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Abstract

Tokenization is a fundamental step in natu-
ral language processing (NLP) and other se-
quence modeling domains, where the choice
of vocabulary size significantly impacts model
performance. Despite its importance, select-
ing an optimal vocabulary size remains un-
derexplored, typically relying on heuristics or
dataset-specific choices. In this work, we pro-
pose a principled method for determining the
vocabulary size by analyzing token frequency
distributions through Zipf’s law. We show that
downstream task performance correlates with
how closely token distributions follow power-
law behavior, and that aligning with Zipfian
scaling improves both model efficiency and
effectiveness. Extensive experiments across
NLP, genomics, and chemistry demonstrate
that models consistently achieve peak perfor-
mance when the token distribution closely ad-
heres to Zipf’s law, establishing Zipfian align-
ment as a robust and generalizable criterion
for vocabulary size selection. The code and
data are available at: https://github.com/
yanjinhe/Tokenizer

1 Introduction

Tokenization is a fundamental preprocessing step in
natural language processing (NLP), where raw text
is segmented into smaller units known as tokens
(Sennrich et al., 2016). These tokens can repre-
sent words, subwords, or characters, depending on
the tokenization strategy (Schuster and Nakajima,
2012), and they form the basis for subsequent rep-
resentation learning. The choice of tokenizer and
its vocabulary size has a direct impact on model
capacity, robustness, and computational efficiency
(Devlin et al., 2019).

Among various strategies, Byte Pair Encoding
(BPE) (Sennrich et al., 2016) is the most widely
adopted method in modern large language models.

*Corresponding author.

Existing large language models typically fix a vo-
cabulary size (e.g., 50K) (Achiam et al., 2023) in
advance, then apply BPE to construct the tokenizer.
This fixed-size approach, while convenient, lacks
a principled basis and may not be optimal across
different tasks, domains, or languages.

In practice, choosing too small a vocabulary may
lead to fragmented or overly fine-grained tokens, re-
sulting in longer sequences and degraded semantic
(Provilkov et al., 2020). On the other hand, overly
large vocabularies may introduce redundancy, in-
flate memory usage, and reduce model efficiency
(Brown et al., 2020). However, vocabulary size is
often treated as a fixed hyperparameter, determined
heuristically or based on dataset statistics (Kudo
and Richardson, 2018).

Several prior works have explored metrics such
as fertility (token-per-word ratio), parity (cross-
lingual symmetry), and coverage to evaluate tok-
enizers (Liu et al., 2020; Wu et al., 2016). How-
ever, these metrics have been shown to correlate
poorly with downstream task performance (Ali
et al., 2024), especially when moving beyond NLP
to other modalities such as genomics or chemistry.
As a result, there remains a need for a more robust
criterion to guide vocabulary size selection.

In this work, we propose a principled approach
inspired by Zipf’s law, a well-known linguistic phe-
nomenon whereby word frequency is inversely pro-
portional to its rank in natural language corpora
(Powers, 1998). We hypothesize that effective tok-
enizers should induce token frequency distributions
that align with Zipfian behavior. To test this hypoth-
esis, we introduce the Zipf alignment score, which
quantifies how closely a tokenizer’s frequency dis-
tribution fits a power-law on a log-log plot. We use
this score as a proxy metric to guide vocabulary
size selection.

Empirically, we demonstrate that token distri-
butions adhering more closely to Zipf’s law cor-
respond to better downstream performance. Our

28009

https://github.com/yanjinhe/Tokenizer
https://github.com/yanjinhe/Tokenizer


experiments span NLP, genomics, and chemistry
tasks, showing that Zipf alignment consistently pre-
dicts optimal vocabulary size across modalities.

To summarize, the main contributions of our
paper are as follows:
• We show that as the vocabulary size increases, the

token frequency distribution on a log-log scale
becomes increasingly linear, reflecting stronger
alignment with Zipf’s law.

• We demonstrate that downstream task perfor-
mance consistently improves and reaches its peak
when the token distribution most closely follows
Zipfian behavior.

• We propose a principled approach for selecting
vocabulary size by measuring the degree of Zipf
alignment in the token distribution. This method
is simple, generalizable across domains, and pre-
dictive of optimal performance.

2 Related Work

Tokenization Tokenization, the process of seg-
menting raw data into smaller units, is a critical
step in NLP and other fields. Classic methods like
BPE (Sennrich et al., 2016) and WordPiece (Schus-
ter and Nakajima, 2012) use subword segmentation
to balance vocabulary size and out-of-vocabulary
handling, while SentencePiece (Kudo and Richard-
son, 2018) enables language-independent tokeniza-
tion. These methods are foundational for modern
models like BERT (Devlin et al., 2019) and GPT
(Radford et al., 2019), as tokenization directly im-
pacts model efficiency, robustness, and downstream
task performance. Beyond text, tokenization has
been adapted for genomics (e.g., k-mer tokeniza-
tion in DNABERT (Ji et al., 2021)), chemistry (e.g.,
SMILES segmentation (Schwaller et al., 2019)),
and even vision and audio, where images are split
into patches and audio into spectrograms (Dosovit-
skiy et al., 2021; Radford et al., 2023), demonstrat-
ing its versatility across modalities.

Tokenizer Selection Criteria Prior work has ex-
plored several heuristics for selecting tokenizers.
One common approach is to use compression ra-
tio as a proxy, under the assumption that better
compression implies more efficient representations.
Goldman et al. (2024) examine this hypothesis and
find that compression correlates with performance
in some cases, but not consistently. Ali et al. (2024)
further evaluate metrics such as fertility, parity, and
compression, showing that these do not reliably pre-
dict downstream task performance. These findings

suggest that standard metrics often fail to capture
what makes a tokenizer effective, highlighting the
need for more robust, task-aware criteria.

