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Abstract

Reward engineering is one of the key
challenges in Reinforcement Learning (RL).
Preference-based RL effectively addresses this
issue by learning from human feedback. How-
ever, it is both time-consuming and expensive
to collect human preference labels. In this
paper, we propose a novel Vision-Language
Preference learning framework, named VLP,
which learns a vision-language preference
model to provide feedback for embodied manip-
ulation tasks. To achieve this, we define three
types of language-conditioned preferences and
construct a vision-language preference dataset,
which contains versatile implicit preference or-
ders. The model learns to extract language-
related features, and then serves as a predictor
in various downstream tasks. The policy can
be learned according to the annotated labels via
reward learning or direct policy optimization.
Extensive empirical results on simulated em-
bodied manipulation tasks demonstrate that our
method provides accurate preferences and gen-
eralizes to unseen tasks and unseen language
instructions, outperforming the baselines by a
large margin and shifting the burden from con-
tinuous, per-task human annotation to one-time,
per-domain data collection.

1 Introduction

Reinforcement Learning (RL) has made great
achievements recent years, including board
games (Silver et al., 2017, 2018), autonomous
driving (Kiran et al., 2021; Zhou et al., 2021),
and robotic manipulation (Kober et al., 2013;
Andrychowicz et al., 2020; Chen et al., 2022; Sun
et al., 2024b). However, one of the key chal-
lenges to apply RL algorithms is reward engineer-
ing. First, designing an accurate reward function
requires large amount of expert knowledge. Sec-
ond, the agent might hack the designed reward
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function (Hadfield-Menell et al., 2017), obtaining
high returns without completing the task. Also, it
is difficult to obtain reward functions for subjective
human objectives.

To address the above issues, a variety of works
leverage Vision-Language Models (VLMs) to pro-
vide multi-modal rewards for downstream policy
learning (Nair et al., 2023; Ma et al., 2023a; Ro-
camonde et al., 2024). However, the reward labels
produced in these works are often of high variance
and noisy (Ma et al., 2023a). Preference-based
RL is more promising way that learns from human
preferences over trajectory pairs (Christiano et al.,
2017; Lee et al., 2021). A line of works (Chris-
tiano et al., 2017; Kim et al., 2023) learns a reward
model from human labels and then optimizes the
policy according to the reward model. Another line
of works (Hejna and Sadigh, 2023; Hejna et al.,
2024) directly optimizes the policy according to
the labels.

However, preference-based RL requires either
querying a large number of expert feedback on-
line (Lee et al., 2021; Park et al., 2022) or a labeled
offline preference dataset (Kim et al., 2023; Hejna
et al., 2024), which is quite time-consuming and
expensive. As the reasoning abilities of Large Lan-
guage Models (LLMs) improve significantly (Ope-
nAI, 2024; Liu et al., 2025), previous methods pro-
pose to use LLMs to provide labels (Wang et al.,
2025), but the generated labels are not guaranteed
to be accurate and it is assumed to have access to
the environment information that is usually hard to
obtain in practical scenarios.

In this paper, we propose a Vision-Language
Preference alignment framework, named VLP, to
provide preference feedback for video pairs given
language instructions. Specifically, we collect
a video dataset from various policies under aug-
mented language instructions, which contains im-
plicit preference relations based on the trajectory
optimality and the vision-language correspondence.
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Figure 1: The overall framework of our method.

Then, we define language-conditioned preferences
and propose a novel vision-language alignment
architecture to learn a trajectory-wise preference
model for labeling, which consists of a video en-
coder, a language encoder, and a cross-modal en-
coder to facilitate vision-language alignment. The
preference model is optimized by intra-task and
inter-task preferences that are implicitly contained
in the dataset. During inference, VLP provides
labels for target tasks and can even generalize to
unseen tasks and unseen language instructions. The
labels given by VLP are employed for various
downstream preference optimization algorithms to
facilitate policy learning.

