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Abstract

NLP models often rely on human-labeled data
for training and evaluation. Many approaches
crowdsource this data from a large number of
annotators with varying skills, backgrounds,
and motivations, resulting in conflicting an-
notations. These conflicts have traditionally
been resolved by aggregation methods that as-
sume disagreements are errors. Recent work
has argued that for many tasks annotators may
have genuine disagreements and that variation
should be treated as signal rather than noise.
However, few models separate signal and noise
in annotator disagreement. In this work, we
introduce NUTMEG, a new Bayesian model
that incorporates information about annotator
backgrounds to remove noisy annotations from
human-labeled training data while preserving
systematic disagreements. Using synthetic and
real-world data, we show that NUTMEG is more
effective at recovering ground-truth from anno-
tations with systematic disagreement than tra-
ditional aggregation methods, and we demon-
strate that downstream models trained on NUT-
MEG-aggregated data significantly outperform
models trained on data from traditionally aggre-
gation methods. We provide further analysis
characterizing how differences in subpopula-
tion sizes, rates of disagreement, and rates of
spam affect the performance of our model. Our
results highlight the importance of accounting
for both annotator competence and systematic
disagreements when training on human-labeled
data.

1 Introduction

NLP is largely dependent on labeled data to train
and evaluate models. Typically, labels are gen-
erated by humans through an annotation process
that involves aggregating the judgments of mul-
tiple individuals (Snow et al., 2008; Nowak and
Riiger, 2010; Zheng et al., 2017). Given the cost of
experts, many approaches opt for crowdsourcing
labels from a large number of annotators who have
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Figure 1: When aggregating annotators’ labels, (A) tra-
ditional item response models like MACE (Hovy et al.,
2013) ignore meaningful label variation in subpopula-
tions to produce a single label, while (C) learning from
disagreement models take all annotations as input, ignor-
ing potential spam labels. Our approach (B), NUTMEG,
extends the item response paradigm to infer labels per
subpopulation, which can provide more accurate inputs
when learning from disagreement.

varying levels of training and expertise in the task.
In this setting, some labels are assumed to be er-
rors due to mistakes, ambiguity in the task, or even
adversarial behavior' by annotators (Hsueh et al.,
2009; Aroyo and Welty, 2014; Jagabathula et al.,
2017). As aresult, there are many approaches for
estimating an item’s true label the from potentially-
noisy collective annotations (Whitehill et al., 2009;
Liu et al., 2012; Zheng et al., 2017; Paun et al.,
2018; Goh et al., 2023; Bernhardt et al., 2022).
While these models are effective, they assume that
any deviation from the consensus label is a mis-
take. However, recent work has established that
annotators from specific backgrounds may system-
atically differ in their judgments on an item, partic-
ularly for subjective tasks (Larimore et al., 2021;

"Here, adversarial behavior refers to instances where anno-
tators intentionally provide incorrect labels, e.g., to sabotage
the data collection process or to maximize payment for mini-
mal effort.
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Sap et al., 2022; Pei and Jurgens, 2023; Wan et al.,
2023; Mostafazadeh Davani et al., 2024). As a re-
sult, annotator groups who systematically disagree
with the majority label are likely lost in aggrega-
tion. Here, we introduce a new Bayesian model
for inferring ground truth labels that incorporates
annotator backgrounds and allows for identifying
systematic disagreement in labels (Figure 1).
Annotators disagree and two strands of research
have proposed approaches to resolve these disagree-
ments. One strand has framed the disagreement res-
olution as an unsupervised learning problem where
a model simultaneously learns the probable ground
truth label while also learning which labelers are
more likely to give accurate answers (Zheng et al.,
2017). Approaches such as MACE (Hovy et al.,
2013) use Bayesian models to infer a single ground
truth label per item, which is suitable for training
most machine learning models. However, there
are many subjective tasks, such as detecting hate
speech, where the assumption of a single label can
cause these models to ignore valid disagreements.
In contrast, a more recent strand has noted that
some disagreements are meaningful and proposed
new machine learning methods for Learning from
Disagreement (Uma et al., 2021); such methods
learn to predict from the original disaggregated
data. While this latter branch is effective at incor-
porating diverse views—e.g., how different groups
might view the same item—such models likely
overweigh non-systematic disagreement, such as
those due to mistakes or adversarial behavior.
Here, we introduce a Bayesian model for learn-
ing ground truth labels that is able to model sys-
tematic variation between subpopulations within
the annotators. Our approach, NUTMEG (Nuanced
Understanding of annoTation by MultiplE Groups)
estimates annotator competence and infers per-
subpopulation labels for each item. In experi-
ments on synthetic data, we demonstrate that (i)
NUTMEG can accurately recover distinct labels
for each subpopulation when they differ, while
still recognizing when annotators are spamming?
and (i1) NUTMEG is effective even for small num-
bers of annotations per subpopulation, making it
readily amenable to use with crowdsourcing. Fi-
nally, in experiments with real data labeled with
demographics, we show that by first reducing noise
with NUTMEG, we can use subpopulation labels