Zipf’s law and Power Law Power-law distribu-
tions were first studied by Pareto in the context
of wealth distribution (Pareto, 1964). Zipf later
formalized this phenomenon in linguistics, show-
ing that word frequencies in natural language fol-
low a power-law distribution, now known as Zipf’s
law (Zipf, 2013). This distribution reveals that
a small number of words dominate the text fre-
quency, while most words are uncommon, a pat-
tern that is consistent across languages and corpora
(Montemurro, 2001). Power-law distributions are
also prevalent in other domains, including biology,
where gene expression levels and protein networks
exhibit scaling laws (Jeong et al., 2001), and in
social networks, where the degree distribution of
connections follows power-law behavior (Barabási
and Albert, 1999).

3 Observing Zipf’s Law

One of the most widely adopted subword tokeniza-
tion methods is Byte Pair Encoding (BPE) (Gage,
1994), which iteratively merges the most frequent
adjacent character pairs in a corpus until a prede-
fined vocabulary size is reached. The BPE algo-
rithm is shown in Appendix A. BPE has been
extensively used in state-of-the-art large-scale lan-
guage models. Given its widespread adoption, BPE
shows its importance in NLP research.

3.1 Vocabulary Size

Vocabulary size is a critical yet often overlooked
factor in designing tokenizers. If a model is trained
on an infinitely large dataset that comprehensively
represents all knowledge, and if the model has ac-
cess to unlimited computational resources, then
vocabulary size is of minimal concern—one can
simply choose a sufficiently large vocabulary. How-
ever, in real-world scenarios, training datasets rep-
resent only a subset of global knowledge, and com-
putational resources impose practical limitations on
training. This makes vocabulary size an essential
hyperparameter.

A small vocabulary set may fail to capture the
fundamental characters of a dataset, leading to
excessive fragmentation of words and loss of se-
mantic information. Conversely, an overly large
vocabulary set would introduce redundancy, lead-
ing to inefficient token representations that are not
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optimally compact. This trade-off is especially
pronounced when dealing with domain-specific
datasets, where suboptimal vocabulary choices can
significantly impact model performance.

Despite its importance, vocabulary size is often
determined based on heuristics or set arbitrarily
large without systematic optimization. Such arbi-
trary choices may prevent models from capturing
the most meaningful token distributions for a given
dataset, potentially limiting performance. We argue
that optimal vocabulary size should be carefully de-
termined for each dataset, particularly in different
modalities such as NLP, genomics, and chemistry.
Identifying the appropriate vocabulary size for a
given domain is crucial for maximizing informa-
tion retention and model efficiency.

3.2 Power Law and Token Rank-Frequency
Distributions

Power law distributions characterize many natu-
rally occurring phenomena, including linguistic
structures. A power law describes a relationship
where the frequency of an event is inversely pro-
portional to its rank, typically expressed as f(x) ∝
x−k, where x is the rank (Pareto, 1964).

The log-log token rank-frequency distribution
is based on empirical observations of textual data
and is used to analyze the probabilistic structure
of word frequencies within a text or corpus. In
this representation, both the frequency of tokens
(words) and their rank by frequency are plotted
on logarithmic scales. If the token frequency fol-
lows a perfect power-law distribution, the plot
should form a straight line. However, in many real-
world datasets, as shown in Section 5 and Figure 1,
the plot often consists of segments with different
slopes, indicating the presence of multiple classes
of tokens with varying degrees of redundancy.

In natural language, we typically observe that
vocabulary distributions follow a power-law when
trained on sufficiently large datasets. This obser-
vation motivates us to investigate token distribu-
tion patterns, particularly in specific datasets or do-
mains. It leads us to ask: What is the optimal token
distribution for a given domain or dataset? Can
we determine the vocabulary size prior to training
to obtain such an optimal distribution?

3.3 Hypotheses and Vocabulary Size Selection
Strategy

Our study begins with the empirical observation
that the token rank-frequency distribution exhibits

a Zipfian pattern. This leads us to propose two hy-
potheses that guide our vocabulary size selection:

1. Hypothesis 1: As vocabulary size increases,
the log-log rank-frequency distribution of to-
kens gradually approaches a straight line, in-
dicating alignment with Zipf’s law.

2. Hypothesis 2: When the token distribu-
tion closely matches Zipf’s law, the model
achieves superior downstream performance.

In this section, we focus on verifying Hypothe-
sis 1 using the BookCorpus dataset. We train BPE-
based tokenizers with various vocabulary sizes
(ranging from 2K to 50K) and visualize the result-
ing rank-frequency distributions in log-log space.

From Figure 1, we observe the following note-
worthy phenomenon:

Observation 1: When the vocabulary is small,
the log-log rank-frequency distribution exhibits a
clear curvature, deviating significantly from the
ideal power-law form. As the vocabulary increases,
the curve straightens and approximates a linear
trend. This indicates that expanding vocabulary
promotes statistical self-organization of token us-
age, making the token distribution conform more
closely to Zipf’s law. This observation directly sup-
ports Hypothesis 1, showing that Zipfian behavior
emerges naturally as the vocabulary grows. Moti-
vated by this, we design a data-driven vocabulary
selection strategy that leverages Zipfian alignment
as a stopping criterion for vocabulary expansion.

To automatically determine an appropriate vo-
cabulary size, we design an iterative algorithm that
gradually grows the vocabulary and monitors how
well the resulting token distribution aligns with
Zipf’s law. The alignment is quantified using a
statistical goodness-of-fit score, such as the coef-
ficient of determination (R2), computed between
the empirical log-log rank-frequency curve and an
ideal Zipfian distribution.

