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Abstract
Parallel Data Curation (PDC) techniques aim
to filter out noisy parallel sentences from web-
mined corpora. Ranking sentence pairs using
similarity scores on sentence embeddings de-
rived from Pre-trained Multilingual Language
Models (multiPLMs) is the most common PDC
technique. However, previous research has
shown that the choice of the multiPLM signifi-
cantly impacts the quality of the filtered paral-
lel corpus, and the Neural Machine Translation
(NMT) models trained using such data show a
disparity across multiPLMs. This paper shows
that this disparity is due to different multiPLMs
being biased towards certain types of sentence
pairs, which are treated as noise from an NMT
point of view. We show that such noisy parallel
sentences can be removed to a certain extent
by employing a series of heuristics. The NMT
models, trained using the curated corpus, lead
to producing better results while minimizing
the disparity across multiPLMs. We publicly re-
lease the source code and the curated datasets1.

1 Introduction

Parallel data mined from the web at scale is often
considered an alternative to human-created data
in training Neural Machine Translation (NMT)
models (Costa-jussà et al., 2022; Bañón et al.,
2020). CCAligned (El-Kishky et al., 2020), CCMa-
trix (Schwenk et al., 2021) and ParaCrawl (Bañón
et al., 2020) are examples of such web-mined
corpora, which cover Low-Resource Languages
(LRLs) as well. As summarised in Table 1, qual-
ity audits of these corpora reveal different types
of noise. Consequently, training NMT models on
such noisy parallel data leads to low-quality trans-
lations (Khayrallah and Koehn, 2018).

Parallel Data Curation (PDC) aims at extracting
high-quality parallel sentence pairs from noisy web-
mined corpora. The importance of PDC for LRLs

1https://github.com/aloka-fernando/Heuristic_
based_parallel_corpus_filtration

Parallel Sentence Quality Category A B C D E

Perfect translations - - - Y Y
Near perfect translation - - - - Y
Correct translation - Low quality - Y - Y Y
Over/Under translation - Y Y Y -
Misordered words Y Y Y Y -
Spelling permutations - Y - Y -
Untranslated Sentences Y Y Y - Y
Short Sentences Y - Y - Y
Mismatch numbers - Y - - -
Machine Translated Sentences - - Y Y -
Misaligned sentences Y Y Y Y Y
Wrong Language Y Y Y Y Y
Not a Language Y Y Y Y Y

Table 1: Parallel sentence quality categories used in
quality audits by Khayrallah and Koehn (2018) (A),
Bane et al. (2022) (B), Herold et al. (2022) (C), Kreutzer
et al. (2022) (D) and Ranathunga et al. (2024) (E).

has been emphasised with the introduction of PDC
shared tasks (Sloto et al., 2023; Koehn et al., 2020,
2019). Initiated by the work of Chaudhary et al.
(2019), recent PDC techniques follow a scoring and
ranking mechanism using embeddings obtained
from a Multilingual Language Model (multiPLM).
During the scoring step, the semantic similarity is
calculated between the source and target sentence
embeddings for each sentence pair. Then the sen-
tence pairs are ranked in descending order of the
similarity score. Finally, a subset of the top-ranked
sentence pairs is selected to train the NMT model.
However, the quality of these top-ranked pairs de-
pends on the chosen multiPLM (Ranathunga et al.,
2024; Moon et al., 2023).

To investigate the impact of using different mul-
tiPLMs on the PDC task, we conduct an initial anal-
ysis. We obtain embeddings from three multiPLMs:
LASER3 (Heffernan et al., 2022), XLM-R (Con-
neau et al., 2020), and LaBSE (Feng et al., 2022),
calculate the semantic similarity between each par-
allel sentence pair in the CCMatrix (Schwenk et al.,
2021) and CCAligned (El-Kishky et al., 2020)
datasets and rank them in descending order. Then
we train NMT models (Section 4.4) using the top-
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ranked 100k sentence pairs from each corpus and
report the ChrF++ scores. Experiments are car-
ried out for English-Sinhala (En-Si), English-Tamil
(En-Ta) and Sinhala-Tamil (Si-Ta) language-pairs.
Sinhala, Tamil, and English belong to three distinct
linguistic groups: Indo-Aryan, Dravidian, and Ger-
manic (respectively). As shown in Figure 1, there
is a significant difference, i.e. a disparity among
these results, mainly for En-Si and En-Ta language
pairs.

Figure 1: Baseline NMT scores using top-ranked sen-
tence pairs from CCMatrix and CCAligned corpora,
with embeddings from LASER3, XLM-R, and LaBSE.

A random inspection of the En-Si top-ranked
sentences reveals that different multiPLMs priori-
tise different sentence characteristics when ranking
parallel sentences. For example, sentence pairs
ranked top with XLM-R embeddings are mostly
short and have high overlapping text such as num-
bers, acronyms, and URLs. LaBSE embeddings
also result in sentences with numbers and date over-
laps, while LASER3 embeddings result in rela-
tively better full-length sentence pairs. This obser-
vation sheds light on the disparity in NMT results
shown in Figure 1 - the sentences ranked top when
using XLM-R and LaBSE may have less linguistic
content for NMT models to learn the translation.

In order to carry out a more systematic evalua-
tion, we randomly select 100 sentence pairs from
the top 100K parallel sentences from the afore-
mentioned ranked corpora and carried out a human
evaluation. Ranathunga et al. (2024)’s is the most
comprehensive taxonomy available for this task.
To better capture the noise observed during human
evaluation, we extend this taxonomy (Section 3).
Human evaluation results (Table 2) indicate that
the mean noise percentages are 98%, 95%, and
70% when the corpora are ranked using LaBSE,
XLM-R, and LASER3 embeddings, respectively.

Further, the noise types in the categories of untrans-
lated text (UN), short sentences (CS) and sentences
with high-overlapping non-translatable text (CCN)
could be observed, contributing to the reported per-
centages. Examples for these noise types are shown
in Table 10 in Appendix A. We provide a detailed
discussion of these results in Section 5.3. These
findings suggest that inherent biases in multiPLMs
lead to noisy parallel sentences being ranked highly,
which in turn contributes to disparities across NMT
models.

We hypothesise that some of these noisy sen-
tences can be filtered using rule-based heuristics.
Although applying heuristics is a common ap-
proach to improving the quality of parallel cor-
pora (Sloto et al., 2023; Steingrímsson et al., 2023),
the use of heuristics has not been consistent in the
PDC tasks (Steingrimsson, 2023; Bala Das et al.,
2023; Aulamo et al., 2020). Previous research ei-
ther applied a single heuristic or a subset of com-
monly used heuristics during pre-processing, with
threshold choices varying across studies. Further,
they did not systematically analyse the impact of
heuristic-based filtering on the NMT performance.

In this research, we incorporate heuristics pro-
posed in previous studies, along with a new heuris-
tic of our own, and conduct an empirical study
to investigate whether a more refined selection of
top-ranked parallel sentences can be identified by
systematically combining these heuristics.

Our key contributions are as follows:

• We extend Ranathunga et al. (2024)’s parallel
sentence categorization taxonomy with a new
error category to capture an additional type
of noise, which refers to sentence pairs with
high-overlapping non-translatable text such as
numbers, acronyms, URLs, etc.

• We empirically show that applying heuris-
tics before ranking sentences based on em-
beddings derived from multiPLMs results in
higher NMT scores, and reduces the disparity
across multiPLMs.

• We conduct a systematic study to analyse the
impact of rule-based heuristics in filtering
noisy sentences from the web-mined corpora
and identify an optimal combination of heuris-
tics that works across corpora and languages
considered in the study.
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CC CN CB C CS CCN UN X WL NL E CC CN CB C CS CCN UN X WL NL E CC CN CB C CS CCN UN X WL NL E

Sinhala - Tamil English - Sinhala English - Tamil

CCMatrix
LASER3 BF 8% 27% 2% 37% 14% 14% 34% 1% 0% 0% 63% 17% 7% 4% 28% 7% 10% 55% 0% 0% 0% 72% 0% 3% 2% 5% 0% 0% 95% 0% 0% 0% 95%

AF 16% 56% 1% 73% 13% 4% 10% 0% 0% 0% 27% 39% 39% 7% 85% 0% 7% 8% 0% 0% 0% 15% 6% 61% 20% 87% 0% 3% 10% 0% 0% 0% 13%
XLM-R BF 1% 10% 0% 11% 40% 19% 29% 0% 1% 0% 89% 1% 0% 0% 1% 13% 4% 80% 2% 0% 0% 99% 0% 0% 2% 2% 3% 5% 90% 0% 0% 0% 98%

AF 0% 20% 2% 22% 13% 29% 35% 0% 1% 0% 78% 3% 8% 26% 37% 0% 2% 53% 8% 0% 0% 63% 0% 39% 31% 70% 1% 3% 21% 4% 0% 1% 30%
LaBSE BF 4% 6% 0% 10% 74% 7% 9% 0% 0% 0% 90% 13% 2% 0% 15% 63% 14% 8% 0% 0% 0% 85% 0% 9% 2% 11% 34% 7% 48% 0% 0% 0% 89%

AF 29% 33% 0% 62% 2% 32% 4% 0% 0% 0% 38% 87% 7% 3% 97% 0% 1% 2% 0% 0% 0% 3% 36% 53% 4% 93% 1% 3% 2% 1% 0% 0% 7%
CCAligned
LASER3 BF 3% 24% 3% 30% 34% 19% 17% 0% 0% 0% 70% 2% 22% 8% 32% 13% 30% 23% 2% 0% 0% 68% 2% 23% 18% 43% 13% 27% 17% 0% 0% 0% 57%

AF 5% 79% 2% 86% 0% 9% 4% 1% 0% 0% 14% 13% 58% 14% 85% 0% 0% 13% 2% 0% 0% 15% 3% 67% 10% 80% 0% 8% 12% 0% 0% 0% 20%
XLM-R BF 0% 0% 2% 2% 48% 49% 0% 0% 0% 1% 98% 2% 0% 0% 2% 72% 20% 6% 0% 0% 0% 98% 0% 8% 4% 12% 42% 16% 15% 8% 0% 7% 88%

AF 20% 33% 4% 57% 1% 22% 19% 0% 1% 0% 43% 18% 18% 20% 56% 0% 6% 34% 4% 0% 0% 44% 6% 46% 30% 82% 0% 9% 9% 0% 0% 0% 18%
LaBSE BF 0% 1% 0% 1% 69% 26% 3% 0% 0% 1% 99% 0% 1% 0% 1% 97% 2% 0% 0% 0% 0% 99% 0% 1% 0% 1% 97% 0% 0% 0% 0% 2% 99%

AF 15% 34% 0% 49% 2% 43% 6% 0% 0% 0% 51% 45% 27% 3% 75% 1% 19% 5% 0% 0% 0% 25% 19% 45% 3% 67% 0% 22% 11% 0% 0% 0% 33%

Table 2: The Human evaluation results showing the average percentage for each annotation class for CCMatrix and
CCAligned corpora for the En-Si, En-Ta and Si-Ta language pairs. The sample sentences have been obtained before
(BF) and after (AF) applying the heuristics. (C) - overall correct percentage considering CC (perfect translation), CN
(near perfect) and CB (boilerplate). (E) - overall error percentage considering CCN (Non-translatable overlaps), CS
(correct but short sentence), X (wrong translation), UN (untranslated), WL (wrong language), NL (not a language).

