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Abstract

Recent video generative models primarily rely
on detailed, labor-intensive text prompts for
tasks, like inpainting or style editing, limiting
adaptability for personal/raw videos. This pa-
per proposes RACCOON, a versatile and user-
friendly video-to-paragraph-to-video editing
method, supporting diverse video editing capa-
bilities, such as removal, addition, and mod-
ification, through a unified pipeline. RAC-
COON consists of two main stages: Video-to-
Paragraph (V2P), which automatically gener-
ates structured descriptions of scene and object
details, and Paragraph-to-Video (P2V), where
users can refine these to guide a video diffu-
sion model for flexible content edits, includ-
ing removing, changing, or adding objects.
Key contributions of RACCOON include: (1)
A multi-granular spatiotemporal pooling strat-
egy for structured video understanding, cap-
turing both global context and fine-grained ob-
ject details to enable precise text-based video
editing without complex human annotations.
(2) A video generative model fine-tuned on a
curated video-paragraph-mask dataset for im-
proved editing and inpainting. (3) The ability
to generate new objects by forecasting motion
via auto-generated mask planning. In the end,
users can easily edit complex videos with RAC-
CooN’s automatic explanations and guidance.
We demonstrate its versatile capabilities in
video-to-paragraph generation (up to 9.4%p 1
improvement in human evaluations), video con-
tent editing (relative 49.7% | in FVD).

1 Introduction

Recent advances in video generative models (Yan
et al., 2021; Hong et al., 2022; Esser et al., 2023;
Mei and Patel, 2023; Chai et al., 2023; Blattmann
et al., 2023; Wu et al., 2023a), including Sora (ope-
nai, 2024), have demonstrated remarkable capabil-
ities in creating high-quality videos. Simultane-
ously, video editing models (Geyer et al., 2023; Qi
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et al., 2023; Wang et al., 2024b; Yu et al., 2023; Wu
et al., 2024; Zhang et al., 2023b) have gained signif-
icant attention for enabling users to modify content
using user-written instructions. However, building
a versatile, user-friendly framework that facilitates
easy video modification for personal use remains
challenging. Key challenges are as follows:

1) Training a unified model for multiple edit-
ing tasks (e.g., add, remove, change objects) is
difficult (Yu et al., 2025), and most methods fo-
cus on narrow tasks, such as background inpaint-
ing (Yu et al., 2023; Wu et al., 2024), or attribute
editing (Geyer et al., 2023; Qi et al., 2023; Jeong
and Ye, 2023).

2) The need for well-structured prompts that ac-
curately describe videos and support diverse edit-
ing tasks is critical, as prompt quality directly im-
pacts model performance. However, generating
such prompts is costly and time-consuming, with
quality varying by annotator expertise. While Mul-
timodal Large Language Models (MLLMs) (Liu
et al., 2023b; Yang et al., 2023; Yu et al., 2024)
have been explored for automatic video descrip-
tion, they often miss key details in complex scenes,
limiting seamless and user-friendly editing.

To tackle these limitations, we introduce RAC-
COON: A Versatile Instructional Video Editing
with Auto-Generated Narratives, a novel video-to-
paragraph-to-video (V2P2V) generative method
that facilitates diverse video editing (Remove, Add,
and Change) capabilities based on auto-generated
video descriptions. RACCOON enables seamless
removal or modification of subject attributes and
addition of new objects in videos without the need
for densely annotated prompts or extensive user
input. RACCOON operates in two main stages:
video-to-paragraph (V2P) and paragraph-to-video
(P2V). In the V2P stage, we introduce a new video
descriptive module built on a pre-trained Video-
LLM backbone (PG-Video-LLaVA (Munasinghe
et al., 2023)). We find that existing Video-LLMs
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The video shows a woman walking down a busy city
street at night. She is wearing a red dress and
carrying a handbag. She stops to look at a building
and then walks away. The woman is also seen
walking down a rain-soaked street and looking at a
building

Video Description

Identified Objects and Descriptions /
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The black white leather jacket is
stylish and rugged, made from high-quality leather
with a smooth finish and classic design elements like
zippers and pockets.

\

N + [White Car]:_The white car is a modern
\ sedan with a glossy exterior, tinted windows.

W alloy wheels, and LED headlights. /

Figure 1: Overview of RACCOON, a versatile and user-friendly video-to-paragraph-to-video framework, enables
users to remove, add, or change video content via updating auto-generated narratives.

effectively capture holistic video features, yet often
overlook detailed cues that are critical for accurate
video editing, as users may be interested in alter-
ing these missing contexts. To address this, we
propose a novel multi-granular video perception
strategy that leverages superpixels (L.i and Chen,
2015; Ke et al., 2023) to capture diverse and in-
formative localized contexts throughout a video.
We first extract fine-grained superpixels using a
lightweight predictor (Yang et al., 2020) and then
apply overlapping k-means clustering (Cleuziou,
2007; Whang et al., 2015) to segment visual scenes
into various levels of granularity. The suggested
localized spatiotemporal segmentation assists the
LLM’s comprehension of objects, actions, and
events within the video, enabling it to generate
fluent and detailed natural language descriptions.
Next, in the P2V stage, we fine-tune a video in-
painting model to support multiple editing tasks us-
ing auto-generated detailed descriptions and object
masks. Then, by leveraging user prompts derived
from generated descriptions in the V2P stage, our
video diffusion model accurately paint correspond-
ing video regions, ensuring that textual edits are
faithfully reflected across various editing tasks.

To further support model training, we intro-
duce the Video Paragraph with Localized Mask
(VPLM) dataset comprising over 7.2K quality
video-paragraph data and 5.5K detailed object-
level captions with masks, annotated from public
datasets using GPT-4V (Achiam et al., 2023).

We emphasize that RACCOON enhances the
quality and versatility of video editing by leverag-

ing detailed, automatically generated prompts that
minimize ambiguity and refine the scope of gen-
eration. We validate the extensive capabilities of
the RACCOON in both V2P generation, text-based
video content editing, and video generation on Ac-
tivityNet (Krishna et al., 2017), YouCook2 (Zhou
et al., 2018a), UCF101 (Soomro et al., 2012),
DAVIS (Pont-Tuset et al., 2017), and our proposed
VPLM datasets. On the V2P side, RACCOON
outperforms several strong video captioning base-
lines (Li et al., 2023; Munasinghe et al., 2023;
Liu et al., 2023b), particularly improving by av-
erage +9.1%p on VPLM and up to +9.4%p on
YouCook?2 compared to PG-VL (Munasinghe et al.,
2023), based on both automatic metrics and hu-
man evaluation. On the P2V side, RACCOON
surpasses previous strong video editing/inpainting
baselines (Geyer et al., 2023; Qi et al., 2023; Wang
et al., 2024b; Yu et al., 2023; Wu et al., 2024) over
three subtasks of video content editing (remove,
add, and change video objects) over 9 metrics. Our
contributions are as follows:

1. Framework Contribution: RACCooN offers
a user-friendly, unified framework for diverse
video editing tasks, enhancing interpretability
and interaction by generating detailed, object-
centric descriptions and layout plans tailored to
editing goals, surpassing existing model combi-
nations.

2. Technical Contribution: We present a novel

multi-granular pooling strategy to capture local
video contexts, enhancing video comprehension
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by generating fluent and detailed descriptions in
a zero-shot setting. This enables users to create
new videos that retain the visual characteristics
of the input and support targeted context editing.

3. Training/Dataset Contribution: To enable
RACCooN to handle complex and diverse video
editing requests, we present the VPLM dataset,
comprising 7.2K high-quality video paragraphs
and 5.5K object-level caption-mask pairs. These
well-structured annotations enable accurate V2P
and P2V stages at both video and object levels.