“Here, we follow common notation and refer to a deviation
from the correct label as “spam.” However, this label category
reflects any type of disagreement, adversarial or not.

with learning from disagreement models to make
more accurate predictions. We release NUTMEG
and the synthetic data generation framework at
https://github.com/jonathanivey/NUTMEG.

2 Modeling Annotator Disagreements

Annotators may disagree with each other for a
variety of reasons—valid or not—and multiple
branches of research have focused on understand-
ing or resolving these disagreements to improve
machine learning performance.
Modeling Annotator Backgrounds An individ-
ual’s background (e.g., demographics, occupation)
is known to systematically influence their annota-
tion behavior, leading to disagreements in labeling
(Lerner et al., 2024; Pei and Jurgens, 2023). While
not focused on resolving these disagreements, re-
cent work in NLP has focused on understanding
how much of the disagreement can be attributed
to an annotator’s background; for example, show-
ing that conservative annotators are less likely to
rate anti-Black language as toxic (Sap et al., 2022).
While earlier annotated data rarely included in-
formation about the annotators, more recent work
has called for a responsible collection of this data
(Santy et al., 2023; Davani et al., 2022), particu-
larly for improving models by including diverse
viewpoints (e.g., Fleisig et al., 2023; Orlikowski
et al., 2023) and identifying biases in LLM behav-
iors (e.g., Santy et al., 2023; Deng et al., 2023).
Our work fills a key gap by showing how to in-
corporate systematic diversity in groups’ ratings
in modeling while still accounting for noise and
mistakes during the annotation process.
Inferring Annotator Competence Prior work has
identified differences in annotator labels as label-
noise and attempted to reduce it prior to model
training (Dawid and Skene, 1979). Many of these
methods use unsupervised probabilistic models of
annotator behavior to identify incorrect labels, also
known as spam, and estimate annotator competence
(Whitehill et al., 2009; Liu et al., 2012; Hovy et al.,
2013; Paun et al., 2018). More recent models have
used information from classifiers for the same goal
of estimating annotator competence or reducing
noise (Goh et al., 2023; Bernhardt et al., 2022).
These methods rely on the assumption that dis-
agreements between annotators indicate errors or a
lack of competence; however, for many tasks there
can be genuine disagreements between annotators
(Plank et al., 2014). In this work, we create a new
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model of annotator competence that retains gen-
uine disagreements between annotators while also
reducing label-noise.

Task Subjectivity There are many causes for an-
notator disagreements, also known as human la-
bel variation, including expertise, item-difficulty,
and motivation (Sommerauer et al., 2020; Plank,
2022; Cabitza et al., 2023; Fleisig et al., 2024), but
a particularly important cause is how an annota-
tor’s background interacts with the task objectives.
Previous work has shown that in many subjective
NLP tasks, like detecting offensiveness, politeness,
and toxicity, annotator disagreements are correlated
with backgrounds and social variables such as gen-
der, race, age, and region (Larimore et al., 2021;
Sap et al., 2022; Pei and Jurgens, 2023; Wan et al.,
2023; Mostafazadeh Davani et al., 2024). This re-
lationship is particularly important because current
models of annotator competence treat consensus
as correct—and disagreement as error—and as a
result, valid label disagreements by minority sub-
populations risk being omitted.

In this work, we introduce a new model to

estimate different truth values for each relevant
subpopulation for each item in a dataset. This
multiple-truth modeling approach allows us to
pass disagreement—in connection with its systemic
causes—to downstream modeling applications and
reduce the risk of omitting meaningful variation in
labeling decisions.
Learning from Disagreement When given data
with conflicting judgments, one line of research
known as Learning from Disagreement has pro-
posed treating disagreement as signal rather than
noise. The simplest approach to treating disagree-
ment as a signal is to not aggregate annotations at
all and instead use the full distribution of responses
for each item as the desired output of a model (Uma
etal., 2021).