• We conduct a human evaluation to assess the
impact of noise filtering across three multi-
PLMs.

2 Related Work

2.1 MultiPLMs for PDC

While employing a multiPLM for PDC is common,
existing research experimented with only one mul-
tiPLM at a time. For example, in the WMT2023
shared task (Sloto et al., 2023), LASER2 was
utilised to set the task baseline, whereas for the
same task, Steingrimsson (2023) used LaBSE. Gala
et al. (2023) also used LaBSE for their work. There-
fore, the disparities across multiPLMs and biases
specific to each multiPLM have not come to light.

On the other hand, studies conducted
by Ranathunga et al. (2024) and Moon et al.
(2023) reveal that using different multiPLMs for
scoring and ranking parallel corpora, and training
NMT models with the top-ranked corpora, results
in a disparity. Moon et al. (2023) observe that this
is due to biases in multiPLMs, which tend to rank
noisy parallel sentences highly. However, there has
been no systematic study to identify these biases.

2.2 Identifying Noise in Web-mined Corpora

Recent research used categorical labels to anno-
tate translation pairs, aiming at quantifying the
noise types in web-mined corpora. Kreutzer et al.
(2022) used their taxonomy to conduct manual au-
dits on random samples from three web-mined
datasets and reported substantial noise, specifi-
cally for LRLs. Ranathunga et al. (2024)’s taxon-
omy (See Table 9 in Appendix A) is an extension
of Kreutzer et al. (2022)’s taxonomy. They first
ranked the datasets based on embeddings from a
multiPLM, and then selected random samples from

the top and bottom portions and conducted a qual-
ity audit. Their human evaluation reported that
the quality of the parallel sentences varies heavily
depending on the selected portion. These studies
primarily focus on identifying general noise types;
however, their effectiveness in quantifying the spe-
cific noise types to which multiPLMs are biased
has not yet been evaluated to the best of our knowl-
edge.

2.3 Heuristic-based PDC

In existing work, the commonly used rule-based
heuristics can be categorised into four groups as
described below:
Deduplication-based (Dedup): Removing iden-
tical duplicates from the monolingual sides is a
common practice (Costa-jussà et al., 2022). Ad-
ditionally deduplicating after removing non-alpha
characters and punctuations (Bala Das et al., 2023)
could be found as its variants. While this step has
been applied during the pre-processing stage, an
empirical study has not been conducted to evaluate
its impact on the final NMT performance.
Length-based (sLength) : Gala et al. (2023) and
Aulamo et al. (2023) have removed short sentences
as a potential heuristic. Short sentences hinder
NMT models in two ways (Koehn and Knowles,
2017): by providing insufficient syntactic and se-
mantic information, and can result in an overfitting
situation.
LID-based (LID): Language Identification is used
to remove fully/partially untranslated text and con-
tent in the wrong language (Steingrímsson et al.,
2023; Gala et al., 2023; Zhang et al., 2020).
Ratio-based : Ratio-based heuristics identify and
remove sentences that show significant structural
imbalances between the source and target sen-
tences. It is based on the assumption that, well-
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aligned sentence pairs tend to maintain consistent
ratios in terms of character count, word count, or
token distribution. We observe three common types
of ratio-based heuristics: (1) source-to-target sen-
tence length ratio (STRatio) (Rossenbach et al.,
2018; Gale and Church, 1993), (2) alpha-only
words to sentence words ratio (sentWRatio) (Ve-
layuthan et al., 2024; Aulamo et al., 2020) and
(3) alpha-only character ratio with respect to the
sentence characters (sentCRatio) (Hangya and
Fraser, 2018).

However, the impact of these heuristics in isola-
tion and as a combination had not been evaluated
systematically in the context of NMT.

Ranathunga et al. (2024) Improved
Taxonomy Revision

- CCN Perfect/near perfect translation where more than 30% of
the overlapping content is non-translatable such as num-
bers/acronyms/URLs/email etc.

Short Sentences (Max 3 words) CS Less than 5 words on either side
Wrong Language WL Specifically set a threshold as 30%

Table 3: A comparison of the improved taxonomy
against Ranathunga et al. (2024)’s (only showing the
changes). See Table 9 in Appendix A for the full taxon-
omy.

3 Methodology

Improved Taxonomy: Although translation pairs
can have overlapping URLs, acronyms, etc, exces-
sive inclusions of such content in a sentence (e.g.
consider the sentence ‘Contact: Diane Anderson
076-8268914, info@sandnasbadenscamping.se’2)
do not provide meaningful content for an NMT
system to learn from. However, under Ranathunga
et al. (2024)’s taxonomy, such sentence pairs would
likely be categorised as perfect translation-pairs
(CC). Therefore, we define a new noise category
CCN (high-overlapping non-translatable text) to
capture such sentence pairs.

Secondly, we consider the upper limit for short
sentences as five words3. Finally, we improve the
definition of WL (wrong language) to consider a
threshold in determining whether a sentence pair
should be marked as wrong language. Table 3
shows these changes. The complete list of these
noise categories and example parallel sentences are
available in Table 9 and Table 10 (respectively) in
Appendix B.

Selection of Heuristics: Table 4 shows how the
heuristics discussed in Section 2.3 may help in

2More examples are in Table 11 in Appendix B.
3We considered thresholds 3,4 and 5 and empirically se-

lected this threshold as it gave the highest NMT gains. Results
in Table 12 in Appendix C.

removing different noise categories. Note that a
deduplication-based heuristic cannot be associated
with any in the taxonomy, as it does not apply to
individual sentence pairs. In addition to the dedu-
plication strategies discussed in Section 2.3, we
introduce an n-gram-based deduplication, meaning
that sentences would be removed if they overlap in
a consecutive n-gram text span.

Noise Category Short Label Rule-based Heuristic

Not a language NL LID, sentWRatio, sentCRatio
Wrong language WL LID
Untranslated UN LID
Short Sentences CS sLength
High-overlapping non-translatable text CCN LID, sentWRatio, sentCRatio
Wrong translation X STRatio (With a length difference)
Boilerplate translation CB STRatio

Table 4: Mapping between the noise category vs the
noise mitigating heuristic.

Human Evaluation We conduct a human evalua-
tion to quantify the noise before and after applying
the heuristics. The annotator selection criteria, re-
sources and training provided, the payment details,
etc are described in Appendix A.

For each language-pair, we obtain top 1000
samples in each of the ranked corpora using em-
beddings obtained from LASER3, XLM-R, and
LaBSE, we randomly select 100 parallel sentences
for each language pair. We ask the translators to
annotate each sentence pair using the taxonomy
discussed in Section 3.

Each sentence pair is annotated by three trans-
lators to reduce any potential bias inherent in the
individual translators. For the three annotators, the
Fleiss Kappa scores are 0.833 for EnSi, 0.651 for
EnTa, and 0.649 for SiTa. We note that the results
for EnTa and SiTa are very close.

4 Experiments

4.1 Data

We use the language pairs, En-Si, En-Ta, and Si-Ta
in our experiments. Sinhala and Tamil are morpho-
logically rich, low-resource and mid-resourced lan-
guages (Joshi et al., 2020; Ranathunga and de Silva,
2022), respectively. Languages are selected con-
sidering the availability of human evaluators. We
select CCMatrix and CCAligned as the web-mined
corpora. Both these corpora include parallel data
for the language pairs considered in the research.
More details of these datasets and language pairs
are shown in Appendix D.

For the NMT experiments, we use the dev and
devtest subsets from the Flores-200 (Costa-jussà
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et al., 2022) dataset4 as validation and evaluation
sets, respectively. Dataset statistics are provided in
Table 5.

Language-pair CCMatrix CCAligned dev devtest

En-Si 6,270,801 619,711 997 1,012

En-Ta 7,291,119 880,547 997 1,012

Si-Ta 215,966 260,118 997 1,012

Table 5: Corpus statistics.

4.2 Selection of muliPLMs

We select LASER3, XLM-R, and LaBSE for ob-
taining embeddings for the sentences to determine
the semantic similarity. XLM-R, different to oth-
ers, was trained purely on monolingual data, but
has proven to be useful for cross-lingual tasks as
well (Choi et al., 2021; Conneau et al., 2020). All
three models include En, Si, and Ta. Details of the
multiPLMs are shown in Appendix E.

4.3 Heuristic-based PDC Experiments

Each heuristic is applied independently to the
source (S), target (T), and both sides (ST) of the
corpora. In line with the original sentence align-
ment conducted for CCMatrix and CCAligned, we
treat En as the source side. For Si-Ta, Si is consid-
ered the source because it is more common for a
Si sentence to be translated to Ta (Farhath et al.,
2018). Finally, for each multiPLM, the retained
sentences are ranked in descending order with co-
sine similarity.
Deduplication: We consider different granulari-
ties of deduplication. i.e. identical deduplication
(dedup), deduplication after removing numbers
only (nums) and removing both numbers and punc-
tuations (punctsNums). Subsequently, we dedu-
plicate considering different n-gram spans, i.e. 4-
grams, 5-grams, 6-grams and 7-grams.
Length-based: We filter short sentences less than
five words3. While some research has suggested
removing extremely long sentences (Minh-Cong
et al., 2023; Gala et al., 2023), we find that the
percentage of longer sentences is lower and that
removing them has a negligible effect. Thus, this
result is not reported.
LID-based: We use a public LID model5 (Costa-
jussà et al., 2022) to predict the language of each
sentence. The predicted label is then used as a

4https://github.com/openlanguagedata/flores
5https://github.com/facebookresearch/fairseq/tree/nllb

standalone heuristic (LID) and in combination with
its associated prediction probability (LIDThresh),
with threshold of 0.76.
Ratio-based: For STRatio, 0.79-1.39, 0.87-1.62
and 0.85-1.57 were selected as thresholds for En-
Si, En-Ta and Si-Ta, respectively. These thresholds
are determined by calculating the mean and the
standard deviation obtained for the validation set in
a human-crafted trilingual dataset (Fernando et al.,
2020; Ranathunga et al., 2018). Following observa-
tions of Hangya and Fraser (2018), 0.6 is selected
as the threshold for sentWRatio and sentCRatio.

4.4 NMT Experiments

First, a Sentencepiece7 tokenizer with a vocabu-
lary size of 25000 is trained. Then we use the
fairseq toolkit (Ott et al., 2019) to model and train
transformer-based Seq-to-Seq NMT models until
convergence. Hyperparameters used in the NMT
experiments are shown in Table 13 in Appendix F.
The baseline NMT models are trained on the top
100,000 sentence pairs from the ranked corpus. We
use ChrF++ (Popović, 2017) to report NMT results.

5 Results and Analysis

We report the results obtained for the NMT models
trained in the forward direction. The results of
the experiments are in Table 6. Heuristic-wise best
result is summarised in Table 14 in Appendix G. As
evident from these tables, as well as from Figure 1,
NMT results across different multiPLMs show a
great disparity in the baseline NMT scores for En-
Si and En-Ta language pairs. In the following sub-
sections, we discuss how the use of heuristics is
useful in mitigating this disparity and improving
overall NMT results.

