOC-MT (sentence)

LLaMAX3-SFT 8B 21.3/21.5/21.7  29.1/27.9/29.9
LLama3.1-SFT 8B 20.4/20.9/21.0  30.6/30.8/30.0
SET on AFRIDOC-MT (pseudo-document with 10)
LLaMAX3-SFT 8B 34.7/36.4/37.7  54.1/58.1/58.6
LLama3.1-SFT 8B 22.6/23.5/23.7  47.0/45.2/46.7

36.3/37.0/34.7
38.3/38.5/40.0

64.7/62.9/68.3
58.6/57.2/51.4

30.2/30.1/30.5
32.8/32.3/33.4

47.2/47.9/49.3
49.7/47.2/49.5

21.4/24.2/21.2
12.2/22.0/23.9

31.3/31.4/31.7
26.3/29.3/28.2

22.0/27.6/26.0
27.2/28.6/28.9

58.9/56.5/60.9
43.8/40.0/41.4

65.4/63.5/64.2
59.9/55.8/60.9

68.2/66.3/68.5
58.0/56.1/65.4

29.5/32.3/30.0
33.5/28.7/36.9

70.7/70.8/73.1
35.8/51.3/71.1

23.6/28.5/26.2
29.1/29.7/32.2

67.5/66.2/67.7
44.1/57.2/66.3

27.4/29.0/27.9

29.7/29.8/27.1
28.0/28.7/30.7

29.5/26.2/32.3

60.3/59.8/62.0

71.4/69.3/71.6
48.6/49.4/54.3

66.1/60.1/66.4

Table 20: Performance results of various models on the pseudo-document-level task for the Tech domain, measured
using document level metric d-BLEU and d-CHRF.
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Model Setup eng — X X — eng

d-CHRF! Fluency! CE, LE, GE| d-CHRF{ Fluencyl CE| LE| GEl
Ambharic !
Ava-101 Sent 36.6 28 90 38 25 64.6 3.0 158 96 5.1
Docl0 | 287 25 89 29 21 616 36 126 85 38
GPTAS Sent 204 11 72 108 3.1 483 3.0 95 37 24
: Docl0 | 116 1.0 33 18 16 416 42 66 20 13
Sent 46.8 35 100 29 20 66.6 35 115 60 29
LLaMAX3-SFTy pocjg | 241 17 104 19 18 2.6 3.0 90 25 16
LLaMAX3-SFTyo  Docl0 |  37.8 26 73 18 16 64.0 41 87 46 27
Hausa
Ava-10] Sent 56.4 2.9 91 41 37 615 29 171 102 56
Docl0 | 485 2.9 83 23 19 623 32 146 84 45
GPTAS Sent 443 1.4 113 52 58 524 25 132 68 37
‘ Docl0 | 2311 11 74 29 28 527 41 92 41 23
Sent 62.5 32 95 40 35 58.9 29 96 41 30
LLaMAX3-SFT1 pocio | 290 23 88 23 19 2.9 26 90 30 19
LLaMAX3-SFT;o  Docl0 | 519 3.9 146 22 19 66.7 42 96 45 26
Swahili
Avalol Sent 447 13 95 50 34 70.8 33 175 99 48
y Docl0 | 347 1.8 82 50 30 712 38 141 98 40
GPTAS Sent 76.7 49 42 18 12 75.0 36 124 76 37
: Docl0 | 76.1 49 39 08 06 777 47 71 45 20
Sent 731 36 123 48 34 731 3.9 118 84 27
LLaMAX3-SFTy pocjg | 422 32 95 36 25 331 3.1 89 32 19
LLaMAX3-SFT;o  Docl0 | 744 44 105 36 22 77.8 46 89 62 27
Yoruba
Ava-101 Sent 312 12 82 54 31 579 23 238 136 68
Docl0 | 187 1.4 67 27 22 56.1 29 187 101 51
T3S Sent 213 11 78 55 39 521 26 129 50 33
' Docl0 | 10.1 1.0 41 23 21 517 3.9 90 36 21
Sent 575 40 123 38 27 647 32 122 61 31
LLaMAX3-SFTy pocj0 | 338 27 81 24 18 272 32 91 34 20
LLaMAX3-SFT;o  Docl0 | 522 42 103 24 17 718 44 102 59 24
Zulu
Ava101 Sent 58.6 27 137 60 36 67.4 29 191 122 86
Docl0 | 549 31 161 39 27 69.0 33 157 107 45
T3S Sent 511 15 209 100 6.1 595 26 150 88 57
' Docl0 | 292 13 101 40 32 61.1 40 108 53 29
Sent 675 33 124 55 36 70.5 36 125 72 38
LLaMAX3-SFTy - pocjo | 337 24 84 27 22 315 31 86 34 21
LLaMAX3-SFT;o  Docl0 |  55.0 36 121 30 20 741 44 94 55 25

