
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 28393–28409
November 4-9, 2025 ©2025 Association for Computational Linguistics

COUNTDOWN: Contextually Sparse Activation Filtering Out
Unnecessary Weights in Down Projection

Jaewon Cheon
Industrial and Management Engineering

Korea University
jaewon_cheon@korea.ac.kr

Pilsung Kang*
Industrial Engineering

Seoul National University
pilsung_kang@snu.ac.kr

Abstract

The growing size of large language models has
created significant computational inefficiencies.
To address this challenge, sparse activation
methods selectively deactivate non-essential pa-
rameters during inference, reducing computa-
tional costs in Feed-Forward Networks (FFN)
layers. While existing methods focus on non-
linear gating mechanisms, we hypothesize that
the sparsity lies globally in the form of a linear
combination over its internal down projection
matrix. Based on this insight, we propose two
methods: M-COUNTDOWN, leveraging indi-
rect coefficients, and D-COUNTDOWN, utiliz-
ing direct coefficients of the linear combina-
tion. Experimental results demonstrate that D-
COUNTDOWN can omit 90% of computations
with performance loss as low as 5.5% ideally,
while M-COUNTDOWN provides a predictor-
free solution with up to 29.4% better perfor-
mance preservation compared to existing meth-
ods. Our specialized kernel implementations
effectively realize these theoretical gains into
substantial real-world acceleration.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across diverse appli-
cations, from handling specific tasks to orchestrat-
ing agent-based operations (OpenAI et al., 2024;
DeepSeek-AI et al., 2024; Gemma Team et al.,
2025). However, these advancements came at the
cost of dramatically increased model sizes, creating
enormous computational and resource demands.

The inference process has emerged as a particu-
larly acute efficiency constraint, forming a critical
bottleneck for deploying LLMs in practical appli-
cations. This inefficiency is further amplified by
recent trends in test-time scaling, where models
generate extensive reasoning, significantly increas-
ing computational demands during inference (Jang
et al., 2024; Deng et al., 2024). Consequently, re-
search on LLM inference efficiency has intensified,

Globally zero-out area

Locally zero-out area

DD

DD DD

DD

DD

Figure 1: Comparison of sparsity determinations: our
approach determines sparsity from the full FFN compu-
tation (turquoise box), whereas conventional methods
like CATS (Lee et al., 2024) rely solely on non-linear
activations (red box).

aiming to reduce latency and memory consump-
tion while preserving generation quality (Liu et al.,
2024; Kwon et al., 2023; Cai et al., 2024).

In this context, sparse activation has emerged as
a prominent strategy to improve the efficiency of
the Feed-Forward Networks (FFN) in LLM (Liu
et al., 2023; Lee et al., 2024; Akhauri et al., 2024;
Alizadeh et al., 2024). Sparse activation methods
dynamically identify and deactivate parameters un-
necessary for a given input, thereby reducing com-
putational load and accelerating inference. These
methods are particularly beneficial since FFN lay-
ers incur significant computational overhead in
modern LLM architectures (Awasthi et al., 2024).

The zero-out gating property of ReLU (Agarap,
2019) creates extensive sparsity in FFN layers by
forcing a large portion of neurons to output zero
(Mirzadeh et al., 2024). This natural sparsity makes
computations associated with these zero-valued
neurons completely redundant. Existing sparse

28393

activation methods leverage this property to iden-
tify and skip these unnecessary computations (Sun
et al., 2024; Zhang et al., 2024). However, recent
LLMs largely employ activations such as GeLU
or SiLU (Hendrycks and Gimpel, 2016; Elfwing
et al., 2018) with far less prevalent zero-out behav-
ior (Mirzadeh et al., 2024), limiting these meth-
ods’ applicability. Further, Gated-MLP structures,
now widely adopted as FFN layers (Shazeer, 2020;
Dauphin et al., 2017), introduce more complex
parameter interactions than standard architectures.
This invalidates the assumption that sparsity occurs
only around non-linear activations.

To overcome these limitations, we propose an
approach that defines sparsity from a global view,
extending beyond the non-linear activations by re-
formulating the FFN layer’s output as a weighted
sum, as illustrated in Figure 1. Based on this ap-
proach, we derive two sparse activation methodolo-
gies: MONO-COUNTDOWN (M-COUNTDOWN)
and DUAL-COUNTDOWN (D-COUNTDOWN). M-
COUNTDOWN identifies sparsity based on the out-
put of a single weight matrix in Gated-MLP, while
D-COUNTDOWN leverages two weight matrices.
In evaluations, M-COUNTDOWN consistently out-
performs the baseline method CATS (Lee et al.,
2024), achieving up to 29.4% better performance
preservation with comparable inference speed. D-
COUNTDOWN attains greater efficiency gains, re-
ducing computations by up to 90% in FFN layers
with performance loss as low as 5.5% under opti-
mal conditions.

The contributions of this paper are as follows.

• We introduce a novel theoretical framework
that redefines sparsity through a weighted-
sum perspective over down projection matri-
ces, extending beyond the conventional focus
on activation functions.

• We demonstrate that analyzing coefficient vec-
tors in the weighted sum enables superior
sparsity decisions, resulting in two distinct
approaches with complementary strengths.

• We provide practical acceleration through opti-
mized kernel implementations, enabling both
methods to achieve substantial throughput im-
provements across multiple state-of-the-art
LLM architectures.

2 Related Works

ReLU-based Sparse Activation Early works
on sparse activation primarily leveraged the prop-

erty of ReLU to enhance computational efficiency.
These approaches identified that ReLU activation
functions naturally create substantial built-in spar-
sity by producing zeros for negative values (Li
et al., 2023b). Several approaches have tried to
detect these zero-valued activations to preemp-
tively skip associated computations, as these neu-
rons would have no impact on subsequent layers
(Mirzadeh et al., 2024). Deja Vu (Liu et al., 2023)
extended this concept by training lightweight pre-
dictors to anticipate which neurons would be ze-
roed out, further improving efficiency. While these
methods showed impressive speed gains with mini-
mal performance loss, their application faced signif-
icant constraints. Notably, these approaches were
practical only on architectures explicitly designed
with ReLU activations, limiting their applicability
as LLMs increasingly adopted alternative activa-
tion functions (Akhauri et al., 2024).

Non-ReLU Sparse Activation As LLMs
evolved to favor non-ReLU activation functions
such as GeLU and SiLU, which rarely produce
exact zeros, new methods emerged to extend
sparsity benefits to these architectures. One
direction involved ReLUfication techniques that
replace non-ReLU functions with ReLU, enabling
the reuse of existing sparsity strategies (Song et al.,
2024b, 2025; Zhang et al., 2024; Alizadeh et al.,
2024). Another approach, such as by CATS (Lee
et al., 2024), redesigned sparsity criteria to identify
and skip computations associated with near-zero
activations rather than exact zeros. While these
adaptations improved compatibility with modern
LLM architectures, they remain fundamentally
constrained by their narrow focus on local patterns
around non-linear transformations, overlooking
potential sparsity from a global perspective of the
FFN layer. This localized perspective may fail to
fully capitalize on the potential sparsity distributed
throughout modern Gated-MLP architectures,
particularly considering the complex interactions
among multiple weight matrices that define these
structures.

3 Generalization of Sparse Activation

Problem Formulation A Gated-MLP block con-
sists of three weight matrices: Wup, Wgate, Wdown

∈ Rdmodel×dinter . For this block, the input vector x
and the output vector y are in Rdmodel . The com-
putation involves intermediate states defined as
u=x ·Wup, h=σ(x ·Wgate), s=u⊙h in Rdinter .

28394

When no sparsification is applied, which we re-
fer to as the Dense scenario, all parameters are
activated, and the operation proceeds as follows:

y =
(
(x ·Wup)⊙ σ(x ·Wgate)

)
·W ⊺

down (1)

where σ denotes a non-linear activation function,
typically GeLU or SiLU.