5.1 Impact of Heuristics on NMT Results

5.1.1 Impact of Deduplication-based PDC
We observe that deduplication, irrespective of the
heuristic-applied side (S/T/ST), outperforms the
baseline in 89% of the experiments. Overall, dedup
considering both source and target seems to be the
most effective — it outperforms the baseline in 94%
of the experiments. In comparison, dedup target-
only and source-only outperform the baseline in
89% and 83% of the experiments, respectively.

We apply our newly introduced n-gram-based
deduplication dedup+ngram, on top of dedup.

6Thresholds below 0.7 reduce NMT results.
7https://github.com/google/sentencepiece
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Heuristic
Applicable

Side

Sinhala-Tamil English-Sinhala English-Tamil

CCMatrix CCAligned CCMatrix CCAligned CCMatrix CCAligned

LASER3 XLM-R LaBSE LASER3 XLM-R LaBSE LASER3 XLM-R LaBSE LASER3 XLM-R LaBSE LASER3 XLM-R LaBSE LASER3 XLM-R LaBSE

Baseline 31.08 30.99 31.63 35.36 35.97 35.79 30.76 5.55 14.49 32.33 19.39 27.57 19.02 5.86 14.20 40.13 17.40 26.00
DD S 32.05 31.50 32.07 36.40 36.01 34.98 29.72 6.35 14.69 33.26 21.04 28.22 19.67 4.93 14.96 40.87 19.47 26.26

T 31.39 31.44 31.73 36.26 35.86 35.96 33.81 12.59 25.97 33.66 21.41 28.32 19.48 6.87 17.96 40.13 17.90 27.79
ST 32.26 31.10 32.25 36.41 36.08 35.32 34.01 13.80 26.18 33.47 22.22 29.49 20.32 6.45 17.53 40.56 19.83 30.01

DD-4gram S 30.37 30.65 30.53 35.74 35.24 34.55 28.69 8.56 13.05 31.56 23.53 28.25 19.72 7.06 19.56 35.54 25.64 26.49
T 31.00 29.90 29.39 36.05 35.98 35.44 31.79 13.60 23.66 32.86 24.95 29.05 19.82 7.08 20.23 39.83 27.44 31.18
ST 30.86 31.13 30.80 35.28 35.36 34.64 28.72 15.17 20.45 28.15 15.45 21.37 18.15 7.00 21.37 35.02 25.70 27.41

DD-5gram S 30.89 30.90 31.25 35.64 35.81 35.87 28.73 7.14 13.51 33.44 23.98 28.79 18.06 4.70 17.16 40.39 24.07 29.07
T 31.24 31.55 32.10 36.26 35.87 35.23 33.98 14.01 26.23 34.10 22.27 31.10 20.15 6.75 18.78 41.12 24.05 30.26
ST 30.78 31.53 31.35 35.64 35.94 35.44 31.95 13.87 23.07 31.60 17.10 23.52 19.61 6.25 20.12 21.77 25.22 29.36

DD-6gram S 31.89 30.82 31.76 36.31 36.11 35.88 31.10 7.62 13.41 33.53 21.47 28.51 20.32 5.47 15.59 40.48 21.75 27.64
T 32.51 30.41 32.29 36.35 36.23 36.01 34.21 13.98 24.91 34.24 23.63 30.23 21.75 6.69 20.32 40.44 20.31 30.48
ST 31.89 30.82 31.76 35.84 35.95 35.54 33.63 14.96 24.72 33.29 15.54 25.55 20.38 7.18 20.19 41.73 24.89 31.06

DD-7gram S 31.48 31.27 32.03 36.26 35.67 35.50 30.93 5.91 15.94 33.27 19.90 29.58 21.54 5.71 16.49 40.63 20.01 28.91
T 31.56 31.06 30.85 36.44 36.10 35.16 34.27 13.72 25.58 32.97 22.14 28.22 20.91 7.37 21.96 40.49 19.18 28.69
ST 31.48 31.27 32.03 35.74 35.90 34.82 33.93 14.95 24.95 33.63 14.58 24.96 17.56 5.98 20.71 40.94 22.16 29.40

DD+N S 31.51 31.37 31.99 36.61 36.66 35.99 30.54 5.92 15.12 34.77 28.07 31.81 17.00 5.60 13.41 41.40 28.65 35.22
T 31.17 30.51 32.09 36.30 36.45 36.32 33.83 14.44 25.86 34.47 27.27 31.90 17.54 6.09 19.01 41.36 28.40 35.12
ST 31.71 31.22 31.66 36.49 36.37 36.10 33.83 14.15 26.12 34.24 28.45 31.64 19.19 5.15 18.92 41.46 30.49 35.42

DD+PN S 31.90 31.47 31.02 36.50 36.00 36.12 30.55 6.28 16.67 34.72 27.25 31.89 18.15 5.79 15.66 41.78 30.55 35.78
T 31.90 32.05 30.89 36.63 36.47 36.86 33.89 14.81 26.31 35.06 27.69 32.01 21.57 8.24 20.41 41.64 29.35 35.32
ST 32.05 31.31 32.53 35.96 36.71 36.23 33.37 14.15 26.08 34.08 27.80 32.59 20.99 5.82 18.83 41.80 30.69 35.91

DD+PN+4gram ST+T NA NA NA 30.64 29.48 30.19 NA 41.82 35.90 37.08
DD+PN+5gram ST + T 32.98 32.73 32.60 36.24 36.21 36.35 34.50 16.09 25.78 33.81 30.33 32.74 NA NA

DD+PN+6gram ST + T 30.41 31.38 31.42 36.73 36.62 36.37 NA 35.24 28.21 31.26 19.49 6.67 20.60 41.90 35.97 35.94
DD+PN+7gram T +T NA NA NA NA 19.57 7.55 20.89
SL S 31.41 31.52 32.30 36.42 36.37 36.52 32.49 6.58 20.70 33.86 26.53 32.97 17.50 5.11 18.74 41.40 27.60 36.77

T 31.38 30.56 31.97 36.30 36.71 36.58 31.88 7.83 28.51 34.88 29.42 33.14 18.52 6.33 21.73 41.54 30.16 37.61
ST 31.21 31.32 31.37 36.47 35.99 36.60 32.82 8.24 29.96 34.83 29.55 33.50 19.45 5.33 20.79 41.14 32.67 38.08

LID S 31.48 31.36 31.78 36.05 36.03 35.64 31.00 6.23 14.69 34.39 27.33 31.73 18.44 6.93 13.43 41.80 31.41 33.95
T 30.78 31.14 31.53 35.68 36.07 35.85 32.48 12.22 16.04 33.70 24.38 30.48 29.59 14.70 24.24 41.51 24.24 30.69
ST 31.43 30.66 31.40 36.17 36.12 35.18 31.99 13.32 16.20 34.11 28.87 32.26 29.59 13.54 23.45 41.42 32.33 36.13

LT S 30.05 31.25 31.06 35.60 35.25 34.29 30.32 7.12 15.26 35.73 30.86 32.69 18.98 6.02 13.06 41.60 35.25 36.29
T 31.28 30.40 30.68 35.03 30.01 32.01 32.82 12.94 15.81 35.22 27.46 30.40 29.59 15.24 24.51 41.03 30.01 34.01
ST 30.33 30.46 30.71 36.73 36.73 36.80 32.84 14.08 13.71 35.11 32.97 32.88 28.93 15.16 25.33 42.63 38.01 37.40

STRatio - 31.74 22.80 31.34 36.39 35.74 35.30 31.09 5.20 15.40 33.47 24.05 30.21 20.52 5.40 18.29 40.91 22.71 28.61
sentWRatio S 30.65 30.62 32.03 36.17 35.77 35.54 31.50 7.40 10.86 34.15 25.97 31.35 19.42 5.79 13.93 42.05 29.70 35.53

T 30.71 31.59 31.34 36.24 36.17 36.46 30.99 6.39 15.13 33.51 26.93 30.47 18.61 5.65 11.08 41.87 30.06 35.54
ST 31.93 31.56 30.98 36.44 36.72 36.01 30.64 7.00 15.50 33.85 28.73 31.17 18.99 4.82 14.08 41.05 30.88 35.77

sentCRatio S 31.67 31.24 31.14 35.94 36.18 35.86 30.15 7.05 14.46 34.06 21.52 30.10 17.47 6.22 13.83 40.68 22.48 29.37
T 30.98 31.21 31.93 36.36 35.43 35.85 30.65 5.83 15.28 33.64 23.14 29.05 19.90 6.78 12.51 40.78 19.63 29.42
ST 32.28 31.90 32.04 36.33 35.60 36.11 30.85 6.45 14.64 33.60 23.84 29.70 19.54 6.45 10.79 41.76 21.82 30.82

Combined Heuristics
DD+PN+ngram (SiTa-CCMatrix n=5, SiTa-CCAligned n= 7 EnSi-CCMatrix/CCAligned n=5, EnTa-CCMatrix n=7, EnTa-CCAligned n=6)
+sLength T + ST 30.17 29.02 29.99 36.32 36.81 36.61 35.03 21.70 26.32 35.68 33.49 34.43 30.29 19.44 29.85 42.84 39.36 40.16
+LT T + ST 31.49 30.13 30.68 36.58 36.37 37.02 35.42 19.58 32.43 34.77 32.58 34.72 20.53 7.52 23.35 42.68 38.45 39.60
+sentWRatio T+S 31.37 30.55 30.92 36.83 36.75 36.30 33.99 15.76 24.92 33.97 31.40 32.72 21.67 8.23 24.58 42.11 37.47 38.07
+SL+LT T + ST 29.28 30.85 29.96 36.47 36.81 36.88 35.70 23.92 32.77 34.97 34.92 35.60 30.65 20.86 31.49 42.85 41.17 41.31
+SL+sentWRatio T + ST + ST 31.45 32.65 31.17 36.60 36.85 36.32 35.71 18.93 32.53 35.45 33.42 33.82 22.46 9.11 23.82 41.97 40.07 40.06

+SL+LT+sentWRatio T+ST+ST+S 29.81 29.53 29.73 36.83 36.66 37.03 36.10 23.84 33.94 36.15 34.50 35.67 NA 43.47 41.74 41.06

+SL+LT+sentWRatio>0.8 T+ST+ST+ST 28.70 28.39 28.34 36.20 36.60 35.89 35.66 24.18 33.19 36.26 35.66 35.42 NA 42.08 40.56 42.02
+SL+LT+sentCRatio T+ST+ST+ST 32.64 31.30 32.28 NA NA NA NA NA
+SL+LT+STRatio T+ST+ST+STR NA NA NA NA 30.67 23.36 31.80 NA

Table 6: NMT results obtained after applying heuristics in isolation and in combination in the ablation study. The
values in bold indicate the highest NMT score obtained for a given heuristic class or from the heuristic combination.
The values underlined are the highest among the individual heuristics. Highlighted in green are the overall best
values. Here DD+PN is deduplication+punctNums, SL is sLength and LT is LIDThresh. NA would be when the
particular experiment is not applicable for that language pair or the dataset.

Figure 2: Percentage of dedup+ngram experiments ex-
ceeding the best result of dedup for each multiPLM

We find that for each result column, there is a
dedup+ngram result that outperforms the best re-
sults obtained with the corresponding dedup result.

