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Abstract

Despite their remarkable progress across
diverse domains, Large Language Models
(LLMs) consistently fail at simple character-
level tasks, such as counting letters in words,
due to a fundamental limitation: tokenization.
In this work, we frame this limitation as a
problem of low mutual information and an-
alyze it in terms of concept emergence. Us-
ing a suite of 19 synthetic tasks that isolate
character-level reasoning in a controlled set-
ting, we show that such capabilities emerge
suddenly and only late in training. We find
that percolation-based models of concept emer-
gence explain these patterns, suggesting that
learning character composition is not funda-
mentally different from learning commonsense
knowledge. To address this bottleneck, we pro-
pose a lightweight architectural modification
that significantly improves character-level rea-
soning while preserving the inductive advan-
tages of subword models. Together, our results
bridge low-level perceptual gaps in tokenized
LMs and provide a principled framework for
understanding and mitigating their structural
blind spots. We make our code publicly avail-
able.

1 Introduction

LLMs have exhibited impressive capabilities in
solving olympiad math problems (Trinh et al.,
2024), playing open-world games (Wang et al.,
2023) and passing bar exams (Achiam et al., 2023).
However, paradoxically, LLMs often struggle in
simple tasks that involve character-level reason-
ing and manipulation1. A growing body of work
shows that language models are brittle to mis-
spellings, struggle with character-level tasks (Shin

1This can be seen as a form of Moravec’s Paradox (Newell,
1983) - reasoning is easy; perception is hard.
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Figure 1: Tokenization obscures character composition
of words. (a) We develop 19 token manipulation tasks
spanning token↔token, token↔char, char↔token, and
mixed settings, isolating character reasoning from se-
mantics. (b) In a standard transformer decoder LM,
character-level understanding emerges abruptly and late
in training, having the emergence point pushed back as
the tokenizer vocabulary size |V | increases; adding our
character-aware module brings early emergence that is
effectively independent of |V |.

and Kaneko, 2024; Zhang and He, 2024), and fail
even simple reasoning tasks that require access
to words’ constituent letters. One such infamous
problem, the so-called "Strawberry Problem", con-
sists of counting the number of "r"s in the word
"strawberry", a problem that many foundational
models struggle to consistently answer even today
(Chai et al., 2024).

The root of this problem lies in text tokeniza-
tion. Tokenization is heavily used in modern lan-
guage models (Sennrich et al., 2015), in which the
raw text is compressed into sequences of multi-
character subword tokens. This comes at a cost:
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tokenization severs the connection between words
and their characters, limiting the model’s reason-
ing capabilities about characters and morphology.
Paradoxically, while tokenization imposes a struc-
tural bottleneck, it also provides critical inductive
biases (Rajaraman et al., 2024), and cannot be com-
pletely avoided. In the absence of tokenization,
models trained directly on characters or bytes (e.g.,
Xue et al. (2022); Wang et al. (2024)) learn more
slowly and require more data to generalize. Thus,
there is a fundamental tension: tokenization im-
proves efficiency and generalization at the cost of
losing fine-grained perceptual access to the under-
lying text (Chai et al., 2024).

In this work, we argue that the emergence2

of character-level understanding is best modeled
through the lens of mutual information and theo-
ries of concept emergence (Lubana et al., 2025).
Our thesis is that learning character composition of
words is equivalent to learning underreported com-
monsense facts (Do et al., 2024). Human-written
text almost never directly mentions the characters
inside words, as this is self-evident for humans
upon reading a text3.

To better understand this phenomenon, we con-
struct a suite of 19 synthetic tasks that require mod-
els to reason about the character composition of
tokens in a strictly controlled, synthetic, setting
(see Figure 1). We show that performance on these
tasks emerges late in training, is modulated by vo-
cabulary size and composition, and aligns with
theoretical predictions from concept percolation
models of emergence (Lubana et al., 2025). A
model trained on tokenized sequences gets little
signal about characters and must slowly reconstruct
this mapping across many training steps, and we
show and that real world tokenizers worsen this
effect.

We introduce a simple architectural intervention
to address this bottleneck: a block cross-attention
mechanism that exposes character-level informa-
tion to the model alongside token embeddings. Un-

2We consider the definition by Anderson (1972): "Emer-
gence is when quantitative changes in a system result in qual-
itative changes in behavior". This applies not only to model
size, but, for example, to increasing training duration.