We now introduce our sparsity propagation
framework, establishing sparse activation from a
global perspective. We can activate only a valuable
subset of weight vectors, with a marginal perfor-
mance loss. Specifically, sparse activation under
our framework follows:

y =
(
(x ·W I

up)⊙ σ(x ·W I
gate)

)
·
(
W I

down

)⊺ (2)

where I denotes the column of indices of the
weights selected for computation:

W I = W [:, IDX] , IDX = THLD(·) (3)

where THLD is any function filtering effective I .
Notably, when individual threshold functions are

defined separately for each matrix, identical output
can be achieved through the unified intersection
IDX:

IDX = IDXup ∩ IDXgate ∩ IDXdown (4)

Consequently, even when sparsifying just one
matrix and keeping others dense, the computation
remains equivalent to applying this unified IDX
across all matrices, which we denotes as shared-
index property. Thus, if valuable sparsity patterns
are identified in one matrix, they can propagate
throughout the entire Gated-MLP.

A critical challenge, therefore, is defining the
optimal filtering function THLD to identify the
most effective index set IDX to preserve globally
essential computations while significantly reduce
computational overhead.

Limitation of Comparative Methodology
CATS (Lee et al., 2024) partially satisfies our
sparsity propagation framework. It identifies
sparsity by examining the activation magnitude
h = σ(x ·Wgate), assuming activations squashed
near zero indicate parameters to omit. Specifically,
given a sparsity ratio k ∈ (0, 1), CATS computes
a threshold τkC via the Quantile(k, |h|) operation,
selecting a cutoff below which the lowest k
fraction of activations is excluded. Based on this
threshold, CATS defines a sparse activation index
as shown in Equation 6a.

CATS leverages the shared-index property. How-
ever, since the optimal THLD might depend on
factors beyond non-linear activation region, CATS
is theoretically limited in propagating an opti-
mal IDX throughout the Gated-MLP. Addition-
ally, although h[i] is large, if the corresponding
u[i] = x · Wup[i] is near zero, the final contribu-
tions become minimal, which ideally should be
filtered out due to their elementwise product.

Threshold Variants To overcome these limita-
tions, we reformulate the Gated-MLP computation
as a linear combination of the Wdown weight vec-
tors, thereby exploring additional possibilities for
defining THLD as follows:

y =
(
(x ·Wup)⊙ σ(x ·Wgate)

)
·W ⊺

down

=
∑

i

s[i] ·W ⊺
down[i]

(5)

This reformulation allows us to interpret output y
as a weighted sum over W ⊺

down row vectors, where
coefficient s[i] =

(
(x ·Wup)⊙ σ(x ·Wgate)

)
[i] re-

flects the i-th row vector’s contribution to computa-
tion. The magnitude of these coefficients provides
a natural metric for determining which parameters
to activate, as they quantify each vector’s signifi-
cance to the output.

Furthermore, since s is calculated as the el-
ementwise multiplication of u = x · Wup and
h = σ(x ·Wgate), these intermediate vectors can
also serve as indirect coefficient signals. This gen-
eralized view reveals that each computation stage
in the Gated-MLP can provide a distinct sparsity
indicator, with selecting h as the basis being equiv-
alent to CATS’s approach.

THLDk
C (h, τkC) = {i | |h[i]| > τkC} (6a)

THLDk
M (u, τkM) = {i | |u[i]| > τkM} (6b)

THLDk
D (s, τkD) = {i | |s[i]| > τkD} (6c)

Based on this view, we propose two variants
of sparse activation that extend beyond prior ap-
proaches relying solely on the magnitude of h.
As shown in Equation 6, where subscripts C,
M, and D denote CATS, M-COUNTDOWN, and
D-COUNTDOWN methods respectively, the first
method, M-COUNTDOWN, applies thresholding
directly to vector u, while the second method, D-
COUNTDOWN, applies thresholding to s. For each
method, thresholds τkM and τkD are calculated via
Quantile(k, |u|) and Quantile(k, |s|) respectively.

28395

These methods offer complementary strengths:
M-COUNTDOWN provides practical implementa-
tion with minimal overhead by examining only one
matrix multiplication, while D-COUNTDOWN can
offer more precise sparsity identification through
direct coefficients of the weighted sum. A detailed
discussion of these methods follows in section 4

4 Implementation of Sparse Activation

SPIdeal and SPPrac In the previous section, we
focused on establishing THLD and the correspond-
ing indicator that theoretically guarantee the safe
omission of parameters. Ideally, if these indica-
tors are tractable in real-time inference, we can
achieve the upper-bound performance defined by
the method. However, accessing the indicator and
deriving IDX from it is not trivial.

Given this constraint, we distinguish between
two distinctive perspectives: SPIdeal examines the
theoretical upperbound performance achievable
by each method, assuming that filtering based on
sparsity indicators incurs no computational over-
head. SPPrac accounts for real-world deployment
constraints, particularly the latency of identifying
sparse activation patterns. It evaluates whether
methods can deliver actual inference speedups
when all practical overheads are considered.

The distinction is critical because methods with
strong SPIdeal performance may not translate to
SPPrac benefits if their practical implementation is
computationally expensive. Conversely, focusing
solely on SPPrac without understanding the theoret-
ical SPIdeal limits can lead to suboptimal solutions
that fail to approach the best possible performance.
Effective sparse activation requires both identify-
ing truly essential computations via SPIdeal and
creating an efficient implementation to realize total
computational savings through SPPrac.

Constructing SPPrac for COUNTDOWN We
now describe how to transform the theoretical
SPIdeal formulations of M-COUNTDOWN and D-
COUNTDOWN into efficient, practical SPPrac im-
plementations.

For M-COUNTDOWN, the implementation is
straightforward because its indicator u depends
only on the matrix Wup. Therefore, its index set
IDXk

M defined in its SPIdeal perspective can be
obtained independently of other matrices in the
Gated-MLP. This allows M-COUNTDOWN to oper-
ate without additional inference-time components,
as computation over the remaining matrices can be

selectively skipped based on u.
To further reduce overhead, we avoid comput-

ing τkM dynamically for each input. Instead, we
approximate it with a layerwise constant τ̂kM =
1
T

∑T
t=1 Quantile(k, |u(t)|) estimated during a cal-

ibration phase with T sampled inputs.
In contrast, implementing D-COUNTDOWN

poses greater challenges because its indicator s
requires nearly the entire Gated-MLP computation,
negating the advantages of sparse activation. To
tackle this challenge, we train a lightweight pre-
dictor that estimates the optimal index set IDXk

D
directly from input x, avoiding the need to compute
s during inference. For each layer, the predictor
outputs a score vector ŝ where:

ŝ[i] =

{
+∞ if |s[i]| > Quantile(k, |s|)
−∞ otherwise

Using this output, we define the predicted index

set as ÎDX
k

D = {i | ŝ[i] > 0} and activate only the
corresponding weight columns during inference.

For efficiency, the predictor must be highly accu-
rate and computationally inexpensive during in-
ference. Following (Liu et al., 2023; Alizadeh
et al., 2024), we employ a low-rank approxima-
tor consisting of two matrices: θA ∈ Rdmodel×drank

and θB ∈ Rdrank×dinter , minimizing computational
overhead while preserving prediction accuracy. al-
gorithm 1 details the complete training procedure.

Hardware Aware Kernel Design Once the
sparse activation index set IDX is determined, com-
putation can be restricted to only the correspond-
ing subset of weights, reducing the actual floating-
point operation count (FLOPs). However, reduc-
ing FLOPs does not necessarily translate to im-
proved inference latency. For instance, materializ-
ing an indexed weight matrix and performing stan-
dard vector-matrix multiplication may still reduce
FLOPs, but at the cost of increased memory access
(Song et al., 2024a; Xue et al., 2024). Therefore,
sparse computation should avoid incurring exces-
sive memory traffic solely for the sake of reducing
arithmetic operations.