To observe the impact of the n value on the NMT
result, we plot Figure 2 showing the percentage of
n-gram experiments exceeding the highest dedup
result, with respect to the multiPLM (language-
wise result is in Figure 4 of the Appendix G). We
observe a consistent pattern - n=5 or 6 perform
the best in a majority of cases. We believe that 4-
gram results in an overly aggressive deduplication.
However, the exact n-gram depends on the corpus
characteristics.

We observe that dedup+punctNums outper-
forms dedup+nums and dedup in 78% and
89% of the experiments (respectively), prov-
ing that (dedup+punctNums) to be more im-
pactful. Finally, we analyse the impact of
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dedup+puntsNums+ngram8. Compared to other
dedup combinations9, dedup+punctNums+ngram
produce the best result across 67% of the experi-
ments.

5.1.2 Impact of Length-Based PDC
sLength surpasses the baseline in 89% of the exper-
iments. Therefore, we can conclude that sLength is
favourable as a heuristic. When analysing the side
on which the heuristic is applied, we observe that
applying it to both ST is the most effective (similar
to dedup), followed by T and then S (56%, 28%,
and 17% of the experiments, respectively).

Recall that our manual inspection noticed that
XLM-R and LaBSE tend to prioritise shorter
sentences. This observation is affirmed by the
sLength results. For En-Si and En-Ta, this heuristic
resulted in substantial gains for many of the XLM-
R and LaBSE experiments, while it shows marginal
improvements for LASER3.

5.1.3 Impact of LID-Based PDC
With LID-based PDC, we observe substantial im-
provements for XLM-R and LaBSE, except for
Si-Ta, for which the gains are marginal. Gains are
reported by LASER3 as well, though not very sig-
nificant. The highest gain of +20.61 ChrF++ is
reported for XLM-R for the CCAligned-EnTa cor-
pus, while a gain of +11.40 is reported by LaBSE
for the same corpus.

NMT models trained after applying LID outper-
form the baseline in 85% of the experiments, while
LIDThresh outperforms LID in 72% of the exper-
iments. Therefore, we conclude that LIDThresh
would be the most suitable heuristic. We observe
that the gains for LIDThresh with respect to LID
are least with Si-Ta with 50% while for En-Si and
En-Ta it is 83% each. We assume that this is due
to a limitation with the LID model, which is not
optimised for Si and Ta.

5.1.4 Impact of Ratio-based PDC
We observe that STRatio, sentWRatio and sentCRa-
tio produce NMT gains over baseline for 56%, 69%
and 80% of experiments, respectively. Among
the three ratio-based heuristics, sentWRatio outper-
forms both STRatio and sentCRatio in 67% of the
experiments, making it the most effective for noise
reduction. In contrast, STRatio and sentCRatio ex-
ceed the performance of the other two heuristics in

8puntsNums and ngram has been applied on top of dedup.
9dedup, dedup+ngram, nums, and dedup+punctNums

only 11% and 22% of the cases, respectively. Max-
imum gains are reported for the EnTa-CCAligned
corpus, with +1.92, +13.48, and +9.77 ChrF++ for
LASER3, XLM-R, and LaBSE respectively.

5.2 Summary of Heuristic-based PDC

1. Impact of the Individual Heuristics on the
NMT Results: The LID-based heuristic emerged
as the most impactful in 44% of the experiments.
Deduplication and sentence-length heuristics were
the most effective in 33% and 17% of the experi-
ments, respectively. The ratio-based heuristic alone
did not hold superior results compared to others,
making it the least impactful single heuristic. There
is no single heuristic that consistently produces the
best gains for all scenarios. For LASER3, XLM-R,
and LaBSE, we observe the highest ChrF++ gains
of +10.57, +20.61, and +11.40 for CCMatrix-EnTa
and CCAligned-EnTa and CCAligned-EnTa cor-
pora, respectively.

2. Impact of Combined Heuristics: The combi-
nation of heuristics produced the best score, com-
pared to the best-performing individual heuristics,
except for the CCMatrix-SiTa. In this, the combi-
nation reduced the dataset size by 54% (Table 15
in Appendix G), resulting in only 98k parallel sen-
tences. We suspect this reduction in dataset size
and the residual noise could result in the reduced
score.

CCMatrix-SiTa gains across multiPLMs are
marginal. The same pattern holds with LASER3
across En-Ta and En-Si languages, with the excep-
tion of CCMatrix-EnTa corpus. Since LASER3 is
already trained with OPUS data (Tiedemann and
Thottingal, 2020)10, it is believed that LASER3 is
already optimised (Moon et al., 2023) towards rank-
ing the CCMatrix and CCAligned corpora better.
This is further affirmed with the relatively higher
NMT scores of the baseline experiments.

For the rest of the ranked corpora, the
best NMT scores were reported when the
combined heuristic was applied. It was
noted the combination always had heuristics,
dedup+punctNums+(n)gram+sLength+LIDThr-
esh as a common combination for 77% of the ex-
periments. The specific n-value was dependent on
the dataset. In the combination producing the best
gains, the ratio-based heuristic was different based
on the dataset/language pair. In 61% of the cases,
the best scores were obtained with sentWRatio,

10https://opus.nlpl.eu/

28270



while STRatio yielded the best results in 16% of
the experiments.

The combination performed best without the
LID heuristic only in CCAligned-SiTa with XLM-
R. However, we include LIDThresh into the combi-
nation for two reasons. (1) Even with LIDThresh-
old, the score only lags by (-0.19) ChrF++ scores
compared to the best NMT score, which is negligi-
ble. (2) The most influential individual heuristic is
LIDThresh-based for most cases.

Therefore we recommend the heuristic combina-
tion, dedup+punctNums+(n)gram+sLength
+LIDThresh+sentWRatio to be applied as the rule-
based heuristic combination for the PDC task.

3. Reducing the Disparity Across multiPLMs:
We calculate the disparity (∆) as the difference in
NMT scores between LASER3 and the XLM-R or
LaBSE scores. Equation 1 shows the baseline dis-
parity calculation, where BLmultiPLM refers to the
baseline NMT score obtained using embeddings
from either XLM-R or LABSE during ranking.

∆Baseline = BLLASER3 −BLmultiPLM (1)

The disparity for each heuristic is calculated with
respect to LASER3 and the best NMT score ob-
tained from either XLM-R or LaBSE. The results
are shown in Table 7. Additionally, we calculate the
disparity reduction percentage (∆ Reduction(%))
as defined in Equation 2. Here, ∆heuristic is the dis-
parity corresponding to the best-performing NMT
models after applying the respective heuristic or
the optimal combination.

∆ Reduction(%) = ∆baseline−∆heuristic
∆baseline

× 100%

(2)
In Table 711, we observe that the dispar-

ity has been reduced on average by 95.87%
for CCAligned-XLM-R/LaBSE and CCMatrix-
LaBSE, compared to LASER3. The disparity be-
tween CCMatrix-XLM-R EnSi/EnTa models, com-
pared to LASER3 was reduced by only 48%, mean-
ing that XLM-R ranked corpus contains noise that
cannot be mitigated by the heuristics alone. How-
ever, our hypothesis holds in most cases, and it is
safe to say that heuristic-based PDC mitigates the
bias brought in by the multiPLM.

11Since the disparity observed was marginal for the SiTa
pair, we exclude this language pair from our discussion.

Heuristic LASER3 vs XLM-R LASER3 vs LaBSE

∆
(ChrF++)

∆ Reduction
(%)

∆
(ChrF++)

∆ Reduction
(%)

CCMatrix
English - Sinhala

Baseline 25.21 16.27
Deduplication - based 18.41 26.97% 8.72 46.40%
Sentence Length - based 24.58 2.50% 2.86 82.42%
LID -based 18.76 25.59% 16.64 -2.27%
Ratio-based 24.10 4.40% 16.00 1.66%
Combined Heuristics 11.92 52.72% 2.16 86.72%

English - Tamil
Disparity 13.16 4.82
Reduction in disparity (dedup) 13.33 -1.29% -0.39 108.09%
Reduction in disparity (sLength) 13.12 0.30% -2.28 147.30%
LID 14.35 -9.04% 4.26 11.62%
Ratio-based 13.74 -4.41% 2.23 53.73%
Combined Heuristics 7.31 44.45% -1.13 123.44%

CCAligned
English - Sinhala

Baseline 12.94 4.76
Deduplication Best 4.91 62.06% 2.50 47.48%
Reduction in disparity (sLength) 5.33 58.81% 1.38 71.01%
LID 2.76 78.67% 2.85 40.13%
Ratio-based 5.42 58.11% 2.80 41.18%
Combined Heuristics 0.60 95.36% 0.59 87.61%

English - Tamil
Disparity 22.73 14.13
Reduction in disparity (dedup) 5.93 73.91% 4.82 65.89%
Reduction in disparity (sLength) 8.87 60.98% 3.46 75.51%
LID 4.62 79.67% 5.23 62.99%
Ratio-based 11.17 50.86% 6.28 55.56%
Combined Heuristics 1.73 92.39% 1.45 89.74%

Table 7: Disparity (∆) in ChrF++ points, among the
NMT models (XLM-R/LaBSE) with the best scores
with respect to LASER3 after applying the individ-
ual/combined heuristics. The ∆ Reduction (%) is this
disparity as a percentage of the baseline disparity.

5.3 Human Evaluation Results

As shown in Table 2, heuristic-based PDC had
reduced the noise in the top-ranked samples
consistently, irrespective of the language pair
and the considered multiPLM. Some gains are
quite significant — for example, the amount
of correct pairs (C) improvement for CCMatrix-
EnSi (LaBSE), CCMatrix-EnTa (LaBSE), and
CCAligned-EnSi (LaBSE) were 82%, 82%, and
74% respectively. CS, CCN and UN noise cate-
gories are noted to be contributing towards this
noise percentage. However, after heuristic filtra-
tion, the error drops drastically. On average, for
LASER, XLM-R, and LaBSE, the final error per-
centages are 2.17%, 2.50% and 1.0%, respectively.
The evaluation further reveals that the residual
noise are from untranslated (UN) and overlapping
text (CCN) classes. These findings reveal that rule-
based heuristics, are not effective in eliminating
those types of noise. As a result, we would need to
employ an alignment model similar to Steingríms-
son et al. (2023) or Minh-Cong et al. (2023) to
remove such residual noise from the corpus.

In conclusion, the human evaluation results in-
dicate that the heuristic-based PDC approach is
beneficial for parallel sentence ranking in two key
ways. First, it produces the top-ranked sentence
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pairs from multiPLM to be qualitatively compara-
ble. Secondly, it removes the noisy parallel sen-
tences that cause the disparity among the NMT
systems trained using ranked corpora based on mul-
tiPLMs.

6 NMT Performance based on Training
Data Size

We further investigate the effect of the training
dataset size on the final NMT performance. We
sampled the top 50k, 100k, 150k, and 200k from
each of the ranked corpora after applying the
heuristic-combination, and train NMT models. Re-
sults are in Figure 5 of the Appendix H.

For Si-Ta, moderate but consistent improve-
ments are observed from 50K to 100K samples for
both CCMatrix and CCAligned corpora, irrespec-
tive of the multiPLMs. However, after heuristic-
based filtering, the resulting Si-Ta parallel corpus
contained only about 100K sentence pairs (Table 15
in Appendix G). Therefore, NMT experiments with
150K and 200K sentence pairs could not be con-
ducted due to insufficient data.