3A phenomenon that can be understood as a form of non-
reporting bias (Gordon and Van Durme, 2013; Shwartz and
Choi, 2020), in which the rare and the interesting are overrep-
resented at the expense of the trivial.

like existing byte-level or hybrid models (Tay et al.,
2022; Neitemeier et al., 2025), our approach pre-
serves the inductive benefits of subword tokeniza-
tion while mitigating its perceptual blindness. We
show that this design improves character-level rea-
soning with minimal additional cost, and that it
effectively raises the mutual information between
tokens and characters during training. Our exper-
iments are reproducible and we make our code
publicly available4.

Our work makes the following contributions:

1. We develop a benchmark of 19 synthetic tasks
to train and evaluate character-level under-
standing in tokenized LMs, revealing slow
and sudden emergence patterns across train-
ing. We show that character learning is slow
and dependent on vocabulary size and number
of characters per token, even in an idealized
setting, with the effect being heightened using
real-world data.

2. We find that we can explain the emergence
of character-level understanding through
concept percolation theories of emergence
(Lubana et al., 2025). Our results hint that
learning character-token correspondences is
not fundamentally different from learning ab-
stract concept-property associations.

3. We propose a lightweight character-aware ar-
chitecture that increases the empirical mutual
information between tokens and their charac-
ters. Our design adds a small cross-attention
module that allows each token to attend to its
constituent characters, while still using tokens
as inputs and outputs. We validate our archi-
tecture on models using pretrained tokenizers
and on real-world data, indicating significant
improvements in character-level tasks com-
pared to a standard language model operating
on tokenized sequences.

2 Related Work

Internal Character Representation in Language
Models. Recent works (Shin and Kaneko, 2024;
Zhang and He, 2024; Chai et al., 2024) highlight
the limitations of Language Models in understand-
ing the character-level structure of tokens. Shin

4https://github.com/cosmaadrian/strawberry-problem
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and Kaneko (2024) argued that LLMs lack robust
internal representations of the character composi-
tion of tokens. In discussing future directions, they
propose embedding tokens with character informa-
tion and positional encodings - an approach closely
aligned with our method. Zhang and He (2024)
evaluated LLMs on 15 simple text-editing tasks
and found that models struggle without fine-tuning;
the authors found that supervised fine-tuning for
text editing substantially improved performance
without harming general capabilities. Kaplan et al.
(2025) argued that LLMs implicitly combine sub-
word units into full words and exploited this find-
ing to improve efficiency by adding dedicated
word-level tokens. In contrast, our focus is the
reverse: we investigate how LLMs can be encour-
aged to decompose tokens into their constituent
characters. Different from these previous works
(Shin and Kaneko, 2024; Zhang and He, 2024), we
isolate and analyze character-level capabilities in a
tightly controlled synthetic setting, revealing their
emergence dynamics during training.

Character-aware models. There have been mul-
tiple works attempting to design character-aware
models, such as the works of Tay et al. (2022); Is-
lam et al. (2022); Wang et al. (2024) et alia, by op-
erating directly on characters, bypassing the need
for tokenization. One downside of such models
is that they model directly the input and output
characters, resulting in long generation sequences
and decreased efficiency (Rajaraman et al., 2024).
In contrast, our model operates directly on multi-
character tokens, utilizing the inductive bias given
by tokenization, while incorporating character in-
formation for each token.

The construction of neural architectures with a
hierarchical structure of representations has been a
common design pattern, usually in domains that re-
quire either long contexts (He et al., 2024; Nawrot
et al., 2021; Wu et al., 2021) or high-detail granu-
larity (Chen et al., 2021). In contrast to previous
works, we design our model for causal next-token
prediction in mind, and not for MLM or for com-
puting general representations.

Theories of capability emergence. Our work is
also related to recent theoretical perspectives on
capability emergence in models (McKenzie et al.,
2023; Hupkes et al., 2020; Lubana et al., 2025;

Park et al., 2024). Hupkes et al. (2020) designed
controlled tasks to test models’ capability to com-
positionally generalize. While they operated at the
level of tokens, we explore whether similar emer-
gent behaviours arise at the lower level of token
decomposition into characters. McKenzie et al.
(2023) identified tasks in which larger LLMs per-
form worse than their smaller counterparts. Among
these tasks is the "resisting correction" task, in
which the model automatically, but wrongly, cor-
rects a misspelled token. However, the study’s
focus was on model scale and compute allocation,
while we explore the relationship between vocab-
ulary size and performance. Lubana et al. (2025)
proposed a framework for studying emergent ca-
pabilities using context-sensitive grammars and
compositional tasks, under the theory of bipartite
graph percolation. While our scope and domain
are different, we show that the framework of graph
percolation still applies and can explain the learn-
ing dynamics observed in our setup, hinting that
learning token-character correspondence is a simi-
lar problem to learning correspondences between
concepts and their properties.