To address this, we implement custom kernels
for both M-COUNTDOWN and D-COUNTDOWN

using Triton (Tillet et al., 2019). The M-
COUNTDOWN kernel builds upon CATS’s struc-
ture (Lee et al., 2024), but optimizes it by fusing the
non-linear activation to reduce additional memory
access. For D-COUNTDOWN, we design a kernel

28396

DD

1 0 1 1 1 0 01

DD

DD

DD

Activated Weight

Omitted Weight

Non-zero Values

Zero Values

Math Ops. From to

Construct / Propagate

(a) (b)

DD DD

DD

0 0 1 1 1 0 11

DD

DD

DD

DD

Figure 2: COUNTDOWN Pipeline. Note that hpre = x ·Wgate. Left (a): In M-COUNTDOWN, we determine which
parameters to activate by binarizing densely computed u with pre-calculated τ̂kM. Right (b): In D-COUNTDOWN,
low-rank predictors

(
θA, θB

)
determine which parameters to activate.

that efficiently supports predictor-based activation
patterns. A naive implementation would require
eight separate kernel launches for sparse computa-
tion: indexing and GEMV for each of the three ma-
trices, plus non-linear activation and elementwise
multiplication. Our implementation compresses
this workload into just two kernels. This design
ensures that FLOPs reductions directly translate
into improved token throughput. Full implementa-
tion details and pseudocode are in algorithm 2 and
algorithm 3.

5 Experiments

Experimental Setup We evaluate the proposed
methods against other sparse activation baselines,
primarily CATS (Lee et al., 2024), CHESS () and
Deja Vu (Liu et al., 2023). We also include a Dense
variant without any sparse activation for compari-
son. Experiments are conducted using four diverse
state-of-the-art LLMs ranging from 8B to 14B pa-
rameters: Llama-3.1-8B-Instruct (Grattafiori et al.,
2024), gemma-2-9b-it (Gemma Team et al., 2024),
Qwen2.5-14B-Instruct (Qwen et al., 2024), and phi-
4 (Abdin et al., 2024). We test multiple sparsity
ratios by varying k from 0.7 to 0.9, representing
the fraction of parameters excluded from compu-
tation. Implementation details are provided in Ap-
pendix A.2.

We examine both model performance preser-

vation and computational efficiency. For model
performance, we use the lm-eval-harness (Gao
et al., 2024) framework to assess downstream tasks
including ARC (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020),
OpenbookQA (Mihaylov et al., 2018), TruthfulQA
(Lin et al., 2022), WinoGrande (Sakaguchi et al.,
2020), and GSM8K (Cobbe et al., 2021). Unlike
prior sparse activation studies, we also evaluate con-
versational ability using LLM-as-a-Judge frame-
work AlpacaEval 2.0 (Li et al., 2023a).

To assess computational efficiency and inference
speed, we benchmark kernel-level latency to quan-
tify Gated-MLP speedups from sparse activation.
We also measure end-to-end token throughput and
analyze theoretical reductions in floating-point op-
erations (FLOPs) and memory traffic.

Downstream Task Performance As shown in
Table 1, in the SPIdeal setting, D-COUNTDOWN

consistently outperforms all methods across all
models and sparsity ratios, exhibiting negligible
degradation even when compared to the dense base-
line. This demonstrates the effectiveness of D-
COUNTDOWN’s sparsity criterion: the indicator
s accurately reflects each parameter’s importance
to the final output, serving as the coefficient in
our linear combination formulation. This provides
more informed filtering than methods like CATS
which rely solely on gating magnitude. Even at

28397

InferenceMode Llama-3.1-8B-Instruct gemma-2-9b-it Qwen2.5-14B-Instruct phi-4

k=0.7 k=0.8 k=0.9 k=0.7 k=0.8 k=0.9 k=0.7 k=0.8 k=0.9 k=0.7 k=0.8 k=0.9

Dense
Full 0.616 0.645 0.674 0.655

SPIdeal

DEJAVU 0.314 0.315 0.322 0.360 0.360 0.360 0.379 0.382 0.385 0.398 0.405 0.396
CATS 0.471 0.412 0.337 0.592 0.483 0.367 0.502 0.428 0.389 0.615 0.535 0.427
M-COUNTDOWN 0.570 0.513 0.421 0.624 0.607 0.549 0.644 0.610 0.479 0.636 0.608 0.512
D-COUNTDOWN 0.603 0.587 0.525 0.635 0.625 0.590 0.660 0.647 0.555 0.651 0.649 0.620

SPPrac

CATS 0.504 0.450 0.350 0.605 0.502 0.360 0.556 0.478 0.390 0.633 0.591 0.448
M-COUNTDOWN 0.571 0.528 0.447 0.632 0.617 0.588 0.651 0.624 0.535 0.639 0.620 0.555
D-COUNTDOWN 0.442 0.419 0.387 0.555 0.563 0.520 0.526 0.457 0.437 0.499 0.445 0.417

Table 1: Average SPIdeal and SPPrac scores compared to Dense across all downstream tasks. Full task-wise results
are provided in Appendix C.

90% sparsity, D-COUNTDOWN retains only the
most impactful neurons, limiting performance drop
to 5.5% in the best case among evaluated models.

M-COUNTDOWN, although less effective than
D-COUNTDOWN, consistently outperforms CATS.
The gap between the two widens as the sparsity
ratio increases, reaching over 29.4%. This demon-
strates that M-COUNTDOWN ’s indicator u is more
predictive of useful computation than CATS’ indi-
cator h. This may seem counterintuitive since u
and h contribute symmetrically via their element-
wise product and thus should be equally informa-
tive. We revisit this comparison in section 6.

Deja Vu, which assumes ReLU-style zero-out
behavior, suffers severe degradation in the SPIdeal

setting. Given its reliance on predictors, which
would further degrade under the SPPrac setting, we
excluded it from subsequent experiments.

In the SPPrac setting, D-COUNTDOWN expe-
riences performance loss relative to the SPIdeal

due to predictor sub-optimality, suggesting bet-
ter prediction strategies are needed to fully real-
ize its potential in deployment. In contrast, M-
COUNTDOWN, thanks to its predictor-free design,
exhibits nearly identical performance to its SPIdeal

counterpart. Notably, M-COUNTDOWN continues
to outperform CATS across all sparsity settings, re-
inforcing the effectiveness of its signal even under
realistic constraints.

LLM Chat Performance While prior studies
rely on downstream task accuracy or perplexity,
these metrics often fail to capture conversational
performance. To address this, we evaluate each
method using an LLM-as-a-Judge framework that
directly assesses chat-level performance.

As shown in Table 2, M-COUNTDOWN main-
tains nearly identical performance between the

SPIdeal and SPPrac settings, while also outperform-
ing CATS in both. D-COUNTDOWN exhibits no-
ticeable degradation in SPPrac due to predictor lim-
itations, but retains a dominant lead under SPIdeal.
This trend aligns with the results observed in the
downstream task evaluations.

InferenceMode AlpacaEval 2.0

k = 0.7 k = 0.8 k = 0.9

SPIdeal

CATS 25.10 1.72 0.19
M-COUNTDOWN 45.84 29.22 3.90
D-COUNTDOWN 48.86 45.85 29.95

SPPrac

CATS 31.63 10.47 0.25
M-COUNTDOWN 38.31 33.80 15.88
D-COUNTDOWN 3.40 2.81 1.16

Table 2: Average SPIdeal and SPPrac win rates against
Dense across all models. Full model-wise results are
provided in Table 7.

Efficiency and Speed To confirm that reduc-
tions in computation indeed translate into infer-
ence speedups, we measured kernel-level execu-
tion latency under various sparsity ratios. Each ker-
nel’s execution time was recorded from the start of
the Gated-MLP computation, explicitly excluding
other operations like token embedding or attention
mechanisms. This allowed us to isolate the precise
efficiency gains attributable to sparse activation.

As shown in Figure 3, D-COUNTDOWN

achieves the fastest kernel execution time overall,
despite the presence of a predictor, by skipping
all three weight matrix computations. Although
both M-COUNTDOWN and CATS are predictor-
free, M-COUNTDOWN slightly outperforms CATS
in kernel speed. Given that the only architectural
difference between their kernels is whether the non-

28398

Figure 3: Kernel Speed for Llama-3.1-8B-Instruct.
CATS, M-COUNTDOWN and D-COUNTDOWN show
their respective SPPrac kernel speeds, Full and Optimal
show Dense while int(dinter × k) instead of dinter for
the Optimal. Results for other models are in Figure 5.

linear activation function is fused, this suggests
that M-COUNTDOWN gains a minor but consistent
speed advantage by fusing the activation computa-
tion, thereby reducing memory traffic and avoiding
additional overhead.