In summary, our contributions are as follows:
(i) We propose a vision-language preference align-
ment framework, which learns a vision-language
preference model to provide feedback for embod-
ied manipulation tasks. (ii) We propose language-
conditioned preferences and construct a vision-
language preference dataset, which contains videos
with language instructions and implicit language-
conditioned relations. (iii) Extensive empirical re-
sults on simulated embodied manipulation tasks
demonstrate that our method provides accurate la-
bels and generalizes to unseen tasks and unseen
language instructions, outperforming the baselines
by a large margin.

2 Related Work

Vision-Language Models for Reinforcement
Learning. Our work is related to the literature on
VLM rewards and preferences for embodied manip-
ulation tasks (Radford et al., 2021; Nair et al., 2023;
Ma et al., 2023a; Rocamonde et al., 2024; Wang
et al., 2024; Liu et al., 2024a). These methods can
be divided into three categories: (i) representation-
based pre-training, (ii) zero-shot inference, and (iii)

downstream fine-tuning. For representation-based
approaches, R3M (Nair et al., 2023) is pre-trained
on the Ego4D dataset (Grauman et al., 2022) to
learn useful representations for downstream tasks.
LIV (Ma et al., 2023b), which extends VIP (Ma
et al., 2023b) to multi-modal representations, is
pre-trained on EpicKitchen dataset (Damen et al.,
2018), and can also be fine-tuned on target do-
main. For zero-shot inference methods, VLM-
RM (Rocamonde et al., 2024) utilizes CLIP (Rad-
ford et al., 2021) as zero-shot vision-language re-
wards. RoboCLIP (Sontakke et al., 2023) uses
S3D (Xie et al., 2018), which is pre-trained on
HowTo100M dataset (Miech et al., 2019), as video-
language model to compute vision-language re-
ward with a single demonstration (a video or a
text). FuRL (Fu et al., 2024a) leverages pre-trained
VLMs to provide rewards for RL agents. Tem-
poralOT (Fu et al., 2024b) uses optimal transport
to provides rewards by aligning trajectories with
demonstration trajectories. RL-VLM-F (Wang
et al., 2024) leverages Gemini-Pro (Team et al.,
2023) and GPT-4V (OpenAI, 2023) for zero-shot
preference feedback. CriticGPT (Liu et al., 2024a)
is the representative method of (iii), which fine-
tunes multimodal LLMs on a instruction-following
dataset, and utilizes the tuned model to provide
preference feedback for downstream policy learn-
ing. VLP differs from these approaches that we do
not suffer from burdensome training of (i) and (iii),
showing great computing efficiency. And VLP
learns more embodied manipulation knowledge
compared with VLMs pre-trained on natural image-
text data.

Preference-based Reinforcement Learning.
Preference-based RL is a promising framework for
aligning the agent with human values. However,
feedback efficiency is a crucial challenge in
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preference-based RL, with multiple recent studies
striving to tackle. To improve the feedback
efficiency, previous works focus on unsuper-
vised pre-training (Lee et al., 2021), estimating
pseudo labels using reward confidence (Park
et al., 2022), employing reward uncertainty for
exploration (Liang et al., 2022), Q-function-aware
reward learning (Liu et al., 2022; Bai et al.,
2025), and meta-learning to pre-train the reward
model (Hejna III and Sadigh, 2023). Recently,
a growing number of studies focus on offline
preference-based RL with the population of
offline RL (Levine et al., 2020; Kostrikov et al.,
2022; Lyu et al., 2024, 2025). Several works
explore learning policies from preferences without
a reward function (Kang et al., 2023; Hejna
and Sadigh, 2023; Hejna et al., 2024). For
network architecture, PT (Kim et al., 2023)
introduces a Transformer-based architecture for
reward modeling, while FTB (Zhang et al., 2024)
leverages a diffusion model for better trajectory
generation. To reduce preference labeling costs,
PEARL (Liu et al., 2024b) proposes cross-task
preference alignment to transfer preference labels
between tasks. VLP addresses the labeling cost
by learning a vision-language preference model
via vision-language alignment, thereby providing
generalized preferences to novel tasks.