2 Related Work

Video-to-Paragraph Generation. Recent video-
language tasks focus on generating comprehensive
textual descriptions for long and complex video
content (Shen et al., 2017; Krishna et al., 2017;
Wang et al., 2018; Tewel et al., 2022; Wu et al.,
2023b). Vid2Seq (Yang et al., 2023) introduces
a novel dense event captioning approach for nar-
rated videos, with time tokens and event bound-
aries. Video-LLaVA variants (Lin et al., 2023a;
Munasinghe et al., 2023) present a large multi-
modal model integrating text, video, and audio
inputs for generative and question-answering tasks.
Similarly, LLaVA-Next (Zhang et al., 2024) im-
proves zero-shot video understanding by transfer-
ring multi-image knowledge through concatenated
visual tokens. While these methods are effective
in video description, they often miss key contex-
tual details (Zhang et al., 2023a; Li et al., 2023).
RACCOON captures both holistic and object-level
details by leveraging localized spatiotemporal in-
formation, enhancing video editing and generation.

Prompt-to-Video Editing. Video editing (Cey-
lan et al., 2023; Liu et al., 2023c; Couairon et al.,
2023; Kondratyuk et al., 2023; Wang et al., 2023;
Zhang et al., 2023c¢) involves enhancing, modify-
ing, or manipulating video content for desired ef-
fects. VideoComposer (Wang et al., 2024b) of-
fers a multi-source controllable video generative
framework. TokenFlow (Geyer et al., 2023) adapts
text-to-image diffusion with flow matching for con-
sistent text-driven video editing. LGVI (Wu et al.,
2024) integrates an MLLM for complex language-
based video inpainting. These methods often focus
on specific tasks and may inadvertently alter unre-
lated regions due to limited contextual information.
Our V2P2V framework overcomes these limita-
tions by using auto-generated, detailed descriptions
to integrate key contexts into diverse editing tasks.

3 A Versatile Instructional Video Editing
with Auto-Generated Narratives

Conditional video generation and editing mod-
els struggle with complex scenes due to vague
text descriptions and limited video understand-
ing. To address this, we introduce RACCOON,
a user-friendly, two-stage video-to-paragraph-to-
video editing approach, with each stage detailed
in Sec. 3.1 and Sec. 3.2. We also introduce the
VPLM dataset, specifically curated to train models
for detailed video editing, along with the training
pipeline of RACCOON, detailed in Sec. 3.3.

3.1 V2P: Auto-Descriptive Module with
Multi-Granular Video Perception

Multimodal LLM for Video Paragraph Gener-
ation. In the V2P stage, the RACCOON gener-
ates well-structured, detailed descriptions for both
holistic videos and local objects. It employs a mul-
timodal LLM with three main components: a vi-
sual encoder F, a multimodal projector, and an
LLM. Given an input video x € RIXCxHxW
where F, C, H, and W represent the number
of frames, channels, height, and width, respec-
tively, we extract video features using the visual
encoder: e = E(x) € R>*"*wxd  Here, t, h,
w, and d denote the encoded temporal dimension,
the height and width of the tokens, and the fea-
ture dimension. To understand complex videos
with multiple scenes, we use three pooling strate-
gies: spatial pooling, temporal pooling, and multi-
granular spatiotemporal pooling. Spatial pool-
ing e = Pooling®(e) € R**? aggregates tokens
within the same frame, while temporal pooling
e! = Poolingt(e) € R("®)*d ayerages features
across the temporal dimension for the same re-
gion. Despite these strategies helping the LLM
grasp the video holistically in space or time, they
often overlook capturing key objects or actions lo-
calized throughout the video stream, especially in
untrimmed, dynamic, multi-scene videos.

Multi-Granular Spatiotemporal Pooling. To ad-
dress this issue, we introduce a novel superpixel-
based spatiotemporal pooling strategy, coined
multi-granular spatiotemporal pooling (MGS pool-
ing). As illustrated in Fig. 2 left top, this strategy
is designed to capture localized information via su-
perpixels across spatial and temporal dimensions.
Superpixels (Li and Chen, 2015; Yang et al., 2020;
Ke et al., 2023) are small and coherent clusters
of pixels that share similar characteristics, such as
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1
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| {Frame 1: [0.2, 0.0, 0.5, 0.7], . !

1

when the user doesn’t

I Prompt: Describe the Video |< -, provide layouts
! + (optional) Predict layout of |
| <Obj> to be added
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{Frame 1: [0.1, 0.1, 0.4, 0.25],

User edit: "remove <Obj>"

User edit: "change the
<Attr> of <Obj>"

0000«

Stage 2: Paragraph-to-Video (P2V)

Figure 2: Illustration of RACCOON. RACCOON generates video descriptions with the three distinct pooled visual
tokens, including Multi-Granular Spatiotemporal (MGS) Pooling. Next, users can edit the generated descriptions
by adding, removing, or modifying words to create new videos. Note that for adding object tasks, if users do not
provide layout information for the objects they want to add, RACCOON can predict the target layout in each frame.

color or texture. These clusters provide an efficient
representation of visual scenes and are resilient to
frame noise since they average out the pixel values
within each cluster, effectively smoothing out vari-
ations induced by noise. As shown in Fig. 3, we
use a lightweight superpixel predictor o(-) (Yang
et al., 2020) to generate superpixels across video
frames, capturing the granular visuality of each
local area. However, due to their limited cover-
age area, these fine-grained visual features often
fail to capture attribute-level semantics, such as
objects and actions (Zhang et al., 2023a; Li et al.,
2023). Motivated by the importance of varying the
compositions of multiple superpixels for different
contexts in video understanding, we propose the
use of overlapping k-means clustering (Cleuziou,
2007; Whang et al., 2015) for the obtained video
superpixels, which improves the granularity from
fine to coarse. This approach allows the LLM
to gather informative cues about various objects
and actions. We first obtain the pixel features and
the superpixel index vector for the video pixels:
S,9 = o(x, ginit), Where giyi; is the input super-
pixel indices, initialized by a region-based grid.
Given the averaged pixel features of each super-
pixel, S € RI91%% where d, denotes the pixel

feature size, we generate the MGS tokens e’

m = OKM (57]{:’0) c {0’ 1}lc><F><H><W7 (1)
e! = AvgPool(m) ® e € RF*¢,

where OKM represents the overlapping k-means
algorithm with £ centroids and overlap scale v for

each cluster. m denotes the set of binary masks
for superpixels. @ denotes tensor multiplication.
We describe the detailed MGS process and ablation
of pooling strategies in the Appendix. Next, we
concatenate the pooled video tokens and map them
into the text embedding space using the multimodal
linear projector. Combined with the embedding of
the encoded text token e from the textual prompt,
the LLM generates a well-structured and detailed
description a of the video:

e

CONCAT[e®; el;el] - W,

(2)
LLM (coNcart[e?; e]),

a =

where W e R4 is the weight matrix for linear
projection into the text embedding dimension d’.
We highlight that our video description module
serves as an integrated, user-interactive tool for
video-to-paragraph generation and video content
editing. (Fig. 2 top right).

3.2 P2V: User-Interactive Video Editing with
Auto-Generated Descriptions

With the well-structured, detailed, and object-
centric video description generated from the Video-
to-Paragraph stage, users can ‘read’ the video
details and interactively modify the content by
altering the model-generated description. This
approach shifts users’ focus from labor-intensive
video observation to content editing. We categorize
general video content editing into three important
subtasks: (1) Video Object Adding: add extra
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Figure 3: Illustration of MGS pooling. We obtain
MGS pooling tokens using a spatiotemporal mask m
via overlapping k-means clustering (OKM) of averaged
superpixel features S.

objects to a video. (2) Video Object Removing:
delete target objects and re-generate the object re-
gion as the background. (3) Video Object Chang-
ing: change objects’ attributes (e.g., color, textural,
material). Many previous works have made great
progress in video editing (Wu et al., 2024; Geyer
et al., 2023; Qi et al., 2023; Zhang et al., 2023b;
Fan et al., 2024), but usually focus on one of these
subtasks. In this paper, we propose a unified gener-
ative model for video content editing that integrates
all those crucial subtasks. Specifically, we formu-
late these subtasks as text-based video painting
tasks and leverage a single video diffusion model
for adding, removing, and changing video objects
in the form of inpainting.