Furthermore, we measured average tokens gen-
erated per second for generation lengths of 512
and 1024, providing a model-level speedup assess-
ment in typical generation scenarios. As shown
in Table 3, M-COUNTDOWN achieves the high-
est end-to-end token throughput. Meanwhile, D-
COUNTDOWN demonstrates the best performance
at the kernel level, and with further optimization,
its overall throughput may be further enhanced.

6 Analysis

M-COUNTDOWN vs CATS While CATS and
M-COUNTDOWN share similar core ideas for
sparse activation, our experimental results show
that M-COUNTDOWN consistently achieves better
performance. To understand the performance gap
between the indirect coefficient vectors u and h,
we conduct a comparative analysis of how each
influences and aligns with the oracle-like refer-
ence signal s, the direct coefficient used in D-
COUNTDOWN.

To enable direct comparison, we define binary
masks Sk, Uk, and Hk based on the top-k mag-
nitude entries of each vector. Each mask marks
components as “alive” (1) if they survive quantile
thresholding, and "dead" (0) otherwise. These bi-
nary masks are equivalent to the index sets IDXk

used for sparse activation, as each represents the
support of the corresponding IDXk in vector form.

k Method FLOPs(M) Mem.(MB) Throughput

512 1024

0.0 Dense 352.41 168.121 24.64 22.63

0.7
CATS 188.00 89.746 32.62 29.40
MC 187.95 89.719 33.61 30.32
DC 124.59 59.480 30.69 27.80

0.8
CATS 164.52 78.550 32.72 29.60
MC 164.46 78.522 33.80 30.61
DC 89.37 42.684 30.70 27.57

0.9
CATS 141.02 67.345 32.98 29.81
MC 140.96 67.318 33.51 30.78
DC 54.11 25.877 30.73 27.55

Table 3: Theoretical FLOPs and Memory Traffic of
Gated-MLP and actual throughput per second at se-
quence lengths 512 and 1024 for Llama-3.1-8B-Instruct
(dmodel = 4096, dinter = 14336). MC and DC refer to
M-COUNTDOWN and D-COUNTDOWN respectively.

We first define a metric called Comparative
Influential Factor (CIF) to measure how much
influence u (or h) has on the final decision of s, es-
pecially in cases where it overrides the other com-
ponent. Analogously, for instance, CIFk(u, alive)
measures how often u “rescues” a component that
would otherwise have been pruned by h, allow-
ing it to survive in s due to its strong contribution.
Formally, this is computed as:

CIFk(u, alive) =
|Sk ∧ ¬Hk|

|Sk| (7)

This formulation follows from the definition of
s as the elementwise product of u and h. When
s[i] is alive but h[i] is small enough to be pruned,
it implies that u[i] must have been large enough to
compensate, effectively “saving” that entry.

Next, we define the Comparative Agreement
Factor (CAF) to evaluate how often one signal
aligns with s while the other disagrees. For in-
stance, CAFk(u, alive) measures how frequently u
agrees with s on keeping a component, specifically
when h disagrees. This is given by:

CAFk(u, alive) =
|Sk ∧ ¬Hk ∧ Uk|

|Sk| (8)

Both CIF and CAF can also be defined symmet-
rically for the “dead” case by inverting the roles of
activation and pruning.

As shown in Figure 4, u outperforms h across all
sparsity levels in both CIF and CAF. These results
suggest that u more closely reflects the true acti-
vation behavior captured by s and exerts a greater
direct impact on sparsity decisions than h. In other

28399

Figure 4: Tornado plots of CIF and CAF across whiten-
ing ratios. Bars to the right indicate the propor-
tion of CIFk(·, alive), while those to the left indicate
CIFk(·, dead).

words, u is more effective at preserving impor-
tant activations and filtering out unimportant ones,
explaining M-COUNTDOWN’s stable and reliable
performance under sparsity.

Nevertheless, since M-COUNTDOWN still relies
on an indirect coefficient u, it cannot fully match
the upper-bound performance of D-COUNTDOWN,
which uses the full signal s directly. Despite u’s
strong CIF and CAF scores, substantial mismatches
with respect to the oracle mask Sk remain, with
peak CIF values reaching only about 0.6 and CAF
values about 0.4, underscoring the need for future
work to translate D-COUNTDOWN’s upper-bound
potential into SPPrac deployments.

Possible Predictor Candidate: TernaryLin-
ear D-COUNTDOWN demonstrates a theoreti-
cally sound and effective sparse activation strategy,
achieving strong performance in the SPIdeal set-
ting. However, in the SPPrac scenario, performance
degradation occurs due to the predictor’s limited ac-
curacy in recovering optimal sparsity patterns. This
reflects the difficulty of the prediction task rather
than a flaw in the sparsity criterion itself. The task
simultaneously demands precision and computa-
tional efficiency, presenting a significant challenge
with considerable room for improvement.

To empirically explore this potential, we evalu-
ate an alternative predictor architecture, Ternary-
Linear, whose weights are quantized as θternary ∈
{−1, 0,+1}dmodel×dinter . We compare its perfor-
mance with the previously utilized low-rank ap-
proximator. TernaryLinear achieves significant
parameter compression by sacrificing numerical
precision while preserving the matrix rank struc-
ture. Motivated by recent studies demonstrating
successful LLM pretraining with ternary quanti-

Metric TernaryLinear Low-Rank

Latency (ms) 0.082 0.030
Theoretical footprint (MiB) 112 144
F1-score (%) 0.435 0.403

Table 4: Comparison between TernaryLinear and the
Low-Rank Approximator. Latency for TernaryLinear
was measured using the BitBLAS library (Wang et al.,
2024). F1 score is reported as the average binary classifi-
cation performance on S0.7 across all evaluated models.

zation while retaining strong model performance
(Ma et al., 2024), we regard TernaryLinear as a
promising candidate due to its demonstrated ex-
pressiveness even under aggressive quantization.

As shown in Table 4, TernaryLinear outperforms
the low-rank baseline in F1 score, while also being
more compact in terms of memory footprint. This
suggests that preserving rank information, even at
the cost of numerical precision, is more effective
for sparse mask recovery than the reverse approach.

However, TernaryLinear has not yet been
adopted due to its relatively slower runtime despite
its small size. This limitation stems not from algo-
rithmic complexity, but rather the lack of optimized
GPU kernel support for ultra-low-precision oper-
ations. Prior work (Ma et al., 2025) suggests that
future advances in kernel optimization and ultra-
low-bit quantization are needed to fully leverage
such architectures. With these improvements, tech-
niques like TernaryLinear could become viable can-
didates for enabling D-COUNTDOWN to achieve
its full SPIdeal performance in SPPrac scenarios.

7 Conclusion

We introduce COUNTDOWN, a novel sparse ac-
tivation framework for improving inference effi-
ciency of large language models. To overcome
the limitations of traditional non-linear activation-
based sparsity, we reformulate the computation as
a weighted sum over the FFN’s down projection
matrix, effectively capturing inherent sparsity in
modern Gated-MLP architectures. From this per-
spective, we present two complementary strategies:
M-COUNTDOWN, which uses u derived from a sin-
gle matrix Wup as its activation indicator, achieves
faster inference and better performance preserva-
tion than prior state-of-the-art methods while re-
maining predictor-free. D-COUNTDOWN directly
leverages s, the coefficient vector of the weighted
sum, for fine-grained sparsity selection, demon-
strating robust performance even when skipping
90% of computations under ideal conditions.

28400

Limitations

Like most prior work on sparse activation, our
study assumes a single-batch greedy decoding set-
ting in on-device environments. While this scenario
is realistic for latency-sensitive edge inference, it
may be less applicable in multi-batch or server-
based deployments. In such cases, strategies such
as computing the union of predicted index sets
IDX across multiple samples could be explored.
However, such an approach would require further
investigation into how much parameter activation
can be shared across inputs, a direction we leave
for future work.

Additionally, our sparsity criteria rely exclu-
sively on activation magnitude. This choice of-
fers clear interpretability and aligns well with the
weighted-sum perspective we adopt. Nevertheless,
alternative sparsity metrics, such as those explored
by (Akhauri et al., 2024), remain an open research
avenue. Expanding beyond simple magnitude-
based thresholding could further enhance the per-
formance of sparse activation methods.

