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Abstract

English, as a very high-resource language, en-
ables the pretraining of high-quality large lan-
guage models (LLMs). However, the same can
not be said for most other languages, likely
due to a gap in the quality and diversity of
available multilingual pretraining corpora. In
this work, we find that documents machine-
translated from a high-quality English corpus,
can contribute significantly to the pretraining
quality of multilingual LLMs. Concretely, we
translate FineWeb-Edu, a high-quality English
web corpus, into nine languages. resulting in a
1.7-trillion-token corpus, which we call Tran-
sWebEdu and pretrain a 1.3B-parameter model,
TransWebLLM, from scratch on this corpus.
Across Non-English understanding and reason-
ing tasks, we show that TransWebLLM matches
or even outperforms multilingual LLMs of sim-
ilar size, including Llama3.2, Qwen2.5, and
Gemma3, despite being trained on an order of
magnitude less data. Moreover, we show that
adding fewer than 5% of TransWebLLM’s train-
ing tokens as domain-specific data for contin-
ued pretraining yields state-of-the-art results in
Arabic, Indonesian, Swahili, and Welsh for un-
derstanding and commonsense reasoning tasks.
To promote reproducibility, we release our cor-
pus and models under Open Source Initiative-
approved licenses.1

1 Introduction

Multilingual language models have shown re-
markable potential for natural language process-
ing (Dubey et al., 2024; Yang et al., 2025b; Gemma
et al., 2024), yet their development faces a fun-
damental challenge: the scarcity of high-quality
training data for most languages (Joshi et al., 2020;

1Corpus: hf.co/datasets/britllm/TransWebEdu;
Models: hf.co/britllm/TransWebLLM-*.

Kreutzer et al., 2022). Current practices of col-
lecting and filtering multilingual web data leads
to most languages lagging behind English perfor-
mance due to the Internet’s English-centric na-
ture (Bender et al., 2021; Imani et al., 2023).

To address this issue, previous work has used
pretrained LLMs to generate high-quality synthetic
data (Maini et al., 2024; Abdin et al., 2024). How-
ever, this is not applicable to most languages due
to limited language coverage. For example, one of
the popular multilingual LLMs, Llama 3.2 (Dubey
et al., 2024), officially supports fewer than 20 lan-
guages. Thus, for low-resource languages like
Welsh and Yorùbá, the limited language coverage
of LLMs presents a challenge for data generation.

In this work, we explore two research ques-
tions: (i) Can machine translation serve as a
viable approach to diversify medium- and low-
resource corpora? (ii) Is it feasible to rely en-
tirely on machine-translated synthetic data for pre-
training, and what are the limitations of this ap-
proach? These questions are grounded in the wide
accessibility and adoption of neural machine trans-
lation (NMT) models, particularly for medium-
and low-resource languages, the result of years
of dedicated research (Stahlberg, 2020; Costa-jussà
et al., 2022). Despite its potential, the use of
machine-translated data for multilingual language
model (LM) pretraining remains largely underex-
plored (Urbizu et al., 2023a; Doshi et al., 2024;
Boughorbel et al., 2024). Motivated by this, we
conduct an empirical study that investigates this hy-
pothesis for the pretraining of a multilingual LLM
foundation model.

We introduce TransWebEdu, a large-scale mul-
tilingual corpus created by translating a subset
of FineWeb-edu (Lozhkov et al., 2024), a high-
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quality English corpus, into nine languages using
NLLB-200-1.3B (Costa-jussà et al., 2022). Tran-
sWebEdu spans ten languages (Arabic, French,
German, Indonesian, Italian, Russian, Spanish,
Swahili, Welsh, and English) with more than 100B
tokens per language and a total of 1.7 trillion tokens.
We evaluate the efficiency of TransWebEdu by pre-
training a 1.3B-parameter language model on the
dataset. Although sentence-level NMT for docu-
ment translation suffers from limited context (com-
pared to document-level translation) that may affect
the translation quality, we show that the translated
documents yield substantial improvements in pre-
training performance. For example, TransWebEdu
yields improvements of 13%, 19%, and 1.5% for
Swahili, Welsh, and Arabic, respectively, when
compared to Qwen3 (1.7B) (Yang et al., 2025a), a
top-performing multilingual LLM of similar size,
based on overall performance across the ten lan-
guages.

In summary, our contributions are as follows:

1. We translate a high-quality, pretraining-scale
English corpus into nine languages, including
three medium- and low-resource languages,
using a sentence-level NMT model, creating
one of the largest machine-generated multilin-
gual datasets to date, TransWebEdu, contain-
ing 1.7T tokens.

2. We pretrain TransWebLLM, a 1.3B-parameter
model, from scratch on TransWebEdu. De-
spite using significantly fewer tokens, it
achieves state-of-the-art multilingual per-
formance on a broad range of reasoning
tasks across nine non-English languages, out-
performing or matching models of similar
size trained on closed-source data, such as
Llama3.2, Qwen2.5, and Gemma3.

3. We release our corpus, models, and training
pipeline under open licenses to advance repro-
ducibility in multilingual NLP.

2 Related Work

Recently, there has been growing interest in using
synthetic data, particularly machine-translated data,
to enhance multilingual capabilities of LLMs. For
example, Llama3 (Dubey et al., 2024) translated
synthetic quantitative reasoning data into multiple
languages to improve multilingual supervised fine-
tuning. Bornea et al. (2021) enhanced cross-lingual

QA transfer by augmenting English training data
with machine-translated QA pairs.

However, research on large-scale translated syn-
thetic data for multilingual LLM pretraining re-
mains limited. Early efforts include the work of
Urbizu et al. (2023b), who explored pretraining
BERT models for Basque using machine-translated
data from Spanish and showed that models trained
solely on translated data can achieve competitive re-
sults. Similarly, Boughorbel et al. (2024) examined
the limitations of pretraining using TinyStories (El-
dan and Li, 2023) machine-translated into Arabic.
Doshi et al. (2024) extended this line of work to
low-resource Indic languages by applying quality
filtering to translated corpora and pretraining mod-
els with 28M and 85M parameters from scratch.
These studies, however, focused on either relatively
small translated datasets (e.g., 3B Basque words
and 2M Arabic stories), or evaluated only small
models (ranging from 1M to 125M parameters).

In this work, we translate a 100B-token, high-
quality, pretraining-scale English corpus into nine
languages, including three medium- and low-
resource ones, resulting in one of the largest
machine-generated multilingual datasets to date
with 1.7 trillion tokens. We pretrain a 1.3B-
parameter model from scratch on this data and eval-
uate it on multilingual benchmarks covering ten lan-
guages to investigate the feasibility and limitations
of our approach to multilingual LLM pretraining
using translated synthetic data.

3 Pretraining with Machine-translated
Multilingual Data

This section describes our pipeline for construct-
ing a machine-translated corpus and pretraining a
multilingual language model using it. Our process
consists of the following steps: (i) We select a high-
quality English pretraining dataset; (ii) We segment
English documents into sentences, translate each
sentence into target languages using a sentence-
level NMT model, and reconstruct the documents
by concatenating the translated sentences; (iii) We
pretrain a language model from scratch on the re-
sulting multilingual data mixture and validate the
effectiveness of the corpus.

3.1 Pretraining Data Curation

Large language models, such as Llama (Dubey
et al., 2024) and Gemma (Gemma et al., 2024), are
typically trained on document-level data. In line
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Figure 1: Step-by-step illustration of the TransWebEdu translation pipeline.

with this practice, we construct document-level pre-
training data using four key components: source
data, target languages, a translation model, and
a strategy for composing document-level transla-
tions.

Source data The quality of a pretraining dataset
significantly influences the performance of LLMs
trained on it. Among high-resource languages, En-
glish stands out due to its linguistic diversity and
coverage of topics (Joshi et al., 2020; Kreutzer
et al., 2022). This makes English an excellent
choice for high-quality web data. The FineWeb-
Edu dataset2 (Lozhkov et al., 2024), a subset of
FineWeb (Penedo et al., 2024) consists of 1.3 tril-
lions tokens of educational content data. Con-
structed using scalable automated high-quality an-
notations for educational value, it has been used
to train both English-centric models like GPT-
2 (Karpathy, 2022, 2024) and multilingual models
such as EuroLLM (Martins et al., 2024). Thus, we
deem it a suitable candidate as a source dataset and
use a randomly sampled 100B-token subset in or-
der to comply with computational constraints for
the translation process.

Target Languages We select nine target lan-
guages from several linguistic families to ensure a
broad representation. From the Indo-European
family, we include Germanic languages: En-
glish (en) and German (de); Romance languages:
French (fr), Spanish (es), and Italian (it); a Celtic
language: Welsh (cy); and a Slavic language: Rus-
sian (ru). Additionally, we include languages
from distinct families: Afroasiatic (Arabic (ar)),
Niger-Congo (Swahili (sw)), and Austronesian (In-

2hf.co/datasets/HuggingFaceFW/fineweb-edu

donesian (id)). According to Joshi et al. (2020)
and Ezeani et al. (2019), Indonesian is categorized
as a medium-resource language, while Swahili and
Welsh are classified as low-resource languages.
The remaining languages are considered high-
resource languages (although none with as many
resources as English). We translate the 100B-token
FineWeb-Edu corpus subset from English into these
target languages, aiming to transfer the knowledge
encoded in the English data into the other lan-
guages.