3 Method

3.1 Tokenization-Induced Information
Bottleneck

Let Σ be a character alphabet and let C =
(c1, . . . , cn) ∈ Σn denote the character sequence
(spelling) of a word. Let W denote the lexical
identity (word type) determined by C: there is a
deterministic map g : Σ∗ → W with W = g(C).
Let X be the corpus context, all surrounding to-
kens excluding the word at the current position.
The quantity of interest is the empirical mutual
information (Shannon and Weaver, 1998):

Î(X;C) = E
[
log

p(x, c)

p(x) p(c)

]
(1)

Namely, how much the context X tells us about
the characters C of the word that appears in that
context. Because W is a deterministic function of
C, we have I(W ;C) = H(C) = H(W ). More-
over, natural text exhibits a certain phenomenon:
humans do not need to explicitly mention the char-
acters in a word, so the context X provides lit-
tle signal about C, which means the empirical

3
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mutual information Î(X;C) is low, even though
the theoretical mutual information I(W ;C) is
high, since W deterministically determines C (i.e.,
Î(X;C) � I(W ;C)). Thus, for a language
model trained only on tokenized word sequences,
the empirical mutual information Î(X;C) ≈ 0, un-
less the model is explicitly character-aware. Sim-
ilar to the presence of commonsense facts, this
data sparsity reflects a form of reporting bias
(Shwartz and Choi, 2020): humans do not en-
code character-level details in natural text, lead-
ing to under-representation of this information in
the training signal. However, learning common-
sense knowledge requires explicit data collection
(Speer et al., 2017), whereas learning character-
token correspondences is comparatively simpler:
we know at all times which characters comprise a
word, and we can leverage this in the design of a
character-aware architecture.

3.2 Experimental Setup

Word-level and Character-level tasks. Previ-
ous works explored pretrained LLMs’ performance
on several character-level tasks (Shin and Kaneko,
2024; Zhang and He, 2024) and show that their per-
formance is sub-par. In this work, we create a set
of 7 word-level tasks and 12 character-level tasks
to systematically explore emergent capabilities for
character manipulation across training. Compared
to previous works, our tasks are easier and do
not involve counting or multi-hop reasoning (e.g.,
count vowels of every even word). Table 1 shows
our tasks alongside examples for parameters, in-
puts, and desired outputs. By design, the tasks
have input-output combinations tokenized either as
words ↔ words (all word-level tasks), characters
↔ words (dirty-input character tasks), words ↔
characters (clean-input character tasks), or a mix
of tokenizations (e.g., "Rewrite uppercase" / "Re-
place letters"). As such, for character-level tasks,
multi-character tokens might be imperfectly split
into characters (e.g., "Remove letter"), and mod-
els are forced to indirectly learn token-character
correspondence across many training steps. Tasks
are evaluated using an exact match between the
model output and the desired output. While us-
ing exact match metrics impacts evaluation curves
(Schaeffer et al., 2023), they are correlated with
other softer metrics such as log-probabilities, and

inflection points between memorization and gener-
alization phases match between the two (Lubana
et al., 2025). Furthermore, an exact match enables
us to compare performance unambiguously across
different tokenizers and vocabulary sizes.

Vocabulary construction. We opted for a
strictly controlled and synthetic experimental en-
vironment to test the capability of tokenized lan-
guage models to learn character-level tasks and to
eliminate as many confounding factors as possible.
We generate a fixed-length vocabulary of words
V , which is comprised of all single-character let-
ters, including uppercase, numbers, and a space
character. Multi-character tokens are all comprised
of the same number of characters, K, uniformly
sampled (see Appendix A: Table 3). In our work,
K ∈ {4, 6, 8} and |V | ∈ {28, . . . , 215}. To en-
code a task, we use a special task token for each
task, which is optionally followed by parameters
(see Table 1). Consequently, our tokenizer is com-
prised of single characters, numbers, and multi-
character words, each with its unique ID. As such,
if a multi-character word is corrupted, it will be rep-
resented through individual characters as a fallback
tokenization, with no intermediate subwords.