Ethical Considerations

We affirm adherence to the ACL Rolling Review
(ARR) ethical guidelines, explicitly addressing
potential risks and responsible research practices.
This research focuses on optimizing computational
efficiency in large language models (LLMs), aimed
at reducing resource usage and consequently low-
ering environmental impact. We foresee no direct
risks or potential harms to individuals or communi-
ties resulting from this work.

Comprehensive details regarding the ethical use
of scientific artifacts, reproducibility of computa-
tional experiments, and related considerations are
thoroughly documented in Appendix A.

Acknowledgments

This research was supported by Basic Science Re-
search Program through the National Research
Foundation of Korea(NRF) funded by the Min-
istry of Education(No. 2340012238). This work
was also supported by Institute of Information &
Communications Technology Planning & Evalu-
ation (IITP) grant funded by the Korea govern-
ment (MSIT) (RS-2025-02214591, Development
of an Innovative AI Agent for Worker-Friendly Au-
tonomous Manufacturing), (RS-2024-00460011,
Climate and Environmental Data Platform for En-
hancing Climate Technology Capabilities in the An-

thropocene (CEDP)), and (RS2021-II211343, Arti-
ficial Intelligence Graduate School Program (Seoul
National University)). This work was also sup-
ported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government
(MSIT) (RS-2024-00407803, RS-2025-23523657).
This work was also supported by the BK21 FOUR
Program (Education and Research Center for Indus-
trial Innovation Analytics) funded by the Ministry
of Education, Korea (No. 4120240214912).

References
Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien

Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J. Hewett, Mojan Javaheripi, Piero
Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li,
Weishung Liu, Caio C. T. Mendes, Anh Nguyen,
Eric Price, Gustavo de Rosa, Olli Saarikivi, and
8 others. 2024. Phi-4 technical report. Preprint,
arXiv:2412.08905.

Abien Fred Agarap. 2019. Deep learning using rectified
linear units (relu). Preprint, arXiv:1803.08375.

Yash Akhauri, Ahmed F AbouElhamayed, Jordan
Dotzel, Zhiru Zhang, Alexander M Rush, Safeen
Huda, and Mohamed S Abdelfattah. 2024. Shad-
owLLM: Predictor-based contextual sparsity for large
language models. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 19154–19167, Miami, Florida, USA.
Association for Computational Linguistics.

Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko,
S Karen Khatamifard, Minsik Cho, Carlo C Del
Mundo, Mohammad Rastegari, and Mehrdad Fara-
jtabar. 2024. LLM in a flash: Efficient large language
model inference with limited memory. In ACL.

Pranjal Awasthi, Nishanth Dikkala, Pritish Kamath, and
Raghu Meka. 2024. Learning neural networks with
sparse activations. In The Thirty Seventh Annual Con-
ference on Learning Theory, June 30 - July 3, 2023,
Edmonton, Canada, volume 247 of Proceedings of
Machine Learning Research, pages 406–425. PMLR.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: Reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu
Peng, Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM inference acceleration frame-
work with multiple decoding heads. In Forty-first In-
ternational Conference on Machine Learning, ICML

28401

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375

2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803. 05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and Others. 2021. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.
14168.

Yann N. Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In Proceedings of the 34th In-
ternational Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 933–941. PMLR.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
and 181 others. 2024. DeepSeek-V3 technical report.
arXiv [cs.CL].

Yuntian Deng, Yejin Choi, and Stuart M Shieber. 2024.
From explicit CoT to implicit CoT: Learning to inter-
nalize CoT step by step. CoRR, abs/2405.14838.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning.
Neural Networks, 107:3–11.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey
Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard
Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev,
and 197 others. 2025. Gemma 3 technical report.
arXiv [cs.CL].

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu,
Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela
Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, and 179 others. 2024. Gemma 2: Improv-
ing open language models at a practical size. arXiv
[cs.CL].

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. arXiv [cs.AI].

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian
error linear units (GELUs). arXiv [cs.LG].

Joonwon Jang, Jaehee Kim, Wonbin Kweon, and
Hwanjo Yu. 2024. Verbosity-aware rationale re-
duction: Effective reduction of redundant rationale
via principled criteria. arXiv preprint arXiv:2412.
21006.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with PagedAttention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 611–
626. ACM.

Donghyun Lee, Jaeyong Lee, Genghan Zhang, Mo Ti-
wari, and Azalia Mirhoseini. 2024. CATS: Context-
aware thresholding for sparsity in large language
models. In First Conference on Language Model-
ing.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023a. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang
Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye,
Felix Chern, Felix X. Yu, Ruiqi Guo, and Sanjiv
Kumar. 2023b. The lazy neuron phenomenon: On
emergence of activation sparsity in transformers. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3214–3252. Association for
Computational Linguistics.

Jiahao Liu, Qifan Wang, Jingang Wang, and Xunliang
Cai. 2024. Speculative decoding via early-exiting
for faster LLM inference with thompson sampling
control mechanism. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024,
pages 3027–3043. Association for Computational
Linguistics.

28402

https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=TJ2nxciYCk-

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Ré, and Beidi Chen.
2023. Deja vu: Contextual sparsity for efficient
LLMs at inference time. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 22137–22176.
PMLR.

Shuming Ma, Hongyu Wang, Shaohan Huang, Xingxing
Zhang, Ying Hu, Ting Song, Yan Xia, and Furu Wei.
2025. Bitnet b1.58 2b4t technical report. Preprint,
arXiv:2504.12285.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang,
Wenhui Wang, Shaohan Huang, Li Dong, Ruiping
Wang, Jilong Xue, and Furu Wei. 2024. The era of
1-bit LLMs: All large language models are in 1.58
bits.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2381–2391. Association for Computational
Linguistics.

Seyed-Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin
Mehta, Carlo C del Mundo, Oncel Tuzel, Golnoosh
Samei, Mohammad Rastegari, and Mehrdad Fara-
jtabar. 2024. ReLU strikes back: Exploiting activa-
tion sparsity in large language models. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

OpenAI, Aaron Hurst, Adam Lerer, Adam P Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark, A J
Ostrow, Akila Welihinda, Alan Hayes, Alec Radford,
Aleksander Mądry, Alex Baker-Whitcomb, Alex Beu-
tel, Alex Borzunov, Alex Carney, Alex Chow, Alex
Kirillov, Alex Nichol, and 400 others. 2024. GPT-4o
system card. arXiv [cs.CL].

Qwen, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, and 24 others.
2024. Qwen2.5 technical report. arXiv [cs.CL].

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. WinoGrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732–
8740. AAAI Press.

Noam Shazeer. 2020. GLU variants improve trans-
former. arXiv [cs.LG].

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding
Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan Liu,
Guangli Li, Tao Yang, and Maosong Sun. 2025.
ProSparse: Introducing and enhancing intrinsic acti-
vation sparsity within large language models. In
Proceedings of the 31st International Conference
on Computational Linguistics, COLING 2025, Abu
Dhabi, UAE, January 19-24, 2025, pages 2626–2644.
Association for Computational Linguistics.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
2024a. Powerinfer: Fast large language model serv-
ing with a consumer-grade GPU. In Proceedings
of the ACM SIGOPS 30th Symposium on Operating
Systems Principles, SOSP 2024, Austin, TX, USA,
November 4-6, 2024, pages 590–606. ACM.

Yixin Song, Haotong Xie, Zhengyan Zhang, Bo Wen,
Li Ma, Zeyu Mi, and Haibo Chen. 2024b. Turbo
sparse: Achieving llm sota performance with mini-
mal activated parameters. arXiv preprint arXiv:2406.
05955.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang
Liu. 2024. Massive activations in large language
models. In First Conference on Language Modeling.

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox.
2019. Triton: an intermediate language and com-
piler for tiled neural network computations. In Pro-
ceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming
Languages, MAPL@PLDI 2019, Phoenix, AZ, USA,
June 22, 2019, pages 10–19. ACM.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Ji-
long Xue, Yining Shi, Ningxin Zheng, Ziming Miao,
Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang.
2024. Ladder: Enabling efficient low-precision deep
learning computing through hardware-aware tensor
transformation. In 18th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
24), pages 307–323, Santa Clara, CA. USENIX As-
sociation.