Translation Model While both NMT models and
LLMs support translation (Stahlberg, 2020; Alves
et al., 2024; Martins et al., 2024), LLM perfor-
mance on low-resource languages remains under-
explored. For instance, TowerLLM (Alves et al.,
2024), a multilingual LLM for translation, cov-
ers only ten languages. In contrast, NMT models
are more accessible and widely used for these lan-
guages as they benefit from years of focused devel-
opment (Stahlberg, 2020). A prominent example
is NLLB-200 (Costa-jussà et al., 2022), a model
suite built for high-quality sentence-level transla-
tion across 200 languages, with strong performance
even in low-resource settings.

We investigate whether document construction
from sentence-level translations can yield robust
pretraining performance for LLMs. Our hypothesis
is that key linguistic and semantic patterns in high-
quality source data can be preserved despite the
potential incoherence introduced by constructing
documents from translated sentences, which will
offer a feasible approach for cold-start pretraining
in medium- and low-resource languages and ex-
panding access to multilingual data. Specifically,
we segment English documents into sentences us-
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Language Tokens (B) Avg. Doc Length (tokens)

Arabic 311.35 3,201
English 114.95 1,182
French 143.71 1,479
German 140.70 1,447
Indonesian 174.12 1,792
Italian 140.32 1,447
Russian 157.40 1,618
Spanish 140.99 1,449
Swahili 183.55 1,887
Welsh 201.49 2,071

Total 1,708.58 1,757

Table 1: Statistics of the TransWebEdu dataset, mea-
sured using the Llama2 tokenizer.

ing the NLTK sentence splitter (Bird et al., 2009),
translate them using NLLB-200-1.3B, and reassem-
ble the translations into documents, while preserv-
ing the original structure (e.g., newline characters).
The pipeline is shown in Figure 1.

TransWebEdu We construct TransWebEdu, a
machine-translated pretraining corpus spanning ten
languages and totaling 1.7 trillion tokens. Each
language is translated with a batch size of 4,096, a
beam size of one, and is completed within 168 GPU
hours on a single 4×GH200 node. Table 1 provides
statistics for the English source and translated out-
puts. To the best of our knowledge, TransWebEdu
is the largest publicly available multiway parallel,
document-level corpus to date.

3.2 Multilingual LM Pretraining

This section outlines the technical details of pre-
training a multilingual LM with TransWebEdu.

Model Architecture and Hyper-parameters
We pretrain a multilingual LM from scratch us-
ing TransWebEdu, referred to as TransWebLLM.
Its 1.3B-parameter architecture and hyperparame-
ters (Appendix A) are inspired by the Llama mod-
els and open-source GPT-2 reproductions (Karpa-
thy, 2024). Following these efforts, we use a con-
stant learning rate of 2× 10−4, a sequence length
of 2,048, and a batch size of 2,048, yielding ap-
proximately 4 million tokens per iteration.

Tokenization Alves et al. (2024) extends the mul-
tilingual capabilities of Llama2 models (Touvron
et al., 2023), demonstrating that the Llama2 tok-
enizer remains a practical choice for ensuring effi-
ciency across several languages. Building on their
findings, we use the Llama2 tokenizer in our experi-
ments. For non-Latin script languages, such as Ara-

GPT2-style Training Sequence

<random-fr-doc><eos><random-en-doc><eos>....<random-ru-doc>

Table 2: An illustration of our pretraining sample con-
taining multiple non-parallel documents.

bic and Russian, the Llama2 tokenizer tokenizes
the text while representing it using Unicode-based
embeddings.

Pretraining Data During pretraining, we adopt a
GPT-style setup by randomly sampling documents
from TransWebEdu. This leads to a low chance
of the same document appearing in multiple lan-
guages in the same batch. Table 2 shows the typical
structure of a training sample.

Framework and Training We train TransWe-
bLLM from scratch using the Megatron-LM frame-
work (Shoeybi et al., 2019) with accelerated at-
tention (Dao, 2023) on an NVIDIA GH200 clus-
ter (McIntosh-Smith et al., 2024), for a total of
8,366 GPU hours. Pretraining covers approxi-
mately 1.5T tokens, roughly one epoch, and no
performance degradation was observed on the vali-
dation set, which is consistent with findings from
Muennighoff et al. (2024).

4 Experiments

This section presents our evaluation of model per-
formance across various multilingual benchmarks.

4.1 Evaluation Benchmark Datasets

Our evaluation spans all ten languages in our cor-
pus, focusing on natural language understanding
and commonsense reasoning. All benchmarks
are open-source, ensuring transparency and repro-
ducibility.3 Our evaluation framework includes
the following tasks: ARC (Clark et al., 2018;
Lai et al., 2023; Bayes et al., 2024): grade-
school level multiple-choice science questions;
Hellaswag (Zellers et al., 2019; Lai et al., 2023):
commonsense reasoning benchmarks for contex-
tually appropriate sentence endings prediction;
PAWS-X (Yang et al., 2019): a cross-lingual adver-
sarial dataset for paraphrase identification, sourced
from Wikipedia and Quora; PIQA (Bisk et al.,
2020): physical commonsense reasoning bench-
marks; SciQ (Welbl et al., 2017): a multiple-
choice scientific QA dataset; TruthfulQA (Lin

3Evaluations are conducted using https://github.com/
EleutherAI/lm-evaluation-harness.
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et al., 2021a; Bayes et al., 2024): QA evaluation
tasks for the truthfulness and factual accuracy of
model responses;4 XCOPA (Ponti et al., 2020):
a cross-lingual adaptation of COPA (Roemmele
et al., 2011) for commonsense reasoning evalua-
tion; XNLI (Conneau et al., 2018): a multilingual
extension of Williams et al. (2018), assessing tex-
tual entailment prediction; XStoryCloze (Lin et al.,
2021b): a multilingual adaptation of Mostafazadeh
et al. (2016) for cross-lingual story ending predic-
tion; and XWinograd (Tikhonov and Ryabinin,
2021): a cross-lingual adaptation of the Winograd
Schema challenge5 for coreference resolution eval-
uation. Benchmark availability varies for the ten
languages and the specific datasets used for each
language are listed in Table 9 in Appendix B.6 We
use a five-shot evaluation, report accuracy,7 and
the evaluations are repeated with three different
seeds to ensure statistical significance.

4.2 Baselines

We benchmark TransWebLLM against sev-
eral open-source LLMs with similar model
size, but varying multilingual pretraining mix-
tures and data sources. Our multilingual
LLM baselines include: mGPT (1.3B) (Shli-
azhko et al., 2022), BLOOM (1.1B) (Work-
shop et al., 2022), Llama3.2 (1.3B) (Dubey
et al., 2024), Qwen2.5 (1.5B) (Yang et al.,
2025b), Qwen3 (1.7B) (Yang et al., 2025a),
Gemma3 (1B) (Team et al., 2025), and
Gemma (2.6B) (Gemma et al., 2024). Addi-
tionally, we compare against language-specific
LLM baselines: Afriteva_v2_large (1B) (Oladipo
et al., 2023) for Swahili, BritLLM (3B)8 for Welsh,
CroissantLLM (1.3B) (Faysse et al., 2024) for
French, EuroLLM (1.7B) (Martins et al., 2024)
for Arabic, French, German, Italian, Russian, and
Spanish, Jais-family-1p3b (1.3B) (Sengupta et al.,
2023) for Arabic, Sailor (1.8B) (Dou et al., 2024a)
and Sailor2 (1B) (Dou et al., 2024b) for Indonesian.
Furthermore, we include two English-centric base-
lines in our evaluation: TinyLlama (1.1B) (Zhang
et al., 2024) and Pythia (1.4B) (Biderman et al.,

4We utilize the truthfulqa_mc1 for the evaluation.
5https://cs.nyu.edu/~davise/papers/

WinogradSchemas/WS.html
6For Welsh, we use the BritEval benchmarks: https://

llm.org.uk.
7For TruthfulQA for English and Welsh, we adopt the

default lm-evaluation-harness configuration of six few-shot
examples.

8hf.co/britllm/britllm-3b-v0.1.

2023). An overview of baseline models and
our TransWebLLM is shown in Table 10 in
Appendix C.