The procedure begins with a small initial vocab-
ulary and expands it step by step using BPE or a
similar merge-based algorithm. After the t-th up-
date of vocabulary, we re-tokenize the corpus and
calculate the new Zipfian fit score, denoted as Zipft.
We keep track of the best Zipf score Zipfmax.

To determine when the vocabulary has grown
sufficiently, we introduce a stagnation counter that
monitors whether further merges lead to meaning-
ful improvements in Zipfian alignment. Specifi-
cally, if the score Zipft fails to exceed Zipfmax by
more than a small threshold ϵ after N steps, we
consider the Zipfian fit to have stabilized. At this
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Figure 1: Log-log rank-frequency distribution of different vocabulary sizes on BookCorpus. As the size increases,
the curves become increasingly linear, indicating closer adherence to Zipf’s law.

point, the vocabulary is no longer expanded, and
the current vocabulary is taken as the optimal set,
denoted by Vopt.

This method adapts vocabulary size to the sta-
tistical structure of the data and does not rely on
arbitrary preset vocabulary sizes. In Section 5, we
evaluate Hypothesis 2 and analyze how Zipfian
alignment correlates with downstream task perfor-
mance across different modalities.

4 Method

4.1 Models and Pre-training Methods

We conduct experiments across multiple domains,
including NLP, genomics (Gene), and chemistry
(Chem), to evaluate the impact of vocabulary
size on model performance. For each domain,
we follow a two-stage process: pre-training on
domain-specific datasets and fine-tuning on down-
stream tasks. In the NLP domain, both encoder-
only model (e.g., BERT (Devlin et al., 2019))
and encoder-decoder model (e.g., mBART (Liu
et al., 2020)) are evaluated. For BERT, we pre-
train the model on a combination of OpenWeb-
Text (Gokaslan and Cohen, 2019) and BookCorpus
(Zhu et al., 2015) datasets, following the standard
Masked Language Modeling (MLM) objective (De-
vlin et al., 2019). The pre-trained BERT model is
then fine-tuned on the GLUE benchmark, which in-
cludes tasks such as sentiment analysis, textual en-
tailment, and paraphrase detection, and the model
performance is evaluated using the GLUE score
(Wang et al., 2018).

For mBART, we pre-train the model on the
WMT dataset using the Multilingual Denoising
Pre-training objective, focusing on three language

pairs: German-English (De-En), French-English
(Fr-En), and Chinese-English (Zh-En) (Liu et al.,
2020). The pre-trained mBART model is fine-tuned
on downstream translation tasks for the respective
language pairs and the performance is evaluated
using the BLEU score (Papineni et al., 2002).

In the genomics domain, we follow the approach
of DNABERT2 (Zhou et al., 2024), using a BERT-
based architecture tailored for DNA sequences. We
pre-train the model on DNA sequences from the
same dataset used in DNABERT2, employing the
MLM objective. Fine-tuning is performed on down-
stream classification tasks such as promoter predic-
tion and splice site detection, with model perfor-
mance evaluated using accuracy.

In the chemistry domain, we focus on the
SMILES representation of molecular structures,
using a BERT-based architecture. We pre-train the
model on the first 5 million data in ZINC20, a
large dataset of SMILES sequences representing
chemical compounds (Irwin and Shoichet, 2005).
Fine-tuning is performed on downstream classifi-
cation tasks such as molecular property prediction,
and performance is evaluated using the ROC-AUC
score .

4.2 Insight for Bigger Models
Due to resource constraints, we are limited to fine-
tuning relatively smaller models. However, Ruder
et al. (2019) argue that it is crucial for models to
learn meaningful representations of the training
data during the pre-training phase. This highlights
that not only small models, but also large models
benefit significantly from selecting an appropriate
tokenizer. Ivgi et al. (2022) further suggest that
trends observed in small-scale models can often
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be extrapolated to larger models, particularly when
evaluating design choices such as vocabulary size.
Based on this perspective, the conclusions drawn
from our experiments on smaller models can also
be extended to larger models, offering valuable
insights for scaling up model architectures.

4.3 Finetuning Dataset and Evaluation
Metrics

For NLP tasks, we fine-tune BERT on the GLUE
benchmark, excluding the WNLI task (Wang et al.,
2018). The selected tasks and their evaluation met-
rics are as follows: CoLA uses the Matthews corre-
lation coefficient (MCC); MRPC and QQP use the
average of accuracy and F1 score; STS-B uses the
average of Pearson and Spearman correlation; and
the remaining tasks are evaluated using accuracy.

For NLP tasks with the mBART model, the
model is first pre-trained on the WMT dataset
(Bojar et al., 2016) for each language pair, and
then fine-tuned on the IWSLT dataset, specifi-
cally: IWSLT14(Cettolo et al., 2014) for De-En,
IWSLT17(Cettolo et al., 2017) for Fr-En, and
IWSLT15(Cettolo et al., 2015) for Zh-En.

For genomics tasks with BERT, we use the GUE
dataset that has 4 tasks: Core Promoter Detection,
Transcription Factor Prediction, Promoter Detec-
tion, and Epigenetic Marks Prediction.

For the chemistry tasks with BERT, we use the
MoleculeNet dataset, specifically the BBBP, Tox21,
Sider, ClinTox, HIV, and BACE datasets, and use
ROC-AUC as the evaluation metric .

4.4 Determining Vocabulary Size

Determining vocabulary size is crucial for down-
stream tasks, as different domains require varying
levels of token granularity. For NLP tasks, ex-
periments are conducted with BERT vocabulary
sizes ranging from 2,000 to 50,000. For multilin-
gual translation tasks, vocab sizes between 2,000
and 140,000 are utilized, as both languages share a
common tokenizer. In the genomics and chemistry
domains, where the character set is limited, vocab
sizes between 500 and 8,000 are employed. This
experimental setup enables a systematic analysis
of the influence of vocabulary size on model effec-
tiveness across these diverse modalities, providing
insights into the optimal tokenizer configurations
required for different types of data.