3 Background

Problem Setting. We formulate the RL prob-
lem as a Markov Decision Process (MDP) (Sut-
ton and Barto, 2018) represented as a tuple M =
(S,A,P,R, γ, p0), where S is the state space, A
is the action space, P : S × A → S is the tran-
sition function, R : S × A → R is the reward
function, γ ∈ [0, 1) is the discount factor, and
p0 : S → [0, 1] is the initial state distribution. At
timestep t, the agent observes a state st and se-
lects an action at based on a policy π(at|st). Then,
the agent receives a reward rt from the environ-
ment, and the agent transits to st+1 according to
the transition function. The agent’s goal is to find
a policy that maximizes the expected cumulative
reward E

[∑∞
t=0 γ

trt
]
. In multi-task setting, for a

task T ∼ p(T ), a task-specific MDP is represented
as MT = (ST ,A,PT ,RT , γ, pT0 ).

Preference-based RL. Preference-based RL dif-
fers from RL in that it is assumed to have no access
to the ground-truth rewards (Christiano et al., 2017;
Lee et al., 2021). In preference-based RL, human

teachers provide preference labels over trajectory
pairs, and a reward model is learned from these
preferences. Formally, a trajectory segment σ of
length H is represented as {s1, a1, . . . , sH , aH}
and a segment pair is (σ1, σ2). The preference
label y ∈ {0, 1, 0.5} denotes which segment is pre-
ferred, where 0 indicates σ1 is preferred (i.e., σ1 ≻
σ2), 1 indicates σ2 is preferred (i.e., σ2 ≻ σ1),
and 0.5 represents two segments are equally pre-
ferred. Previous preference-based RL approaches
construct a preference predictor with the reward
model r̂ψ via Bradley-Terry model (Bradley and
Terry, 1952):

Pψ[σ
1 ≻ σ2] =

exp
(∑H

t=1 r̂ψ(s
1
t , a

1
t )
)

∑2
k=1 exp

(∑H
t=1 r̂ψ(s

k
t , a

k
t )
) ,

(1)
where Pψ[σ

1 ≻ σ2] denotes the probability that
σ1 is preferred over σ2 predicted by current re-
ward model r̂ψ. Assume we have a dataset with
preference labels D = {(σ1, σ2, y)}, the reward
learning process can be formulated as a classifica-
tion problem using cross-entropy loss (Christiano
et al., 2017):

Lce = − E
(σ1,σ2,y)∼D

[
(1− y) logPψ[σ

1 ≻ σ2]

+ y logPψ[σ
2 ≻ σ1]

]
.

(2)
By optimizing Eq. (2), the reward model is aligned
with human preferences, providing reward signals
for policy learning.

4 Method

In this section, we first present the overall frame-
work of VLP, including model architecture and the
vision-language preference dataset. Then, we in-
troduce language-conditioned preferences and the
detailed algorithm for vision-language preference
learning, which learns a trajectory-wise preference
model via vision-language preference alignment.

4.1 Model and Dataset
The goal of VLP is to learn a generalized prefer-
ence model capable of providing preferences for
novel embodied tasks. To achieve this, the prefer-
ence model receives videos and language as inputs,
where videos serve as universal representations of
agent trajectories and language act as universal
and flexible instructions. To obtain high-quality
representations of these two modalities, we utilize
CLIP (Radford et al., 2021), which is pre-trained
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Figure 2: (a) Trajectory videos and language instruction are fed into the preference model to obtain a trajectory-wise
preference score. (b) The cross-modal transformer obtains language-related video features and video-related
language features by cross-attention mechanism.

on extensive image-text data, as our video and lan-
guage encoders. The extracted video and language
features are fed into to a cross-modal transformer
for cross-modal attention interaction to capture
video features associated with the language and lan-
guage features related to the video. These features
are subsequently utilized for predicting preference
scores in vision-language preference learning. The
overall framework is illustrated in Figure 2.

Model Architecture. A video v is represented
as a sequence of video frames, i.e., v =
{v1, v2, . . . , v|v|}, where vi ∈ RH×W×3, H and
W are the height and width of each video frame,
and |v| denotes the number of video frames. The
video encoder is employed to obtain the video to-
kens z = {z1, z2, . . . , z|v|}, where zi ∈ RM×Dv ,
M = H/p×W/p is the number of visual tokens,
p is the patch size of CLIP ViT, and Dv is the di-
mension of the visual tokens. Given language input
l, the language tokens u ∈ RN×Dl are obtained via
the language encoder, where N is the number of
language tokens, and Dl is the dimension of the
language tokens.