For our analysis, we ignore language grammar,
since none of the tasks require grammar manipu-
lation, only token and character manipulation. To
construct sentences, words are sampled uniformly
from the tokenizer vocabulary (see Appendix A:
Table 4), ignoring the Zipfian distribution of real-
world languages (Piantadosi, 2014). However, we
also test performance on randomly sampled sen-
tences from Wikipedia, using two pretrained to-
kenizers (i.e., GPT-2 (Radford et al., 2019) and
LLaMA-2 (Touvron et al., 2023)). It is expected
that real-world texts would not qualitatively change
learning dynamics; still, they would make learn-
ing harder due to the imbalanced distribution of
characters per word and different word lengths.

In this most simplified version of the problem,
the only factor influencing model performance is
its ability to connect tokens with their characters,
which appear fragmented and inconsistent across
training. Such a strictly controlled environment
is similar to other concurrent works (Allen-Zhu
and Li, 2023) aiming to explain model capabilities
without real-world confounders. In this setup, the
model is forced to learn the algorithm behind each

4
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Task Name Example Param. Example Input Example Output
W

or
d-

L
ev

el
Remove word red Strawberries are red and sweet. Strawberries are and sweet.
Remove word every K 2 Strawberries are red and sweet. Strawberries red sweet.
Swap every K words (clean) 5 Strawberries are red and sweet. sweet. are red and Strawberries
Swap every K words (dirty) 5 sweet. are red and Strawberries Strawberries are red and sweet.
Replace words are, red Strawberries are red and sweet. Strawberries red red and sweet.
Reverse the words (clean) N/A Strawberries are red and sweet. sweet. and red are Strawberries
Reverse the words (dirty) N/A sweet. and red are Strawberries Strawberries are red and sweet.

C
ha

ra
ct

er
-L

ev
el

Remove letter r Strawberries are red and sweet. Stawbeies ae ed and sweet.
Rewrite uppercase every K letters 3 Strawberries are red and sweet. StrAwbErrIes arE rEd And swEet.
Replace letters e, s Strawberries are red and sweet. Strawbsrriss ars rsd and swsst.
Rewrite with every K letter 3 Strawberries are red and sweet. Saei eea e.
Swap every K letters (clean) 2 Strawberries are red and sweet. tSarbwreirsea err dea dns ewte.
Swap every K letters (dirty) 2 tSarbwreirsea err dea dns ewte. Strawberries are red and sweet.
Remove letter every K 4 Strawberries are red and sweet. Strwberie ar re an swet.
Rewrite uppercase every K words 2 Strawberries are red and sweet. STRAWBERRIES are RED and SWEET.
Reverse words (clean) N/A Strawberries are red and sweet. seirrebwartS era der dna .teews
Reverse words (dirty) N/A seirrebwartS era der dna .teews Strawberries are red and sweet.
Reverse (clean) N/A Strawberries are red and sweet. .teews dna der era seirrebwartS
Reverse (dirty) N/A .teews dna der era seirrebwartS Strawberries are red and sweet.

Table 1: Summary of proposed tasks used in our work. The tasks address either word-level or character-level
manipulations and optionally require input parameters.

task, through so-called "induction heads" (Olsson
et al., 2022) or "name mover heads" (Wang et al.,
2022), since the tasks only require token-level ma-
nipulations and not semantic understanding (Shin
and Kaneko, 2024).

3.3 Generating tokens by attending to
characters.

We design a lightweight character-aware module
that complements the main Transformer decoder
to increase the mutual information between tokens
and their constitutive characters. In our design, we
were guided by several criteria: (i) the character-
aware module must be lightweight (ii) the model
output type must remain unchanged (i.e., still out-
put multi-character tokens), (iii) there is an unam-
biguous correspondence between tokens and their
characters, and (iv) there is an unambiguous order
of characters inside a token.