Other approaches choose to model every an-
notator response by training multi-task models
(Mostafazadeh Davani et al., 2022; Mokhberian
etal., 2024) or training on every annotator-item pair
(Gordon et al., 2022; Fleisig et al., 2023; Weera-
sooriya et al., 2023). These methods are effective
at incorporating annotator diversity, but they do
not account for other causes of disagreement like
mistakes and adversarial behavior that may reduce
model performance.

Our work introduces a complementary method
to enable noise reduction while retaining disagree-
ment, which can be used in combination with these

Learning from Disagreement approaches to reduce
noise prior to training. Limited work has focused
on both reducing noise and retaining disagreement
in human labels. Weber-Genzel et al. (2024) de-
signed models to separate annotation errors from
valid disagreements; however, their work is de-
signed for natural language inference and relies on
a more-involved setting that collects and evaluates
explanations by annotators to remove errors. Here,
we use subpopulation information to identify sys-
temic disagreement, and our method, which does
not require the collection of annotator explanations,
can be applied to existing datasets.

The most similarly themed work to ours are the
CrowdTruth 2.0 metrics (Dumitrache et al., 2018),
which are designed to capture media unit quality,
worker quality, and annotation quality. Though
CrowdTruth 2.0 does model disagreement, it does
not model the origins of disagreement or pro-
duce training labels for downstream tasks. In this
work, we use relevant information about annota-
tors, through subpopulation divisions, to model the
causes of systematic disagreement, allowing down-
stream stakeholders to attribute disagreement and
train models tailored to different use-cases.

3 Methods

We introduce NUTMEG, a Bayesian model that es-
timates annotator competence and predicts item
labels while retaining subpopulation-level disagree-
ment (Figure 2). Our approach builds upon
Bayesian model designs for items’ and annotators’
variation (e.g., Paun et al., 2018). NUTMEG most
closely resembles MACE (Hovy et al., 2013) which
attempts to simultaneously learn the spamming
rates of annotators and the item’s likely label.

One key assumption of prior Bayesian models is
that there exists a single correct label for each item
agreed upon by annotators. In NUTMEG, we relax
this assumption so that there exists a single correct
label for each subpopulation that is always given by
an annotator in that subpopulation when they try to.
While real data likely has additional within-group
variation, this simplifying assumption allows our
model to focus on capturing systematic variation
that is most relevant to downstream applications.

To incorporate subpopulation identity, the gen-
erative step of our model works as follows (also
shown in 3): First, for each item ¢ and subpopula-
tion k, we sample the true subpopulation label T;
from a uniform prior. Then, for each annotator 7,
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Figure 2: Plate diagram of NUTMEG. Annotator j from
subpopulation & produces label A;; on item ¢. The label
choice depends on the item’s true label for subpopula-
tion k, T}, and whether 5 is spamming on ¢, modeled by
binary variable S;;. N = |items|, M = |annotators|,
and P = |subpopulations|.

fori=1...N:
fork=1...P:
T ~ Uniform
forj=1...M:
S;j ~ Bernoulli(1 — 6;)
if Sij =0:
Aij = Tzk
else :
A;j ~ Multinomial(&;)

Figure 3: The generative process for NUTMEG. See the
text for a full description of variables.

we sample a binary variable S;; from a Bernoulli
distribution with parameter 1 — 6;. S;; represents
whether annotator j is spamming on item ¢. If the
annotator is not spamming, then they use the frue
label of their subpopulation to produce annotation
A;;. Otherwise, their annotation A;; is sampled
from a multinomial with parameter &;. The param-
eter 0; represents the probability that annotator j
is not spamming on a given item; this is a measure
of their competence. The parameter &; represents
annotator j’s individual behavior when they are
spamming, which could produce the correct label,
but only by chance.

To fit the model, we use Variational-Bayes train-
ing to maximize the probability of the observed

We train with symmetric Beta priors with param-
eters of 0.5 on 6; and symmetric Dirichlet priors on
&;. As identified in MACE, these priors model the
extremes of behavior common in annotation (i.e.,
either an annotator often gives the correct label or
they rarely give the correct label). However, NUT-
MEG also supports adjusting these priors should an
end-user desire a more informed prior.