With video tokens z and language tokens u, a
cross-modal encoder is employed to facilitate multi-
modal feature learning, making tokens of different
modalities fully fuse with each other. Video tokens
and language tokens are separately inputted into
the self-attention layers. Then, utilizing the output
video tokens as queries and the output language to-
kens as keys and values, the cross-attention layer, as
shown in Figure 2(b), generates language features
that are closely related to the input video. Simi-
larly, the cross-attention layer produces language-
related video features. The multi-modal tokens are
averaged along the first dimension and then con-
catenated as w ∈ RDw , where Dw = Dv + Dl.
These new tokens are fed into the final Multi-layer

Perceptron (MLP) for vision-language preference
prediction, outputting a trajectory-level preference
score.

Vision-Language Preference Dataset. While
there are open-sourced embodied datasets with lan-
guage instructions (Mu et al., 2023), there lacks
a multi-modal preference dataset for generalized
preference learning. To this end, we construct
MTVLP, a multi-task vision-language preference
dataset built upon Meta-World (Yu et al., 2020). To
that end, we consider the following aspects: (i) tra-
jectories of various optimality levels should be col-
lected to define clear preference relations within
each task; (ii) each trajectory pair should be accom-
panied with a corresponding language instruction
for learning language-conditioned preferences.

It is easy to describe the optimality of expert
trajectories and random trajectories because it is
easy to understand the agent’s behavior in these
trajectories. However, it is challenging to define a
medium-level policy without explicit rewards. For-
tunately, we find most robot tasks can be divided
into multiple stages, where each stage completes a
part of the overall task. Thus, we define a medium-
level policy as successfully completing half of the
stages of the task. For example, we divided the
task of opening the drawer into two subtasks: (i)
moving and grasping the drawer handle and (ii)
pulling the drawer handle. A medium-level policy
only completes the first subtask.

We leverage a scripted policy for each task to roll
out trajectories of three optimality levels: expert,
medium, and random. For expert-level trajecto-
ries, we employ the scripted policy with Gaussian
noise to interact. The medium-level trajectories are
also collected with the scripted policy but are ter-
minated when the half of subtasks are completed.
As for random-level trajectories, actions are ran-
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domly sampled from a uniform distribution during
rollout. For the corresponding language, we ob-
tain diverse language instructions to improve the
generalization abilities of our model by aligning
one video with multiple similar language instruc-
tions. Following Adeniji et al. (2023), we query
GPT-4V (OpenAI, 2023) to generate language in-
structions with various verb structure examples and
synonym nouns of each task. Details of collecting
trajectories and language instructions for each task
are shown in Appendix C.

4.2 Vision-Language Preference Alignment
Language-conditioned Preferences. Previous
RLHF methods define trajectory preferences ac-
cording to a single task goal. However, this uni-
modal approach struggles to generalize to new
tasks due to its rigid preference definition. In
contrast, by integrating language as a condition,
we can establish more flexible preference defini-
tions. Consider two videos, v11 and v12 , along with
a language instruction l1 from task T 1, and an-
other video v2 paired with a language instruction
l2 from task T 2. We categorize three forms of
language-conditioned preferences: Intra-Task Pref-
erence (ITP), Inter-Language Preference (ILP), and
Inter-Video Preference (IVP), as shown in Table 1.

Table 1: Three types of language-conditioned prefer-
ences.

Type Videos Language Criterion

ITP v11, v
1
2 ∼ T 1 l1 ∼ T 1 optimality

ILP v11, v
1
2 ∼ T 1 l2 ∼ T 2 equally preferred

IVP v11 ∼ T 1, v21 ∼ T 2 l1 ∼ T 1 v11 ≻ v12|l1

ITP corresponds to the conventional case of pref-
erence relation within the same task (Christiano
et al., 2017), where the videos and language instruc-
tions are from the same task, and the preference
relies on the optimality of videos w.r.t. the task
objective. ILP considers a scenario where the lan-
guage instruction differs from the task of the videos.
Thus, both videos are equally preferred under this
language condition. IVP deals with preferences of
two videos from different tasks, with the language
instruction from either task. It is straightforward
to define the preference that the vision-language
come from the same task is preferred to the other
pair.