4.3 Main Results

Table 3 shows the average performance of TransWe-
bLLM and the baseline models across the bench-
mark datasets for each of the ten languages. Per-
task results for each language can be found in
Tables 17 to 26 in Appendix G. The last four
columns of Table 3 summarizes the average perfor-
mance across: (i) all languages, (ii) non-English
languages, (iii) high-resource languages, and (iv)
medium- and low-resource languages. TransWe-
bLLM ranks among the top three models in terms
of average performance for all languages and non-
English languages, with accuracy scores of 45.11
and 43.86, respectively. On average across all
languages, it outperforms similarly sized multilin-
gual LLMs, including mGPT, BLOOM, Llama3.2,
Qwen2.5, and Gemma3. Notably, it achieves the
best performance on medium- and low-resource
languages, with an average accuracy score of
43.25.

For high-resource languages, TransWebLLM
outperforms Llama3.2 on average (45.90 vs.
44.13), despite being trained on significantly less
data (1.5T vs. 9T tokens) and performs comparably
to Gemma3 (45.90 vs. 46.04). It ranks among the
top three models for Arabic and Italian. For French,
TransWebLLM surpasses CroissantLLM (46.57 vs.
45.17), which is trained on 3T tokens with half in
French, while TransWebLLM uses only 150 billion
French machine-translated tokens.

For medium- and low-resource languages,
TransWebLLM outperforms Qwen2.5 on Indone-
sian (47.48 vs. 46.65), despite Qwen2.5 being
trained on 18T tokens. For Swahili and Welsh,
TransWebLLM ranks first among all baselines,
achieving accuracy scores of 43.76 and 38.52;
outperforming Gemma (2.6B) and BritLLM (3B).
These results suggest that training with translation
data can be a viable cold-start strategy for pretrain-
ing LLMs in medium- and low-resource languages.

5 Discussion and Ablations

This section investigates (1) the impact of LLM-
generated translation data on pretraining perfor-
mance, (2) the effects of incorporating additional
sources such as general web data, rephrased syn-
thetic text, QA and code data, and (3) multilingual
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High Medium Low Average
ar en fr de it ru es id sw cy All Non-eng High Med.& Low

English LLMs
Pythia (1.4B) 32.95 54.71 41.43 36.25 34.71 38.30 40.04 36.87 37.34 31.45 38.41 36.59 39.77 35.22
TinyLlama (1.1B) 32.50 57.12 43.52 36.36 36.84 41.36 42.02 36.13 36.94 31.48 39.43 37.46 41.39 34.85

Multilingual LLMs
mGPT (1.3B) 32.52 45.36 39.95 35.17 34.71 40.45 39.33 39.32 38.71 31.11 37.66 36.81 38.21 36.38
BLOOM (1.1B) 34.90 51.16 43.52 34.69 33.76 37.49 42.61 43.25 37.17 31.18 38.97 37.62 39.73 37.20
Llama3.2 (1.3B) 34.64 58.12 44.89 39.84 41.04 45.56 44.85 44.81 37.76 31.55 42.31 40.55 44.13 38.04
Qwen2.5 (1.5B) 37.22 63.94 49.44 42.25 43.84 47.36 48.87 46.65 37.72 31.93 44.92 42.81 47.56 38.77
Qwen3 (1.7B) 38.83 64.90 53.09 46.25 48.32 49.77 51.84 50.28 38.56 32.32 47.42 45.47 50.43 40.39
Gemma3 (1B) 37.85 58.35 47.85 40.39 44.69 46.85 46.29 49.85 38.55 31.90 44.26 42.69 46.04 40.10
Gemma (2.6B) 37.19 62.42 49.61 43.50 44.22 48.35 49.13 48.71 40.23 31.99 45.54 43.66 47.77 40.31

Language-Specific LLMs
AfriTeVa (1B) 37.70 40.25
BritLLM (3B) 60.06 37.26
CroissantLLM (1.3B) 53.34 45.17
EuroLLM (1.7B) 38.59 57.95 48.23 42.03 47.29 46.68 47.10 46.84
Jais-family-1p3b (1.3B) 39.59 56.31
Sailor (1.8B) 55.53 48.84
Sailor2 (1B) 54.38 49.84

Ours
TransWebLLM (1.3B) 39.41 56.32 46.57 41.59 45.51 46.08 45.84 47.48 43.76 38.52 45.11 43.86 45.90 43.25

Table 3: Evaluation of LLMs for ten languages. For each language, the scores are the averaged performance over
benchmarks. Detailed model performance for each benchmark is described in Appendix G. The last four columns
report mean scores for all languages (All), non-English languages (Non-Eng), high-resource languages (High), and
medium- and low-resource languages (Med.&Low). The top three models in each column are underlined, and the
best one is highlighted.

behavior analysis for interpretability.

5.1 Pretraining with LLM-generated
Translation Data

Recent work (Alves et al., 2024; Martins et al.,
2024) show that LLMs can perform translation
tasks. These results prompt the question: How
does pretraining performance differ between LLM
and NMT translations, as used in TransWebLLM,
given their translation quality differences?

Dubey et al. (2024) showed Mistral’s potential
for multilingual NLP, while Moslem et al. (2023)
and Kocmi et al. (2024) demonstrate its effec-
tiveness for machine translation. In our prelimi-
nary evaluation, Mistral-7B-Instruct-v0.1 achieved
BLEU scores of 28.75 on WMT14 EN-FR and
23.88 on WMT16 EN-DE in a zero-shot setting,
outperforming supervised NMT systems trained
on 30 million parallel sentences, which score
27.97 and 21.33, respectively (Lample et al., 2017).
Based on these findings, we adopt Mistral-7B-
Instruct-v0.19 for translation, focusing on English,
French, German, and Spanish due to its limited
language coverage. Details on data generation are
provided in Appendix D. A key distinction between
Mistral- and NLLB-generated translations lies in
the text segmentation: Mistral is prompted to trans-
late chunked documents, better preserving context,

9hf.co/mistralai/Mistral-7B-Instruct-v0.1

while NLLB operates at the sentence level, which
may lead to reduced document-level coherence.

Due to computational constraints, we translate
64B English tokens from the sample-100BT subset
of FineWeb-Edu. We then pretrain a new model
from scratch with the same framework and hy-
perparameters as TransWebLLM, referring to it as
CuatroLLM. For fair comparison, we pretrain a
model on the same 64B English tokens and their
corresponding NLLB-translated French, German,
and Spanish data, which is referred to as TransWe-
bLLM-4. Both models are evaluated at the same
training step, after processing 470B tokens for the
four languages. Due to space constraints, the re-
sults are presented in Table 12 in Appendix D. On
average, CuatroLLM and TransWebLLM-4 achieve
comparable performance (46.47 vs. 46.57), both
outperforming mGPT and BLOOM, and almost
matching Llama3.2. This suggests that the choice
of translation method, using either Mistral-7B-
Instruct-v0.1 or NLLB, has only a limited impact
on pretraining performance. However, the NLLB
model offers a key advantage: its support for 200
languages enables scalable multilingual pretraining
across a much wider language spectrum.

5.2 Beyond Pretraining with Translation Data

In this section, we assess whether incorporating
specialized data offers additional benefits beyond
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Model # tokens Method Data
TransWebLLM 1.5T Train from scratch TransWebEdu

TransWebLLM-web +90B Continue train on
TransWebLLM

TransWebEdu
+ Real web data

TransWebLLM-cool +62B Continue train on
TransWebLLM-web

TransWebEdu
+ Real web data

+ MC synthetic data
+ Cooldown Data

Table 4: Models used in data impact ablations.

pretraining with machine-translated data.

5.2.1 Impact of General Web Data
TransWebEdu is primarily composed of educational
content, a highly specialized domain. We explore
whether incorporating general web data can further
improve multilingual reasoning capabilities.

We construct a general web dataset by sampling
English, French, German, Italian, and Spanish data
from RedPajama-v2 (RPv2) (Weber et al., 2024);
Arabic, Russian, and Indonesian from mC4 (Xue
et al., 2021); Swahili from Wura (Oladipo et al.,
2023); and Welsh from CC100 (Wenzek et al.,
2020). For RPv2, we filter each subset using its
built-in quality signals, as described in Appendix E;
for mC4, we apply random sampling. Given the
limited availability of Swahili and Welsh data in
Wura and CC100, we include their entire datasets.
We balance the general web data by sampling a
nearly equal number of tokens per language, up-
sampling Indonesian, Swahili, and Welsh as needed
to match their proportions in TransWebEdu. We
then merge it with TransWebEdu at a nearly 1:0.8
ratio10 for continued pretraining. Building on Tran-
sWebLLM, we extend training for an additional
20,800 steps, processing approximately 90B tokens
during this phase, with general web data account-
ing for only around 40B tokens (less than 3%).
We refer to this continued pretraining model as
TransWebLLM-web, as detailed in Table 4.