As shown in Fig. 2 bottom, our video diffusion
model processes input video x € REXCxHxW
with a predicted binary mask m’ e RF*1xHxW
targeting specific regions for modification. Follow-
ing image inpainting techniques (Xie et al., 2023;
Rombach et al., 2022), we apply the mask! to the
video to designate the editing region. The masked
video is then encoded using a Variational Autoen-
coder (VAE (Kingma and Welling, 2013)) to serve
as the generation condition. The model can then be
informed on which video region should be edited
for localized editing. Driven by the detailed de-
scription, the diffusion model can conduct diverse
video editing that reflects the text prompts.

In addition, we provide details regarding the
process of adding objects in video editing. In-
deed, adding objects can be considered a unique
video editing task, distinct from removing objects
or changing attributes. Unlike the latter scenarios,

'We use image grounding (Liu et al., 2023d) and video
tracking models (Cheng et al., 2023) as the off-the-shelf mask
predictor in inference.

where the target objects are already present in the
initial video, adding objects involves introducing
entirely new elements, which necessitates a mod-
ified editing process. As illustrated in Fig. 2, the
MLLM in V2P provides not only detailed descrip-
tions but also frame-wise placement suggestions for
new objects in the form of bounding box sequences.
The object insertion process in RACCooN in infer-
ence is conducted through the following steps:

1. User Edit: The user provides an instruction to
add a specific object.

2. MLLM Output: The finetuned MLLM in V2P
generates fine-grained video descriptions along
with frame-wise bounding box suggestions for new
objects. For example, “Layouts of <Obj> to be
added: {Frame 1: [0.2, 0.0, 0.5, 0.7], Frame
2: [0.2, 0.1, 0.4, 0.65], ...} specifies the
layout for each frame, where [x1, y1, x2, y2]
represents the top-left and bottom-right corners of
the bounding box, with coordinates normalized to
the range [0, 1] (yellow box in Fig. 2, top right).

3. Video Editing: Generate videos based on the
MLLM-generated output, including the frame-wise
layout of the object to be added.

3.3 VPLM Dataset Collection and
RACCOON Pipeline Training

Dataset Collection. We utilize video datasets (Ma-
jumdar et al., 2020; Gavrilyuk et al., 2018) from
previous video inpainting work (Wu et al., 2024).
Each raw video is accompanied by multiple in-
painted versions with specific objects removed
and includes binary masks of these objects. Al-
though well-annotated with object masks and in-
painted backgrounds, these datasets lack detailed
descriptions of holistic video and specific local
objects, hindering RACCOON’s training for pro-
ducing well-structured captions for video editing.
To address this, we use GPT-4V (Achiam et al.,
2023) to annotate detailed video descriptions. We
first re-arrange uniformly sampled video frames
into a grid-image (Fan et al., 2021) and add visual
prompts by numbering each frame. We then ask
GPT-4V to generate detailed captions for both the
entire video and key objects, in a well-structured
format. Next, we train V2P and P2V stages in
our pipeline separately (Fig. 2). In the end, RAC-
COON can automatically generate detailed, well-
structured descriptions for raw videos and adapt
these descriptions based on user updates for various
video content editing tasks.

MLLM Instructional Fine-tuning. To enable the
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MLLM to output detailed video descriptions for
content editing, we construct an instructional fine-
tuning dataset based on VPLM with two video-
instruction (Liu et al., 2023b) designs: (1) For
object editing and removal, the MLLM generates
structured video captions identifying key objects
in the original video x, using annotated descrip-
tions as the learning objective. This allows users to
edit videos directly from these descriptions with-
out exhaustive analysis. (2) For object insertion,
the MLLM provides not only detailed descriptions
but also frame-wise placement suggestions for new
objects, enhancing its utility in video editing by
avoiding manual trajectory outlining. For train-
ing, we convert video object segmentation masks
into bounding boxes by selecting maximal and
minimal coordinates and follow the box planning
strategy using LLMs (Lin et al., 2023b). We in-
put box coordinates as a sequence of numbers and
train RACCOON to predict these layouts given in-
painted videos Z. We perform parameter-efficient
fine-tuning with LoRA (Hu et al., 2022)? on these
mixed datasets with CE loss. We freeze the visual
encoder and LLM backbone, updating the projec-
tor, LoORA, and LLM head.

Video Diffusion Model Fine-tuning. Our video
diffusion model builds on the prior image in-
painting model (Rombach et al., 2022), enhanced
with temporal attention layers to capture video
dynamics. The model is designed to generate
video that aligns with input prompts, focusing on
object-centric video content editing. To support
this, we develop a training dataset of mask-object-
description triples. We use GPT-4 to produce
single-object descriptions from long, detailed video
narratives, framing this task as a multi-choice QA
problem. Next, for the three video editing subtasks,
we design specific input-output combinations: (1)
Video Object Addition: Inputs: inpainted video Z,
object bounding boxes from segmentation masks
m, and detailed object description p. Output: orig-
inal video x. (2) Video Object Removal: Inputs:
original video x, object segmentation masks m,
and a fixed background prompt. Output: inpainted
video Z. (3) Video Object Change: Inputs: orig-
inal video x, object segmentation masks m, and
object description p. Output: original video . The
model is fine-tuned following the prior work (Wu
et al., 2023a), updating only the temporal layers

>We employ LoRA for query and value for each self-
attention.

and the query projections within the self-attention
and cross-attention modules. We employ the MSE
loss between generated and random noise. See Ap-
pendix for more details on the dataset and training.

4 Experimental Results

Tasks & Datasets: We evaluate RACCOON
on diverse video datasets across tasks, includ-
ing video captioning (YouCook2 (Zhou et al.,
2018a), VPLM), text-based video content edit-
ing (DAVIS (Pont-Tuset et al., 2017), VPLM),
and conditional video generation (ActivityNet (Kr-
ishna et al., 2017), YouCook2 (Zhou et al., 2018a),
UCF101 (Soomro et al., 2012)).

Metrics: For each task, we evaluate our approach
with various metrics. (1) Video Caption: fol-
lowing previous works (Yang et al., 2023; Zhou
et al., 2018b), we conduct a comprehensive human
evaluation and adopt general metrics for our long
video descriptions, including SPICE (Anderson
et al., 2016), BLEU-4 (Vedantam et al., 2015), and
CIDEr (Vedantam et al., 2015). (2) Video Object
Layout Planning: following the prior work (Lin
et al., 2023b), we evaluate RACCOON for object
layout planning by bounding box IoU, FVD (Un-
terthiner et al., 2019), and CLIP-score (Radford
et al., 2021). (3) Text-based Video Content Edit-
ing: following prior works (Geyer et al., 2023;
Ceylan et al., 2023; Yang et al., 2024), we evaluate
RACCOON’s video editing capabilities by CLIP-
Text, CLIP-Frame, Qedit (Yang et al., 2024), and
SSIM (Hore and Ziou, 2010). (4) Conditional
Video Generation: we measure FVD (Unterthiner
et al., 2019), CLIP-Score (Radford et al., 2021),
and SSIM (Hore and Ziou, 2010). Implementation
details are provided in the Appendix.