Because not every subpopulation is guaranteed
to label every item, NUTMEG must handle items
where there is an unobserved subpopulation k,, for
item 7,.. In those cases, we calculate the estimated
label for the observed subpopulations of 7., then
we identify the set of items that have the same esti-
mated labels for those subpopulations and contain
annotations from k,. Finally, we take the average
of the posterior probabilities for the items in this set
to estimate the posterior of T;__ . For this process,
we make the simplifying assumption that observed
labels from different subpopulations are indepen-
dent. Though this is often not the case, it allows us
to use a larger number of items to estimate unob-
served instances. Future work could explore more
robust methods for estimating items’ labels for un-
observed subpopulations. We note that NUTMEG
does not require the use of these imputed subpopu-
lation truths, and for Experiment 3 (§6), we choose
not to estimate unobserved samples to reduce the
risk of introducing additional label noise.

NUTMEG requires that each annotator be as-
sociated with a subpopulation label. Given the
NLP community’s recent recognition of the impor-
tance of collecting information about the annotators
themselves (Lerner et al., 2024; Santy et al., 2023;
Mihalcea et al., 2025) and the recent uptick in the
creation of such datasets (e.g., Kumar et al., 2021;
Sap et al., 2022; Pei and Jurgens, 2023), we believe
that annotator data, like demographics, will be in-
creasingly important and available. NUTMEG can
use this data to better separate signal from noise
in annotator disagreement. However, we note that
NUTMEG does not require that subpopulations be
derived from additional annotator data, like those
collected from questionnaires. Instead, it can be
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combined with any unsupervised method for group-
ing annotators based on behavior (e.g., Vitsakis
et al., 2024), and the subpopulations can be derived
from the resultant inferred groups.

4 Experiment 1: Synthetic Data

To evaluate how effective NUTMEG is at reducing
noise and recovering ground truth from multiple
subpopulations, we first evaluate performance us-
ing synthetic data that precisely simulates annotator
behavior in a setting with systematic disagreement.
Using synthetic data allows us to compare NUT-
MEG’s estimates to the true opinions of annotators
that are not available in real annotated data.

4.1 Experimental Setup

To generate the synthetic data, we first create a set
of 150 annotators and assign them randomly to one
of two subpopulations, a majority and a minority,
using an 80% and 20% split for this experiment.
We then assign each annotator a spamming rate
in [0,1]; these rates represent the probability that
an annotator ignores their subpopulation’s true la-
bel when labeling an item. The mean spamming
rate across individuals indicates the overall level
of spam in the data. After generating our annota-
tors, we create a set of 500 items with two possible
labels. We designate a proportion of the items as
divisive according to a global divisiveness rate. For
divisive items, the subpopulations will hold differ-
ent true opinions, and for non-divisive items, they
will hold the same true opinion. The divisiveness
rate indicates the level of systematic disagreement
in the data.

To simulate the annotation process for an item,
we first decide whether each annotator is spamming
based on their competence score. Spammers assign
labels to the item randomly, while non-spammers
provide the true opinion of their subpopulation. Fi-
nally, to simulate the availability of crowdsourced
annotations we randomly sample from this dataset
so that each item has 5 annotations and each anno-
tator labels more than 20 items (average of 16.67
items per annotator). We will release this synthetic
data and evaluation framework for future research
on modeling subpopulation variation in annotation.

To evaluate how effective NUTMEG is at recov-
ering ground truth, we use the above procedure to
generate multiple synthetic datasets with different
divisiveness rates varying from O to 1 and global
spamming rates varying from 0 to 0.25. We com-

pare performance against five models for estimat-
ing ground truth to show the effect of systematic
variation by subpopulation. We include a majority
vote, the original Dawid and Skene (1979) model
(D&S), and its extension MACE, which is the clos-
est comparison to our model. We also follow the
model recommendations from the large survey by
Zheng et al. (2017) and include the Learning from
Crowds (LFC; Raykar et al., 2010) and Bayesian
Classifier Combination (BCC; Kim and Ghahra-
mani, 2012), which perform best for the type of
nominal data used in our experiments. We fit all
five models on each dataset and calculate an accu-
racy score by comparing a model’s estimates for
each subpopulation to its true label in the dataset.