5 Experiment Results

Building on the empirical foundation established
in Section 3.3, we now turn to validating Hypothe-
sis 2: that model performance improves when the
token rank-frequency distribution closely follows
Zipf’s law. While Section 3.3 demonstrated the nat-
ural emergence of Zipfian behavior with increasing
vocabulary size, this section investigates whether
such statistical alignment correlates with improve-
ments in downstream task performance.

To this end, we evaluate the impact of vocabu-
lary size across multiple domains—including nat-
ural language, genomics, and chemistry—to test
whether Zipfian alignment provides a meaningful
criterion for optimizing tokenizer vocabulary. We
analyze:

• The relationship between Zipfian goodness-of-
fit (measured via R2) and model performance;

• How the optimal vocabulary size varies across
domains;

• Whether alignment with Zipf’s law general-
izes beyond NLP to other modalities;

• Case studies and ablations to validate the ro-
bustness of our observations.

This analysis provides strong empirical support
for using Zipfian properties as an automatic, inter-
pretable, and domain-agnostic guide for vocabulary
size selection.

5.1 Impact on NLP task performance

To quantify the impact of vocabulary size, we eval-
uate BERT-Medium models trained with different
vocabulary sizes on the GLUE benchmark, cover-
ing eight NLP tasks. The results in Table 1 indicate
that models trained with 30,000 vocabulary size
consistently achieve the highest performance. No-
tably, performance at 30,000 is significantly higher
than at smaller vocabulary sizes, while further in-
creasing vocabulary size to 35,000 or 50,000 yields
marginal or even slightly worse results.

To better illustrate this trend, Figure 2a presents
the task performance as a function of vocabulary
size. The curve exhibits a clear upward trajectory,
peaking at 30,000 before plateauing. Cancho and
Solé (2001) empirically demonstrated that word-
frequency distributions in large corpora exhibit two
distinct power-law regimes, with clear inflection
points in the exponent values. This observation
motivates the application of segmented fitting and
enables a quantitative evaluation of linearity on log-
log rank-frequency plots. Alternative validation
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Vocab CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg R2

size Matthews Acc. Acc./F1 Cor. Acc./F1 Acc. Acc. Acc.

2,000 24.83 84.64 77.49 78.46 84.63 69.74 77.31 63.52 70.08 0.6939
5,000 28.87 86.07 78.41 79.42 85.78 72.03 80.71 64.22 71.94 0.7735
10,000 36.02 88.78 82.54 83.62 87.37 79.01 86.25 64.57 76.02 0.8340
20,000 44.22 91.61 84.33 86.79 88.92 81.42 87.74 67.32 79.04 0.8911
25,000 49.73 91.25 85.63 86.82 88.97 82.03 87.91 67.54 79.99 0.9119
27,500 51.79 91.84 86.02 87.14 89.25 82.21 88.34 67.89 80.56 0.9198
30,000 54.92 92.36 86.37 87.45 89.52 82.52 88.96 68.94 81.38 0.9372
32,500 52.37 92.42 86.30 87.32 89.78 82.31 88.63 68.53 80.96 0.9344
35,000 53.64 92.39 86.42 87.42 89.63 82.51 88.72 68.76 81.19 0.9397
37,500 52.97 92.47 86.29 87.21 89.54 82.34 88.52 68.69 81.00 0.9408
40,000 53.27 92.21 86.24 87.37 89.31 82.29 88.65 68.42 80.97 0.9425
50,000 50.23 91.83 85.95 86.47 88.88 81.94 88.26 67.94 80.19 0.9414

Table 1: Performance comparison across various classification tasks. Metrics are accuracy for SST-2, MNLI, QNLI
and RTE; Matthews correlation for CoLA; the average of accuracy and F1 scores for MRPC and QQP; and the
average of Pearson and Spearman correlations for STS-B. Each configuration is run three times with different
random seeds, and the averaged results are taken as the final performance.

methods for power-law behavior include maximum-
likelihood estimation combined with goodness-of-
fit tests based on the Kolmogorov-Smirnov statis-
tic, which measures the greatest vertical deviation
between empirical and theoretical cumulative dis-
tributions (Clauset et al., 2009). The Kolmogorov-
Smirnov statistic, however, is notably insensitive
to variations in the distribution tails, where the
most significant power law behavior arises. While
providing a more comprehensive assessment by
assigning additional weight to tail differences, met-
rics such as the Kuiper or Anderson-Darling statis-
tics introduce added complexity to the (Clauset
et al., 2009). Given the dual-regime structure ob-
served in Figure 1 and the importance of accurately
capturing both the head and the tail of Zipfian dis-
tributions, we approximate each rank-frequency
distribution with a least squares linear fit and adopt
the coefficient of determination R2 as goodness-
of-fit measure because it offers an intuitive and
interpretable quantification of linearity across the
entire rank-frequency spectrum.

The results show that as vocabulary size in-
creases, the R2 value steadily improves. Specif-
ically, before reaching a vocabulary size of 30,000,
the R2 value increases rapidly, while after reach-
ing 30,000, the R2 value stabilizes at a high value.
From Figure 2a, we observe that R2 closely follows
the trend of the average performance. This further
demonstrates that the closeness to Zipf’s law at
different vocabulary sizes reflects the performance
of downstream tasks.

Similar conclusions can be drawn from the re-

sults of the translation tasks (Table 4 in Appendix
B). When the R2 metric reaches its optimal value,
the BLEU score is also relatively high. Figure 2d
illustrates the relationship between the translation
task performance and vocabulary size for three lan-
guage pairs. Obviously, the trend of R2 is consis-
tent with the task performance.