4.1 Video-to-Paragraph Generation

Video-Paragraph Alignment. We conducted
a quantitative evaluation of our proposed RAC-
COON’s video-to-paragraph generation capabili-
ties, comparing it against strong baselines with a
focus on object-centric captioning and object lay-
out planning. The results, summarized in Tab. 1,
show that open-source video-LLMs (e.g., PG-VL,
Video-Chat), which have smaller LLMs (< 13B
parameters), struggle with object-centric caption-
ing and usually fail to generate layout planning.
This is primarily due to their lack of instructional
fine-tuning and insufficient video detail model-
ing without multi-granular pooling. In contrast,
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Methods S B C IoU FVD CLIP

open-source MLLMs

LLaVA (Liu et al., 2023b) 174 275 185
Video-Chat (Li et al., 2023) 182 253 19.1
PG-VL (Munasinghe et al., 2023)  18.2 274 14.6

proprietary MLLMs
Gemini 1.5 Pro (Team et al., 2023) 19.2 23.5 11.0
GPT-4o (gpt 40, 2024) 20.6 28.0 374

RACCoON 231 31.0 335

0.115
0.179

371.63
447.67

432.42

0.978
0.977

0.218 0.983

Table 1: Single Object Prediction on VPLM test set.
Metrics indicate: S: SPICE, B: BLEU-4, C: CIDEr.

Methods Logic Lang. Summ. Details Avg.
Ground Truth 66.7 422 41.7 722 557
PG-VL (Munasinghe et al., 2023)  77.2 81.1 69.4 62.8 72.6
RACCOON 80.6 85.0 72.2 722 715

Table 2: Results of Human Evaluation on YouCook?2.
We measure the quality of the description through four
metrics: Logic Fluency (Logic), Language Fluency
(Lang.), Video Summary (Summ.), and Video Details
(Details). We report the normalized score s € [0, 100].

Change Object

Remove Object

Add Object

Model

CLIP-T1 CLIP-F? Qedit?

FVD| SSIM{ PSNR?

FVD| SSIM{ PSNR?

Inversion-based Models

LOVECon (Liao and Deng, 2023) 29.36 94.77 1.29  1319.51 60.40 17.78 1433.12 58.51 17.35
FateZero (Qi et al., 2023) 25.18 94.47 1.01 1037.05 47.35 15.16 147480 47.65 15.45
TokenFlow (Geyer et al., 2023) 29.25 96.23 1.31 1317.29 47.06 1583 137320 4995 1595
Inpainting-Based Models
Inpaint Anything (Yu et al., 2023) 24.86 92.01 1.01 383.81 8233 27.69 71259 77775 2241
LGVI (Wu et al., 2024) 23.82 95.33 1.04 915.24 56.16 19.14 144543 4793 16.09
VideoComposer (Wang et al., 2024b)  27.61 94.18 1.25 827.04 4734 1755 115190 48.01 15.76
PGVL + SD-v2.0-inpainting 24.01 90.11 1.01 282.31 8233 27.69 1579.65 4321 15.76
RACCoON 27.85 9478  1.15 162.03 84.38 30.34 415.82 77.81 23.38

Table 3: Results of Video Content Editing on three sub-tasks on VPLM test. We gray out models that conduct
the DDIM inversion process and have a different focus on our inpainting-based model.

RACCOON demonstrates superior performance
in both object-centric captioning and complex ob-
ject layout planning, benefiting from the instruc-
tional tuning on our VPLM dataset. Additionally,
our method achieves competitive performance with
proprietary MLLMs (e.g., Gemini 1.5 Pro, GPT-
40) in key object captioning and layout planning,
demonstrating its superior instruction following
and generation quality.

Human Evaluation & Qualitative Examples. We
conducted a human evaluation to compare our auto-
generated captions with those from a strong base-
line and human annotations on ten randomly se-
lected YouCook?2 videos (each three to five min-
utes long with multiple scenes and complex view-
points). Five evaluators rated these based on Logic
Fluency, Language Fluency, Video Summary, and
Video Details (details in the supplementary mate-
rial). The average scores for each criterion and
their overall mean are illustrated in Tab. 2. Our
method significantly surpassed both the PG-VL-
generated and ground truth captions in all metrics,
showing a 4.9%p and 21.8 % p absolute improve-
ment respectively, and matched the ground truth
in capturing Video Details with a 9.4%p enhance-
ment over the baseline, highlighting RACCOON’s

superior capability in capturing video details. We
additionally visualize descriptions generated by
RACCOON using a well-known generated video
from the Sora (openai, 2024) generated demo ex-
ample. As shown in Fig. 4 (in the supplementary
material), it demonstrates our robust capability to
auto-describe complex video content without hu-
man textual input.

4.2 Instructional Video Editing with
RACCoON

Quantitative Evaluation. As shown in Tab. 3,
we quantitatively compare the video editing abil-
ity of RACCOON with strong video editing mod-
els based on inpainting or DDIM-inversion (Hertz
et al., 2022) across three object-centric video con-
tent editing subtasks: object changing, removal,
and adding. In general, RACCOON outperforms
all baselines across 9 metrics. For object changing,
RACCOON outperforms the best-performing base-
line by 0.8% on CLIP-T, indicating better video-
text alignment while maintaining temporal con-
sistency, as demonstrated by comparable CLIP-
F and Qedit scores. Note that LGVI is not de-
signed to alter video attributes and tends to pre-
serve video content with marginal change (i.e.,
identical input and output videos), resulting in im-
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+ [Black Dog]: A medium-sized black
dog with distinct tan markings on its
legs and snout. It wears a collar and
exhibits high energy as it sprints across
the lawn with its tongue out in a playful

+ [Woman]: A casually dressed woman
sporting a buttoned pink shirt and light
blue_denim jeans, Her blonde hair is tied
back in a ponytail, and she wears white
sneakers suitable for walking. She displays
a relaxed demeanor while strolling with

her dog.

| stance.

{Brewn-Deg] [Raccoon]: A medium-sized,
i raccoon with a sturdy

build and alert ears. Its tail wags
enthusiastically as it leads the playful
chase in the forest, displaying a sense of
happiness and energy.

[Woman]: Dressed in a casual-outfit-of
bl denim hort: nd- h i; I\

dinning dress. She accessorizes with pink
flip-flops and is engaged in the action of
putting a leash on her dog, showing signs

[Giant—Panda] [Brown Bear]: A large,

i brown bear with a |
distinct, dense coat. It is shown playfully
climbing and balancing on the wooden
beams of its enclosure. It has a round
face, large black eye patches, and is
quite agile for its size.

[Basketball Player in—White}: A male |
player sporting a—white—shirt—and—dark
shorts i

i li /]
actively engaging in play. He exhibits |
agility and focus as he positions himself
to intercept or rebound the basketball.

of preparing for a walk.

Figure 4: Qualitative Comparison between RACCOON and other baselines. Baseline names are abbreviated:
VC: VideoComposer, I-A: Inpainting Anything, TF: TokenFlow. We underlined visual details in our caption. More

visualizations are in the supplementary material.

proved CLIP-F scores. In the object removal task,
RACCOON shows significant improvements over
strong baselines (relatively +57.8% FVD, +2.5%
SSIM, +9.6% PSNR). Such improvements are
maintained in the addition task (relatively +41.6%
FVD, +4.3% PSNR). Meanwhile, some DDIM
inversion-based models (e.g., TokenFlow (Geyer
et al., 2023)) work well for specific tasks (change
objects), but do not handle other types of editing.
In contrast, our method is an all-rounder player.
We further emphasize that a simple combina-
tion of existing models cannot achieve an effec-
tive video editing pipeline, leading to inferior
instruction-following and editing abilities. This
is evident in the degraded performance of open-
source Video-LLM baselines (Tabs. 1 and 2) and
other video editing models (Tab. 3). To address
these limitations, we made unique novelty in tech-
nical and dataset contributions and achieved signif-
icant improvements in both video understanding
and editing. This is evident in the comparison of
RACCOON with a multi-agent baseline combining

a powerful open-source video reasoning and video
diffusion models (PG-Video-LLaMA + StableDif-
fusion 2.0-inpainting) in Tab. 3. RACCOON out-
performs the PGVL + SD 2.0-inpainting by a sig-
nificant margin across all metrics and editing tasks,
highlighting the effectiveness of our proposed edit-
ing method.