Understanding and Reasoning Evaluation The
evaluation results of TransWebLLM-web are pre-
sented in Table 13 in Appendix F, with per-task av-
eraged results over three random seeds in Tables 17
to 26 in Appendix G. As shown, TransWebLLM-
web outperforms TransWebLLM with consistently
higher average scores. The last row of the table
summarizes these performance gains. These re-
sults underscore the value of incorporating even

10We aimed to balance the data across all ten languages
based on general web sources. However, for Welsh and
Swahili, the available data is extremely limited, compared
with other languages. We avoid excessive upsampling to main-
tain training performance.

Model fr-grammar fr-vocab Avg.

Baselines
EuroLLM∗ 79.83 78.99 79.41
Qwen2.5 71.43 73.95 72.69
Qwen3 78.99 78.15 78.57
Gemma 73.11 72.27 72.69
CroissantLLM∗ 79.83 78.15 78.99

Ours
TransWebLLM 67.23 63.03 65.13
TransWebLLM-web 73.11 76.47 74.79

Table 5: French grammar and vocabulary proficiency
evaluation of TransWebLLM-web, measured in accuracy,
compared to the top French-performing models from
Table 13 and French-specific LLMs. Models marked
with ∗ are regional models trained with French support.

Model colloquial standard Avg.

Baselines
Qwen3 53.31 56.71 55.01
Gemma3 56.53 61.18 58.86
Sailor∗ 57.60 65.47 61.54
Sailor2∗ 58.86 66.37 62.62

Ours
TransWebLLM 48.12 49.55 48.84
TransWebLLM-web 55.46 59.75 57.61

Table 6: COPAL-ID evaluation of TransWebLLM-web,
measured in accuracy, compared to the top Indonesian-
performing models from Table 13 and Indonesian-
specific LLMs. Models marked with ∗ are regional
models trained with Indonesian support.

a limited amount of web data during continued
pretraining for multilingual understanding and rea-
soning.

Linguistic Proficiency Evaluation We also eval-
uate the model’s linguistic proficiency, focusing
on its ability to understand and generate coher-
ent, grammatically accurate sentences. Faysse
et al. (2024) introduced the fr-grammar and fr-
vocabulary test sets in French to assess models’
grammar and vocabulary capabilities through struc-
tured language evaluations. We test both Tran-
sWebLLM and TransWebLLM-web on these bench-
marks in a 5-shot setting to measure their profi-
ciency in French linguistic competence. As shown
in Table 5, TransWebLLM-web outperforms Tran-
sWebLLM by nearly 10 accuracy points (74.79 vs.
65.13) on average, demonstrating that even a small
addition of general web data in continued pretrain-
ing can significantly enhance linguistic proficiency.

Reasoning Evaluation for Local Culture Lo-
cal culture reasoning reflects causal understanding
within specific cultural contexts. COPAL-ID (Wi-
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bowo et al., 2023) is an Indonesian causal reason-
ing dataset written from scratch by native speak-
ers in both standard and Jakartan Indonesian, a
widely spoken dialect. We evaluate both TransWe-
bLLM and TransWebLLM-web on this benchmark
in a 5-shot setting to assess their ability to reason
within the Indonesian cultural sphere. As shown in
Table 6, TransWebLLM-web improves Indonesian
cultural reasoning by over an averaged 8 accuracy
points (57.61 vs. 48.84) by incorporating a limited
amount of general web data in continued pretrain-
ing on TransWebLLM.

5.2.2 Impact of Special Data
Yang et al. (2023) shows that rephrasing
MMLU (Hendrycks et al., 2021) samples en-
hances model reasoning performance across var-
ious domains. Motivated by these findings, we
explore the impact of rephrased synthetic data on
TransWebLLM. Instead of rephrasing MMLU test
cases (Yang et al., 2023), we rephrase English web
data into a multiple-choice (MC) style using an
LLM, aligning with reasoning structure while main-
taining its open-ended nature. We extract 10BT
English data from SlimPajama (Soboleva et al.,
2023), generate about 8BT MC synthetic data us-
ing Mistral-7B-Instruct-v0.1,11 and upsample and
integrate it into TransWebEdu with general web
data, ensuring MC data constitutes about 5% of
the corpus. Given the improved performance of
TransWebLLM-web, we continue pretraining for
9,000 steps, processing 38B tokens, including 2B
tokens from the MC data.

Prior works (Faysse et al., 2024; Zhang et al.,
2024; Martins et al., 2024) highlight the importance
of a cooldown phase for enhancing model capabili-
ties. While TransWebEdu emphasizes educational
content, it lacks code and instruction data, such
as question-answering (QA), compared to other
LLMs. To address this, we introduce cooldown
data during this phase: Python-Edu (Ben Allal
et al., 2024), an educational Python dataset from
The Stack (4.4B tokens), and WebInstruct (Yue
et al., 2024), a curated QA dataset (0.8B tokens)
from the web. They are up-sampled and mixed with
the previous-stage data (Table 4), forming 30%
of the total. The model undergoes an additional
24B-token training phase using a reduced learning
rate.12 Notably, cooldown data constitutes about

11We use the prompt template as “Write multiple-choice
questions and answers based on the document: [doc]”.

12We apply a constant learning rate schedule: 2× 10−4 for

7B tokens, accounting for about 0.4% of total train-
ing tokens. We denote this final cooldown-trained
model as TransWebLLM-cool.

We evaluate TransWebLLM-cool on all bench-
marks used in Sections 4.1 and 5.2.1, as well
as Global-MMLU (Singh et al., 2024), cov-
ering nine languages (excluding Welsh), in a
5-shot setting. As shown in Table 14 (Ap-
pendix F), TransWebLLM-cool, trained with addi-
tional rephrased synthetic and cooldown data, ranks
among the top three models on Global-MMLU, on
average across all and high-resource languages.

Furthermore, Table 7 shows that TransWebLLM-
cool surpasses TransWebLLM-web across nine Non-
English languages for understanding and reason-
ing tasks, ranking as the best LLM on average.
Remarkably, it is the best-performing LLM for
Arabic, Indonesian, and Welsh. In addition, Ta-
bles 15 and 16 in Appendix F demonstrate that
TransWebLLM-cool, despite being trained with lim-
ited amount of special data, further improves both
French linguistic proficiency and Indonesian local
cultural reasoning over TransWebLLM-web. These
findings underscore the effectiveness of rephrased
synthetic and cooldown data in enhancing multilin-
gual pretraining built on NLLB-translated data and
limited web data.

5.3 Multilingual Behavior Analysis

Wendler et al. (2024) used the logit lens (Nostal-
gebraist, 2020) to show that multilingual LLMs
trained on English-heavy data develop a latent
space biased toward English. We apply a simi-
lar method by projecting intermediate layer out-
puts through the final-layer linear transformation
to examine whether TransWebLLM models rely on
English as a pivot when processing Non-English
languages. To control for semantic variation, we
use the devtest set of FLORES-200 (Costa-jussà
et al., 2022), which provides semantically aligned
texts across languages. For each layer, we apply the
logit lens and use FastText (Joulin et al., 2016) to
identify the language distribution of the generated
tokens. We then plot the predicted probabilities
of English and the target language. Our analysis
compares TransWebLLM models with Llama3.2,
Qwen2.5, and Qwen3.

Results (detailed in Appendix H) show that Tran-
sWebLLM models generally exhibit lower English

earlier pretraining phases and 6× 10−5 for cooldown, where
we also reduce the batch size to 1024.
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High Medium Low Average
ar en fr de it ru es id sw cy All Non-eng High Med.& Low

English LLMs
Pythia (1.4B) 32.95 54.71 41.43 36.25 34.71 38.30 40.04 36.87 37.34 31.45 38.41 36.59 39.77 35.22
TinyLlama (1.1B) 32.50 57.12 43.52 36.36 36.84 41.36 42.02 36.13 36.94 31.48 39.43 37.46 41.39 34.85

Multilingual LLMs
mGPT (1.3B) 32.52 45.36 39.95 35.17 34.71 40.45 39.33 39.32 38.71 31.11 37.66 36.81 38.21 36.38
BLOOM (1.1B) 34.90 51.16 43.52 34.69 33.76 37.49 42.61 43.25 37.17 31.18 38.97 37.62 39.73 37.20
Llama3.2 (1.3B) 34.64 58.12 44.89 39.84 41.04 45.56 44.85 44.81 37.76 31.55 42.31 40.55 44.13 38.04
Qwen2.5 (1.5B) 37.22 63.94 49.44 42.25 43.84 47.36 48.87 46.65 37.72 31.93 44.92 42.81 47.56 38.77
Qwen3 (1.7B) 38.83 64.90 53.09 46.25 48.32 49.77 51.84 50.28 38.56 32.32 47.42 45.47 50.43 40.39
Gemma3 (1B) 37.85 58.35 47.85 40.39 44.69 46.85 46.29 49.85 38.55 31.90 44.26 42.69 46.04 40.10
Gemma (2.6B) 37.19 62.42 49.61 43.50 44.22 48.35 49.13 48.71 40.23 31.99 45.54 43.66 47.77 40.31