4.2 Results

We find that as the rate of systematic disagreement
increases, NUTMEG correctly identifies the true
label for both the majority and minority subpopula-
tions (Figure 4), despite the minority having four
times less available data. Importantly, NUTMEG
makes these improvements without reducing its
ability to estimate the majority opinion. In contrast,
while the other methods are accurate for recovering
the majority’s true label, they are increasingly inac-
curate for the minority subpopulation’s true label
as the rate of divisiveness increases (as expected).
Note that while NUTMEG is able to recover most
of the true labels, the accuracy for the minority
subpopulation is still lower. This gap is primar-
ily due to data sparsity. For some items, too few
minority annotators may be assigned to accurately
distinguish meaningful disagreement from spam.
Further, as spam rates increase from 0 to 25%, we
see an average 4.22% drop in minority accuracy.
While a 25% spam rate is likely on the high side,
NUTMEG'’s overall accuracy is still high regardless
of how often the subpopulation disagrees. As ex-
perimenters may not know how often a particular
group might disagree, this performance trend sug-
gests NUTMEG can be accurately deployed even
when divisive items are relatively rare.
How good is NUTMEG at distinguishing system-
atic disagreement from spam? In our simulations,
all annotators are capable of spamming and thus,
not all divergent labels by annotators in the mi-
nority subpopulation are meaningful. To assess
whether NUTMEG recognizes these labels as spam,
we compare NUTMEG’s estimated proportion of
disagreements to the true global rate of divisive-
ness. This gives an indication of how accurately
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Figure 5: NUTMEG can effectively differentiate genuine
disagreement from spam annotations. As the rate of
spam increases, NUTMEG’s estimate of the disagree-
ment rate diverges from the true rate, especially at the
extremes. The dotted line indicates perfect predictions.

NUTMEG can differentiate between genuine sys-
temic disagreement and spam.

We find that NUTMEG can effectively differenti-
ate genuine disagreement from spam annotations,
as shown in Figure 5. However, as the rate of dis-
agreement approaches the high and low extremes,
NUTMEG'’s estimate of the rate of disagreement di-
verges from the true rate. At especially high rates of
disagreement, the model underestimates and at es-
pecially low rates of disagreement, the model over-
estimates. We believe that this divergence is caused
by the increased effect that contrary evidence has
at extreme rates of disagreement. Even a single an-
notation that diverges from expectations may bring
the model’s estimates away from extremes, and
this effect is exacerbated by spam, which provides
increased contrary evidence.

We further find that NUTMEG is effective at as-

sessing annotator competence. The average Pear-
son’s correlation between NUTMEG'’s estimate of
annotator competence ¢; and the annotator’s true
competence across all runs is 0.81. By compari-
son, MACE’s average correlation is 0.58. These
correlations do not significantly differ for members
of the majority or minority subpopulations, which
illustrates how using traditional item-response mod-
els can lead a practitioner to erroneously conclude
that they have low-quality annotators when in fact
they have high-quality annotators and systematic
disagreement.

S Experiment 2: Subpopulation Size

Practitioners labeling data often have limited con-
trol of how many annotators in specific groups are
present in the annotator pool. Experiment 1 (§4)
showed a decrease in accuracy for estimating the
minority opinion as the rate of spam increases. This
result leads to a natural question: how much data is
enough to accurately represent a minority subpopu-
lation given different rates of spam?

5.1 Experimental Setup

To test for the effect of minority subpopulation size
during annotation, we repeat our synthetic data gen-
eration procedure from §4, but fix the global spam
rate of 0.1 and a global divisiveness rate of 0.2. We
then vary the size of the minority subpopulation
from 10% to 50% and the total number of anno-
tators sampled for each item from 3 to 15. Note
that because annotators are randomly assigned to
items, for settings with few annotations per item,
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Figure 6: As the size of a subpopulation decreases,
NUTMEG needs more annotations to ensure that the
subpopulation is sufficiently represented and estimate
its true opinions. This result highlights the importance
of data collection strategies for representing minority
subpopulations.

some items may not receive any annotators by a
person of the minority subpopulation, which mir-
rors real world settings. Finally, we run NUTMEG
on the datasets and calculate an accuracy score to
compare its estimates to the true opinions of the
minority subpopulation.

5.2 Results

We find that as the size of a subpopulation in a
dataset gets smaller, NUTMEG requires a much
larger number of annotations per item to maintain
the same level of accuracy (Figure 6). With a sub-
population proportion of 0.3 (equivalent to 45 an-
notators), NUTMEG only requires 5 annotations to
achieve 92% accuracy, but for a subpopulation pro-
portion of 0.1 (equivalent to 15 annotators), NUT-
MEG would need more than 15 annotations per
item to achieve the same performance. This result
shows the importance of intentional data collec-
tion methods when representing the opinions of
small subpopulations. If new datasets need an ac-
curate estimate for multiple subpopulations, they
should focus on having sufficient coverage for each
subpopulation rather than simply increasing the to-
tal number of annotations collected. Alternatively,
training sets can choose not to calculate estimates
for sets items without sufficient labels from small
subpopulations, which is the approach that we take
for model training in §6.