Zhenliang Xue, Yixin Song, Zeyu Mi, Xinrui Zheng,
Yubin Xia, and Haibo Chen. 2024. Powerinfer-2:
Fast large language model inference on a smartphone.
arXiv preprint arXiv:2406.06282.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han,
Yankai Lin, Chaojun Xiao, Chenyang Song, Zhiyuan
Liu, Zeyu Mi, and Maosong Sun. 2024. Relu2 wins:
Discovering efficient activation functions for sparse
LLMs. arXiv preprint arXiv:2402. 03804.

28403

https://arxiv.org/abs/2504.12285
https://doi.org/10.1145/3694715.3695964
https://doi.org/10.1145/3694715.3695964
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei

A Experimental Details

A.1 Hyperparameters for Predictors

Name Low-Rank
(
θA, θB

)
BitLinear

(
θternary

)

Loss Binary Cross Entropy
Sparsity ratio (k) {0.7, 0.8, 0.9}
Learning rate {1e-3, 5e-4}
Training batch size {16, 32}
Optimizer AdamW
Target Binary mask skalive
Epochs {10, 20, 40, 80}
Seed 42

Predictor shape Low-Rank Approximator TernaryLinear
drank {128, 256, 512, 1024} –

Hardware 1 × NVIDIA A100 80GB

Table 5: Hyperparameter settings and additional re-
producibility details for training predictors used in D-
COUNTDOWN. All experiments were conducted using
a single run without multiple random seeds.

A.2 Environments
All experiments were performed on an NVIDIA
A100 80GB GPU. We used Triton v3.1.0 for cus-
tom kernel development, while the rest of the exper-
imental pipeline was built on HuggingFace Trans-
formers v4.51.3, PyTorch v2.5.1, and CUDA v12.1.

A.3 Dataset Description
Table 6 summarizes the licenses and dataset statis-
tics used for evaluation.

We evaluate seven Natural Language Under-
standing(NLU) tasks and one Natural Language
Generation(NLG) task focused on mathematical
reasoning (GSM8K). All datasets primarily con-
tain English text.

Dataset License Train Test

ARC-Easy cc-by-sa-4.0 2251 (500) 2376
ARC-Challenge cc-by-sa-4.0 1119 (500) 1172
HellaSwag MIT 39905 (500) 10042
PIQA AFL 3.0 16113 (500) 1838
WinoGrande apache-2.0 40398 (500) 1267
OpenBookQA apache-2.0 4957 (500) 500
TruthfulQA apache-2.0 0 817
GSM8K MIT 0 1319

Table 6: Summary statistics and licenses for datasets
used in evaluation. Following previous research
(Akhauri et al., 2024), we used subsets of each down-
stream task’s training set, each containing 500 examples.

B Pseudo Codes

B.1 Training Procedures
D-COUNTDOWN’s predictor training only re-
quires 2 hours for smaller models (Llama-3.1-8B,
Gemma-2-9B) and 4 hours for larger models (Phi-
4, Qwen2.5-14B) on a single NVIDIA A100 GPU.
The resulting predictors are as compact as 576-
900MB, representing merely 6-7% of model pa-
rameters.

Algorithm 1: Training the predictor for a
Gated-MLP in D-COUNTDOWN

Input: Training samples {xj}Nj=1, Target module
GatedMLP , Target sparsity ratio k

Output: Trained predictor parameters θ
1 foreach training sample xj do
2 sj ← Compute GatedMLP (xj);
3 sj ← Binarize using Quantile(k, |sj |);
4 if Predictor is Low-Rank then
5 Initialize parameters θA, θB;

6 else if Predictor is TernaryLinear then
7 Initialize parameters θternary;

8 foreach training iteration do
9 Sample mini-batch {xb, sb};

10 if Predictor is Low-Rank then
11 ŝb = xb · θA · θB;

12 else if Predictor is TernaryLinear then
13 ŝb = xb · θternary;

14 Compute BCE loss between ŝb and sb;
15 Update predictor parameters θ;

28404

B.2 Kernel in Detail: M-COUNTDOWN

Algorithm 2: M-COUNTDOWN Inference
Kernel (Triton-style)

Input: X, Wup, τ̂M
Output: U,Mask

1 # PyTorch ;
2 U ← X @Wup ;
3 Mask← (|U | ≥ τ̂M) ;

Input: X,U,Wgate,Mask,BLKM ,BLKN

Output: S
4 # Triton 1 ;
5 start_m← tl.program_id(0) ;
6 rm← start_m× BLKM + tl.arange(0,BLKM) ;
7 rn← tl.arange(0,BLKN) ;
8 Mask← Mask + rm ;
9 flag← tl.load(Mask) > 0 ;

10 Wgate←Wgate+(rm[:,None]×dmodel+rn[None,:]) ;
11 X ← X + rn ;
12 acc← tl.zeros((BLKM)) ;
13 i_mask← flag[:,None] ;
14 foreach block in rn do
15 w ← tl.load(Wgate,mask = i_mask, other = 0 ;
16 x← tl.load(X) ;
17 acc← acc + tl.sum(w × x[None, :], 1) ;
18 Wgate ←Wgate + BLKN ;
19 X ← X + BLKN ;

20 U ← U + rm ;
21 u← tl.load(U,mask = flag, other = 0) ;
22 acc← silu(acc)× u ;
23 S ← S + rm ;
24 tl.store(S, acc,mask = rm < dinter) ;

Input: S,Wdown,Mask,BLKM ,BLKN

Output: Y
25 # Triton 2 ;
26 start_m← tl.program_id(0) ;
27 start_n← tl.program_id(1) ;
28 rm← start_m× BLKM + tl.arange(0,BLKM) ;
29 rn← start_n× BLKN + tl.arange(0,BLKN) ;
30 Mask← Mask + rm ;
31 flag← tl.load(Mask) > 0 ;
32 Wdown←Wdown+(rm[:,None]×dmodel+rn[None,:]) ;
33 S ← S + rm ;
34 w← tl.load(Wdown,mask=flag[:,None],other=0) ;
35 x← tl.load(S) ;
36 acc← tl.sum(w × x[:,None], 0) ;
37 Y ← Y + rn ;
38 tl.atomic_add(Y, acc) ;

B.3 Kernel in Detail: D-COUNTDOWN

Algorithm 3: D-COUNTDOWN Inference
Kernel (Triton-style)

Input: X, θA, θB, τD
Output: Mask

1 # PyTorch ;
2 ŝ← X @ θA @ θB ;
3 Mask← (ŝ ≥ τD) ;

Input: X,Wgate,Wup,Mask,BLKM ,BLKN

Output: S
4 # Triton 1 ;
5 start_m← tl.program_id(0) ;
6 rm← start_m× BLKM + tl.arange(0,BLKM) ;
7 rn← tl.arange(0,BLKN) ;
8 Mask← Mask + rm ;
9 flag← tl.load(Mask) > 0 ;

10 Wgate←Wgate+(rm[:,None]×dmodel+rn[None,:]) ;
11 Wup←Wup+(rm[:,None]×dmodel+rn[None,:]) ;
12 X ← X + rn ;
13 gate← tl.zeros([BLKM]) ;
14 up← tl.zeros([BLKM]) ;
15 i_mask← flag[:,None] ;
16 foreach block in rn do
17 wgate ← tl.load(Wgate,mask = i_mask, other =

0) ;
18 wup ← tl.load(Wup,mask = i_mask, other = 0)

;
19 x← tl.load(X) ;
20 gate← gate + tl.sum(wgate × x[None, :], axis =

1) ;
21 up← up + tl.sum(wup × x[None, :], axis = 1) ;
22 X← X + BLKN ;
23 Wgate ←Wgate + BLKN ;
24 Wup ←Wup + BLKN ;

25 up← up× SiLU(gate) ;
26 tl.store(S, up,mask = rm < M) ;

Input: S,Wdown,Mask,BLKM ,BLKN

Output: Y
27 # Triton 2 ;
28 start_m← tl.program_id(0) ;
29 start_n← tl.program_id(1) ;
30 rm← start_m× BLKM + tl.arange(0,BLKM) ;
31 rn← start_n× BLKN + tl.arange(0,BLKN) ;
32 Mask← Mask + rm ;
33 flag← tl.load(Mask) > 0 ;
34 Wdown←Wdown+(rm[:,None]×dmodel+rn[None,:]) ;
35 S ← S + rm ;
36 w← tl.load(Wdown,mask=flag[:,None],other=0) ;
37 x← tl.load(S) ;
38 acc← tl.sum(w × x[:,None], 0) ;
39 Y ← Y + rn ;
40 tl.atomic_add(Y, acc) ;

C Full Results

All downstream task results are in Table 11 and
Table 12. Chat performance results are shown in
Table 7. Kernel Speed results are shown in Fig-
ure 5. SparsityReal indicates the actual proportion
of indicator elements filtered out during SPPrac in-
ferences.