Language-Specific LLMs
AfriTeVa (1B) 37.70 40.25
BritLLM (3B) 60.06 37.26
CroissantLLM (1.3B) 53.34 45.17
EuroLLM (1.7B) 38.59 57.95 48.23 42.03 47.29 46.68 47.10 46.84
Jais-family-1p3b (1.3B) 39.59 56.31
Sailor (1.8B) 55.53 48.84
Sailor2 (1B) 54.38 49.84

Ours
TransWebLLM (1.3B) 39.41 56.32 46.57 41.59 45.51 46.08 45.84 47.48 43.76 38.52 45.11 43.86 45.90 43.25
TransWebLLM-web (1.3B) 39.96 56.26 48.25 42.10 46.83 46.35 46.93 50.17 44.28 39.96 46.11 44.98 46.67 44.80
TransWebLLM-cool (1.3B) 40.13 57.80 48.48 42.88 48.15 47.02 47.62 50.93 44.21 40.43 46.77 45.54 47.44 45.19
∆ (Cool - Base) +0.72 +1.48 +1.91 +1.29 +2.64 +0.94 +1.78 +3.45 +0.45 +1.91 +1.66 +1.68 +1.54 +1.94
∆ (Cool - Web) +0.17 +1.54 +0.23 +0.78 +1.32 +0.67 +0.69 +0.76 -0.07 +0.47 +0.66 +0.56 +0.77 +0.39

Table 7: Evalution of TransWebLLM-cool across ten languages, measured in accuracy. In each column, the top three
models are underlined and the best one is highlighted.

probabilities and reduced English dominance in in-
termediate representations compared to Llama3.2,
Qwen2.5, and Qwen3 on Non-English languages.
When examining the probabilities of the target lan-
guage, TransWebLLM models show a gradual in-
crease starting in the middle-to-late layers, suggest-
ing more stable alignment with the target language
in deeper layers. In contrast, Llama3.2, Qwen2.5,
and Qwen3 exhibit a U-shaped trend, with higher
probabilities in the early and final layers but a no-
ticeable dip in the middle. This pattern might re-
flect a stronger reliance on an English-centric inter-
mediate representation before shifting back to the
target language toward the output layers.

6 Conclusion

We introduce TransWebEdu, a multilingual dataset
at pretraining scale, created by machine-translating
a high-quality English corpus. Our model, Tran-
sWebLLM, trained from scratch on this data,
achieves competitive performance on understand-
ing and reasoning benchmarks across nine Non-
English languages, outperforming multilingual
LLMs trained on closed data, such as Gemma3,
Llama3.2, and Qwen2.5 with similar model size.
Furthermore, we show that adding fewer than
5% of TransWebLLM’s training tokens as domain-
specific data for continued pretraining yields
new state-of-the-art results in Arabic, Indonesian,

Swahili, and Welsh, and leads to the best overall
average performance across Non-English bench-
marks. Our approach offers a scalable method
for creating multilingual pretraining data, with
promising results particularly for medium- and low-
resource languages.

Limitations

Our study yields promising results while also iden-
tifying areas for future exploration.

TransWebLLM, trained on TransWebEdu,
achieves competitive average performance across
10 multilingual benchmarks to state-of-the-art
multilingual LLMs of similar size, such as
Qwen2.5 and Gemma3. Further improvements
are observed with the addition of general web
data, rephrased synthetic data, and code and
web-instruct data. However, due to computational
constraints, we haven’t conducted ablation studies
to determine the optimal data mixture beyond
pretraining with TransWebEdu. Future work will
extend the experiments beyond pretraining with
translation data in Section 5.2 to explore optimal
data mixing strategies from diverse sources.

Moreover, our experiments focus on TransWe-
bLLM, a 1.3B-parameter model that has shown
promising results at this scale. However, it remains
unclear whether the benefits of our translated pre-
training data would persist or amplify in substan-
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tially larger models (e.g., 70B+ parameters). Scal-
ing up could provide deeper insights into multilin-
gual learning dynamics and data efficiency. Future
research will explore these aspects to validate and
enhance the scalability of our multilingual pretrain-
ing approach.
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Hyperparameter Value

Sequence Length 2048
Number of Layers 24
Embedding Size 2048
FFN Hidden Size 5504
Number of Heads 16
Position Encodings RoPE
Activation Function SwiGLU
Layer Norm RMSNorm
Learning Rate 2E-4
Batch Size 2048
Vocabulary Size 32000

Embedding Parameters 0.13B
Non-Embedding Parameters 1.21B
Total Parameters 1.34B

Table 8: Model and pretraining hyperparameters.
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Appendix

This appendix provides additional technical details
on our approach and supplementary evaluation re-
sults for the main paper.

A Hyperparameters Settings of Model
Pretrainning

Pretraining hyperparameter settings are shown in
Table 8.

B Specific Evaluation Benchmarks for
Each Language

Specific evaluation benchmarks for each of the 10
languages are shown in Table 9.

C An Overview of Baseline Models

An overview of baseline models are shown in Ta-
ble 10.

D Translation Data Generation from the
Mistral-7B-Instruct LLM

We employ Mistral-7B-Instruct-v0.1 as our transla-
tion model. However, its efficacy when prompted
for document-level translation, particularly with
long-context English source documents, has not yet
been verified. A recent related work by Maini et al.
(2024) has empirically demonstrated that prompt-
ing an LLM to rephrase more than 300 tokens could
lead to information loss when rephrasing web data.

Following their setup, we first segment the En-
glish source documents from the sample-100BT
subset of FineWeb-Edu into shorter pieces, prompt
Mistral to translate these segments sequentially,
and subsequently reconstruct the whole translated
document by concatenating the translated seg-
ments.The detailed translation pipeline is shown in
Figure 2.

Adhering to the instruction format13 specified for
Mistral-7B-Instruct, the chat template employed
to prompt Mistral model for translation (using
English-French as an example) is illustrated in
Figure 3.14 To maintain translation integrity, any
sentence not fully translated to a terminal punc-
tuation is omitted, based on the NLTK sentence
splitter (Bird et al., 2009).

We translate English documents from FineWeb-
Edu (Lozhkov et al., 2024) into three major Eu-
ropean languages: French, German, and Spanish
via prompting the Mistral-7B-Intruct model. To
optimize memory efficiency and accelerate the in-
ference process of Mistral-7B-Instruct-v0.1, we
employ vLLM (Kwon et al., 2023), a library specif-
ically designed for efficient large language model
inference and serving. Using this setup, we trans-
late approximately 54 million English documents
(a subset of sample-100B of FineWeb-Edu) into
the three target languages by prompting Mistral-
7B-Instruct-v0.1. Table 11 presents the statistics of
the original English data and the translated French,
German, and Spanish. Leveraging vLLM’s effi-
ciency, we estimate the total computational cost to
be approximately 6.03× 1022 FLOPs.

Table 12 compares the performance of the
model trained on Mistral-generated translation data
(CuatroLLM) with the model trained on NLLB-
generated data (TransWebLLM-4) across English,

13hf.co/mistralai/Mistral-7B-Instruct-v0.1
14The highlighted portions in the template are adjusted

according to the target language.
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Language Evaluation Datasets

Arabic ARC-C, Hellaswag (Lai et al., 2023), XNLI (Conneau et al., 2018), XStoryCloze (Lin et al., 2021b)

English ARC-E, ARC-C (Clark et al., 2018), Hellaswag (Zellers et al., 2019), PAWS-X (Yang et al., 2019), PIQA (Bisk
et al., 2020), SciQ (Welbl et al., 2017), TruthfulQA (Lin et al., 2021a), XNLI (Conneau et al., 2018), XSto-
ryCloze (Lin et al., 2021b)

French ARC-C, Hellaswag (Lai et al., 2023), PAWS-X (Yang et al., 2019), XNLI (Conneau et al., 2018), XWino-
grad (Tikhonov and Ryabinin, 2021)

German ARC-C, Hellaswag (Lai et al., 2023), PAWS-X (Yang et al., 2019), XNLI (Conneau et al., 2018)

Indonesian ARC-C, Hellaswag (Lai et al., 2023), XCOPA (Ponti et al., 2020), XStoryCloze (Lin et al., 2021b)

Italian ARC-C, Hellaswag (Lai et al., 2023), XCOPA (Ponti et al., 2020)

Russian ARC-C, Hellaswag (Lai et al., 2023), XNLI (Conneau et al., 2018), XStoryCloze (Lin et al., 2021b), XWino-
grad (Tikhonov and Ryabinin, 2021)

Spanish ARC-C, Hellaswag (Lai et al., 2023), PAWS-X (Yang et al., 2019), XNLI (Conneau et al., 2018), XSto-
ryCloze (Lin et al., 2021b)

Swahili ARC-C, TruthfulQA (Bayes et al., 2024), XCOPA (Ponti et al., 2020), XNLI (Conneau et al., 2018), XSto-
ryCloze (Lin et al., 2021b)

Welsh ARC-E, ARC-C, PIQA, TruthfulQA, and XNLI from BritEval

Table 9: Specific evaluation benchmarks for each language.