Figure 2 showcases our architecture. Given
these criteria, we designed a small, 1-layer
Transformer block that uses a Block-Causal Self-
Attention mask to process characters. Since the
main model operates on multi-character tokens,
whenever a new token is generated, the charac-
ter model has access to all its characters, remov-
ing the need for a casual diagonal attention ma-
trix. The block-causal attention mask enables the
module to attend to all characters in the current
token, as well as previous characters from pre-

vious tokens, but does not "cheat" by attending
to the characters of future tokens. The order of
characters inside a token is encoded using learn-
able Intra-Token Position embeddings, similar to
Abacus Embeddings (McLeish et al., 2024). The
dimensionality of the character encoder can be
made smaller than the main module (in our case,
dchars = 1

2dtokens = 256). We also experiment
with smaller dimensionalities for the character
module (i.e., dchars ∈ {64, 128, 256}, correspond-
ing to ratios dchars

dtokens
∈ {1

4 ,
1
8 ,

1
16}). After encod-

ing characters, the resulting embeddings interact
with the token embeddings through a Block-Causal
Cross-Attention operation at each layer of the main
model. We also experiment with adding the charac-
ter embeddings at a single layer of the main model,
at different positions. The cross-attention opera-
tion prevents tokens from attending to future char-
acters and ensures that each token attends to its cor-
responding characters alongside characters from
previous tokens. Character-token correspondence
is ensured through learnable Inter-Token Position
embeddings.

Overview. The model is efficient by operating on
multi-character tokens and not directly predicting
characters, leveraging the tokenizer compression,
and has explicit knowledge of the character com-
position of each token. In principle, this design
can be extended hierarchically, for example, hav-

5
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Figure 2: Diagram of our character-aware language model. During inference, each token attends to its corresponding
characters using a block-causal cross-attention operation. Characters are encoded alongside their positions
within their corresponding tokens using a small 1-block Transformer decoder, using a block-causal self-attention
mechanism. MLPs are omitted in the figure for brevity.

ing tokens attend to their constituent subwords and
each subword attending to its constituent charac-
ters. While the character module is significantly
smaller than the main module, it still suffers from
the quadratic complexity of the attention operation.
Presumably, the character encoder can be made
more efficient to avoid quadratic attention by utiliz-
ing, for example, local attention patterns (Beltagy
et al., 2020) or by using more specialized mod-
ules such as linear recurrent units (Orvieto et al.,
2023). Our model is reminiscent of other works
in computer vision, such as CrossViT (Chen et al.,
2021), and is part of a larger pattern of designing
architectures that use hierarchical representations
(Nawrot et al., 2021; Chalkidis et al., 2022; He
et al., 2024). Nevertheless, this pattern is more
common in computer vision than in NLP. This hier-
archical character-to-token cross-attention design
addresses the problem of "perception" of current
LLMs, which capture high-level semantic mean-
ing, but struggle at "high-resolution", in terms of
perceiving individual characters of each token.

3.4 Training configuration

All models were trained on a uniform sample
over all tasks for 750k iterations. We used Adam
(Kingma and Ba, 2014) optimizer, a batch size of
64, and a learning rate of 0.00001, annealed using
a cosine decay scheduler (Loshchilov and Hutter,
2016). The baseline model has 10M parameters,
excluding embedding matrices, across 8 layers,
with a model dimensionality of 512. Similarly,

our model has 11M parameters, with 1M being
allocated to the character encoder. The character
encoder is a lightweight, single-block Transformer
with a dimensionality of 256. One important ad-
vantage of our experimental setup is that it is read-
ily reproducible on a single A100 GPU. Training
took approximately one day per run for all ∼60
runs. Models were trained with "infinite" data,
since input sentences and tasks were generated on-
the-fly. In the case of training on sentences from
Wikipedia, we pre-generated 5M sentences. In our
experiments, every hyperparameter is kept fixed,
except for the vocabulary and the tokenizer.

4 Experiments & Results

In Figure 4, we show the evolution of average ac-
curacy across character tasks for both the base lan-
guage model and our model that incorporates char-
acter information. The emergence point for char-
acter understanding tasks is progressively offset as
a function of vocabulary size |V | and number of
characters per token K. In contrast, for our model,
the emergence points are stable across |V | and K,
having reasonable performance gain even in sce-
narios where the base model has accuracy equal
to 0. This effect is also present, although not as
prominently, for token understanding tasks (Figure
5), since token manipulation tasks can be easily
learned by the base model.

In Figure 3 we show the emergence step across
vocabulary sizes. We plot the training step at which

6
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Figure 3: Emergence point for acquisition of character-level (top) and word-level (bottom) understanding across
vocabulary sizes for the "vanilla" model and our character-infused model. For our model, capabilities emerge early
on in training for character-level tasks, and do not depend on |V | or |K|.