6 Experiment 3: Downstream Modeling

The purpose of NUTMEG is to remove spam anno-
tations in human-labeled datasets while retaining

valid subpopulation-level disagreement. Experi-
ments 1 and 2 have demonstrated this on synthetic
data and, here, we evaluate whether NUTMEG-
aggregated labels improve downstream modeling.

NUTMEG produces estimated true labels for each
subpopulation and therefore, for predictive model-
ing, we adopt the learning from disagreement set-
ting where a classifier is trained on multiple labels
per annotation. We hypothesize that using the full
distribution of labels (directly from annotators) in-
troduces unnecessary noise, and in this experiment
aim to answer the question: does removing spam
annotations improve performance on downstream
tasks using real-world data?

6.1 Experimental Setup

Dataset To effectively use NUTMEG, we require an-
notated data with metadata indicating which anno-
tators belong to which subgroups. While NUTMEG
can be used with inferred subpopulations that do
not require additional data collection (as explained
in §3), we opt to use demographics as a way to
partition annotators to reduce potential confounds
to the interpretation of the results introduced by
clustering methods. Multiple works have noted
meaningful variation by race and gender (Larimore
et al., 2021; Sap et al., 2022; Pei and Jurgens, 2023;
Wan et al., 2023). We use data from POPQUORN
(Pei and Jurgens, 2023) which provides annotations
on a 1-5 Likert scale for two classification tasks (i)
offensiveness and (ii) politeness, and age, race, and
education demographics of annotators. We repli-
cate their preprocessing steps with two additions.
We binarize the Likert ratings in their data at >3
to simplify the analysis and communication of our
results. We also remove subpopulations with <5%
of annotations to ensure that the models are being
trained with sufficient representation.

We note that though we choose to evaluate on
data using annotator demographics to split subpop-
ulations, NUTMEG does not necessarily require ad-
ditional data collection as recent work has demon-
strated the efficacy of clustering annotators into
subpopulations based on annotator behaviors (Vit-
sakis et al., 2024).

Modeling For each task, we train a multi-task clas-
sification model, where a base model has separate
classification heads for each subpopulation. This
setup uses multiple tasks to represent salient dis-
agreements and is a popular approach in learning
from disagreement (e.g., Fornaciari et al., 2021;
Mostafazadeh Davani et al., 2022; Mokhberian
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Figure 7: Performance at replicating the ground truth label distribution by subgroup (lower is better) using learning
from disagreement models trained with different types of label aggregation. The bar height indicates the mean JSD
across all subpopulations’ label distribution in the test set, and error bars indicate the total range of JSD across all
subpopulations. Our results show that any type of aggregation is helpful to reduce noise, but by jointly modeling
subpopulation-preference with annotator competence, NUTMEG is better able to match the true label distributions.

et al., 2024; Wang and Plank, 2023). Prior to train-
ing, we run NUTMEG on the training and valida-
tion sets using separate runs for each demographic
category (i.e., gender, age, race, and education).
We then fine-tune ModernBERT (Warner et al.,
2024) models with additional classification layers
for each subpopulation in a demographic (e.g., Man
and Woman in gender). In this case, our multiple
tasks are predicting the true subpopulation labels.
As a baseline for standard aggregation methods,
we also fine-tune single-task ModernBERT mod-
els on labels aggregated by either majority vote or
MACE.? Finally as a baseline for training on the
full distribution of disaggregated annotations, we
follow the popular approach of training a multi-
task model where each task is a different annotator
in the dataset (Mostafazadeh Davani et al., 2022;
Wang and Plank, 2023; Mokhberian et al., 2024).
The final prediction for each subpopulation is then
the average of the predicted probabilities for anno-
tators in that subpopulation. Additional details on
the training procedure are in Appendix B.
Evaluation Recognizing the many causes of hu-
man label variation (Plank, 2022), we measure
model performance by comparing the predicted
probabilities output by the model for each subpop-
ulation (if it is multi-task) to the true distribution
of labels provided by that subpopulation in the test
set; in the single task setups, we use the same prob-
ability for each group. Following previous work,
we quantify the similarity of these distributions
with Jensen—Shannon divergence (JSD; Uma et al.,

3Because it is commonly used in NLP and performed sim-
ilarly to LFC and BCC in Experiment 1, we use only MACE
as a baseline for simplicity.