Visualization. In Fig. 4, we compare videos gener-
ated by RACCOON with several SoTA baselines
across three video content editing tasks. For ob-
ject removal, RACCOON demonstrates superior
results, naturally and smoothly inpainting the back-
ground, whereas VideoComposer generates unex-
pected content and LGVI fails to accurately remove
objects across frames. For object addition, com-
pared to Inpainting-Anything and VideoComposer,
which often miss objects or produce distorted gen-
erations, RACCOON generates objects with more
fluent and natural motion, accurately reflecting cap-
tion details (e.g., the collar of the dog, the pink
shirt, and blue jeans for the woman). For chang-
ing objects, our method outperforms inpainting-
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Settings FVD| SSIM?  PSNR?
add object

RACCoON 415.80 77.81 23.38

w/o detail caption 476.01 76.80 23.14

w/o oracle planning ~ 969.95 76.65 21.21
remove object

RACCoON 162.03 84.38 30.34

w/o oracle mask 398.01 81.60 27.15

Setting CLIP-T CLIP-F  Qedit
change object

RACCoON 27.85 94.78 1.15

w/o oracle mask 27.23 94.33 1.14

Table 4: Ablation on video object changing, remov-
ing, and adding with different inputs.

based VideoComposer and inversion-based Token-
Flow. RACCOON accurately re-paints objects to
achieve object editing for color (white—blue) and
type (dog—raccoon), while others struggle to meet
requirements.

Ablation Studies. As shown in Tab. 4, we further
validate the effectiveness of components by replac-
ing detailed descriptions with short captions, and
oracle masks/planning boxes with model-generated
ones. In adding objects, our detailed object descrip-
tions can benefit generation by providing accurate
details, leading to improved quantitative results
(relatively +14.4% FVD). We further replace GT
boxes with boxes predicted by RACCOON, and
still show superior performance over other baseline
methods with oracle boxes in Tab. 3. It demon-
strates that our V2P stage can thus automatically
generate planning from a given video to eliminate
users’ labor. Next, in object removal and changing,
we replace the oracle masks with grounding (Liu
etal., 2023d) and tracking (Cheng et al., 2023) tools
generated mask, which shows a marginal decre-
ment for changing objects, and RACCOON still
shows strong results over other baselines in Tab. 3
with oracle masks. It suggests that RACCOON is
effective and robust to handle diverse editing skills
in a non-orcale setting (See the appendix).

5 Conclusion

We newly introduce an auto-descriptive video-to-
paragraph-to-video generative approach. We auto-
matically generate video descriptions by leveraging
a multi-granular spatiotemporal pooling strategy,
enhancing the model’s ability to recognize detailed,
localized video information. Our approach then
uses these enriched descriptions to edit and gen-
erate video content, offering users the flexibility

to modify content through textual updates, thus
eliminating the need for detailed video annotations.
Our video editing and generation abilities highlight
notable effectiveness and enable a broader range of
users to engage in video creation and editing tasks
without the written textual prompts.

Limitations

Our proposed RACCOON has shown a remarkable
ability to interpret input videos, producing well-
structured and detailed descriptions that outperform
strong video captioning baselines and even ground
truths. However, it has the potential to produce
inaccuracies or hallucination (Liu et al., 2023a;
Wang et al., 2024a; Zhou et al., 2024; Ma et al.,
2023) in the generated text outputs. In addition,
the performance of RACCOON in paragraph gen-
eration, video generation, and editing is influenced
by the employed pre-trained backbones, including
an LLM (Touvron et al., 2023), base Inpainting
Model (Rombach et al., 2022), Video Diffusion
Model (Xing et al., 2023), and Video Editor (Geyer
et al., 2023). However, our key contributions are
independent of these backbones, and we empha-
size that RACCOON’s capabilities can be further
enhanced with future advancements in these gener-
ative model backbones.

LLM-empowered video description and photo-
realistic video creation/editing inherit biases from
their training data, leading to several broader im-
pacts, including societal stereotypes, biased inter-
pretation of actions, and privacy concerns. To mit-
igate these broader impacts, it is essential to care-
fully develop and implement generative and video
description models, such as considering diversify-
ing training datasets, implementing fairness and
bias evaluation metrics, and engaging communities
to understand and address their concerns.
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Appendix
In this appendix, we present the following:

¢ More details about VPLM dataset collection
(Sec. A.1), experimental setups (Sec. A.2),
more implementation details (Sec. A.3).

» Additional analysis
(Sec. B.2, Sec. B.1).

including ablations

* Additional qualitative examples with RAC-
CoOON on video content editing (Sec. B.3).

A Experimental Setup

A.1 VPLM data collection.

As we mention in Sec. 3.3, to facilitate our model
training, we start from open-source video inpaint-
ing data (Wu et al., 2024) to build a high-quality
dataset that includes the well-structured, detailed
caption for both video and each object in the video.
Specifically, we leverage GPT-4V # to annotate
each video. As shown in Fig. 6, we first convert
a video to a superimage (Fan et al., 2021) by con-
catenating uniformly sampled frames, and we also
draw frame IDs on each frame as a visual prompt
to present temporal order. Then we prompt the
GPT-4V by providing a detailed prompt with in-
context examples (left of Fig. 6). In this case, we
obtained well-structured, detailed captions that con-
tain both holistic video and local objects (bottom
right of Fig. 6). To ensure the annotation qual-
ity, we sampled 1 annotated video from each 100
batches and then did a human cross-check, and
refined the batch annotations according to the sam-
pled example. Through this pipeline, we obtained
7.2K high-quality quality well-structured, detailed
video descriptions with an average of 238.0 words
for each video.

Next, to obtain paired object-mask-description
triplets for video inpainting model training, we
build an automatic detailed object caption and ob-
ject name matching pipeline using GPT4. As in
our base dataset (Wu et al., 2024), we already have
class labels for each object mask, we framed this
matching as a multi-choice QA to ask GPT4 which
object caption can in Fig. 6 matched to the given ob-
ject classes. We further filtered out the triplets with
too small masks (< 1% mask areas.) In this case,

SMIT License:
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“version 1106
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we obtained 5.5K object-mask-description triplets
with an average of 37.2 words for each object to
support our video diffusion model training.

A.2 Benchmarks and Datasets Details

As mentioned in the main paper (Sec. 4), we
evaluate our proposed RACCOON on various
tasks. For video-to-paragraph generation, we test
our model on the standard video caption dataset
YouCook2 (Zhou et al., 2018a) (validation set) as
well as our VPLM dataset. We next test video
content editing with three subtasks on our VPLM
dataset. Regarding the experiments of incorpo-
rating RACCOON with other conditional video
generation models, we test RACCOON on diverse
videos from ActivityNet, YouCook2, and UCF101.
We uniformly selected 100 videos from those 3
datasets to build the test bed. For the experiments
of incorporating RACCOON with other video edit-
ing models, we follow the previous work (Geyer
et al., 2023), and select 30 unique videos from the
DAVIS dataset. For each video, we annotate two
different types of editing, attribute editing and in-
stance editing. It leads to 60 text-video pairs in our
video editing evaluation. We choose object cap-
tions that contain the same keywords for editing in
human captions to represent the model-generated
caption.