Observation 2: The token rank-frequency distri-
bution can serve as a prior indicator of a pre-trained
model’s performance on downstream tasks. When
the token distribution approaches a power law, it
suggests that the tokenizer is well-suited for the
task, leading to better performance on downstream
tasks. This suggests that closeness to Zipf’s law
can be a useful metric for choosing the best tok-
enizer and vocabulary.

5.2 Generalization to Genomics and
Chemistry

To assess its generalizability, the proposed ap-
proach is extended to genomics and chemistry,
where determining the vocabulary remains an open
challenge.

In genomics, we pre-train BERT-based mod-
els on DNA sequences, following the setup of
DNABERT2, and evaluate performance on vari-
ous GUE classification tasks. The results presented
in Table 2 indicate that optimal performance is
achieved with moderate vocabulary sizes, specif-
ically around 4000. Notably, for 5 out of the
8 tasks, the BERT model trained with a 4000-
vocabulary-size tokenizer demonstrates superior
accuracy scores. As shown in Figure 2c, the R2

value continues to rise as the vocabulary size in-
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Figure 2: Model performance with different vocabulary sizes across four distinct domains. Model performance
exhibits a consistent trend with the Zipfian goodness-of-fit. The left gray y-axis corresponds to the performance of
individual downstream tasks. The right red y-axis represents the average downstream performance across tasks. The
right blue y-axis denotes the Zipfian goodness-of-fit (R²)

creases up to 4000, after which there is no signifi-
cant improvement. This aligns with our intuition:
smaller vocabularies fail to capture biologically
meaningful substructures, while excessively large
vocabularies lead to redundant segmentations.

Similarly, in chemistry, we tokenize SMILES
molecular representations and pre-train models us-
ing the ZINC20 dataset. The results presented in
Table 3 indicate that performance continues to im-
prove as vocabulary size increases from 500 to
3000. However, after reaching a vocabulary size of
3000, performance begins to slightly decline with
further increases in vocabulary size. A vocabulary
size of 3000 yields the best performance, achiev-
ing the highest ROC-AUC score and the highest
average score. By examining the R2 metric in both
Table 3 and Figure 2d, we observe that a vocabu-
lary size of 3000 represents the turning point. This
finding further supports our Observation 2 in the
chemistry domain and provides valuable insight

for utilizing an appropriate tokenizer that can ef-
fectively capture functional groups in molecular
structures.

5.3 Case Studies: Tokenization Granularity
Across Vocabulary Sizes

In the case studies section, we provide examples to
show that having a vocabulary that is too small or
too large is not appropriate. The figure shows ex-
amples from both the NLP and chemistry domains
to illustrate this conclusion.

In the first example below, we do analysis for
CCCOc1ccc(cc1)c2cccc3c2nccn3 – the SMILES
representation of the molecule, and compare how
different vocabulary sizes affect its tokenization.
With a small vocabulary size, the molecule is overly
fragmented—for instance, into tokens like c1ccc
and ccn3(cc1)—which breaks apart chemically
meaningful structures and leads to unstable or un-
interpretable fragments. At an appropriate vocabu-
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Vocab CPD H-TFP1 H-TFP2 PD M-TFP1 M-TFP2 EMP_H3 EMP_H4 Avg R2

size Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.

500 80.15 81.29 83.76 89.77 72.81 88.28 86.05 87.53 83.71 0.9294
1,000 80.53 82.42 83.81 91.16 74.31 89.03 87.14 87.64 84.51 0.9541
2,000 81.45 82.91 84.20 92.23 74.56 90.36 85.99 88.15 84.98 0.9604
2,500 81.52 83.07 84.51 92.37 74.23 90.02 86.39 88.37 85.06 0.9646
3,000 81.64 84.67 85.21 92.29 73.96 90.07 86.53 88.84 85.40 0.9676
3,500 81.49 85.03 85.24 92.47 74.15 90.22 87.41 88.62 85.58 0.9696
4,000 81.23 85.12 85.45 92.76 74.60 90.68 88.54 89.01 85.92 0.9727
4,500 81.46 84.99 85.34 92.59 74.46 90.33 88.27 88.95 85.80 0.9730
5,000 81.00 84.92 85.10 92.53 74.35 90.47 87.81 88.77 85.62 0.9734
6,000 81.25 84.92 86.01 92.08 73.96 89.99 88.47 88.29 85.62 0.9736
7,000 81.34 84.28 85.52 92.04 74.48 89.85 88.16 88.35 85.50 0.9744
8,000 81.80 83.62 84.85 91.99 74.81 89.63 88.01 88.28 85.37 0.9739
10,000 81.61 84.72 84.79 91.67 74.35 89.69 88.16 88.77 85.47 0.9742

Table 2: Performance comparison of different vocabulary sizes in gene-related classification tasks. Accuracy is
reported for all tasks, measuring the performance of BERT-based models on DNA sequence classification. Each
configuration is run three times with different random seeds, and the averaged results are reported.