For En-Ta, NMT scores declined after 100K,
while for En-Si, an improvement was observed
until 200K, except for the CCMatrix ranked using
XLM-R embeddings. Hence, we suspect that noise
may be more prominent beyond 100K for En-Ta.
In conclusion, increasing corpus size can enhance
NMT performance, but only when the underlying
data is sufficiently clean and well-aligned.

7 Conclusion

In this research, we empirically analysed the dis-
parity between the NMT systems trained with the
web-mined corpora ranked using embeddings de-
rived from multiPLMs. With a human evaluation,
we showed that this disparity is due to different
types of noise creeping into the top-ranked portion
of corpora when different multiPLMs are used.

We made use of rule-based heuristics to remove
this noise. After a systematic evaluation of heuris-
tics, we were able to identify optimal heuristic
combinations that resulted in higher NMT scores.
Therefore, for anyone planning to use web-mined
corpora, our recommendation is to first filter out
noisy sentences using heuristics and then to do
ranking on the embeddings derived from the mul-
tiPLM. In contrast to the recent PDC work (Stein-
grimsson, 2023; Minh-Cong et al., 2023) that em-
ploys several deep learning model-based rigorous

filtration pipelines, our technique is much simpler.
Human evaluation indicated that even after ap-

plying heuristics, some noise remains. In future,
we plan to apply techniques such as classification-
based approaches to remove such noise, or to apply
translation post-editing to improve the sentence
quality.

8 Limitations and Ethical Concerns

8.1 Limitations

We found that the LID was suboptimal for identi-
fying Si or Ta languages. Therefore, such models
would need to be optimised or better LID models
would need to be used, such that they are effective
in predicting the language label correctly. Further-
more, due to the lack of human annotators, we had
to limit this analysis to only three language pairs.
We can extend this study to more low-resource
language pairs provided that we can find suitable
annotators.

8.2 Ethical Concerns

We use publicly available datasets. Due to the
dataset size, we did not have the resources or fund-
ing to check all the curated parallel sentences man-
ually for offensive content. Fernando et al. (2020)
provided the human-crafted dataset to be used in
this research. Further, we do not disclose or share
any personal details of the annotators publicly or
with any other party. We have offered the annota-
tors the standard rate and have settled the payments
in full. The only details we disclose are in Ap-
pendix A.

Acknowledgments

This research was funded by the Google Award
for Inclusion Research (AIR) 2022 received by
Surangika Ranathunga and Nisansa de Silva. We
would also like to thank and acknowledge the Na-
tional Languages Processing Centre (NLPC), at the
University of Moratuwa for providing the GPUs to
execute the experiments related to the research.

References
Mikko Aulamo, Ona de Gibert, Sami Virpioja, and Jörg

Tiedemann. 2023. Unsupervised feature selection for
effective parallel corpus filtering. In Proceedings of
the 24th Annual Conference of the European Associa-
tion for Machine Translation, pages 31–38. European
Association for Machine Translation.

28272

https://aclanthology.org/2023.eamt-1.4/
https://aclanthology.org/2023.eamt-1.4/


Mikko Aulamo, Sami Virpioja, and Jörg Tiedemann.
2020. OpusFilter: A configurable parallel corpus
filtering toolbox. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 150–156.
Association for Computational Linguistics.

Sudhansu Bala Das, Atharv Biradar, Tapas Ku-
mar Mishra, and Bidyut Kr. Patra. 2023. Improv-
ing multilingual neural machine translation system
for indic languages. ACM Transactions on Asian
and Low-Resource Language Information Process-
ing, 22(6):1–24.

Fred Bane, Celia Soler Uguet, Wiktor Stribiżew, and
Anna Zaretskaya. 2022. A comparison of data fil-
tering methods for neural machine translation. In
Proceedings of the 15th Biennial Conference of the
Association for Machine Translation in the Americas
(Volume 2: Users and Providers Track and Govern-
ment Track), pages 313–325. Association for Ma-
chine Translation in the Americas.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-scale acqui-
sition of parallel corpora. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4555–4567, Online. Association
for Computational Linguistics.

Vishrav Chaudhary, Yuqing Tang, Francisco Guzmán,
Holger Schwenk, and Philipp Koehn. 2019. Low-
resource corpus filtering using multilingual sentence
embeddings. In Proceedings of the Fourth Confer-
ence on Machine Translation (Volume 3: Shared Task
Papers, Day 2), pages 261–266. Association for Com-
putational Linguistics.

Hyunjin Choi, Judong Kim, Seongho Joe, Seungjai Min,
and Youngjune Gwon. 2021. Analyzing zero-shot
cross-lingual transfer in supervised nlp tasks. In 2020
25th International Conference on Pattern Recogni-
tion (ICPR), pages 9608–9613. IEEE.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 8440–8451.
Association for Computational Linguistics.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Nisansa de Silva. 2025. Survey on Publicly Available
Sinhala Natural Language Processing Tools and Re-
search. arXiv preprint arXiv:1906.02358v25.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco
Guzmán, and Philipp Koehn. 2020. CCAligned: A
massive collection of cross-lingual web-document
pairs. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5960–5969. Association for Com-
putational Linguistics.

Fathima Farhath, Surangika Ranathunga, Sanath
Jayasena, and Gihan Dias. 2018. Integration of
bilingual lists for domain-specific statistical machine
translation for sinhala-tamil. In 2018 Moratuwa En-
gineering Research Conference (MERCon), pages
538–543. IEEE.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
878–891. Association for Computational Linguistics.

Aloka Fernando, Surangika Ranathunga, and Gihan
Dias. 2020. Data augmentation and terminol-
ogy integration for domain-specific sinhala-english-
tamil statistical machine translation. arXiv preprint
arXiv:2011.02821.

Jay Gala, Pranjal A Chitale, Raghavan AK, Varun
Gumma, Sumanth Doddapaneni, Aswanth Kumar,
Janki Nawale, Anupama Sujatha, Ratish Puduppully,
Vivek Raghavan, et al. 2023. Indictrans2: Towards
high-quality and accessible machine translation mod-
els for all 22 scheduled indian languages. arXiv
preprint arXiv:2305.16307.

William A. Gale and Kenneth W. Church. 1993. A
program for aligning sentences in bilingual corpora.
Computational Linguistics, 19(1):75–102.

Viktor Hangya and Alexander Fraser. 2018. An un-
supervised system for parallel corpus filtering. In
Proceedings of the Third Conference on Machine
Translation: Shared Task Papers, pages 882–887.
Association for Computational Linguistics.

Kevin Heffernan, Onur Çelebi, and Holger Schwenk.
2022. Bitext mining using distilled sentence rep-
resentations for low-resource languages. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2022, pages 2101–2112. Association
for Computational Linguistics.

Christian Herold, Jan Rosendahl, Joris Vanvinckenroye,
and Hermann Ney. 2022. Detecting various types of
noise for neural machine translation. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 2542–2551. Association for Computa-
tional Linguistics.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and

28273

https://doi.org/10.18653/v1/2020.acl-demos.20
https://doi.org/10.18653/v1/2020.acl-demos.20
https://aclanthology.org/2022.amta-upg.22/
https://aclanthology.org/2022.amta-upg.22/
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/W19-5435
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.emnlp-main.480
https://doi.org/10.18653/v1/2020.emnlp-main.480
https://doi.org/10.18653/v1/2020.emnlp-main.480
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://aclanthology.org/J93-1004/
https://aclanthology.org/J93-1004/
https://doi.org/10.18653/v1/W18-6477
https://doi.org/10.18653/v1/W18-6477
https://doi.org/10.18653/v1/2022.findings-emnlp.154
https://doi.org/10.18653/v1/2022.findings-emnlp.154
https://doi.org/10.18653/v1/2022.findings-acl.200
https://doi.org/10.18653/v1/2022.findings-acl.200
https://doi.org/10.18653/v1/2020.acl-main.560


fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6282–6293. Association for Computational Linguis-
tics.

Huda Khayrallah and Philipp Koehn. 2018. On the
impact of various types of noise on neural machine
translation. In Proceedings of the 2nd Workshop on
Neural Machine Translation and Generation, pages
74–83. Association for Computational Linguistics.

Philipp Koehn, Vishrav Chaudhary, Ahmed El-Kishky,
Naman Goyal, Peng-Jen Chen, and Francisco
Guzmán. 2020. Findings of the WMT 2020 shared
task on parallel corpus filtering and alignment. In
Proceedings of the Fifth Conference on Machine
Translation, pages 726–742. Association for Compu-
tational Linguistics.

Philipp Koehn, Francisco Guzmán, Vishrav Chaud-
hary, and Juan Pino. 2019. Findings of the WMT
2019 shared task on parallel corpus filtering for
low-resource conditions. In Proceedings of the
Fourth Conference on Machine Translation (Volume
3: Shared Task Papers, Day 2), pages 54–72. Associ-
ation for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Transla-
tion, pages 28–39. Association for Computational
Linguistics.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wahab,
Daan van Esch, Nasanbayar Ulzii-Orshikh, Allah-
sera Tapo, Nishant Subramani, Artem Sokolov, Clay-
tone Sikasote, Monang Setyawan, Supheakmungkol
Sarin, Sokhar Samb, Benoît Sagot, Clara Rivera, An-
nette Rios, Isabel Papadimitriou, Salomey Osei, Pe-
dro Ortiz Suarez, Iroro Orife, Kelechi Ogueji, An-
dre Niyongabo Rubungo, Toan Q. Nguyen, Math-
ias Müller, André Müller, Shamsuddeen Hassan
Muhammad, Nanda Muhammad, Ayanda Mnyak-
eni, Jamshidbek Mirzakhalov, Tapiwanashe Matan-
gira, Colin Leong, Nze Lawson, Sneha Kudugunta,
Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaven-
ture F. P. Dossou, Sakhile Dlamini, Nisansa de Silva,
Sakine Çabuk Ballı, Stella Biderman, Alessia Bat-
tisti, Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar,
Israel Abebe Azime, Ayodele Awokoya, Duygu Ata-
man, Orevaoghene Ahia, Oghenefego Ahia, Sweta
Agrawal, and Mofetoluwa Adeyemi. 2022. Quality
at a glance: An audit of web-crawled multilingual
datasets. Transactions of the Association for Compu-
tational Linguistics, 10:50–72.

Nguyen-Hoang Minh-Cong, Nguyen Van Vinh, and
Nguyen Le-Minh. 2023. A fast method to filter noisy
parallel data WMT2023 shared task on parallel data
curation. In Proceedings of the Eighth Conference
on Machine Translation, pages 359–365. Association
for Computational Linguistics.

Hyeonseok Moon, Chanjun Park, Seonmin Koo,
Jungseob Lee, Seungjun Lee, Jaehyung Seo, Sug-
yeong Eo, Yoonna Jang, Hyunjoong Kim, Hyoung-
gyu Lee, et al. 2023. Doubts on the reliability of
parallel corpus filtering. Expert Systems with Appli-
cations, 233:120962.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 48–53. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318. Association for
Computational Linguistics.