Figure 4: Evolution of average accuracy over character-
level tasks. Using standard transformer decoder (top),
the emergence point depends on the vocabulary size
and K, whereas our architecture (bottom) eliminates
the differences in emergence points across vocabulary
sizes.

the accuracy for a task is larger than 0.5%, across
training runs of different |V | and K. We find that
increasing vocabulary size is correlated with a later
emergence point for the vanilla model for both
word-level and character-level tasks, having a pre-
dictable relationship. The addition of the character-
aware module eliminates the dependence on |V |
for character-level tasks, but to a lesser extent for
the word-level tasks.

Figure 5: Evolution of average accuracy over word-level
tasks. Emergence points for word-level tasks are not
affected by vocabulary size as prominently as character-
level tasks. While our architecture (bottom) targets
character-token associations, it still provides improve-
ment by increasing the amount of information per train-
ing sample compared to the standard LM (top).

4.1 Evaluation on real-world data

We trained the baseline language model and our
model on sentences sourced from Wikipedia, us-
ing two pretrained tokenizers (i.e., GPT-2 (Radford
et al., 2019) and LLaMa-2 (Touvron et al., 2023)),
with vocabulary sizes of 50K and 32K tokens, re-
spectively. In Figure 6 we show our results: in-
corporating characters has a significant effect on
learning dynamics for both tokenizers, with the

7
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Figure 6: The effect of using real sentences sourced
from Wikipedia in evaluating character understanding
tasks, across two pretrained tokenizers.

base model being unable to learn character com-
position of words across training. As our results
point to, this effect will be amplified with larger
vocabularies: current LLMs tend to benefit from
having progressively larger vocabularies (Huang
et al., 2025), with models such as Gemma 3 (Team
et al., 2025) operating on a vocabulary of 256K
tokens, which also implies more characters per
token. Our results indicate that character under-
standing tasks in tokenized language models are a
form of "inverse scaling" (McKenzie et al., 2023):
the larger the tokenizer vocabulary, the slower the
model learns.

4.2 The effect of downsizing the character
encoder

In Figure 7, we show results for varying the po-
sition of the cross-attention operation in the main
model by incorporating character information ei-
ther at the beginning, the middle, or the end of the
language model. Similarly, we reduce the dimen-
sionality of the character encoder to 12.5% of that
of the main model, making the character model fast
and lightweight in terms of memory consumption.
Infusing character information in the middle of the
model yields the best results, and downsizing the
character encoder does not significantly alter the
training curves, suggesting that only the presence
of characters and their association with tokens is
sufficient.

Figure 7: The effect of the position of the block-cross
attention in the main model (top) and that of downsizing
the char. encoder (bottom). |V | = 8192 and K = 4.

4.3 The effect of increasing base model size

We scaled the model in a principled way using
maximal update parametrization (µP (Yang et al.,
2022)) to increase the model width (size of the lin-
ear layer) through a multiplicative factor. Using µP
ensures that the hyperparameters for the smaller
model (e.g. learning rate) can be directly trans-
ferred to larger versions of the same model, mak-
ing the comparison fair between scales in terms
of optimal hyperparameters. We scaled the base
encoder, but kept the character encoder fixed. The
results presented in Table 2 show that scaling the
width of the model reduces the emergence point,
but without addition of the character encoder, the
acquisition is slow and inefficient. In other words,
without the character encoder, model needs ×15
more parameters to reach the same performance.
Across scales, the size of the character encoder
is negligible. These results are for our simplified
case, assuming uniform distribution of characters
and tokens. Our other results (Figure 6) shows that
this effect is greatly amplified with real world data.

4.4 A percolation model of character
understanding.

In the interest of explaining the offset emergence
points for the acquisition character understanding,
we applied a percolation model of capability emer-
gence, as described by Lubana et al. (2025). Read-
ers are referred to the original work for a detailed
explanation of this framework, which the authors

8
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Vocab. Size Model Width Base Params Character-Aware Params Char. En-
coder (% of base)

Char. Tasks Emergence Step↓

8192

512 10M
7 – >750k
4 1M (9%) 77k

1024 45M
7 – 180k
4 1M (2%) 53k

2048 150M
7 – 81k
4 1M (0.6%) 20k

16384

512 10M
7 – >750k
4 1M (9%) 110k

1024 45M
7 – 260k
4 1M (2%) 53k

2048 150M
7 – 110k
4 1M (0.6%) 45k

Table 2: The effect of increasing model scale in terms of width. The addition of a small character-aware module
substantially reduces the emergence point for the acquisition of character-level understanding. We kept K = 4
fixed across all runs.