This framework allows for the establishment
of universal and adaptable preference relations,
wherein videos from the same task can yield vary-

ing preference labels depending on the language
condition. Notably, even random trajectories paired
with language instructions from a specific task is
preferred to expert trajectories from other tasks.

Vision-Language Preference Learning. With
language-conditioned preferences defined above,
we further introduce our vision-language prefer-
ence learning algorithm. We aim to develop a
vision-language preference model that predicts the
preferred video under specific language conditions.
However, directly inputting two videos and a lan-
guage instruction into the model would affect com-
putational efficiency. So, we consider the conven-
tional way to learn from preference labels (Chris-
tiano et al., 2017), i.e., first constructing preference
predictors via Bradley-Terry model (Bradley and
Terry, 1952). Previous work has revealed the ad-
vantages of learning a preference model over a
reward model (Zhang et al., 2024). Based on these
insights, our proposed preference model fψ(v|l)
takes a video and a language instruction as inputs
and outputs a scalar preference score. Then the
preference label can be obtained by comparing pref-
erence scores of two videos with a given language
instruction, i.e., v1 ≻ v2|l if fψ(v1|l) > fψ(v2|l).

Given videos v1 representing σ1 and v2 repre-
senting σ2, the language-conditioned preference
distribution Pψ[v1 ≻ v2|l] is the probability that σ1
is preferred over σ2 under the condition l:

Pψ[v1 ≻ v2|l] =
exp

(
fψ(v1|l)

)
∑2

k=1 exp
(
fψ(vk|l)

)) . (3)

Given tasks T 1 and T 2, we consider the follow-
ing objectives aligned with language-conditioned
preference relations: (a) Learning Intra-Task Pref-
erence: Within the same task, the video that better
follows l should be preferred, analogous to previ-
ous RLHF objective (Christiano et al., 2017); (b)
Learning Inter-Language Preference: Under the
language condition of task T 2, videos from task
T 1 are equally preferred; (c) Learning Inter-Video
Preference: Under the language condition of task
T 1, the video from T 1 is preferred over the video
from T 2.

During vision-language preference learn-
ing, a task T is sampled from all training
tasks, followed by sampling a minibatch
{vb1, vb2, v ̸=b, lb, l ̸=b, yITP, yILP, yIVP}1:B . Here, the
superscript b indicates data sampled from task T
in the minibatch, while ̸=b denotes data from other
tasks. yITP, yILP, yIVP are the ground-truth labels
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of ITP, ILP, and IVP, respectively. The total loss of
vision-language preference learning is as follows:

Lce = −
∑

b∈B

[
CE

(
Pψ[v

b
1 ≻ vb2|lb], yITP

)

︸ ︷︷ ︸
(a)

+ λ1CE
(
Pψ[v

b
1 ≻ vb2|l ̸=b], yILP

)

︸ ︷︷ ︸
(b)

+ λ2CE
(
Pψ[v

b
1 ≻ v ̸=b|lb], yIVP

)

︸ ︷︷ ︸
(c)

+ λ2CE
(
Pψ[v

b
2 ≻ v ̸=b|lb], yIVP

)

︸ ︷︷ ︸
(c)

]
,

(4)
where CE(·, ·) is the cross-entropy loss, and λ1 and
λ2 are balance weights of learning ILP and IVP. By
optimizing Eq. (4), the vision-language preference
model outputs trajectory-level preference scores
aligned with the language-conditioned preference
relations.

The difference between VLP and prior meth-
ods is not only the preference loss, but the over-
all framework of language-conditioned preference
learning. Unlike previous preference learning meth-
ods that rely on single-modality inputs (e.g., trajec-
tory preferences defined solely based on task goals),
our framework integrates language as a flexible
condition to define preferences, offering greater
generalization capacity.