Maja Popović. 2017. chrF++: words helping character
n-grams. In Proceedings of the Second Conference
on Machine Translation, pages 612–618. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191. Association for Computational Linguistics.

Surangika Ranathunga and Nisansa de Silva. 2022.
Some languages are more equal than others: Prob-
ing deeper into the linguistic disparity in the NLP
world. In Proceedings of the 2nd Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 12th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 823–848. Association
for Computational Linguistics.

Surangika Ranathunga, Nisansa De Silva, Velayuthan
Menan, Aloka Fernando, and Charitha Rathnayake.
2024. Quality does matter: A detailed look at the
quality and utility of web-mined parallel corpora. In
Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 860–880.
Association for Computational Linguistics.

Surangika Ranathunga, Fathima Farhath, Uthayasanker
Thayasivam, Sanath Jayasena, and Gihan Dias. 2018.
Si-ta: Machine translation of sinhala and tamil offi-
cial documents. In 2018 National Information Tech-
nology Conference (NITC), pages 1–6. IEEE.

Nick Rossenbach, Jan Rosendahl, Yunsu Kim, Miguel
Graça, Aman Gokrani, and Hermann Ney. 2018. The
RWTH Aachen University filtering system for the
WMT 2018 parallel corpus filtering task. In Proceed-
ings of the Third Conference on Machine Translation:
Shared Task Papers, pages 946–954. Association for
Computational Linguistics.

28274

https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://aclanthology.org/2020.wmt-1.78/
https://aclanthology.org/2020.wmt-1.78/
https://doi.org/10.18653/v1/W19-5404
https://doi.org/10.18653/v1/W19-5404
https://doi.org/10.18653/v1/W19-5404
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.18653/v1/2023.wmt-1.37
https://doi.org/10.18653/v1/2023.wmt-1.37
https://doi.org/10.18653/v1/2023.wmt-1.37
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2022.aacl-main.62
https://doi.org/10.18653/v1/2022.aacl-main.62
https://doi.org/10.18653/v1/2022.aacl-main.62
https://doi.org/10.18653/v1/2024.eacl-long.52
https://doi.org/10.18653/v1/2024.eacl-long.52
https://doi.org/10.18653/v1/W18-6487
https://doi.org/10.18653/v1/W18-6487
https://doi.org/10.18653/v1/W18-6487


Holger Schwenk, Guillaume Wenzek, Sergey Edunov,
Edouard Grave, Armand Joulin, and Angela Fan.
2021. CCMatrix: Mining billions of high-quality
parallel sentences on the web. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 6490–6500. Association
for Computational Linguistics.

Steve Sloto, Brian Thompson, Huda Khayrallah, To-
bias Domhan, Thamme Gowda, and Philipp Koehn.
2023. Findings of the WMT 2023 shared task on
parallel data curation. In Proceedings of the Eighth
Conference on Machine Translation, pages 95–102.
Association for Computational Linguistics.

Steinþór Steingrímsson, Hrafn Loftsson, and Andy Way.
2023. Filtering matters: Experiments in filtering
training sets for machine translation. In Proceedings
of the 24th Nordic Conference on Computational
Linguistics (NoDaLiDa), pages 588–600. University
of Tartu Library.

Steinthor Steingrimsson. 2023. A sentence alignment
approach to document alignment and multi-faceted
filtering for curating parallel sentence pairs from web-
crawled data. In Proceedings of the Eighth Confer-
ence on Machine Translation, pages 366–374. Asso-
ciation for Computational Linguistics.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT – building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
pages 479–480. European Association for Machine
Translation.

Menan Velayuthan, Dilith Jayakody, Nisansa De Silva,
Aloka Fernando, and Surangika Ranathunga. 2024.
Back to the stats: Rescuing low resource neural ma-
chine translation with statistical methods. In Proceed-
ings of the Ninth Conference on Machine Translation,
pages 901–907. Association for Computational Lin-
guistics.

Yudhanjaya Wijeratne, Nisansa de Silva, and Yashothara
Shanmugarasa. 2019. Natural language processing
for government: Problems and potential. Technical
report, LIRNEasia.

Boliang Zhang, Ajay Nagesh, and Kevin Knight. 2020.
Parallel corpus filtering via pre-trained language mod-
els. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
8545–8554. Association for Computational Linguis-
tics.

A Human Evaluation

Selection of the Annotators: We select annota-
tors for this task who have translation or machine
translation-related experience for a minimum of 2
years and are fluent in both languages of the spe-
cific language pair assigned to them. Table 8 shows

the years of experience and the qualifications of
those annotators who conducted this task.

Annotator Experience Qualification
(Years)

Annotator 01 22 Diploma in Translation And Interpretation
Annotator 02 9 BSc.(Hons) in Information Technology
Annotator 03 5 MBBS
Annotator 04 4 BA (Hons) in Translation
Annotator 05 3 BSc (Hons) Engineering sp. in Computer Science and Engineering
Annotator 06 2.5 Diploma in Translation And Interpretation
Annotator 07 2.5 BSc Eng (Hons) Electrical & Electronics Engineering
Annotator 08 2.5 BSc (Hons) Engineering sp. in Electrical Engineering
Annotator 09 2 Bachelor of Industrial Information Technology

Table 8: Annotator details with the years of experience
and their qualifications.

Resources Provided and Training: All the an-
notators have had prior experience with a similar
task (Ranathunga et al., 2024). However, for this
annotation work, we provide them with the defini-
tions of the noise categories (Table 9) along with
example sentence pairs (Table 10) and the guide-
line in terms of a flowchart (Figure 3). First, we
asked them to do a sample of 30 sentences as a
training on the task, and review it. Then, the 1200
sentence pairs to be annotated were shared with
each annotator via Google Sheets to be completed.

Parallel Corpus Categorization Code: Description

CC: Perfect Translation-pair
Source and target sentences are translation pairs of each other.
CN: Near Perfect Translation-pair
Perfect translation pairs. Just a few spelling, grammar, punctuation, or unnecessary
characters have to be handled.
CB: Low-quality Translation-pair
A full sentence or phrase, but a low-quality (boilerplate) translation. Includes
under/over translations.
CS: Short Translation Content
Less than 5 words. Translation-wise, correct, but only a short phrase or a few
words.
CCN: High-overlapping non-translatable text
Perfect or near-perfect translation pair, but with overlapping content like numbers,
acronyms, or URLs. Sentences longer than 5 words with high overlap.
X: Wrong Translation
Source and target sentences are in the correct languages, but semantically unrelated.
Not true translations.
UN: Untranslated Text
The source or target is copied from its counterpart (partial or full). Overlapping
untranslated content exceeds 30%. It could have been translated/transliterated.
NL: Not a Language
At least one side is not linguistic content.
WL: Wrong Language
Either the source or the target (or both) is not in the expected language. Up to 30%
of acceptable content may be tolerated.

Table 9: Improved Ranathunga et al. (2024)’s taxonomy
to categorize parallel sentences to identify biases in
multiPLMs.

Compensation: They were paid the standard rate
in Sri Lanka for each sentence pair they annotated
or were offered co-authorship of this paper.

B Improved Noise Taxonomy

In this research, we extend the taxonomy of
Ranathunga et al. (2024) by introducing the noise
category CCN (high-overlapping non-translatable
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Less than 5 words
Translation wise correct, but is a short phrase/ or

few words

Individual sentence can be a full sentence or a full
phrase, but a low-quality (boilerplate) translation.

Under Translations / Over translations

A sentence pair in which either the source or the target
sentence (or both) is not in the expected language.
Upto 30 % acceptable text might be still tolerated when
determining under this annotation 
(Refer noise_classes document for example)

Either in source or target side just copied from the
tranlsation counterpart in partial or in full

Untranslated content more than 30% of the sentence.
This content could have been

translated/transliterated

A sentence pair where the source and target sentences are in the
correct respective languages.

But the target sentence does not accurately convey the meaning
of the source sentence. 

In other words, the sentences are not translations of each other.

At least one of source and target are not linguistic
content

Annotation = WL

Annotation = NL
Not 
a 

Language ?

 Src/Tgt 
Wrong 

Language ?

 Wrong Translation? Annotation = X

 Untranslated 
Overlapping 

Text  ?

Perfect Translation pair but 
Sent Length < 5?

Annotation = UN

Annotation = CC

Sentences longer than 5 words sentences with high-
overlapping content in the form of numbers,
ACRONYMs or URLs
More than 30% overlapping content

Perfect or near perfect 
translation pair with 

 number/acronym/URL
overlapping 

content?

Annotation = CCN

Annotation = CS

Low-Quality Translation pair? Annotation = CB

Perfect translation-pair 
but has minor

Spelling/Grammar 
mistakes?

Start

End

Annotation = CN

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Figure 3: Shows the annotation guideline document in terms of a flow chart. This shows the priority of the noise
category to be selected prior to declaring the annotation class.
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Language Ranked Source Sentence Target Sentence
Pair multiPLM

Correct Codes
Perfect Translation Pair (CC): Semantically equivalent sentences.
Si-Ta LaBSE ජාතික නීති සම්මන්ත්‍රණය 2013 – ɼ ලංකා

නීතිඥ සංගමය
ேதச§ய சட்ட மாநாடு 2013 – இலங்-
ைக சட்டத்தரணிகள் சங்கம்

Low-Quality Translation Pair (CB): Weak Translation pair. Under / Over translations

En - Ta LASER3 Where will you be in the next five, ten or fif-
teen years?

ேக: அடுத்த ஐந்து, பத்து அல்லது
பத¦ைனந்து ஆண்டுகளில் நீங்கள்
எங்ேகஇருப்பீர்கள்?

Error Codes
High-overlapping non-translatable text (CCN): Translation wise perfect or near perfect, with non-translatable
text such as numbers/acronyms/URLs/emails.
En-Ta LaBSE Servanet.se, info@servanet.se, or by phone

0200-120 035.

Servanet.se, info@servanet.se, அல்-

லது ெதாைலேபச§ மூலம்

0200-120 035.
Incorrect Translation (X) : Both languages correct. But has translation errors
En - Si LaBSE Ample storage room and slots for credit

cards, IDs and Cash
ක්ෙරඩිට්කාඩ්, හැඳුනුම් පත් සහ මුදල් සඳහා ඇති
තරම් ගබඩා කාමරය සහ මඳබව

Untranslated Text (UN): either in source or target side just copied from the translation counterpart
En - Si XLM-R What do you mean when you say “Your com-

ment is awaiting moderation?”
ෙමාෙකා් විචාරක තුමා මෙග් කෙමන්ට් එක

තාම" Your comment is awaiting moderation. ?”

En - Ta XLM-R Effective Pixels: 16.0 million (Image pro-
cessing may reduce the number of effective
pixels.)