Model # Param. Corpus Corpus Training Data LanguagesSize Tokens Avail.

Monolingual LLMs

TinyLlama 1.1B SlimPajama (Soboleva et al., 2023) and
StarCoder training data (Li et al., 2023) 1T 3T ✔ Primarily English

Pythia 1.4B The Pile (Gao et al., 2020) 207B 300B ✔ Primarily English

Multilingual LLMs
mGPT 1.3B mC4,Wiki 488B 440B ✘ 61 languages

BLOOM 1.1B BigScience Catalogue, Common Crawl,
Github Code, and OSCAR (Ortiz Su’arez et al., 2019) 350B 366B ✔ 46 langauges

Llama3.2 1.3B Web data, Code, and Math - 9T ✘ At least 8 languages
Qwen2.5 1.5B Web data, High-quality Reasoning Data - 18T ✘ At least 30 languages
Qwen3 1.7B Web data, High-quality Reasoning Data - 36T ✘ 119 languages
Gemma3 1B Web data, Code, Science Articles, Parallel Data - 2T ✘ Over 140 languages
Gemma 2.6B Web data, Code, and Science Articles - 2T ✘ -

Language-specific LLMs
afriteva_v2_large 1B Wura (Oladipo et al., 2023) 30 million 136B ✔ 20 African languages

BritLLM 3B SlimPajama (Soboleva et al., 2023),
QA and MC Synthetic Data, Wiki, NLLB 668B - ✘ 5 British languages

CroissantLLM 1.3B Croissant (Faysse et al., 2024) 1T 3T ✔ English, French

EuroLLM 1.7B Web data, Parallel data, Code/Math, Wiki,
ArXiv, Books, Apollo, Annealing Data - 4T ✘ 35 languages

Jais-family-1p3b 1.3B Jais Model Family training data
(Sengupta et al., 2023) 395B 1.6T ✘ Arabic, English

Sailor 1.8B
CC100 (Wenzek et al., 2020),

MADLAD-400 (Kudugunta et al., 2024),
OpenSubtitles, and Wiki

395B 400B ✔
English, Chinese, and

5 South-East Asian languages

Sailor2 1B

CC100 (Wenzek et al., 2020),
MADLAD-400 (Kudugunta et al., 2024),

OpenSubtitles, Wiki, Fineweb-Pro,
Chinese-Fineweb-Edu, Open-Web-Math-Pro,

and Synthetic data

- 500B ✔ 15 languages

TransWebLLM (Ours) 1.3B TransWebEdu 1.7T 1.5T ✔ 10 languages

Table 10: Overview of pretraining data across LLMs.

German, French, and Spanish benchmarks.15

E Sampling General Web Data from
RedPajama-v2

We use the English, French, German, Italian, and
Spanish subsets of the RedPajama-v2 (RPv2) (We-

15We apply the default seed of the lm-evaluation-harness
framework for this evaluation.

ber et al., 2024) as web data. Given that web data is
inherently noisy, we make further use of the quality
signals provided for RPv2 and filter each subset
down to a smaller, high-quality subset. Specifi-
cally, we use the six most recent dumps from 2022
and 2023 and apply quality filtering using the Go-
pher rules (Rae et al., 2021). Additionally, web
data often contains near duplicates, stemming from
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Document X
…

Chunk1 

Chunk 2 

Chunk N 

Mistral-7B-
Instruct

Translation of  
Chunk 1 

Translation of  
Chunk 2 

Translation of  
Chunk N

Translation of 
Document X

…

1. Split documents 
using the sentence 

splitter.

4.  Concatenate the 
translated chunks to 

reconstruct 
documents.

2. Group sentences into chunks. 3. Prompt the LLM to translate each chunk. 

Sentence 1

Sentence 2

Sentence N

…

Figure 2: Step-by-step illustration of the translation pipeline with the Mistral-7B-Instruct model.

Figure 3: Chat template used for prompting Mistral-7B-
Instruct-v0.1 for English-French translation.

Language Tokens (B) Avg. Doc Length (tokens)

English 63.41 1,171.48
French 76.25 1,408.74
German 73.91 1,365.41
Spanish 72.93 1,383.25

Total 286.50 1,331.89

Table 11: Statistics of Translation Data generated with
the Mistral-7B-Model, measured in Llama2 tokenizer.

en fr de es Avg.

English LLMs
Pythia (1.4B) 54.79 40.56 36.16 40.12 42.91
TinyLlama (1.1B) 57.26 43.96 36.19 42.40 44.95

Multilingual LLMs
mGPT (1.3B) 45.63 40.22 34.94 39.43 40.06
BLOOM (1.1B) 51.47 42.31 34.93 42.72 42.86
Llama3.2 (1.3B) 58.20 44.80 40.13 45.04 47.04
Qwen3 (1.7B) 65.05 54.16 46.19 52.06 54.37
Gemma3 (1B) 58.45 48.79 40.74 46.37 48.59

Language-Specific LLMs
CroissantLLM (1.3B) 53.45 45.45 - - -
EuroLLM (1.7B) 58.07 48.14 42.05 47.11 48.84

Ours
CuatroLLM (1.3B) 55.48 45.32 40.38 44.70 46.47
TransWebLLM-4 (1.3B) 55.15 45.72 40.55 44.87 46.57

Table 12: Performance comparison between Cua-
troLLM, trained on LLM-translated data, and TransWe-
bLLM-4 across four selected languages.

boilerplate text, ads, and other computer-generated
text that only differs by a few words, and remov-
ing these has been shown to positively affect train-
ing efficiency and reduce the amount of memo-
rization (Lee et al., 2021). We therefore adopt the

MinHash algorithm with locality-sensitive hash-
ing (Broder, 1997) to perform near-deduplication.
We identify documents as near duplicates if their
Jaccard similarity is greater than 0.8 and use 128
hash functions.

F Evaluation for Impact of Special Data

The evaluation results of TransWebLLM-web are
presented in Table 13.

The evaluation results of TransWebLLM-cool on
Global MMLU, French linguistic proficiency, and
reasoning for Indonesian local culture are presented
in Table 14, 15, and 16, respectively.

G Detailed Results per Language for
Understanding and Reasoning
Benchmarks

Tables 17 to 26 present detailed benchmark results
for each language, as outlined in Section 4.1. All
results are averaged over three runs with different
random seeds to ensure stability and statistical sig-
nificance. The average scores across benchmarks
(shown in the last column of each table)16 corre-
spond to those reported in Tables 3,13, and 7, re-
spectively.

H Logit Lens Analysis for Interpretability

Detailed logit lens visualizations for TransWebLLM
models and other baselines are provided in Figure 4
and 5, respectively, as discussed in Section 5.3.17

16The last decimal digit in the average column may differ
by 0.01 because the original benchmark results were reported
with higher decimal precision and subsequently rounded.

17We include layer_0 in our plots, which corresponds to the
embedding projection prior to the first decoder block.
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High Medium Low Average
ar en fr de it ru es id sw cy All Non-eng High Med.& Low

English LLMs
Pythia (1.4B) 32.95 54.71 41.43 36.25 34.71 38.30 40.04 36.87 37.34 31.45 38.41 36.59 39.77 35.22
TinyLlama (1.1B) 32.50 57.12 43.52 36.36 36.84 41.36 42.02 36.13 36.94 31.48 39.43 37.46 41.39 34.85

Multilingual LLMs
mGPT (1.3B) 32.52 45.36 39.95 35.17 34.71 40.45 39.33 39.32 38.71 31.11 37.66 36.81 38.21 36.38
BLOOM (1.1B) 34.90 51.16 43.52 34.69 33.76 37.49 42.61 43.25 37.17 31.18 38.97 37.62 39.73 37.20
Llama3.2 (1.3B) 34.64 58.12 44.89 39.84 41.04 45.56 44.85 44.81 37.76 31.55 42.31 40.55 44.13 38.04
Qwen2.5 (1.5B) 37.22 63.94 49.44 42.25 43.84 47.36 48.87 46.65 37.72 31.93 44.92 42.81 47.56 38.77
Qwen3 (1.7B) 38.83 64.90 53.09 46.25 48.32 49.77 51.84 50.28 38.56 32.32 47.42 45.47 50.43 40.39
Gemma3 (1B) 37.85 58.35 47.85 40.39 44.69 46.85 46.29 49.85 38.55 31.90 44.26 42.69 46.04 40.10
Gemma (2.6B) 37.19 62.42 49.61 43.50 44.22 48.35 49.13 48.71 40.23 31.99 45.54 43.66 47.77 40.31

Language-Specific LLMs
AfriTeVa (1B) 37.70 40.25
BritLLM (3B) 60.06 37.26
CroissantLLM (1.3B) 53.34 45.17
EuroLLM (1.7B) 38.59 57.95 48.23 42.03 47.29 46.68 47.10 46.84
Jais-family-1p3b (1.3B) 39.59 56.31
Sailor (1.8B) 55.53 48.84
Sailor2 (1B) 54.38 49.84

Ours
TransWebLLM (1.3B) 39.41 56.32 46.57 41.59 45.51 46.08 45.84 47.48 43.76 38.52 45.11 43.86 45.90 43.25
TransWebLLM-web (1.3B) 39.96 56.26 48.25 42.10 46.83 46.35 46.93 50.17 44.28 39.96 46.11 44.98 46.67 44.80
∆ Gain +0.55 -0.06 +1.68 +0.51 +1.32 +0.27 +1.09 +2.69 +0.52 +1.44 +1.00 +1.12 +0.77 +1.55

Table 13: Performance comparison between TransWebLLM and TransWebLLM-web in a 5-shot setting across ten
languages. The last row (∆ Gain) shows the performance difference, with positive values indicating improvements
of TransWebLLM-web over TransWebLLM. In each column, the top three models are underlined and the best one is
highlighted.