The inclusion of ILP and IVP in our training
data serves critical roles in enhancing the general-
ization and robustness of our model. ILP allows
our model to learn to disregard language variations
when they do not impact the preference outcomes,
thus training the model to focus on task-relevant
features rather than linguistic discrepancies. On the
other hand, IVP facilitates the model’s ability to
generalize across different tasks by learning to asso-
ciate videos with their corresponding task-specific
language instructions effectively. This capability
is crucial when the model encounters new tasks
or language contexts, as it must discern relevant
from irrelevant information to make accurate pref-
erence predictions. By training with both ILP and
IVP, our model learns a more holistic understand-
ing of the task space, which not only improves its
performance on seen tasks but also enhances its
adaptability to new, unseen tasks or variations in
task descriptions, as evidenced by our experimental
results where the model demonstrated generaliza-
tion capabilities.

5 Experiments

In this section, we evaluate VLP on Meta-
World (Yu et al., 2020) and ManiSkill2 (Gu et al.,
2023) benchmark and aim to answer the following
questions:

• Q1: How do VLP labels compare with
scripted labels in offline RLHF? (Section 5.2)

• Q2: How does VLP compare with other
vision-language rewards approaches? (Sec-
tion 5.3)

• Q3: How does VLP generalize to unseen tasks
and language instructions? (Section 5.4)

5.1 Setup

Implementation Details. For Meta-World (Yu
et al., 2020), we evaluate VLP on the 5 test tasks,
including Button Press, Door Close, Drawer Close,
Faucet Close, and Window Open, while the other 45
tasks of Meta-World are used as training tasks and
this train-test proportion follows standard ML45
split. For ManiSkill2 (Gu et al., 2023), we selected
11 tasks and allocated 8 for training and 3 for test-
ing, balancing available resources with the need to
test cross-task transfer. For VLP implementation,
we use the pre-trained ViT-B/16 CLIP model (Rad-
ford et al., 2021) as our video encoder and language
encoder. The weights of learning ILP and IVP in
Eq. (4) are λ1 = 0.1, λ2 = 0.5, respectively. Ad-
ditional hyperparameters of VLP are detailed in
Table 8 in Appendix A. All experiments are con-
ducted on a single NVIDIA RTX 4090 GPU.

5.2 How do VLP labels compare with scripted
labels in offline RLHF?

Baselines. We evaluate VLP by combining it
with recent offline RLHF algorithms: (i) P-IQL
(Preference IQL), which first learns a reward model
from preferences and then learns a policy via
IQL (Kostrikov et al., 2022); (ii) IPL (Hejna and
Sadigh, 2023), which learns a policy without re-
ward learning by aligning the Q-function with pref-
erences; (iii) CPL (Hejna et al., 2024), which di-
rectly learns a policy using a contrastive objective
with maximum entropy principle, eliminating the
need for reward learning and RL.

Evaluation. For each evaluation task, we train
each RLHF method with scripted labels (Chris-
tiano et al., 2017; Lee et al., 2021) and VLP labels
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Table 2: Success rate of RLHF methods with scripted labels and VLP labels. The results are reported with mean
and standard deviation across five random seeds. The result of VLP is shaded and is bolded if it exceeds or
is comparable with that of RLHF approaches with scripted labels. MTVLP Acc. and Scripted Acc. denote the
accuracy of preference labels inferred by VLP compared with MTVLP labels and scripted labels, respectively.

Task P-IQL P-IQL+VLP IPL IPL+VLP CPL CPL+VLP Scripted Acc. MTVLP Acc.