ஆப்டிகல்ெசன்சார்ெரெசாலூஷன்

20.1 million (Image processing may reduce

the number of effective pixels)
Not a language (NL): at least one of source and target is not linguistic content
En - Si LaBSE 2.0mm2 / 900mm 2.5mm2 /

900mm 4.0mm2 / 900mm

1.5mm2 / 900mm 2.0mm2 / 900mm 2.5mm2 /

900mm 4.0mm2 / 900mm
En - Ta LaBSE HQCCWM750GAH6A பத¦வ¥றக்க: HQCCWM750GAH6A.pdf

Wrong Language (WL): Source and Target side are linguistic content. However, the source, target, or both sides are
not in the expected language.
En - Si LaBSE Ի պատից պարոն Գոլջիի: ෙගාල්ගි මහතා විසින් එතුමාෙග් නමින් ම නම්

ෙකරිණි.
Short Sentence (CS): Correct Translation, but the number of tokens on the Source or Target side is less
En - Si LaBSE Account Number ගිණුම් අංකය
En - Si LaBSE 11 July 2015. 11 ජූලි 2015.
En - Ta XLM-R July 21: ஜூைல 21:
Si - Ta XLM-R ගණනය: 40 / 2, 40 / 3, 30 ආදිය. எண்: 40 / 2, 40, 3, 30 முதலியன

Table 10: Example parallel sentences from the En-Si, En-Ta and Si-Ta, identified during human evaluation. The
translation error in the language pair is highlighted in pink.

En 2 September 1948 – 8 July 1994
Si 2 සැප්තැම්බර් 1948 – 8 ජූලි 1994
En V2.77: French Translation, finally! [August 22,

2009]
Ta V2.77: ப¥ரஞ்சு ெமாழிெபயர்ப்பு,

இறுத¦யாக! [ஆகஸ்ட் 22, 2009]
Si සම්බන්ධතා: ඩයෑන් ඇන්ඩර්සන් 076-826 89 14,

info@sandnasbadenscamping.se
Ta ெதாடர்பு: டயான் ஆண்டர்ஸன் 076-826

89 14, info@sandnasbadenscamping.se

Table 11: Example parallel sentences which will be
separately identified under the new noise category CCN

text) to capture the type of noise that multiPLMs
are biased to rank highly. Table 11 shows exam-

ples for this noise type. The definitions of all the
categories in our improved taxonomy are given in
Table 9. Then, in Table 10, we show examples of
parallel sentences which fall under each of these
categories.

C Sentence Length Threshold

To determine the optimal threshold for sentence
length filtering, we filter sentences with fewer than
3, 4, and 5 words on the source (S) side, target (T)
side, and both sides. Similar to other PDC exper-
iments, we then rank the parallel sentence pairs
by computing embeddings using XLM-R, LABSE
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and LASER. Finally, we train NMT models using
the top 100k-ranked data. We conduct these ex-
periments using the CCAligned corpus for En-Si
and En-Ta language pairs. The ChrF++ results are
shown in Table 12. We observe sentence length
threshold of 5 yields the best results consistently.
Therefore, we select this threshold in all subsequent
experiments.

Side LASER3 XLM-R LaBSE

English - Sinhala
Baseline 32.33 19.39 27.57
Sentence Length (flt < 5) S 33.86 26.53 32.97

T 34.88 29.42 33.14
ST 34.83 29.55 33.50

Sentence Length (flt < 4) S 34.25 23.20 31.07
T 33.99 23.06 31.30
ST 34.69 25.64 31.55

Sentence Length (flt < 3) S 34.50 25.94 31.91
T 34.14 26.55 32.49
ST 34.06 27.16 32.76

English - Sinhala
Baseline 40.13 17.40 26.00
Sentence Length (flt < 5) S 41.40 27.60 36.77

T 41.54 30.16 37.61
ST 41.14 32.67 38.08

Sentence Length (flt < 4) S 40.85 24.28 36.03
T 41.15 26.28 37.05
ST 41.52 30.40 37.75

Sentence Length (flt < 3) S 40.90 22.13 33.56
T 41.42 24.37 36.22
ST 40.58 25.45 36.60

Table 12: NMT results in ChrF++ for different sentence
length thresholds.

D Selection of Languages and Datasets

This section contains details on the selected lan-
guages and the web-mined corpora considered un-
der the study.

Sinhala is an Indo-Aryan language spoken pri-
marily in Sri Lanka by the Sinhalese majority. It
exhibits complex morphological structures, includ-
ing rich inflectional and derivational processes, but
is classified as a low-resource language due to the
scarcity of linguistic resources and tools (de Silva,
2025; Ranathunga and de Silva, 2022).

Tamil, a Dravidian language with a rich liter-
ary history, is spoken by Tamil communities in
Sri Lanka, India, and the global diaspora. Unlike
Sinhala, Tamil benefits from a relatively larger dig-
ital presence, but it still faces challenges in NLP
applications due to morphological complexity, ag-
glutinative grammar, and resource limitations in
certain domains (Wijeratne et al., 2019).

We obtain the publicly released CCMatrix

and CCAligned datasets from the OPUS collec-
tion (Tiedemann and Thottingal, 2020)12. Both
these datasets support the language pairs, En-Si,
En-Ta and Si-Ta, which we consider in this re-
search.

CCMatrix (Schwenk et al., 2021) is a web-mined
parallel corpus extracted using LASER2-based sen-
tence embeddings to align bitext. While it provides
large-scale data, it is highly noisy due to the global
mining approach to determine alignments, resulting
in misaligned or low-quality translations.

CCAligned (El-Kishky et al., 2020) extracts bitext
from Common Crawl13 using document-level and
sentence-level alignment based on multilingual em-
beddings. Though it improves alignment quality
over global bitext-mined corpora, it still contains
significant noise, requiring careful filtering for reli-
able use.

E Selection of multiPLMs

We include the details on the three multiPLMs con-
sidered in this study.
LASER3 (Heffernan et al., 2022) (L=12, H=1024,
A=4, P=250M)14 is a multiPLM favourable for bi-
text mining and cross-lingual tasks. It improves
over previous LASER2 versions by supporting
more languages and enhancing alignment quality,
but still faces challenges in low-resource settings.
XLM-R (Conneau et al., 2020) (L=12, H=768,
A=6, P=278M) is a transformer-based multi-
PLM trained on massive amounts of text using
masked language modelling. It achieves strong
cross-lingual performance but struggles with low-
resource languages due to limited training data.
LaBSE (Feng et al., 2022) (L=12, H=768, A=12,
P=471M) is a BERT-based model optimised for
multilingual sentence embeddings and bitext re-
trieval. It provides high-quality cross-lingual repre-
sentations and is favourable for cross-lingual tasks.

F NMT Experiments

The experiments are conducted on a NVIDIA
Quadro RTX6000 GPU with 24GB VRAM. The
hyperparameters used during training, along with
the training parameters, are shown in Table 13.
We conduct training on the NMT systems for 100

12https://opus.nlpl.eu/
13https://commoncrawl.org/
14No. of Layers, Hidden Layer Dimensions, No of Atten-

tion Heads, and Total number of parameters are defined by L,
H, A, and P respectively.
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Figure 4: Percentage of dedup+ngram experiments ex-
ceeding the best result of dedup with respect to the
Language-pair.

epochs with early stopping criteria and report the
results using ChrF++. ChrF++ was chosen over the
conventional multi-BLEU (Papineni et al., 2002)
and sacreBLEU (Post, 2018) because character-
level evaluation is more suitable for the considered
languages, Sinhala and Tamil, which are morpho-
logically rich in nature.

Hyperparameter Argument value

encoder/decoder Layers 6
encoder/decoder attention heads 4
encoder-embed-dim 512
decoder-embed-dim 512
encoder-ffn-embed-dim 2048
decoder-ffn-embed-dim 2048
dropout 0.4
attention-dropout 0.2
optimizer adam
Adam β1, Adam β2 0.9, 0.99
warmup-updates 4000
warmup-init-lr 1e-7
learning rate 1e-3
batch-size 32
patience 6
fp16 True

Table 13: Training parameters for NMT experiments.

G Results Analysis

We show the individual and the combined heuristic
which produced the best NMT gains with respect
to each multiPLM, dataset and the language pair in
the Table 14. The Figure 4 shows the percentage of
dedup+n-gram experiments exceeding the highest
dedup, with respect to the language-pair. Finally,
we show the final dataset sizes after applying the
heuristic along with the percentage reduction in
Table 15.

H NMT Performance on Training Dataset

Figure 5 shows the variation in NMT results by
varying the dataset size with 50k, 100, 150k and
200k for each language-pair.
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Heustic/s CCMatrix Heustic/s CCAligned

LASER3 XLM-R LaBSE LASER3 XLM-R LaBSE
Sinhala →Tamil

Baseline 31.08 30.99 31.63 Baseline 35.36 35.97 35.79
Deduplication-based Heuristics
DD+PN+5gram (ST+T) 32.98 32.73 32.60 DD+puntsNums (T) 36.63 36.47 36.86

DD+PN (ST) 35.96 36.71 36.23
DD+PN+7gram 36.73 36.62 36.37

Length-based Heurics
(S) 31.41 31.52 32.30 (T) 36.30 36.71 36.58

(ST) 36.47 35.99 36.60
LID-based Heuristics
LID (S) 31.48 31.36 31.78 LIDThresh (ST) 36.73 36.73 36.80
Ratio-based Heuristics
sentCRatio (ST) 32.28 31.90 32.04 sentWRatio (T) 36.24 36.17 36.46

sentWRatio (ST) 36.44 36.72 36.01
Combined Heuristics
DD+PN+5gram++sentCharRatio 31.45 32.65 31.17 DD+PN+7gram++sentWRatio 36.60 36.85 36.32
DD+PN+5gram++LIDThresh+sentCharRatio 32.64 31.30 32.28 DD+PN+7gram++LIDThresh+sentWRatio0.8 36.83 36.66 37.03
Gain (DD-heuristic vs Baseline) 1.90 1.74 0.97 1.37 0.50 1.07
Gain (sLength vs Baseline) 0.33 0.53 0.67 0.94 0.74 0.79
Gain (LID-heuristic vs Baseline) 0.40 0.37 0.15 1.37 0.76 1.01
Gain (Raio heuristic vs Baseline) 1.20 0.91 0.41 1.08 0.75 0.67
Gain (Overall individual Heuristic vs Baseline) 1.90 1.74 0.97 1.37 0.76 1.07
Gain (Combined Heuristic vs Baseline) 1.56 1.66 0.65 1.47 0.88 1.24
Gain (Combined vs Individual ) -0.34 -0.08 -0.32 0.10 0.12 0.17

English →Sinhala
Baseline 30.76 5.55 14.49 Baseline 32.33 19.39 27.57
Deduplication-based Heuristics
DD+puntsNums (T) 33.89 14.81 26.31 DD+puntsNums+5gram (ST+T) 33.81 30.33 32.74
DD+puntsNums+5gram (T+T) 34.50 16.09 25.78 DD+puntsNums+6gram (ST+T) 35.24 28.21 31.26
Length-based Heurics
sLength (ST) 32.82 8.24 29.96 sLength (T) 34.88 29.42 33.14

sLength (ST) 34.83 29.55 33.50
LID-based Heuristics
LID 31.99 13.32 16.20 LIDThresh (S) 35.73 30.86 32.69
LIDThresh 32.84 14.08 13.71 LIDThresh (ST) 35.11 32.97 32.88
Ratio-based Heuristics
sentWRatio (S) 31.50 7.40 10.86 sentWRatio (S) 34.15 25.97 31.35
sentWRatio (ST) 30.64 7.00 15.50 sentWRatio (ST) 33.85 28.73 31.17
Combined Heuristics
DD+PN+5gram +sLength +LIDThresh +sentWRatio 36.10 23.84 33.94 DD+PN+5gram+sLength+LIDThresh+sentWRatio 36.15 34.50 35.67
DD+PN+5gram+sLength+LIDThresh+sentWRatio>0.8 35.66 24.18 33.19 DD+PN+5gram+sLength+LIDThresh+sentWRatio>0.8 36.26 35.66 35.42
Gain (Dedup-heuristic vs Baseline) 3.74 10.54 11.82 2.91 10.94 5.17
Gain (sLength vs Baseline) 2.06 2.69 15.47 2.55 10.16 5.93
Gain (LID-heuristic vs Baseline) 2.08 8.53 1.71 3.40 13.58 5.31
Gain (Raio heuristic vs Baseline) 0.74 1.85 1.01 1.82 9.34 3.78
Gain (Overall individual Heuristic vs Baseline) 3.74 10.54 15.47 3.40 13.58 5.93
Gain (Combined Heuristic vs Baseline) 5.34 18.63 19.45 3.93 16.27 8.10
Gain (Combined vs Individual ) 1.60 8.09 3.98 0.53 2.69 2.17