2021), where lower is better. Note that the set of
annotators in the training and validation sets is en-
tirely separate from the set of annotators in the test
set, and we score using the label distribution of the
full, disaggregated labels in the test set.

6.2 Results

Politeness We find that for politeness detection,
models trained on NUTMEG outperform (p < 0.05)
both models trained on traditionally aggregated an-
notations and models trained on disaggregated an-
notations for all subpopulation splits except race
(Figure 7, left). By learning from more-accurate
aggregations that both reduce noise and highlight
systematic disagreement, models are better able to
predict the full label distribution for each item in
the test set. Our results show aggregation gener-
ally helps, with even the naive but commonly-used
majority voting often reducing noise in the data.
Yet, the gap between MACE and NUTMEG high-
lights that there is additional benefit to modeling
subpopulation-variation—and that for this polite-
ness task, there is likely meaningful variation that
can be modeled. This trend supports our hypothesis
that learning directly from disaggregated annota-
tions can introduce noise and NUTMEG’s noise
reduction improves performance on downstream
tasks. It also demonstrates that accounting for rele-
vant subpopulation-level variation when predicting
annotator competence improves performance.

Offensiveness We find that for offensiveness de-
tection (Figure 7, right), there are no significant
differences between models trained with different
aggregation methods or no aggregation. However,
among the aggregation steps NUTMEG does as well
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as or better than no-aggregation. This neutral be-
havior highlights it is at least not introducing addi-
tional noise, unlike majority vote which generally
has higher JSD.

We interpret this trend as an example where there
is no systematic variation by subpopulation in the
data. After a manual review of the data, we found
that the majority of examples exhibit high subjec-
tivity. For example, some annotators may label an
encouraging statement as offensive if it contains
vulgar language, while others may label an unkind
statement as inoffensive if there is implied sarcasm.

7 Discussion

In synthetic experiments, we show that NUTMEG is
highly effective at distinguishing genuine system-
atic disagreement from noise in annotations. Then,
through real-world experiments, we demonstrate
that NUTMEG’s ability to distinguish systematic
disagreement can be combined with Learning from
Disagreement models to improve performance on
subjective classification tasks. In real scenarios,
annotators may disagree for a variety of reasons
(Sandri et al., 2023), not all of which relate to a
subpopulation identity. However, our results show
subpopulation modeling is a promising direction
for improving the representation and evaluation
for the diverse stakeholders of NLP models (Cab-
itza et al., 2023). This direction has many useful
applications, like tailoring content moderation to
differing community standards, helping social sci-
entists identify differences in perceptions of bias
based on political affiliation, or enabling mental
health models to distinguish between humor and
expressions of depression in differing age groups.
Though we consider these compelling use cases
for NUTMEG, we also find that it does not always
improve performance. For example, in the offen-
siveness detection task, we often encounter difficult
cases that cannot be explained by the model. Some
cases arise from inherent textual ambiguity, such as
the statement “I’d almost forgotten that one. What
a gem!”, where it is unclear whether the author is
being sincere or sarcastic, a well-known confound
(cf. Basile et al., 2021; Sandri et al., 2023). Oth-
ers depend on personal preferences not captured
by our subpopulation splits, as in “You’re a f—ing
legend”, where the decision relies on whether an an-
notator considers vulgar language offensive. Such
Though, we note that in this task, NUTMEG does
not hurt performance compared to other methods.

From these findings, we conclude that NUTMEG
will be most effective when applied to tasks where
there is a prior belief that subpopulations differ in
their judgments or attitudes. Future work should
consider how to balance the differing degrees of
within-group variation, between-group variation,
and inherent item difficulty in the diverse set of
NLP tasks—as well as new approaches to automat-
ically learn annotator subpopulations directly from
annotations (e.g., Lo et al., 2023; Vitsakis et al.,
2024).

8 Conclusion

In this work, we introduce NUTMEG, a Bayesian
model that infers ground truth labels from annota-
tions while accounting for systematic differences
among annotator subpopulations. By extending
item-response models, NUTMEG jointly estimates
annotator competence and identifies when groups
consistently diverge in their labeling decisions, ad-
dressing the limitations of traditional aggregation
models that treat deviations as errors. Our exper-
iments on synthetic and real-world data demon-
strate that NUTMEG effectively recovers distinct
subpopulation labels, mitigates spam annotations,
and improves the performance of Learning from
Disagreement models. By preserving meaningful
disagreement, NUTMEG provides a more nuanced
understanding of annotation data, particularly in
subjective NLP tasks. Its data efficiency makes it
well-suited for crowdsourcing settings, and its abil-
ity to model annotator variation contributes to more
representative NLP models. We release NUTMEG
and the accompanying synthetic data generation
and evaluation libraries. This work highlights the
importance of incorporating diverse perspectives
in annotation modeling and encourages further re-
search into principled approaches for handling dis-
agreement in human-labeled data.