A.3 Implementation Details

In V2P generation, we set k& = [20,25] and
v = [5, 6] for superpixel clustering. We use CLIP-
L/14@336 (Radford et al., 2021) as the image en-
coder and Vicuna-1.5 (Zheng et al., 2024) as the
LLM. Our P2V model starts from StableDiffusion-
2.0-Inpainting (Rombach et al., 2022). We split
the VPLM datasets into train and test sets, with
the test set containing 50 unique video-paragraph
pairs (for V2P) and 180 mask-object-description
triples (for P2V). We manually annotate the edit-
ing prompts for the object-changing subtask. We
quantitatively compare RACCOON and other base-
lines on the VLPM test set. To focus on generation
results rather than grounding ability, we apply the
same ground truth masks and captions to all meth-
ods for P2V evaluation. See the supplementary
material for more details on datasets, metrics, im-
plementations, ablations, and qualitative analysis.

Metrics: We provide more details about our met-
rics. CLIP-Text measures the similarity between
the edit prompt and the embedding of each frame
in the edited video. CLIP-Frame computes the
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RACCooN Generated Paragrép;\s

Object Catalog:

ﬁhe video shows a woman walking down a busy city street at night. She is wearing a red dress and carrying a handbag. She stops to look m
building and then walks away. The woman is also seen walking down a rain-soaked street and looking at a building. She then walks away again.
The video also shows a man walking down the street and looking at a building. The woman is also seen walking down a street and looking at a
building. The video ends with a woman walking down a street and looking at a building. Overall, the video captures the busy and bustling
atmosphere of a city at night. The woman's red dress and handbag stand out as she walks down the street, and her attention to the buildings she
looks at adds depth to the scene. The man walking down the street also adds to the overall sense of a busy urban environment.

1. Woman: A stylish woman wearing a black leather jacket, a long red dress, and black boots. She carries a black purse and has sunglasses on.
2. Traffic lights: There are traffic lights visible in the background, indicating that the street is a busy intersection.

3. Building: A large, multi-story structure with a prominent presence in the background. It might be a commercial or residential building.

4. Handbag: A small, handheld accessory carried by the woman. It could be used for holding personal belongings or as a fashionable accessory. J

Figure 5: Qualitative V2P example of our RACCOON on Sora video.

average CLIP similarity between the image em-
beddings of consecutive frames to measure the
temporal coherence. SSIM measures the struc-
tural similarity between the original and edited
video for evaluating localized editing. Qcqir =
CLIP —T/Wrap — Err, it is a comprehensive
score for video editing quality, where Warp— Err
calculates the pixel-level difference by warping
the edited video frames according to the estimated
optical flow of the source video, extracted by
FlowNet2.0 (Ilg et al., 2017). For layout planning,
we compute the FVD and CLIP-Image similarity
between the ground truth and the predicted bound-
ing box.

More Details about Multi-granular Spatiotem-
poral Pooling. As mentioned Sec. 3.1, we pro-
posed a novel Multi-granular Spatiotemporal Pool-
ing (MGS Pooling) to address the lack of complex
spatial-temporal modeling in video. We further
provide a more intuitive visualization for our pro-
posed MGS Pooling in Fig. 3. We first adopt a
lightweight 165 superpixel predictor that generates
superpixels across video frames, then use the over-
lapping k-means clustering for the obtained video
superpixels. In this case, we gather informative
cues about various objects and actions for LLM.
Human Evaluation on Video-to-Paragraph Gen-
eration. We conduct a human evaluation on nine
randomly selected videos from the YouCook2
dataset. Videos are three- to five-minute-long
and contain multiple successive scenes with com-
plex viewpoints. We provide these videos to
four different annotators with ground truth cap-
tions, descriptions generated by PG-Video-LLAVA,

and our method, RACCOON, where the cap-
tions/descriptions for each video are randomly shuf-
fled. We leverage four distinct human evaluation
metrics: Logic Fluency (Logic), Language Flu-
ency (Language), Video Summary (Summary) and
Video Details (Details). To avoid a misinterpreta-
tion of methods’ capabilities due to relative evalu-
ation, we instruct the annotators to independently
rate the quality of each set of captions based on
these four different criteria, by giving a score from
1to 5 (i.e., choice: [1, 2, 3, 4, 5]).

Off-shelf Video Editing Models. We utilize To-
kenFlow (Geyer et al., 2023) and FateZero (Qi
et al., 2023) as our video editing tools. Token-
Flow generates a high-quality video correspond-
ing to the target text, while preserving the spatial
layout and motion of the input video. For SSIM
computation, we compute SSIM for the region-of-
no-interest since we want to keep those regions
unchanged. We first mask out regions of interest
with the ground truth mask provided by the DAVIS
dataset, then we compute SSIM on masked images
and conduct mean pooling as the video-level met-
rics.

Off-shelf Conditional Video Generation Mod-
els. We leverage both VideoCrafter (Chen et al.,
2023) and DynamiCrafter (Xing et al., 2023) as
our video generation backbone. VideoCrafter
is one of the SoTA video generation models
that can handle different input conditions (im-
age, text). DynamiCrafter is based on the open-
source VideoCrafter and T2I Latent Diffusion
model (Rombach et al., 2022), and was trained
on WebVid10M (Bain et al., 2021), it provides bet-
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GPT4 Prompt

Please carefully analyze the provided video. Please carefully analyze the provided video. The video is
presented as frame sequences, and they are placed in a top-left to bottom-right order as the temporal order (the
top-left is the start frame, the bottom-right is the end frame, and there are frame indexes 1,2,3,4,5,6 on each
frame).

Please focus on two tasks (1) providing a short and well-organized holistic video description including main
objects, actions, and events; (2) identifying and cataloging (up to five) significant objects within this video.

Ensure that your analysis adheres to the structure outlined below, prioritizing objects that are clear, discernible,

and integral to the overall context of the video. Your descriptions should be rich in detail, capturing key

attributes such as color, shape, actions, styles, movements, and any distinct features. Strive for precision and
to aid in P and ease of refc

Format for Video Description (Ensure to avoid repetitive descriptions and avoid frame-by-frame
descriptions.):

Video Description: Drone view of waves crashing against the rugged cliffs along Big Sur's garay point beach.
The crashing blue waters create white-tipped waves, while the golden light of the setting sun illuminates the
rocky shore. A small island with a lighthouse sits in the distance, and green shrubbery covers the cliff's edge.
The steep drop from the road down to the beach is a dramatic feat, with the cliff's edges jutting out over the
sea. This is a view that captures the raw beauty of the coast and the rugged landscape of the Pacific Coast

Superimage as Video

®

Video Description
A caretaker at a wildlife sanctuary is engaging with a giant panda in a lush green

Highway.

Example Format for Listing Identified Object Names and their Descriptions:

black purse. She wears sunglasses and red lipstick. She walks confidently and casually.
... (Continue if there are other significant objects)

Hints for Objects in the Video:
1. Panda

objects if they are part of a larger, significant item or scene.
your mind according to your descriptions.

not provide or notes for the

d captions.

1. Woman: A stylish woman. She wears a black leather jacket, a long red dress, and black boots, and carries a

Number each object uniquely, ensuring your descriptions are both concise and thorough, providing clear
insight into each object's appearance and its significance within the video. Highlight any relationships between

Your descriptions should excel in clarity, detail, and specificity, ensuring you can reconstruct the objects in

Ensure the output contains objects in the provided hints. Ensure the output length is less than 400 words. Do

bamboo forest. The video depicts a series of frames showing the caretaker in a light
grey uniform, approaching and interacting with the panda. He gently assists the
panda as it climbs over a log structure designed to mimic the animal's natural
habitat. The environment is serene, surrounded by dense greenery and the sounds
of nature, focusing on conservation and animal care.

Identified Object Names and Descriptions
1. Giant Panda: A large, distinctive black and white bear known for its docile
temperament and strong association with conservation efforts. Its black ears, eye
patches, legs, and a band across its shoulders are contrasted sharply with its white
face and body.

2. Caretaker: An adult male wearing a light grey uniform jacket with green
embroidery symbolizing a panda and some script, possibly identifying the
organization. He also wears a dark belt and light-colored pants, showing his official
role in animal care and maintenance.