High Medium Low Average
ar en fr de it ru es id sw All High

Multilingual LLMs
mGPT (1.3B) 25.02 25.27 26.10 24.05 25.70 25.48 25.64 25.10 24.11 25.16 25.32
BLOOM (1.1B) 26.36 26.25 26.65 26.51 27.25 26.76 26.09 25.86 26.61 26.48 26.55
Llama3.2 (1.3B) 27.72 31.17 27.69 27.94 27.67 27.54 28.19 27.86 26.39 28.02 28.27
Qwen3 (1.7B) 45.45 62.23 55.18 53.71 54.51 51.69 55.58 52.49 33.28 51.57 54.05
Gemma3 (1B) 25.57 26.16 26.27 26.87 26.58 26.71 26.28 26.22 26.13 26.31 26.35

Language-Specific LLMs
AfriTeVa (1B) 26.87 26.93
CroissantLLM (1.3B) 25.35 25.36
EuroLLM (1.7B) 26.23 27.13 26.79 26.47 26.25 27.61 26.37 26.69
Jais-family-1p3b (1.3B) 25.94 25.06
Sailor (1.8B) 28.62 26.39
Sailor2 (1B) 37.03 33.34

Ours
TransWebLLM (1.3B) 26.63 24.66 25.69 25.46 25.32 26.42 26.21 25.28 25.35 25.67 25.77
TransWebLLM-web (1.3B) 26.49 26.41 26.84 26.11 26.16 26.56 26.58 26.68 26.48 26.48 26.45
TransWebLLM-cool (1.3B) 30.44 34.26 32.58 32.27 31.95 32.50 32.53 33.18 31.11 32.31 32.36

Table 14: Evaluation on Global-MMLU full sets (Singh et al., 2024), measured in accuracy. The rightmost
columns report the average scores across all languages (All) and high-resource languages (High). Top 3 models are
underlined.
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Figure 4: Logit lens outputs for TransWebLLM models across 10 languages.
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Figure 5: Logit lens outputs for baseline models across 10 languages.
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Model fr-grammar fr-vocab Avg.

Baselines
EuroLLM∗ 79.83 78.99 79.41
Qwen2.5 71.43 73.95 72.69
Qwen3 78.99 78.15 78.57
Gemma 73.11 72.27 72.69
CroissantLLM∗ 79.83 78.15 78.99

Ours
TransWebLLM 67.23 63.03 65.13
TransWebLLM-web 73.11 76.47 74.79
TransWebLLM-cool 78.15 73.95 76.05

Table 15: French grammar and vocabulary proficiency
evaluation of TransWebLLM-cool, measured in accuracy,
compared to the top French-performing models from
Table 7 and French-specific LLMs. Models marked with
∗ are regional models trained with French support.

Model colloquial standard Avg.

Baselines
Qwen3 53.31 56.71 55.01
Gemma3 56.53 61.18 58.86
Sailor∗ 57.60 65.47 61.54
Sailor2∗ 58.86 66.37 62.62

Ours
TransWebLLM 48.12 49.55 48.84
TransWebLLM-web 55.46 59.75 57.61
TransWebLLM-cool 55.99 61.90 58.95

Table 16: COPAL-ID evaluation of TransWebLLM-cool,
measured in accuracy, compared to the top Indonesian-
performing models from Table 7 and Indonesian-
specific LLMs. Models marked with ∗ are regional
models trained with Indonesian support.

Model ARC-C Hellaswag XNLI XStoryCloze Avg.

Pythia 21.10 27.16 35.65 47.89 32.95
TinyLlama 20.25 26.87 34.54 48.33 32.50
mGPT 20.27 25.99 34.03 49.79 32.52
BLOOM 22.01 29.74 35.30 52.55 34.90
Llama3.2 22.47 30.53 34.18 51.38 34.64
EuroLLM 26.15 33.90 36.53 57.76 38.59
Qwen2.5 26.86 32.15 34.36 55.51 37.22
Qwen3 30.85 33.75 35.75 54.97 38.83
Gemma3 24.89 33.40 35.10 58.02 37.85
Gemma (2.6B) 27.06 32.29 35.10 54.31 37.19
jais-family-1p3b 27.86 35.62 35.28 59.61 39.59

TransWebLLM 30.25 34.35 36.00 57.02 39.41
TransWebLLM-web 29.17 36.04 35.73 58.88 39.96
TransWebLLM-cool 30.48 35.95 35.18 58.92 40.13

Table 17: Detailed Arabic Benchmark Results. For
each task, the reported accuracy is averaged over three
random seed configurations. “Avg.” denotes the overall
average across tasks.

Model ARC-C ARC-E Hellaswag PAWS PIQA SciQ TruthfulQA XNLI XStoryCloze Avg.

Pythia 28.27 63.95 40.53 57.52 71.07 92.07 22.85 48.23 67.88 54.71
TinyLlama 34.33 67.72 46.36 57.72 73.92 93.10 22.28 47.04 71.63 57.12
mGPT 21.42 49.06 30.66 54.98 64.31 61.50 23.26 42.40 60.62 45.36
BLOOM 24.63 54.71 34.70 54.77 67.56 89.67 25.58 46.47 62.36 51.16
EuroLLM 36.92 71.66 44.82 55.80 73.40 94.60 24.03 49.13 71.19 57.95
Llama3.2 35.29 69.00 48.12 55.40 75.37 95.13 23.30 48.77 72.71 58.12
Qwen2.5 48.83 80.60 49.93 67.07 76.53 96.90 29.90 51.22 74.48 63.94
Qwen3 50.97 81.33 49.28 70.78 76.50 97.30 32.52 51.70 73.70 64.90
Gemma3 35.81 71.49 47.30 57.07 75.83 94.93 22.03 48.51 72.18 58.35
Gemma (2.6B) 47.33 77.27 52.81 63.62 76.88 96.50 22.07 48.53 76.77 62.42
Afriteva-v2-large 20.93 31.31 26.66 50.53 56.19 43.47 25.21 35.81 49.15 37.70
BritLLM 38.37 72.66 51.00 57.77 75.80 96.03 24.44 48.82 75.62 60.06
CroissantLLM 26.74 62.92 40.93 51.93 72.24 92.63 23.62 43.00 66.07 53.34
Jais-family-1p3b 29.78 64.87 42.58 60.42 72.65 93.97 25.46 48.21 68.90 56.31
Sailor 29.64 64.07 42.63 58.22 72.78 93.40 22.28 46.98 69.82 55.53
Sailor2 29.69 64.35 39.92 55.00 70.00 94.53 22.89 45.80 67.22 54.38

TransWebLLM 37.12 71.63 40.61 57.53 70.73 93.07 22.97 47.95 65.30 56.32
TransWebLLM-web 36.80 71.84 41.02 57.23 70.40 93.63 21.99 46.40 67.06 56.26
TransWebLLM-cool 39.05 72.70 42.13 59.90 71.40 93.83 25.66 48.06 67.51 57.80

Table 18: Detailed English Benchmark Results. For
each task, the reported accuracy is averaged over three
random seed configurations. “Avg.” denotes the overall
average across tasks.

Model ARC-C Hellaswag PAWS XNLI XWinograd Avg.

Pythia 20.99 29.74 53.22 43.76 59.44 41.43
TinyLlama 24.98 32.66 52.15 42.74 65.06 43.52
mGPT 20.13 27.17 52.95 40.86 58.64 39.95
BLOOM 22.87 33.79 53.45 46.04 61.45 43.52
Llama3.2 27.17 35.93 53.27 44.64 63.46 44.89
EuroLLM 32.13 40.20 52.85 45.68 70.28 48.23
Qwen2.5 33.33 38.31 62.15 44.73 68.67 49.44
Qwen3 39.75 40.11 65.73 46.75 73.09 53.09
Gemma3 29.63 39.24 54.78 45.34 70.28 47.85
Gemma (2.6B) 34.98 39.82 59.13 47.04 67.07 49.61
CroissantLLM 25.55 39.52 50.35 44.54 65.87 45.17

TransWebLLM 35.67 38.88 53.38 44.66 60.24 46.57
TransWebLLM-web 35.79 40.34 54.95 44.73 65.46 48.25
TransWebLLM-cool 36.50 40.65 56.37 45.86 63.05 48.48

Table 19: Detailed French Benchmark Results. For
each task, the reported accuracy is averaged over three
random seed configurations. “Avg.” denotes the overall
average across tasks.