Table 21: Document-level evaluation in the health domain, judged by GPT-40. Compares sentence- vs. document-
level outputs on Fluency (1-5 scale), Content Errors (CE), Lexical (LE), and Grammatical Cohesion Errors (GE).
Best scores in bold.
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Model Setup eng — X X — eng

d-CHRF! Fluency! CE, LE, GE| d-CHRF{ Fluencyl CE| LE| GEl
Ambharic !
Ava-101 Sent 373 32 99 34 33 65.2 29 193 112 58
Docl0 |  30.1 26 83 24 19 62.5 35 132 78 39
GPTAS Sent 2.6 13 85 42 33 474 2.4 80 36 24
: Docl0 | 135 11 43 20 19 385 36 75 28 17
Sent 03 32 16 30 24 63.0 33 142 79 34
LLaMAX3-SFTy - pocjo | 217 17 73 22 18 242 3.0 86 29 19
LLaMAX3-SFTyo  Docl0 | 377 2.9 85 25 17 65.4 40 106 54 25
Hausa
Ava-10] Sent 58.9 3.1 104 35 29 64.8 33 171 138 65
Docl0 | 550 38 17 25 21 655 35 140 109 45
GPTAS Sent 492 1.9 119 74 60 56.5 238 127 71 52
‘ Docl0 | 297 16 88 45 37 563 41 103 49 39
Sent 624 40 101 41 30 535 29 103 47 34
LLaMAX3-SFT1 - pocjo | 299 27 79 29 21 276 238 82 30 20
LLaMAX3-SFT;o  Docl0 |  58.6 43 119 24 21 68.5 45 87 43 20
Swahili
Ava-101 Sent 04 15 90 50 33 69.1 32 184 109 54
Docl0 | 517 2.9 93 29 19 63.8 34 153 104 46
GPTAS Sent 726 47 50 08 05 715 34 153 94 46
: Docl0 | 72.1 48 57 05 03 735 43 111 79 40
Sent 67.6 36 123 48 34 675 3.8 122 62 30
LLaMAX3-SFTy pocig | 370 28 77 30 25 323 29 87 29 23
LLaMAX3-SFT;o  Docl0 |  68.3 42 95 32 21 731 44 91 61 26
Yoruba
Ava-101 Sent 314 1.9 90 48 37 585 28 232 135 54
Docl0 | 223 23 71 25 21 55.7 32 138 80 44
T3S Sent 230 18 110 76 50 54.0 27 134 66 45
' Docl0 | 127 12 69 29 26 53.0 3.8 98 45 24
Sent 552 41 95 38 23 573 31 97 48 32
LLaMAX3-SFT: pocio | 305 27 71 24 18 28.5 32 84 24 18
LLaMAX3-SFT;o  Docl0 | 493 41 90 15 12 677 44 106 44 21
Zulu
Ava101 Sent 58.9 2.9 122 47 37 67.1 32 170 130 55
Docl0 | 550 34 104 37 24 68.4 36 154 100 46
GPTAS Sent 536 18 27 715 59 59.9 2.8 161 1.1 71
' Docl0 |  35.1 16 191 47 37 612 39 113 58 28
Sent 66.0 32 120 53 39 66.8 36 111 56 30
LLaMAX3-SFTy pocjo | 317 24 77 31 24 298 32 80 31 22
LLaMAX3-SFT;o  Docl0 | 609 35 110 40 24 716 44 87 59 34

Table 22: Document-level evaluation in the fech domain, judged by GPT-40. Compares sentence- vs. document-level
outputs on Fluency (1-5 scale), Content Errors (CE), Lexical (LE), and Grammatical Cohesion Errors (GE). Best
scores in bold.
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Prompt 1

{system_prompt}

Translate the following {source_language} text to {target_language}:
Provide only the translation.