3. Bamboo Forest: Dense and lush, the forest comprises tall, green bamboo stalks
that provide a naturalistic and enriching habitat for the panda. The area exudes
tranquility and is pivotal for the ecological theme of the sanctuary.

Figure 6: Pipeline of our VPLM dataset annotation with GPT4V. We first convert a video as a superimage and
then give some in-context examples to prompt GPT-4V to annotate detailed and well-structured video descriptions.

ter dynamics and stronger coherence. We adopt
VideoCrafter-512 and DynamiCrafter-512 variants.
For each video, we use CLIP similarity to retrieve
multiple keyframes corresponding to each caption.
Those keyframes result in multiple generated video
clips via the video generation model. For FVD
computation, we conduct mean pooling over those
clips to represent a video. We use £k = 25 and
v = 6 for generated captions in all experiments.
The experiments are conducted on the 4 x 48GB
A6000 GPUs machine.

B Additional Analysis

B.1 Ablation study

The effect of k£ and v As shown in Tab. 5, we did
initialized hyperparameter probing experiments on
ActivityNet-Cap and YouCook?2 datasets. we ob-
serve that all variants of our approach with varying
k and v generally achieve improved performance
compared to baselines in terms of multiple video
captioning metrics: SPICE, BLEU-4, METEOR,
and ROUGE. This result demonstrates the efficacy
of our multi-granular spatiotemporal pooling ap-
proach with a fine-to-coarse search of video con-
texts based on superpixels. In addition, we observe
that RACCOON shows a small gap between vari-
ants in each dataset, highlighting the robustness
of our approach to the hyperparameter setups and
datasets.

The effect of Superpixel Overlap We introduce
overlapping k-means clustering to aggregate video
superpixels, capturing a variety of visual contexts
while allowing for partial spatiotemporal overlap.
To investigate the effect of our suggested overlap-
ping approach, we also evaluate the variant of our
approach without overlap (i.e., v = 1) on video-
to-paragraph generation tasks in Tab. 5. As shown,
our approach with overlap (i.e., v > 1) surpasses
the non-overlapping version of RACCOON across
various scales of visual contexts k, as indicated by
the video captioning metrics we evaluated. This
emphasizes the advantage of permitting overlap
in understanding video contexts, which enhances
the input video’s comprehension by allowing for
diverse and fluent interpretations of local visual
regions with surroundings associated at the same
time.

For simplicity, we use k = 25 and v = 6 for all
experiments on conditional video generation and
video editing tasks, demonstrating the robustness
of RACCOON for hyperparameters.

B.2 Comparison with Pre-trained Grounding
Models

We further investigate the applicability of recent
powerful pre-trained visual grounding models (Kir-
illov et al., 2023; Cheng et al., 2023; Ren et al.,
2024). Segment-Anything (Kirillov et al., 2023)
and Grounded SAM (Ren et al., 2024) are strong
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Table 5: Ablation of RACCOON for Video-to-Paragraph Generation on ActivityNet and YouCook2. Metrics are
abbreviated: M: METEOR, B: BLEU-4, S: SPICE, R: ROUGE. v = 1 indicates the version without superpixel
overlap. We highlight the hyperparameter setup used in the main experiment.

Models k ’ ActivityNet YouCook2
S B M R S B M R
PDVC (Wang et al., 2021) - - - 2.6 105 - - 08 4.7 -
Vid2Seq (Yang et al., 2023) - - 5.4 - 7.1 - 4.0 - 4.6 -
ZeroTA (Jo et al., 2023) - - 2.6 - 2.7 - 1.6 - 2.1 -
PG-VL (Munasinghe et al., 2023) - - 13.6 139 142 18.1 6.2 165 86 158
1 13,5 139 142 18.1 63 169 87 159
20 2 13.7 146 144 182 64 175 87 16.1
4 136 143 143 182 6.6 162 8.8 16.0
5 13.8 150 145 184 6.4 179 88 162
1 13.6 141 143 18.0 6.1 169 86 159
RA(gfr‘;)ON ,s 2 138 144 143 183 64 163 90 160
4 13.6 143 143 182 6.6 17.1 89 16.1
6 137 145 144 182 69 180 9.0 16.1
10 - - - - 6.4 165 8.7 16.1
1 13.6 141 143 18.0 63 165 88 16.0
30 2 13.7 142 142 18.1 6.6 17.1 9.0 16.2
4 135 145 143 182 6.6 181 8.8 16.1
6 136 144 144 182 64 172 8.8 16.2

Table 6: RACCOON variants with different grounding methods for Video-to-Paragraph Generation on

YouCook?2.

Method Localization Clustering SPICE BLEU-4 METEOR ROUGE

PG-VL (Munasinghe et al., 2023) - 6.2 16.5 8.6 15.8

SAM (Kirillov et al., 2023) 6.4 16.9 8.7 15.9

Grounded SAM (Ren et al., 2024) 6.5 16.5 8.7 16.1

Ours SAM-Track (Cheng et al., 2023) k-means 6.2 16.5 8.8 16.1

SAM-Track (Cheng et al., 2023)  overlapping k-means 6.5 17.4 9.0 16.1

Superpixel overlapping k-means 6.9 18.0 9.0 16.1

open-ended object segmentation models for images,
and we directly compute our localized granular to-
kens based on their segmentation masks. We select
25 segmentation masks in total, from uniformly
sampled frames in each video for fair comparison
with RACCOON (k = 25). As shown in Tab. 6,
these variants of RACCOON achieve improved per-
formance against the best-performing baseline, PG-
VL, but are often suboptimal since they focus on
regional information and cannot contain the tempo-
ral information of the videos. Unlike these image-
based segmentation methods, SAM-Track (Cheng
et al., 2023) generates coherent masks of observed
objects over successive frames in videos, by adopt-
ing multiple additional pre-trained modules, in-
cluding GroundingDino (Liu et al., 2023d) and
AOT (Yang et al., 2021; Yang and Yang, 2022).
We adopt SAM-Track to initialize superpixels in
videos and conduct overlapping k-means cluster-
ing (k = 25). Here, we observe that RACCOON
with SAM-Track superpixel initialization achieves
reasonable performance, and is beneficial for video
editing tasks. It enables the model to coherently

edit targeted regions in videos with edited key-
words.

B.3 Additional Visualizations

In this section, we provide more qualitative exam-
ples of various tasks, including three types of video
content editing, ablation on removing oracle plan-
ning and GT masks, enhanced video editing, and
conditional video generation.

Remove, Add, and Change Object the videos.
We provide more qualitative examples in this Ap-
pendix across different types of video content edit-
ing ( Fig. 7), including removing (Fig. 8, Fig. 9,
Fig. 10), adding (Fig. 11, Fig. 12, Fig. 13), and
changing/editing (Fig. 14, Fig. 15, Fig. 16). Ac-
cording to the visualization, our RACCOON gen-
erally outperforms other strong baselines on all
three subtasks. RACCOON can reflect the up-
dated text description more accurately, thus aid-
ing in user-friendly video editing. For example,
our method can accurately change the color of the
hat (red—blue), which is a very small area in the
video, while other methods struggle to meet the

27988



requirement.