Vocab BBBP Tox21 Sider ClinToxHIV BACE Avg R2

size ROC ROC ROC ROC ROC ROC

500 67.05 65.34 53.41 75.09 76.51 72.20 68.27 0.9201
1,000 67.31 64.41 54.02 77.91 76.84 73.49 69.00 0.9643
1500 67.12 67.51 54.83 79.30 76.87 74.83 70.08 0.9659
2,000 66.89 66.39 56.00 82.14 78.29 74.17 70.65 0.9677
2,500 67.42 67.43 56.32 84.72 77.69 74.92 71.42 0.9687
3,000 67.73 68.26 56.89 86.92 77.58 75.11 72.08 0.9741
3,500 67.39 67.62 56.47 87.23 77.29 75.32 71.89 0.9735
4,000 67.24 66.34 55.61 88.59 76.20 75.50 71.58 0.9749
5,000 66.14 65.99 56.26 87.12 75.70 75.93 71.19 0.9751
8,000 66.27 64.29 56.69 88.94 77.71 75.77 71.61 0.9746

Table 3: Performance comparisons are performed on
various classification tasks in the MoleculeNet dataset,
using ROC-AUC scores as the evaluation metric. Each
configuration is run three times with different random
seeds, and the average is used as the final performance
metric.

lary size, the tokenizer produces segments such as
CCCOc1ccc, (cc1), and c2cccc3c2, which aligns
with functional groups and aromatic or heterocyclic
rings, enhancing chemical interpretability. How-
ever, when the vocabulary is too large, tokens like
c2cccc3c2n emerge, which over-merge frequent
but semantically inconsistent character sequences.
These tokens span across distinct substructures, dis-
rupting meaningful chemical units and weakening
the tokenizer’s ability to preserve domain-relevant
structure. This observation reinforces the impor-
tance of choosing a vocabulary size that balances
token compactness with chemical coherence.

In the second example, we show how the phrase
“invisible footprints” is tokenized with a vocabulary

size of 30,000, correctly splitting it into “in” “vis-
ible” “foot” “prints”. When a smaller vocabulary
size is used, the word is split into non-semantic
tokens such as “in” “vis” “ible” “foot” “prin” “ts”
resulting in a loss of semantic meaning. When the
vocabulary size is too large, each word is treated as
a single token, introducing semantic redundancy.

CCCOc1cccCCCOc1ccc(cc1)c2cccc3c2nccn3 (cc1) c2cccc3c2 nccn3

CCCO c1ccc c2cccc3 ccn3(cc1) c2n

CCCOc1ccc (cc1) c2cccc3c2n ccn3
large
vocab
size

appropriate
vocab size

(ours)

small
vocab
size

"invisible footprints" in visible foot prints

in vis foot tsible prin

invisble footprintslarge
vocab
size

appropriate
vocab size

(ours)

small
vocab
size

Figure 3: Case study: With an appropriate vocabulary
size, the tokenization not only is more effective but also
captures essential patterns of sequences.

These examples further support our approach,
providing insights into how vocabulary size influ-
ences tokenization quality and, in turn, impacts
task performance. They reinforce our method that
vocabulary size determining should be Zipfian-
guided, ensuring that tokenization reflects intrinsic
linguistic and structural patterns.
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6 Conclusion

This study explored the impact of tokenizer vo-
cabulary size on the performance of pre-trained
language models across various domains, includ-
ing natural language processing, genomics, and
chemistry. By analyzing the relationship between
token rank-frequency distribution and task perfor-
mance, we demonstrated that aligning token distri-
butions with power-law scaling laws can serve as
a robust criterion for determining optimal vocabu-
lary sizes. Our experiments revealed that models
achieve superior performance when the token dis-
tribution closely adheres to Zipf’s law, indicating
that this alignment enhances both efficiency and
effectiveness in downstream tasks.

7 Limitations

While our study provides valuable insights into the
relationship between tokenizer vocabulary size and
model performance, several limitations should be
acknowledged.

Due to hardware limitations, we only conduct
pre-training experiments on relatively small mod-
els. Although the conclusions drawn from these
smaller models offer meaningful guidance for
larger models, the significant difference in param-
eter scale means that our findings may not fully
generalize to state-of-the-art architectures with bil-
lions of parameters. Further experiments on larger
models are necessary to solidify our conclusions
and validate the scalability of our approach.

Our experiments primarily focused on a subset
of modalities (e.g., NLP, genomics, and chemistry)
and a limited range of pre-trained model architec-
tures (e.g., BERT and mBART). To further general-
ize our findings, future work should extend the eval-
uation to additional modalities (e.g., vision, audio)
and diverse model architectures (e.g., Transformer
variants, hybrid models).

Acknowledgements

This research was supported by the International
Summer Undergraduate Research Experience Pro-
gram (iSURE) at the University of Notre Dame.
Yanjinhe is partially supported by the elite under-
graduate training program of School of Mathemati-
cal Sciences in Peking University.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Mehdi Ali, Michael Fromm, Klaudia Thellmann,
Richard Rutmann, Max Lübbering, Johannes Lev-
eling, Katrin Klug, Jan Ebert, Niclas Doll, Jasper
Buschhoff, and 1 others. 2024. Tokenizer choice
for LLM training: Negligible or crucial? In Find-
ings of the Association for Computational Linguistics:
NAACL 2024, pages 3907–3924.

Albert-László Barabási and Réka Albert. 1999. Emer-
gence of scaling in random networks. science,
286(5439):509–512.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, and 1 others. 2016. Find-
ings of the 2016 conference on machine translation
(WMT16). In First conference on machine transla-
tion, pages 131–198. Association for Computational
Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Ramon Ferrer Cancho and Ricard V. Solé. 2001. Two
regimes in the frequency of words and the origins of
complex lexicons: Zipf’s law revisited. Journal of
Quantitative Linguistics, 8(3):165–173.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Jan Niehues, Sebastian Stüker, Katsuitho Sudoh,
Koichiro Yoshino, and Christian Federmann. 2017.
Overview of the iwslt 2017 evaluation campaign. In
Proceedings of the 14th International Workshop on
Spoken Language Translation, pages 2–14.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, Roldano Cattoni, and Marcello Federico.
2015. The IWSLT 2015 evaluation campaign. In Pro-
ceedings of the 12th International Workshop on Spo-
ken Language Translation: Evaluation Campaign,
pages 2–14, Da Nang, Vietnam.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report
on the 11th iwslt evaluation campaign. In Proceed-
ings of the 11th International Workshop on Spoken
Language Translation: Evaluation Campaign, pages
2–17.

Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J.
Newman. 2009. Power-law distributions in empirical
data. SIAM Review, 51(4):661–703.

28017

https://doi.org/10.1076/jqul.8.3.165.4101
https://doi.org/10.1076/jqul.8.3.165.4101
https://doi.org/10.1076/jqul.8.3.165.4101
https://aclanthology.org/2015.iwslt-evaluation.1/
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 conference
of the North American chapter of the association
for computational linguistics: human language tech-
nologies, volume 1 (long and short papers), pages
4171–4186.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

Philip Gage. 1994. A new algorithm for data compres-
sion. The C Users Journal, 12(2):23–38.

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus. https://skylion007.github.io/
OpenWebTextCorpus/. Accessed: 2024-05-20.

Omer Goldman, Avi Caciularu, Matan Eyal, Kris Cao,
Idan Szpektor, and Reut Tsarfaty. 2024. Unpacking
tokenization: Evaluating text compression and its
correlation with model performance. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 2274–2286, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

John J Irwin and Brian K Shoichet. 2005. ZINC–a free
database of commercially available compounds for
virtual screening. Journal of chemical information
and modeling, 45(1):177–182.

Maor Ivgi, Yair Carmon, and Jonathan Berant. 2022.
Scaling laws under the microscope: Predicting trans-
former performance from small scale experiments.
arXiv preprint arXiv:2202.06387.

Hawoong Jeong, Sean P Mason, A-L Barabási, and
Zoltan N Oltvai. 2001. Lethality and centrality in
protein networks. Nature, 411(6833):41–42.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V
Davuluri. 2021. DNABERT: pre-trained bidirec-
tional encoder representations from transformers
model for DNA-language in genome. Bioinformatics,
37(15):2112–2120.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Marcelo A Montemurro. 2001. Beyond the Zipf–
Mandelbrot law in quantitative linguistics. Physica
A: Statistical Mechanics and its Applications, 300(3-
4):567–578.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Vilfredo Pareto. 1964. Cours d’économie politique,
volume 1. Librairie Droz.

David M. W. Powers. 1998. Applications and expla-
nations of zipf’s law. In Proceedings of the Joint
Conferences on New Methods in Language Process-
ing and Computational Natural Language Learning,
NeMLaP3/CoNLL ’98, page 151–160, USA. Associ-
ation for Computational Linguistics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online. Association for
Computational Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In Proceedings of the 40th International
Conference on Machine Learning, ICML’23. PMLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAI blog.

Sebastian Ruder, Matthew E. Peters, Swabha
Swayamdipta, and Thomas Wolf. 2019. Transfer
learning in natural language processing. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational
Linguistics: Tutorials, pages 15–18, Minneapo-
lis, Minnesota. Association for Computational
Linguistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5149–5152.

Philippe Schwaller, Teodoro Laino, Théophile Gaudin,
Peter Bolgar, Christopher A. Hunter, Costas Bekas,
and Alpha A. Lee. 2019. Molecular transformer: A
model for uncertainty-calibrated chemical reaction
prediction. ACS Central Science, 5(9):1572–1583.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,

28018

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://skylion007.github.io/OpenWebTextCorpus/
https://skylion007.github.io/OpenWebTextCorpus/
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.18653/v1/2024.findings-acl.134
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.18653/v1/N19-5004
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162


Berlin, Germany. Association for Computational Lin-
guistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, and
1 others. 2016. Google’s neural machine translation
system: Bridging the gap between human and ma-
chine translation. arXiv preprint arXiv:1609.08144.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ra-
mana V Davuluri, and Han Liu. 2024. DNABERT-
2: Efficient foundation model and benchmark for
multi-species genomes. In The Twelfth International
Conference on Learning Representations.

Yukun Zhu, Ryan Kiros, Richard S Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the
IEEE International Conference on Computer Vision
(ICCV), pages 19–27.

George Kingsley Zipf. 2013. The psycho-biology of lan-
guage: An introduction to dynamic philology. Rout-
ledge.

A BPE algorithm

This shows a detailed description of BPE algo-
rithm.

Algorithm 1 Byte Pair Encoding (BPE)

Require: Corpus D, target vocabulary size V
Ensure: Vocabulary set V

1: Initialize V with all unique characters in D
2: Compute frequency of all adjacent symbol

pairs in D
3: while |V| < V do ▷ Continue until target

vocabulary size is reached
4: Identify the most frequent pair (si, sj) in

D
5: Merge (si, sj) into a new symbol sk
6: V ← V ∪ {sk}
7: Update D by replacing all occurrences of

(si, sj) with sk
8: Update frequencies of adjacent symbol

pairs in D
9: end while

10: return V

B Result for Translation Task

To investigate how vocabulary size affects machine
translation performance, we conduct experiments
on three language pairs (German-English, French-
English, and Chinese-English) . Each model vari-
ant is fine-tuned three times with different random
seeds, and the average BLEU score is reported in
Table 4

C Statistical support for Hypothesis 2

We computed Pearson correlation coefficients be-
tween Zipfian goodness-of-fit (R2) and average
downstream performance after removing outlier
vocabulary sizes (i.e., restricting to the indicated
vocabulary ranges). The results show consistently
strong positive correlations:

These strong positive correlations provide quan-
titative evidence for Hypothesis 2.

D License and Terms of Use

We provide here the license information and terms
of use for all datasets, models, and other artifacts
used or created in this work.

Pre-training Datasets.

• OpenWebText and BookCorpus were used
to pre-train BERT in the NLP domain. Open-
WebText is a publicly available dataset in-
tended to replicate the quality of OpenAI’s
WebText corpus and is distributed under an
open research license.1 BookCorpus was orig-
inally collected by Zhu et al. (2015) and is
available for academic use only.