English →Tamil
Baseline 19.02 5.86 14.20 Baseline 40.13 17.40 26.00
Deduplication-based Heuristics
DD-7gram (T) 18.15 7.37 21.96 DD+puntsNums+4gram (ST+T) 41.82 35.90 37.08
DD+puntNums (T) 21.57 8.24 20.41 DD+puntsNums+6gram (ST+ST) 41.90 35.97 35.94
Length-based Heurics
sLength (T) 18.52 6.33 21.73 sLength (T) 41.54 30.16 37.61
sLength (ST) 19.45 5.33 20.79 sLength (ST) 41.14 32.67 38.08
LID-based Heuristics
LIDThresh (T) 29.59 15.24 24.51 LIDThresh ST) 42.63 38.01 37.40
LIDThresh (ST) 28.93 15.16 25.33
Ratio-based Heuristics
STRatio 20.52 5.40 18.29 sentWRatio (S) 42.05 29.70 35.53
sentCRatio (T) 19.90 6.78 12.51 sentWRatio (ST) 41.05 30.88 35.77
Combined Heuristics
DD+PN+7gram+slength+LIDThresh+STRatio 30.67 23.36 31.80 DD+PN+6gram+sLength+LIDThresh+sentWRatio 43.47 41.74 41.06

DD+PN+6gram+sLength+LIDThresh+sentWRatio > 0.8 42.08 40.56 42.02
Gain (Dedup-heuristic vs Baseline) 2.55 2.38 7.76 1.77 18.57 11.08
Gain (sLength vs Baseline) 0.43 0.47 7.53 1.41 15.27 12.08
Gain (LID-heuristic vs Baseline) 10.57 0.92 10.31 2.50 20.61 11.40
Gain (Raio heuristic vs Baseline) 1.50 0.92 4.09 1.92 13.48 9.77
Gain (Overall individual Heuristic vs Baseline) 10.57 2.38 10.31 2.50 20.61 12.08
Gain (Combined Heuristic vs Baseline) 11.65 17.50 17.60 1.92 12.30 16.02
Gain (Combined vs Individual ) 1.08 8.12 6.47 0.84 3.73 3.94

Table 14: Shows the best NMT performance produced using the individual heuristics as well as combinations of
heuristics. The values in bold indicate the highest NMT score obtained for a given heuristic or heuristic combination.
The values underlined are the highest among the individual heuristics. Highlighted in green are the overall best
values. Here DD+PN is Deduplication+punctNums, SL is sLength and LT is LIDThresh.
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(c) Si-Ta
Figure 5: ChrF++ scores of NMT systems trained by varying the training dataset size.

Heuristic Applicable Side
Sinhala - Tamil English - Sinhala English - Tamil

CCMatrix CCAligned CCMatrix CCAligned CCMatrix CCAligned

Dataset Size % Reduction Dataset Size % Reduction Dataset Size % Reduction Dataset Size % Reduction Dataset Size % Reduction Dataset Size % Reduction

Baseline 215965 260119 6270800 619730 7291118 880568

DD S 189654 250038 3.88% 6146819 1.98% 570768 7.90% 6378607 12.52% 797071 9.48%
T 209461 247176 4.98% 3242950 48.28% 562088 9.30% 4754106 34.80% 780355 11.38%
ST 183904 243384 6.43% 3176145 49.35% 537581 13.26% 4060447 44.31% 736212 16.39%

DD-4gram S 176590 18.23% 189218 27.26% 4171884 33.47% 403993 34.81% 4802654 34.13% 440248 50.00%
T 196538 9.00% 207603 20.19% 2751819 56.12% 423752 31.62% 4271550 41.41% 549621 37.58%
ST 172440 20.15% 184159 29.20% 2035282 67.54% 355790 42.59% 100.00% 365648 58.48%

DD-5gram S 188457 12.74% 217733 16.29% 4486108 28.46% 481021 22.38% 5104643 29.99% 558504 36.57%
T 204045 5.52% 226738 12.83% 3071693 51.02% 499307 19.43% 4516819 38.05% 638600 27.48%
ST 185915 13.91% 216389 16.81% 2374578 62.13% 446838 27.90% 3319964 54.47% 487465 44.64%

DD-6gram S 196194 9.15% 232604 10.58% 5383674 14.15% 528525 14.72% 5309083 27.18% 639961 27.32%
T 200310 7.25% 237467 8.71% 3142124 49.89% 539513 12.94% 4590987 37.03% 681186 22.64%
ST 196194 9.15% 233792 10.12% 2859756 54.40% 505429 18.44% 3489629 52.14% 570403 35.22%

DD-7gram S 200899 6.98% 240704 7.46% 5701801 9.07% 554025 10.60% 5718913 21.56% 679750 22.81%
T 204485 5.32% 244007 6.19% 3170538 49.44% 561285 9.43% 4631486 36.48% 703950 20.06%
ST 200898 6.98% 246104 5.39% 3021457 51.82% 538898 13.04% 3745771 48.63% 611821 30.52%

DD+N S 182386 15.55% 260119 0.00% 6105433 2.64% 505828 18.38% 6337285 13.08% 683882 22.34%
T 201551 6.67% 218980 15.82% 3225979 48.56% 502971 18.84% 4722644 35.23% 675627 23.27%
ST 176040 18.49% 216238 16.87% 3158067 49.64% 476379 23.13% 4031459 44.71% 631485 28.29%

DD+PN S 180380 16.48% 215100 17.31% 5931349 5.41% 494778 20.16% 6194331 15.04% 668849 24.04%
T 198352 8.16% 212341 18.37% 3197186 49.01% 492801 20.48% 4666158 36.00% 660902 24.95%
ST 173804 19.52% 207197 20.35% 3130297 50.08% 465617 24.87% 3987832 45.31% 616702 29.97%

DD+PN+4gram ST+T 289248 53.33%
DD+PN+5gram ST + T 167022 22.66% 187250 28.01% 3044520 51.45% 380146 38.66%
DD+PN+6gram ST + T 169784 21.38% 189060 27.32% 428939 30.79% 4547759 37.63% 464424 47.26%
DD+PN+7gram T +T 196221 24.56% 4620008 36.64%

SL S 150094.00 30.50% 188061 27.70% 5088747 18.85% 411474.00 33.60% 6498956 10.86% 595057 32.42%
T 100799.00 53.33% 161363 37.97% 3670963 41.46% 377708.00 39.05% 4267495 41.47% 517516 41.23%
ST 96264.00 55.43% 157978 39.27% 3341564 46.71% 348829.00 43.71% 4134919 43.29% 491207 44.22%

LID S 192377.00 10.92% 241617 7.11% 6200355 1.12% 479589.00 22.61% 7210848 1.10% 669260 24.00%
T 186720.00 13.54% 241863 7.02% 6066681 3.26% 575298.00 7.17% 6800923 6.72% 794143 9.81%
ST 178276.00 17.45% 231619 10.96% 6010065 4.16% 457639.00 26.16% 6743988 7.50% 625281 28.99%

LT S 181470.00 15.97% 227791 12.43% 6120792 2.39% 398272.00 35.73% 6120793 16.05% 564870 35.85%
T 172726.00 20.02% 222290 14.54% 5990169 4.48% 546472.00 11.82% 5990170 17.84% 731484 16.93%
ST 162777.00 24.63% 208644 19.79% 5877142 6.28% 377579.00 39.07% 5877143 19.39% 518010 41.17%

STRatio - 170168.00 21.21% 229101 11.92% 4293239 31.54% 459473.00 25.86% 4051888 44.43% 679820 22.80%
sentWRatio S 199788 7.49% 246908 5.08% 6232528 0.61% 546460 11.82% 7231531 0.82% 743624 15.55%

T 196812 8.87% 250151 3.83% 6198124 1.16% 552798 10.80% 7176111 1.58% 745221 15.37%
ST 193989 10.18% 245161 5.75% 6177212 1.49% 531963 14.16% 7138854 2.09% 717159 18.56%

sentCRatio S 212287 1.70% 224031 13.87% 6262297 0.14% 594169 4.12% 7252444 0.53% 832611 5.45%
T 212877 1.43% 218726 15.91% 6261991 0.14% 596346 3.77% 7281050 0.14% 851343 3.32%
ST 211661 1.99% 215151 17.29% 6257079 0.22% 588310 5.07% 7247298 0.60% 826866 6.10%

Combined Heuristics
DD+PN+ngram (SiTa-CCMatrix n=5, SiTa-CCAligned n= 7 EnSi-CCMatrix/CCAligned n=5, EnTa-CCMatrix n=7, EnTa-CCAligned n=6)

+SL T+ST 117198 45.73% 143919 44.67% 2245307 64.19% 240086 61.26% 3462458 52.51% 321003 63.55%
+LT T+ST 130831 39.42% 162543 37.51% 2880530 54.06% 239144 61.41% 2876818 60.54% 306352 65.21%
+sentWRatio T+S 154028 28.68% 170715 34.37% 2993730 52.26% 337634 45.52% 3377988 53.67% 427587 51.44%
+SL+LT T+ ST 99207 54.06% 127284 51.07% 2200195 64.91% 180731 70.84% 4330140 40.61% 241679 72.55%
+SL+sentWRatio T+ST+ST 116344 46.13% 127035 51.16% 2241513 64.25% 224542 63.77% 2794637 61.67% 298141 66.14%
+SL+LT+sentWRatio T+ST+ST+S 127188 41.11% 117970 54.65% 2197629 64.95% 177711 71.32% 2726087 62.61% 237105 73.07%
+SL+LT+sentWRatio>0.8 T+ST+ST+ST 179984 16.66% 99311 61.82% 2149037 65.73% 161869 73.88% 2203591 69.78% 214639 75.62%
+SL+LT+sentCRatio T+ST+ST+ST 98894 54.21% NA NA NA NA NA
+SL+LT+STRatio T+ST+ST+STR 82866 61.63% NA NA NA 2129744 70.79% NA

Table 15: Shows the final corpus sizes after applying heuristics along with the reduction percentage. Here DD+PN
is Deduplication+punctNums, SL is sLength and LT is LIDThresh. NA corresponds to the experiments that are not
applicable for the language-pair.
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