Model ARC-C Hellaswag PAWS XNLI Avg.

Pythia 19.76 28.76 55.05 41.45 36.25
TinyLlama 21.70 30.78 52.32 40.63 36.36
mGPT 19.65 27.65 52.42 40.95 35.17
BLOOM 20.65 27.12 53.52 37.48 34.69
Llama3.2 26.06 34.22 55.02 44.06 39.84
EuroLLM 28.97 37.73 54.97 46.47 42.03
Qwen2.5 28.91 34.99 61.12 43.98 42.25
Qwen3 36.27 37.77 64.87 46.09 46.25
Gemma3 26.04 37.11 54.83 43.59 40.39
Gemma (2.6B) 31.19 37.33 60.65 44.83 43.50

TransWebLLM 32.51 36.34 53.95 43.58 41.59
TransWebLLM-web 31.28 37.60 55.82 43.71 42.10
TransWebLLM-cool 32.68 37.92 56.23 44.70 42.88

Table 20: Detailed German Benchmark Results. For
each task, the reported accuracy is averaged over three
random seed configurations. “Avg.” denotes the overall
average across tasks.
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Model ARC-C Hellaswag XCOPA Avg.

Pythia 20.64 29.10 54.40 34.71
TinyLlama 23.15 31.23 56.13 36.84
mGPT 19.28 27.64 57.20 34.71
BLOOM 20.45 28.43 52.40 33.76
Llama3.2 26.95 34.85 61.33 41.04
EuroLLM 33.02 39.59 69.27 47.29
Qwen2.5 32.31 35.82 63.40 43.84
Qwen3 40.58 38.53 65.87 48.32
Gemma3 29.40 37.99 66.67 44.69
Gemma (2.6B) 32.16 37.42 63.07 44.22

TransWebLLM 36.30 37.36 62.87 45.51
TransWebLLM-web 35.79 39.03 65.67 46.83
TransWebLLM-cool 36.84 39.35 68.27 48.15

Table 21: Detailed Italian Benchmark Results. For each
task, the reported accuracy is averaged over three ran-
dom seed configurations. “Avg.” denotes the overall
average across tasks.

Model ARC-C Hellaswag XNLI XStoryCloze XWinograd Avg.

Pythia 18.99 27.55 39.30 49.35 56.29 38.30
TinyLlama 22.59 30.53 39.23 54.05 60.42 41.36
mGPT 20.38 26.72 40.29 56.34 58.52 40.45
BLOOM 19.62 27.40 37.52 48.29 54.61 37.49
Llama3.2 25.24 34.24 42.76 59.74 65.82 45.56
EuroLLM 28.68 36.53 45.09 62.67 60.42 46.68
Qwen2.5 31.60 36.17 42.49 62.12 64.45 47.36
Qwen3 36.87 37.75 45.85 62.26 66.14 49.77
Gemma3 26.72 36.35 42.72 64.26 64.23 46.85
Gemma (2.6B) 32.59 36.77 44.93 62.08 65.40 48.35

TransWebLLM 32.02 35.62 41.39 58.64 62.75 46.08
TransWebLLM-web 31.82 36.88 41.04 60.18 61.80 46.35
TransWebLLM-cool 33.34 37.07 40.63 61.11 62.96 47.02

Table 22: Detailed Russian Benchmark Results. For
each task, the reported accuracy is averaged over three
random seed configurations. “Avg.” denotes the overall
average across tasks.

Model ARC-C HellaSwag PAWS XNLI XStoryCloze Avg.

Pythia 21.71 30.17 52.78 41.85 53.68 40.04
TinyLlama 23.76 33.39 54.43 41.35 57.16 42.02
mGPT 20.31 28.23 52.07 40.86 55.20 39.33
BLOOM 24.30 34.47 51.75 44.21 58.33 42.61
Llama3.2 29.11 37.22 53.42 42.62 61.88 44.85
EuroLLM 32.42 41.08 52.67 44.91 64.44 47.10
Qwen2.5 35.98 39.43 60.83 43.80 64.28 48.87
Qwen3 42.02 41.30 64.75 46.29 64.81 51.84
Gemma3 30.77 39.80 53.85 42.46 64.57 46.29
Gemma (2.6B) 36.10 41.46 58.13 44.50 65.47 49.13

TransWebLLM 34.84 39.12 54.07 43.02 58.15 45.84
TransWebLLM-web 35.16 40.65 55.60 42.69 60.53 46.93
TransWebLLM-cool 36.32 40.92 56.67 43.12 61.06 47.62

Table 23: Detailed Spanish Benchmark Results. For
each task, the reported accuracy is averaged over three
random seed configurations. “Avg.” denotes the overall
average across tasks.

Model ARC-C HellaSwag XCOPA XStoryCloze Avg.

Pythia 17.64 27.86 53.33 48.67 36.87
TinyLlama 16.13 27.44 51.80 49.15 36.13
mGPT 19.17 27.11 57.33 53.65 39.32
BLOOM 21.42 31.70 62.20 57.69 43.25
Llama3.2 23.82 33.99 62.07 59.36 44.81
Qwen2.5 27.63 34.84 63.87 60.25 46.65
Qwen3 36.81 37.15 65.67 61.48 50.28
Gemma3 27.89 37.00 69.93 64.59 49.85
Gemma (2.6B) 32.11 36.35 64.93 61.46 48.71
Sailor 26.53 36.39 70.07 62.39 48.84
Sailor2 27.95 36.85 70.67 63.89 49.84

TransWebLLM 34.39 36.92 60.87 57.75 47.48
TransWebLLM-web 33.73 37.91 67.13 61.90 50.17
TransWebLLM-cool 35.07 37.93 68.80 61.90 50.93

Table 24: Detailed Indonesian Benchmark Results. For
each task, the reported accuracy is averaged over three
random seed configurations. “Avg.” denotes the overall
average across tasks.

Model ARC-C TruthfulQA XCOPA XNLI XStoryCloze Avg.

Pythia 24.64 24.46 54.80 33.80 48.98 37.34
TinyLlama 24.58 24.08 52.73 33.68 49.64 36.94
mGPT 26.55 24.58 55.80 35.18 51.45 38.71
BLOOM 23.08 25.07 53.13 34.34 50.21 37.17
Llama3.2 27.77 23.21 52.20 33.94 51.69 37.76
Qwen2.5 25.59 27.26 52.93 33.51 49.33 37.72
Qwen3 27.50 26.48 53.93 34.54 50.37 38.56
Gemma3 27.49 21.36 53.87 35.18 54.85 38.55
Gemma (2.6B) 28.45 24.37 56.20 36.99 55.15 40.23
Afriteva_v2_large 28.65 34.20 54.07 34.97 49.37 40.25

TransWebLLM 26.82 31.76 61.60 41.66 56.94 43.76
TransWebLLM-web 27.43 27.88 64.07 42.93 59.10 44.28
TransWebLLM-cool 34.22 21.85 63.73 42.41 58.86 44.21

Table 25: Detailed Swahili Benchmark Results. For
each task, the reported accuracy is averaged over three
random seed configurations. “Avg.” denotes the overall
average across tasks.

Model ARC-C ARC-E PIQA TruthfulQA XNLI Avg.

Pythia 17.71 26.24 52.18 27.60 33.54 31.45
TinyLlama 18.83 26.56 51.62 28.00 32.40 31.48
mGPT 18.03 26.16 52.65 24.80 33.91 31.11
BLOOM 18.14 26.35 52.05 24.93 34.43 31.18
Llama3.2 18.43 26.84 53.31 25.78 33.39 31.55
Qwen2.5 18.57 26.82 51.67 27.07 35.54 31.93
Qwen3 19.17 27.71 52.56 27.69 34.48 32.32
Gemma3 18.00 27.88 53.44 27.20 32.98 31.90
Gemma (2.6B) 18.25 27.91 52.78 27.24 33.76 31.99
BritLLM 22.35 40.58 58.88 24.22 40.28 37.26

TransWebLLM 27.10 43.37 56.20 27.34 38.61 38.52
TransWebLLM-web 28.67 46.52 57.81 26.49 40.31 39.96
TransWebLLM-cool 28.58 48.13 58.32 26.89 40.22 40.43

Table 26: Detailed Welsh Benchmark Results. For each
task, the reported accuracy is averaged over three ran-
dom seed configurations. “Avg.” denotes the overall
average across tasks.
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