9 Limitations

NUTMEG works by identifying systematic disagree-
ment in subpopulations of annotators. While we
have demonstrated that NUTMEG can correctly
identify such disagreement, most real data contains
label variation beyond that due to subpopulations.
Thus, while the method can potentially improve
quality, it is not a universal panacea for noisy an-
notations. Indeed, we note that NUTMEG doesn’t
always improve downstream model performance
(in the Offensiveness task) suggesting that even
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when demographic labels are present and modeled,
other sources of label variation in the data may
more strongly influence performance; indeed, past
work in NLP has found a mixed trend, where for
some datasets, demographics explain little varia-
tion (Orlikowski et al., 2023), while for others, de-
mographics explain substantial variation (Larimore
etal., 2021; Sap et al., 2022; Pei and Jurgens, 2023;
Wan et al., 2023).

NUTMEG produces estimates of the ground truth
by subpopulation. We anticipate that these labels
will be most useful for practitioners who use learn-
ing from disagreement models that are designed
to model subpopulations. However, most of NLP
still uses models that produce a single label. Our
work could still potentially help in these settings by
allowing practitioners to train models for separate
populations (e.g., an offensive language detector
optimized for the views of a particular subpopula-
tion) and then deploy these strategically. Further,
even when a traditional machine learning model is
used, NUTMEG can still help identify meaningful
disagreement in the data and raise awareness for the
practitioner. Additionally, NUTMEG’s design treats
all truth variables as nominal. This allows to be
applied for tasks with both nominal truth values or
ordinal truth values; however, future iterations may
improve performance on certain tasks by tailoring
models for ordinal truth values.

Our experiments with synthetic and real data
used a known, discrete subpopulation label for each
annotator. However, for many datasets, this type
annotator information is not present. While we
note that recent work has pointed to the ability to
cluster annotators to create inferred subpopulations
(Vitsakis et al., 2024), we have not evaluated that
strategy here in favor of first demonstrating that the
method works with known demographics. Our ex-
perimental design limits the potential confounding
influence of the clustering model on the potential
benefits of NUTMEG. Nevertheless, we view this
as a promising direction for future work to explore.

Finally, our experiments used a limited number
of real-world datasets to demonstrate effectiveness.
Demographically-labeled data is growing in NLP
(cf. Santy et al., 2023), but still uncommon. The
POPQUORN dataset is among the largest available
dataset with multiple tasks, making it ideal for our
study. However, we recognize that future work
could evaluate NUTMEG with more datasets as they
become available.

10 Ethical Considerations

NUTMEG requires that annotators be associated
with a particular subpopulation. We anticipate that
for many practitioners, this background will be
based on demographics or other personal attributes.
As a result, NUTMEG could potentially increase
the collection of personal data, which needs to be
responsibly stored. However, we view this risk as
being outweighed by the benefits of having the dif-
ferent views of subpopulations better represented
in models.
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A NUTMEG Usage

We provide the following example of
how to wuse NUTMEG programmatically.
More detailed information is available at
https://github.com/jonathanivey/ NUTMEG.

# import package
from nutmeg.nutmeg_cython import NUTMEG

# instantiate model
nutmeg = NUTMEG ()

# fit to our data
nutmeg.fit (df)

# acccess model predictions
nutmeg.labels_ # labels
nutmeg.probas_ # label probabilities
nutmeg.spamming_ # annotator competence

B Modeling Details

NUTMEG runs entirely on CPU and can be run on
any reasonably equipped computer.

We trained the ModernBERT models with 149M
parameters on a single NVIDIA RTX A6000 GPU
Hugging Face Transformers 4.48.1 (Wolf et al.,
2020) and PyTorch 2.5.1 (Paszke et al., 2019) on a
CUDA 12.4 environment. All models were trained
for 12 epochs with a batch size of 192 and were
tuned for a learning rate in the range [1 x 1072, 2 x
10~3] with Optuna (Akiba et al., 2019). We use
the train, validation, and test splits provided by
the original POPQUORN dataset (Pei and Jurgens,
2023). To ensure reproducibility, we set all random
seeds in Python to be 42.
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