{source_language} text: {{source_sentence}}

{target_sentence} text:

Prompt 2

{system_prompt}

Translate the following {domain} text from {source_language?} to
{target_language}:

Provide only the translation.

{source_language} document: {{source_document}}

{target_language} document:

Prompt 3

{system_prompt}

Please provide the {target_language} translation for the following
{source_language} text:{{source_document}}

Provide only the translation.

Prompt 1

{system_prompt}

Translate the following {source_language} document to {target_language}:
Provide only the translation.

{source_language} document: {{source_document}}

{target_language} document:

Prompt 2

{system_prompt}

Translate the following {domain} document from {source_language} to
{target_language}:

Provide only the translation.

{source_language} document: {{source_document}}

{target_language} document:

Prompt 3

{system_prompt}

Please provide the {target_language} translation for the following
{source_language} document:{{source_document}}

Provide only the translation.

Table 23: The task prompts used for evaluating LLMs are applied to both sentence-level and document-level
translation tasks.
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LLaMAXB-BB-EaFI GPT-40 Mﬁﬁuh (Eng = X)
—— Prompt 1
-~ —— Prompt 2

—— Prompt 3

Gemma-2-9B-IT LLaMAX3-8B-Alpaca
hau hau

Figure 15: d-chrF scores for some LLMs for sentence-level translation using different prompts when translating into
African languages

Gemma-2-9B-IT

LLaMAX3-8B-Alpaca
hau hau

LLaMAX3-8B-SF GPT-40 . Tech (Eng - X)
ha he ™
—— Prompt 1

— | — Prompt 2

Figure 16: d-chrF scores for some LLMs for sentence-level translation using different prompts when translating into
African languages

LLaMAX3-8B-Alpaca

U GPT-40 ‘I‘-(lgglth (X > Eng)

—— Prompt 1
~——  —— Prompt2
—— Prompt 3

Gemma-2-9B-IT

LLaMAX3-8B-SFT
hau hau

zul

Figure 17: d-chrF scores for some LLMs for sentence-level translation using different prompts when translating into
English

Gemma-2-9B-IT LLaMAX3-8B-Alpaca LLaMAX3-8B-SFT Tech (X - Eng)
au )

—_— Prompt 1

/. —— Prompt 2

—— Prompt 3

au au
swg swa
gmh g
yol yo)
zul zul
Figure 18: d-chrF scores for some LLMs for sentence-level translation using different prompts when translating into

English

27805



promptl
hau

prompt3
hau

Health (Eng - X)
— Gemma-2-9B-IT
~—— LLaMAX3-8B-Alpaca
—— LLaMAX3-8B-SFT
—— GPT-40

Figure 19: d-chrF scores for some LLMs for sentence-level translation using different prompts when translating into
African languages

promptl prompt3
hau hau

Tech (Eng = X)
—— Gemma-2-9B-IT
—— LLaMAX3-8B-Alpaca
—— LLaMAX3-8B-SFT

SW;
. — — GPT4o0

Figure 20: d-chrF scores for some LLMs for sentence-level translation using different prompts when translating into
African languages

Health (X - Eng)
— Gemma-2-9B-IT
—— LLaMAX3-8B-Alpaca
—— LLaMAX3-8B-SFT
—— GPT-40

Figure 21: d-chrF scores for some LLMs for sentence-level translation using different prompts when translating into
English

promptl prompt3
hau hau

Tech (X - Eng)
— Gemma-2-9B-IT
—— LLaMAX3-8B-Alpaca
—— LLaMAX3-8B-SFT
—— GPT-40

Figure 22: d-chrF scores for some LLMs for sentence-level translation using different prompts when translating into
English
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