• WMT16/17/18 datasets are used for multilin-
gual pre-training and translation fine-tuning
with mBART. These datasets are publicly re-
leased as part of the WMT shared tasks, li-
censed for research use.2

• ZINC20 is used for pre-training in the chem-
istry domain. ZINC is a free database of
commercially-available compounds provided
by the Irwin and Shoichet Laboratories at
UCSF. It is available for academic research
under a public domain dedication (CC0).3

1https://skylion007.github.io/
OpenWebTextCorpus/

2http://www.statmt.org/wmt16/
3https://zinc20.docking.org/
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Vocab De-En En-De R2 Fr-En En-Fr R2 Zh-En En-Zh R2

size BLEU BLEU BLEU BLEU BLEU BLEU

2,000 13.67 12.83 0.5755 15.01 15.67 0.5976 8.25 8.81 0.6668
5,000 19.31 17.99 0.6784 22.44 23.01 0.6940 12.91 12.92 0.6372
8,000 21.53 20.84 0.7266 25.46 27.08 0.7259 14.62 15.28 0.6153
10,000 23.33 22.86 0.7528 29.78 29.73 0.7477 16.15 16.74 0.6031
20,000 26.26 24.27 0.8136 33.71 35.40 0.8306 16.92 19.61 0.6678
30,000 27.22 25.11 0.8609 35.33 35.97 0.8909 18.92 21.80 0.7602
40,000 28.13 24.99 0.8968 36.48 36.95 0.9201 19.16 21.90 0.8196
50,000 28.88 25.78 0.9204 36.34 37.22 0.9397 18.78 22.34 0.8568
60,000 29.75 26.66 0.9382 36.57 37.37 0.9510 19.57 23.03 0.8846
70,000 29.80 26.89 0.9521 37.59 37.94 0.9642 19.91 22.95 0.9042
80,000 30.01 26.67 0.9609 36.89 38.06 0.9687 19.82 23.29 0.9144
100,000 29.99 26.52 0.9615 37.11 38.09 0.9622 20.51 23.94 0.9372
110,000 29.91 26.63 0.9648 37.10 38.15 0.9649 20.91 24.48 0.9578
120,000 29.86 26.58 0.9657 37.09 38.07 0.9680 20.92 24.40 0.9630
130,000 29.77 26.67 0.9625 37.29 38.03 0.9674 21.21 24.69 0.9596
140,000 29.69 26.62 0.9613 37.01 37.90 0.9636 21.00 24.52 0.9585

Table 4: BLEU scores of models with different vocabulary sizes on the En-De, En-Fr, and En-Zh translation tasks.
Each configuration is averaged over three random seeds.

Table 5: Pearson correlations (r) between Zipfian goodness-of-fit (R2) and average downstream performance after
excluding outlier vocabulary sizes (ranges shown). Higher r indicates stronger positive association supporting
Hypothesis 2.

Domain / Setting Vocabulary range used Pearson r

NLP (BERT) 10k–50k 0.968

NLP (Translation) – De–En 10k–140k 0.988

NLP (Translation) – En–De 10k–140k 0.978

NLP (Translation) – Fr–En 10k–140k 0.981

NLP (Translation) – En–Fr 10k–140k 0.961

NLP (Translation) – Zh–En 10k–140k 0.974

NLP (Translation) – En–Zh 10k–140k 0.975

Genomics 500–10k 0.954

Chemistry 500–8k 0.856

• DNA sequences used for genomics tasks are
derived from public genome datasets and fol-
low the same data sources as DNABERT2
(Zhou et al., 2024). These datasets are in the
public domain and used solely for academic
research.

Downstream Task Datasets.

• GLUE Benchmark datasets (Wang et al.,
2018) are publicly released for research use
and are commonly used under their respective
licenses.

• IWSLT14/15/17 datasets used for fine-tuning
translation tasks are distributed for non-
commercial research use as part of the IWSLT
shared tasks.

• MoleculeNet datasets (e.g., BBBP, Tox21,
Sider, ClinTox, HIV, BACE) are released un-

der the MIT license and made publicly avail-
able by DeepChem.4

• GUE Dataset used for genomics classifica-
tion tasks is adopted following the usage in
DNABERT2 (Zhou et al., 2024), and is used
for research purposes.

Code and Models. Our tokenizer construction
scripts, Zipfian analysis tools, and vocabulary se-
lection framework will be released under the MIT
license. Any pre-trained models provided as part
of this work will be licensed for academic research
use only.

E Experimental Details

Computational Resources. All experiments
were conducted using a combination of 8 NVIDIA
2080Ti GPUs and 4 NVIDIA A10 GPUs. In total,

4https://moleculenet.org/
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our experiments consumed approximately 4,900
GPU-hours on 2080Ti and 2,400 GPU-hours on
A10 cards. These computations include all pre-
training, fine-tuning, hyperparameter search, and
validation runs across all domains.

Model Sizes. The number of parameters used in
each experimental setting is summarized below:

• NLP (BERT models): 84M to 124M param-
eters depending on vocabulary size.

• NLP (mBART models): 177M to 320M pa-
rameters depending on vocabulary size.

• Genomics (BERT-based): 80M to 93M pa-
rameters depending on vocabulary size.

• Chemistry (BERT-based): 72M to 90M pa-
rameters depending on vocabulary size.

Reproducibility. Each experiment was repeated
using 3 different random seeds, and all reported
results are averages over these runs.

Software and Libraries. We implemented all
models using the HuggingFace Transformers li-
brary (v4.38) and PyTorch (v2.0). Data loading
and pre-processing were done using the Hugging-
Face Datasets library. Evaluation metrics such as
BLEU and ROC-AUC were computed using nltk,
scikit-learn, and custom scripts, with standard
configurations unless otherwise specified.
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