applied in the context of learning concept-property
relationships. In that scenario, emergence points
coincided with a critical threshold pc in which the
bipartite graph of concepts and their respective
properties (K) is fully connected: across train-
ing, the model progressively learns edges between
concepts and properties until reaching a certain
threshold, proportional to

√
|K|, after which the

model enters a sudden generalization phase. In
our scenario, we have a direct analogy to concept
learning: our "concepts" are multi-character to-
kens, and their "properties" are the set of char-
acters they are composed of. As such, the emer-
gence point should be proportional to the num-
ber of edges (Newman et al., 2001; Cohen et al.,
2002; Lubana et al., 2025), in our case equaling√
|V | ∗ k. In Figure 8 we show the emergence

points for the base language model. Scaling the
training steps by

√
|V | ∗ k results in the collapse

of the emergence points. This result indicates no
conceptual difference between learning concept-
property mappings and learning token-character
mappings.

5 Conclusions

Tokenization is crucial in language modeling, en-
abling long context and aiding generalization (Ra-
jaraman et al., 2024). In this paper, we show that
for a class of problems that require fine-grained
understanding of character composition of tokens,
models acquire such information very slowly, pre-
dictably dependent on the vocabulary size and num-
ber of characters per token. We argued that this is

Figure 8: Graph percolation explains emergence points
for acquisition of character understanding, similar to
concept percolation (Lubana et al., 2025). Scaling train-
ing curves by the percolation threshold

√
|V | ∗ k col-

lapses emergence points across vocabulary sizes.

due to non-reporting bias and that this phenomenon
is similar to learning commonsense facts from gen-
eral text. There is a design mismatch in the way in
which humans hierarchically perceive written text
(from lines, characters, words and phrases) and the
way LLMs process text.

To this end, we proposed a lightweight and
straightforward architectural modification that
eliminates this dependence on vocabulary size and
showed that capabilities emerge faster and con-
sistently. Lastly, we applied a theory of capabil-
ity emergence in concept learning (Lubana et al.,
2025) and showed that it applied to our setting,
equating the phenomena of learning concepts with
learning characters’ composition in tokens.
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Limitations

The main limitation of our work is that we con-
ducted most of our experiments in a synthetic and
idealized setup to understand the phenomena of
character understanding of tokens, without con-
founding factors. Nonetheless, our proposed archi-
tecture showed good results when training on real
data, but its impact to real-world scenarios needs
to be validated at larger scales.
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A Appendix

1 def make_vocab(vocab_size, K):
2 vocab = dict()
3 token_id = 0
4
5 numbers = '0123456789'
6 letters_lower =

'abcdefghijklmnopqrstuvwxyz'↪→
7 letters_upper = letters_lower.upper()
8 letters = letters_lower + letters_upper
9

10 # adding the bytes and space
11 for token_name in letters + numbers + ' ':
12 vocab[token_name] = token_id
13 token_id += 1
14
15 # adding multi-character tokens
16 for _ in range(vocab_size):
17 word = ''.join(random.choice(letters)

for _ in range(K))↪→
18 vocab[word] = token_id
19 token_id += 1
20
21 return vocab

Table 3: Python snippet for tokenizer vocabulary cre-
ation. In our work, words are made from randomly
sampled characters of fixed size K. The tokenizer vo-
cabulary contains single-characters, numbers, multi-
character words, and a space as individual unique to-
kens. Additionally, each task is represented as a unique
special token.

1 def make_task(tokenizer):
2 target_task = random.choice(TASKS)
3 # choose multi-character words
4 word_list = [
5 w for w in tokenizer.vocab2id.keys()
6 (if len(w) > 1 and w not in

SpecialTokens)↪→
7 ]
8 random_sentence = ' '.join([
9 random.choice(word_list) for _ in

range(16)↪→
10 ])
11 task_output = target_task(random_sentence)
12 # task_token, param, input, output
13 return task_output

Table 4: Python snippet for task creation. In our work,
a sentence is comprised of 16 uniformly sampled multi-
character words from the tokenizer, upon which the task
algorithm is enacted.
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