28405

Method Scenario
Llama-3.1-8B Gemma-2-9B

Target Sparsity Target Sparsity
0.70 0.80 0.90 0.70 0.80 0.90

CATS
SPIdeal 1.02 0.48 0.50 35.41 2.55 0.00

SPPrac (Win) 3.26 0.55 0.72 40.76 6.72 0.00
SPPrac (SparsityReal) 70.8 80.0 89.7 68.8 79.3 88.1

DC
SPIdeal 45.79 39.33 11.85 50.44 48.90 37.79

SPPrac (Win) 1.35 1.57 0.77 6.72 7.99 3.57
SPPrac (SparsityReal) 68.8 71.5 80.8 67.0 72.9 83.2

MC
SPIdeal 46.59 2.74 0.60 47.81 41.83 6.91

SPPrac (Win) 9.68 3.19 0.74 48.78 47.88 28.08
SPPrac (SparsityReal) 72.7 82.3 91.0 68.0 77.8 87.6

Method Scenario
Qwen2.5-14B Phi-4

Target Sparsity Target Sparsity
0.70 0.80 0.90 0.70 0.80 0.90

CATS
SPIdeal 21.94 0.38 0.00 42.05 3.45 0.25

SPPrac (Win) 33.62 7.80 0.00 48.87 26.81 0.31
SPPrac (SparsityReal) 70.0 80.0 89.1 67.6 78.3 89.7

DC
SPIdeal 50.10 48.71 32.73 49.10 46.46 37.45

SPPrac (Win) 4.40 0.77 0.20 1.11 0.90 0.12
SPPrac (SparsityReal) 66.6 82.8 87.6 65.4 78.5 86.8

MC
SPIdeal 45.01 36.90 2.83 43.96 35.43 5.28

SPPrac (Win) 48.57 42.51 15.89 46.24 41.62 18.82
SPPrac (SparsityReal) 70.0 80.0 90.0 70.1 79.6 89.6

Table 7: Summary of Win Rate on AlpacaEval 2.0

Figure 5: All results for kernel speed.

D Theoretical Analysis Details

D.1 Notation

Notation Explanation

dm dmodel

di dinter
dr drank
s int(dinter × k)
cact act FLOPs (e.g. SiLU ≈ 5)

Table 8: Notation Used in Theoretical Analysis

D.2 heoretical FLOPs Analysis

Method Compute Explanation

Dense
6 dm di
+ cact di
+ di

Full GEMV × 3
Full σ
Full ⊙

CATS

2 dm di
+ cact di
+ 2 di
+ 2 dm s
+ s
+ 2 dm s

Full GEMV Wgate

Full σ
Apply abs and THLD
Sparse GEMV Wup

Sparse ⊙
Sparse GEMV Wdown

M-COUNTDOWN

2 dm di
+ 2 di
+ 2 dm s
+ cact s
+ s
+ 2 dm s

Full GEMV Wup

Apply abs and THLD
Sparse GEMV Wgate

Sparse σ
Sparse ⊙
Sparse GEMV Wdown

D-COUNTDOWN

2 dm dr
+ 2 dr di
+ di
+ 4 dm s
+ cact s
+ s
+ 2 dm s

Low-rank GEMV θA
Low-rank GEMV θB
Apply THLD
Sparse GEMV Wgate,Wup

Sparse σ
Sparse ⊙
Sparse GEMV Wdown

Table 9: Comparison of Theoretical FLOPs Across
Methods

D.3 Theoretical Memory Traffic Analysis

Method Mem. R/W Explanation

Dense

2 dm di
+2 dm
+2 di
+ di
+ di
+2 di
+ di
+ dm di
+ di
+ dm

Read Full Wup,Wgate

Read x× 2
Write gate, up
Read gate
Write act_gate
Read act_gate, up
Write inter
Read Full Wdown

Read inter
Write y

CATS

dm di
+ dm
+ di
+ di
+ di
+ di
+ di
+ di
+ di
+ dm s
+ dm
+ s
+ di
+ di
+ dm s
+ di
+ dm

Read Full Wgate

Read x
Write gate
Read gate
Write act_gate
Read act_gate
Write abs_act_gate
Read abs_act_gate
Write mask
Read Sparse Wup

Read x
Read Sparse act_gate
Read mask
Write inter
Read Sparse Wdown

Read inter
Write y

28406

Method Mem. R/W Explanation

M-Countdown

dm di
+ dm
+ di
+ di
+ di
+ di
+ di
+ dm s
+ dm
+ s
+ di
+ di
+ dm s
+ di
+ dm

Read Full Wup

Read x
Write up
Read up
Write abs_up
Read abs_up
Write mask
Read Sparse Wgate

Read x
Read Sparse up
Read mask
Write inter
Read Sparse Wdown

Read inter
Write y

D-Countdown

dm dr
+ dm
+ dr
+ dr di
+ dr
+ di
+ di
+ di
+2 dm s
+ dm
+ di
+ di
+ dm s
+ di
+ dm

Read θA
Read x
Write latent
Read θB
Read latent
Write ŝ
Read ŝ
Write mask
Read Sparse Wup,Wgate