Ablation Study Visualization. We illustrate ex-
tra visualizations for replacing orecle mask with
groundingé&tracking tools generated ones for video
object removal ( Fig. 17 and Fig. 18) and chang-
ing ( Fig. 19 and Fig. 20), as well as replacing
oracle object boxes with our model-predicted one
(Fig. 21 and Fig. 22). RACCOON shows robust
results with LLM planning and off-shelf segmenta-
tion tools. We further show that the failure cases of
removing and changing objects mainly come from
the missing mask prediction of the video segmenta-
tion masks.
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[Black White leather jacket]: The blackwhite leather jacket is stylish and rugged, made
from high-quality leather with a smooth finish and classic design elements like pockets.
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Figure 7: More visualization of diverse editing skills on Sora video and comparison with other methods
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Figure 8: More visualization of removing video objects
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Figure 9: More visualization of removing video objects

27992



Input

LGVI VvC

Ours

Input

VvC

LGVI

Ours

Figure 10: More visualization of removing video objects
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+ [Surfer]: An athlete wearing a dark wetsuit, possibly black or navy. showcasing
and steeri

on the waves. Their stance is

ent, arms outstretched for balance. and their posture exuding confidence

Ours

Input

in Red Top]: The subject i. i le_weari bri ed -sleeved
shirt, navy blue athletic shorts, and black sports shoes. He displays athleticism and
coordination as he skillfully plays with the football.

Figure 11: More visualization of adding video objects

27994

ide and steady. knees




Input

+ [Large Shark]: A sizable and powerful shark, possibly a Great White, with a grey and
white body. I'ts dorsal fin is tall and prominent, and it has a distinctly streamlined shape.
The shark conveys a sense o l

thority as it moves effortlessly through the wate
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design, royal blue basketball shorts, and white sports sneakers. The player is focused on
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Figure 12: More visualization of adding video objects
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Input

+ [Seagull]: A white seaqull with wings spread wide, showcasing gray tips. As it flies. its

ellow beak and black eye markings are noticeable, adding to its distinctive features. The
bird's underbelly is white, reflecting sunlight, while the light and smooth lines of its
body exemplify a strong yet graceful figure in mid-flight

Ours

Input

+ [Brown Dog]: An enthusiastic medium-sized brown dog with glossy fur and a lean
build. Tt remains undeterred by the splashes. focused on the man and possibly a tossed

object or on the interaction itself. Its tail is partially submerged, blending into the
blue water, and it moves swiftly, demonstrating aqgility and the enjoyment of water.

Ours

Figure 13: More visualization of adding video objects
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Input

Input

farge-Sharkd-[Orange Shark]: A sizable and powerful shark, possibly a Great White, with a grey
ane-white-orange body. Its dorsal fin is tall and prominent, and it has a distinctly streamlined
shape. The shark conveys a sense of calm authority as it moves effortlessly through the water.

B

VvC

fMant[Man in orange]: An athletic man wearing an orange shirt, btaek white shorts, and sports

shoes. He is running on a well-maintained playing area characterized by manicured green grass, a
smooth outfield, and a perimeter wall adorned with sponsorship banners and a scoreboard.

Figure 14: More visualization of editing video objects
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{Player1-with-Red-Hat}-[Player 1 with Blue Hat]: Male player on the near side of the court.
He is wearing a white shirt, dark shorts, and a red blue hat, and is playing with a yellow tennis
racket. He serves and returns the ball, demonstrating agility and competitive spirit in the game.

Ours

[Person]: Clad in a derk-esteredjaeket-colorful, rainbow-striped jacket and pants, the person
assumes a casual yet attentive posture while walking the dog, indicative of a routine stroll.

Ours

Figure 15: More visualization of editing video objects
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Input

fBaby-Gerillaj [Baby Panda]: A young geritta panda with black fur, portrayed in the act of

crawling. The gorilla's movement is slow and cautious, exhibiting natural curiosity as it explores
its surroundings.

Ours

Input

[Dalmatian] fPeg}: A medium-sized, Dalmatian dog with white facial markings, a white chest,
and white-tipped paws. It has floppy ears, a long tail, and a gentle expression. The dog is

actively engaging with a ball, using its front paws and nose, displaying playful behavior.

Ours

Figure 16

: More visualization of editing video objects
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: More visualization of removing video objects
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Figure 18: More visualization of removing video objects
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w. Oracle

w. Model

{Baby-Gerilal [Baby Panda]: A young gesifle panda with black fur, portrayed in the act of
crawling. The gorilla's movement is slow and cautious, exhibiting natural curiosity as it explores
its surroundings.
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[Raccoon]: A medium-sized, light-brewn-deg-raccoon with a sturdy build and
alert ears. Its tail wags enthusiastically as it leads the playful chase in the forest, displaying
a sense of happiness and energy.
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Figure 19: More visualization of editing video objects
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Input
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Mask

w. Model
Mask

farge-Shark}-[Orange Shark]: A sizable and powerful shark, possibly a Great White, with a grey
ane-white-orange body. Its dorsal fin is tall and prominent, and it has a distinctly streamlined
shape. The shark conveys a sense of calm authority as it moves effortlessly through the water.

[Woman].' Df‘essedina astarot (t-ofblve-denin 64 and-ahorizenta nised-blye-and
white—F-shirt a dark red dinning dress. She accessorizes with pink flip-flops and is engaged
in the action of putting a leash on her dog, showing signs of preparing for a walk.

Figure 20: More visualization of editing video objects
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Input

+ [Surfer]: An athlete wearing a dark wetsuit, possibly black or navy, showcasin
talent in balancing and steering on the waves. Their stance is wide and steady. knees
bent, arms outstretched for balance, and their posture exuding confidence.
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+ [Giant Panda]: A large. black and white panda with a distinct, dense coat. It is
shown playfully climbing and balancing on the wooden beams of its enclosure. It has
a round face, large black eye patches, and is quite agile for its size.
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Figure 21: More visualization of adding video objects
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+ [Skier in Blue and Green]: A skier wearing a blue jacket with green slee

B =

ves ana blue

ants. They're equipped with skiing poles and skis that appear to be primarily white with

some red signage. Their helmet is a bright neon lime green with matching goggles

+ [Climber]: A woman in athletic wear, featuring a black tank top and matchin
shorts, with her hair tied back. She shows focus and precision in her boulderin

technique.

Figure 22: More visualization of adding video objects
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Source Video

R T e Ty .
Human Caption: “A woman in blaek (white) is walking.”

TokenFlow with Human Caption

RACCooN Caption: “The video shows a woman walking
in a park. She is wearing a btaek (white) dress and carrying
a yellow bag.

RACCooN SuperPixel
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TokenFlow with RACCooN Caption & SuperPixel

Source Video

Human Caption: “a (robotic) man is parkouring.”

TokenFlow with Human Caption

AT

RACCooN Caption: “The video shows a (robotic) man
performing a series of acrobatic moves on a metal railing.”

RACCooN SuperPixel

Figure 23: Visualization of text-based video editing. The edited words are marked with Red, and the target words
are marked with Green. The RACCOON caption is selected from predicted dense captions. We highlight the region

of interest with red dashed-line boxes for comparison.
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(a) Single-scene video generation with ground truth / RACCooN generated caption

Retrieved Keyframe Ground Truth Caption

Retrieved Keyframe Our RACCooN Caption

“The video shows a
person riding a
horse in a fenced

“Aman is riding
horse.”

(b) Multi-scene video generation with ground truth / RACCooN generated caption

Ground Truth Captions Retrieved Top-3 Keyframes

“Combine seasoning flour eggs and soda in a bowl, whisk everything
together in the bowl.”

Generated Video

A\ N

Our RACCooN Captions

“The video shows a person mixing ingredients in a glass bowl. [fhe
person then pours the mixture into a glass bowl and adds more
ingredients. The person then adds flour and mixes it with a spoon.
The person then pours the mixture into a pan and cooks it on the
stove! Finally, the person adds sugar and mixes it with a spoon.”

Generated Video

Figure 24: Visualization of conditional video generation with VideoCrafter. Top (a): we compare generation
results conditional on different captions and with the same keyframe. Bottom (b): We leverage multiple keyframes
retrieved by different captions to generate multi-scene video. We gray out captions that are not used for retrieval,
and highlight captions used for keyframe retrieval. We highlight the region of distortion with red dashed-line boxes
for detailed comparison.
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Masks of Handbag

Masks of Jacket

Figure 25: Visualization of Masks.
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