Read x
Read mask
Write inter
Read Sparse Wdown

Read inter
Write y

Table 10: Comparison of Theoretical Memory Traffic
Across Methods

28407

Sparsity Method ARC-C TFQA HS ARC-E PIQA WG OBQA GSM8K

Llama-3.1-8B-Instruct

0.0 DENSE 0.520 0.367 0.590 0.819 0.800 0.737 0.336 0.760

0.7

DEJAVU 0.292 0.229 0.272 0.445 0.553 0.503 0.218 0.000
CATS 0.453 0.343 0.523 0.754 0.739 0.653 0.298 0.003

M-COUNTDOWN 0.493 0.372 0.568 0.784 0.776 0.695 0.330 0.544
D-COUNTDOWN 0.509 0.370 0.592 0.812 0.795 0.727 0.332 0.688

0.8

DEJAVU 0.282 0.231 0.273 0.440 0.557 0.511 0.228 0.000
CATS 0.358 0.326 0.428 0.651 0.676 0.582 0.278 0.000

M-COUNTDOWN 0.458 0.343 0.534 0.759 0.748 0.661 0.314 0.288
D-COUNTDOWN 0.502 0.356 0.585 0.809 0.789 0.713 0.334 0.605

0.9

DEJAVU 0.296 0.230 0.273 0.455 0.557 0.530 0.236 0.000
CATS 0.293 0.252 0.303 0.495 0.574 0.534 0.242 0.000

M-COUNTDOWN 0.411 0.304 0.430 0.649 0.676 0.613 0.286 0.001
D-COUNTDOWN 0.484 0.330 0.548 0.776 0.755 0.680 0.312 0.313

Qwen2.5-14B-Instruct

0.0 DENSE 0.608 0.517 0.657 0.861 0.817 0.758 0.364 0.807

0.7

DEJAVU 0.336 0.318 0.365 0.612 0.616 0.533 0.254 0.000
CATS 0.488 0.443 0.585 0.777 0.729 0.629 0.318 0.043

M-COUNTDOWN 0.573 0.488 0.638 0.829 0.792 0.704 0.352 0.776
D-COUNTDOWN 0.588 0.518 0.654 0.850 0.801 0.736 0.364 0.770

0.8

DEJAVU 0.340 0.322 0.357 0.609 0.619 0.554 0.258 0.000
CATS 0.410 0.371 0.472 0.683 0.632 0.568 0.284 0.000

M-COUNTDOWN 0.532 0.476 0.614 0.813 0.743 0.670 0.352 0.681
D-COUNTDOWN 0.579 0.488 0.644 0.837 0.799 0.716 0.360 0.751

0.9

DEJAVU 0.358 0.333 0.369 0.612 0.621 0.531 0.256 0.000
CATS 0.356 0.327 0.385 0.619 0.621 0.547 0.260 0.000

M-COUNTDOWN 0.468 0.421 0.525 0.736 0.686 0.589 0.304 0.100
D-COUNTDOWN 0.512 0.436 0.607 0.801 0.756 0.648 0.312 0.371

gemma-2-9b-it

0.0 DENSE 0.632 0.433 0.597 0.856 0.812 0.761 0.404 0.663

0.7

DEJAVU 0.339 0.246 0.300 0.596 0.590 0.532 0.276 0.000
CATS 0.575 0.412 0.559 0.840 0.755 0.680 0.348 0.565

M-COUNTDOWN 0.605 0.421 0.592 0.849 0.793 0.726 0.374 0.632
D-COUNTDOWN 0.626 0.417 0.600 0.854 0.800 0.750 0.384 0.649

0.8

DEJAVU 0.346 0.246 0.296 0.599 0.581 0.548 0.262 0.000
CATS 0.490 0.366 0.486 0.788 0.696 0.604 0.328 0.105

M-COUNTDOWN 0.583 0.408 0.582 0.842 0.767 0.707 0.360 0.610
D-COUNTDOWN 0.604 0.421 0.599 0.851 0.796 0.728 0.374 0.624

0.9

DEJAVU 0.356 0.246 0.303 0.616 0.573 0.523 0.264 0.000
CATS 0.364 0.242 0.310 0.617 0.589 0.537 0.278 0.000

M-COUNTDOWN 0.534 0.383 0.517 0.799 0.727 0.648 0.344 0.438
D-COUNTDOWN 0.578 0.410 0.572 0.833 0.777 0.676 0.352 0.524

phi-4

0.0 DENSE 0.558 0.404 0.632 0.814 0.808 0.766 0.338 0.923

0.7

DEJAVU 0.387 0.311 0.348 0.655 0.626 0.587 0.266 0.000
CATS 0.536 0.400 0.595 0.794 0.791 0.696 0.304 0.807

M-COUNTDOWN 0.533 0.384 0.616 0.800 0.796 0.733 0.334 0.888
D-COUNTDOWN 0.554 0.411 0.630 0.809 0.807 0.752 0.332 0.916

0.8

DEJAVU 0.409 0.333 0.354 0.655 0.632 0.585 0.270 0.000
CATS 0.516 0.397 0.539 0.771 0.760 0.644 0.298 0.351

M-COUNTDOWN 0.503 0.386 0.594 0.792 0.778 0.715 0.330 0.767
D-COUNTDOWN 0.552 0.408 0.622 0.807 0.810 0.755 0.340 0.898

0.9

DEJAVU 0.392 0.317 0.357 0.640 0.630 0.566 0.266 0.000
CATS 0.426 0.356 0.414 0.676 0.672 0.591 0.280 0.000

M-COUNTDOWN 0.479 0.370 0.524 0.759 0.728 0.654 0.296 0.287
D-COUNTDOWN 0.529 0.399 0.601 0.798 0.789 0.695 0.318 0.827

Table 11: SPIdeal scores compared to Dense across all downstream tasks. Dense scores are in bold, as well as the
highest score for each task within each sparsity level.

28408

Sparsity Method SparsityReal ARC-C TFQA HS ARC-E PIQA WG OBQA GSM8K

Llama-3.1-8B-Instruct

0.7
CATS 0.684 0.461 0.355 0.549 0.778 0.764 0.683 0.316 0.127

M-COUNTDOWN 0.709 0.484 0.375 0.574 0.788 0.778 0.708 0.310 0.547
D-COUNTDOWN 0.705 0.422 0.318 0.373 0.748 0.714 0.663 0.298 0.002

0.8
CATS 0.784 0.420 0.322 0.495 0.718 0.721 0.624 0.296 0.000

M-COUNTDOWN 0.806 0.460 0.361 0.549 0.770 0.757 0.680 0.322 0.322
D-COUNTDOWN 0.739 0.382 0.306 0.388 0.688 0.673 0.621 0.292 0.003

0.9
CATS 0.902 0.299 0.273 0.323 0.521 0.607 0.537 0.238 0.000

M-COUNTDOWN 0.895 0.416 0.321 0.471 0.711 0.721 0.620 0.304 0.009
D-COUNTDOWN 0.843 0.349 0.285 0.345 0.628 0.635 0.593 0.260 0.000

Qwen2.5-14B-Instruct

0.7
CATS 0.698 0.518 0.460 0.612 0.805 0.761 0.660 0.336 0.293

M-COUNTDOWN 0.719 0.590 0.509 0.640 0.838 0.792 0.712 0.358 0.767
D-COUNTDOWN 0.678 0.513 0.426 0.536 0.798 0.748 0.668 0.322 0.197

0.8
CATS 0.802 0.472 0.421 0.551 0.754 0.712 0.627 0.284 0.000

M-COUNTDOWN 0.804 0.553 0.492 0.625 0.826 0.769 0.669 0.354 0.704
D-COUNTDOWN 0.827 0.454 0.394 0.468 0.740 0.693 0.615 0.292 0.000

0.9
CATS 0.906 0.347 0.350 0.393 0.631 0.616 0.527 0.258 0.000

M-COUNTDOWN 0.889 0.492 0.450 0.580 0.794 0.727 0.632 0.320 0.287
D-COUNTDOWN 0.893 0.434 0.384 0.429 0.689 0.669 0.605 0.282 0.000

gemma-2-9b-it

0.7
CATS 0.695 0.580 0.427 0.567 0.843 0.770 0.693 0.368 0.593

M-COUNTDOWN 0.685 0.608 0.431 0.598 0.854 0.801 0.745 0.386 0.633
D-COUNTDOWN 0.689 0.567 0.403 0.493 0.821 0.751 0.702 0.364 0.340

0.8
CATS 0.806 0.542 0.392 0.501 0.811 0.729 0.615 0.346 0.083

M-COUNTDOWN 0.779 0.596 0.412 0.589 0.847 0.788 0.712 0.370 0.618
D-COUNTDOWN 0.755 0.564 0.401 0.506 0.819 0.758 0.702 0.374 0.381

0.9
CATS 0.911 0.340 0.258 0.306 0.617 0.586 0.514 0.262 0.000

M-COUNTDOWN 0.875 0.573 0.395 0.554 0.829 0.761 0.686 0.360 0.544
D-COUNTDOWN 0.853 0.529 0.383 0.492 0.806 0.747 0.665 0.354 0.187

phi-4

0.7
CATS 0.675 0.539 0.417 0.613 0.801 0.795 0.724 0.322 0.856

M-COUNTDOWN 0.707 0.540 0.393 0.620 0.804 0.796 0.736 0.332 0.894
D-COUNTDOWN 0.687 0.471 0.368 0.485 0.750 0.733 0.685 0.294 0.208

0.8
CATS 0.771 0.525 0.390 0.587 0.795 0.786 0.673 0.300 0.675

M-COUNTDOWN 0.799 0.527 0.381 0.607 0.793 0.784 0.715 0.334 0.817
D-COUNTDOWN 0.815 0.418 0.343 0.438 0.707 0.692 0.657 0.268 0.036

0.9
CATS 0.889 0.458 0.360 0.460 0.713 0.692 0.605 0.294 0.000

M-COUNTDOWN 0.894 0.498 0.386 0.563 0.777 0.750 0.698 0.316 0.450
D-COUNTDOWN 0.895 0.408 0.294 0.404 0.674 0.668 0.616 0.270 0.000

Table 12: SPPrac scores compared across all downstream tasks. Bold indicates the highest score at each sparsity
level for each task.

28409