Button Press 72.6 ± 7.1 90.1 ± 3.9 50.6 ± 7.9 56.0 ± 1.4 74.5 ± 8.2 83.9 ± 11.8 93.0 99.0
Door Close 79.2 ± 6.3 79.2 ± 6.3 61.5 ± 9.4 61.5 ± 9.4 98.5 ± 1.0 98.5 ± 1.0 100.0 100.0
Drawer Close 49.3 ± 4.2 64.9 ± 2.9 64.3 ± 9.6 63.2 ± 4.7 45.6 ± 3.5 57.5 ± 14.3 96.0 96.0
Faucet Close 51.1 ± 7.5 51.1 ± 7.5 45.4 ± 8.6 45.4 ± 8.6 80.0 ± 2.9 80.0 ± 2.9 100.0 100.0
Window Open 62.4 ± 6.4 69.7 ± 6.8 54.1 ± 6.7 61.4 ± 8.6 91.6 ± 1.7 99.1 ± 1.1 98.0 100.0

Average 62.9 71.0 55.2 57.5 78.0 83.8 97.4 99.0

Table 3: Preference label accuracy of VLP on Man-
iSkill2 test tasks.

Task VLP Acc.

LiftCube-v0 100.0
OpenCabinetDoor-v1 100.0
PushChair-v1 93.8

Average 97.9

(denoted as +VLP), respectively. Scripted prefer-
ence labels mean the preference labels computed
based on the ground-truth rewards (Christiano et al.,
2017; Lee et al., 2021). The number of preference
labels is set to 100 for all tasks. The evaluation is
conducted over 25 episodes every 5000 steps. Fol-
lowing (Hejna et al., 2024), we average the results
of 8 neighboring evaluations and take the maxi-
mum value among all averaged values as the result.
Detailed hyperparameters of RLHF algorithms can
be found in Appendix A.

To examine the effects of VLP on more
challenging tasks, we also conduct exper-
iments on ManiSkill2 (Gu et al., 2023)
benchmark. We leverage MoveBucket-v1,
OpenCabinetDrawer-v1, PegInsertionSide-v0,
PickCube-v0, PickSingleEGAD-v0, PlugCharger-
v0, StackCube-v0, and TurnFaucet-v0 as
training tasks and evaluate VLP on LiftCube-v0,
OpenCabinetDoor-v1, PushChair-v1 tasks.

Results. Experimental results in Table 2 demon-
strate that VLP labels predicted by our trained
model are accurate compared with scripted labels
and labels computed from preferences in MTVLP.
With VLP labels, the performance of P-IQL+VLP
and CPL+VLP is comparable with, and in some
cases, outperforms that with scripted labels on all
evaluation tasks. We hypothesize that the ground-
truth reward of Button Press, Drawer Close and

Window Open may not accurately represent the task
goal, which is also shown in previous works (Xie
et al., 2024; Ma et al., 2024; Sun et al., 2024a).
Table 3 summarizes the average VLP label accu-
racy on the three test tasks compared to scripted
labels and the results demonstrate the strong gener-
alization capabilities of VLP. It is noteworthy that
By aligning video and language modalities through
preference relations with language as conditions,
the predicted VLP labels directly represent how the
video reflects the language instruction. Therefore,
our method provides more accurate and preference
labels and can generalize to unseen tasks.

5.3 How does VLP compare with other
vision-language rewards approaches?

Baselines. We compare VLP with the follow-
ing VLM rewards baselines: (i) R3M (Nair
et al., 2023), which pre-trains visual representation
by time-contrastive learning and vision-language
alignment; (ii) VIP (Ma et al., 2023b), which pro-
vides generalized visual reward and representa-
tion for downstream tasks via value-implicit pre-
training; (iii) LIV (Ma et al., 2023a), which learns
vision-language rewards and representation via
multi-modal value pre-training; (iv) CLIP (Rad-
ford et al., 2021), which pre-trains by aligning
vision-language representation on a large-scale
image-text pairs dataset; (v) VLM-RM (Roca-
monde et al., 2024), which provides zero-shot
VLM rewards based on CLIP (Radford et al., 2021).
VLM-RM includes a hyperparameter α, which con-
trols the goal-baseline regularization strength. In
the evaluation, we denote the variant of α = 0.0
as VLM-RM (0.0) and the variant of α = 1.0
as VLM-RM (1.0). (vi) RoboCLIP (Sontakke
et al., 2023), which provides zero-shot VLM re-
wards using pre-trained video-language models and
a single demonstration (a video demonstration or a
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Table 4: Success rate of VLP (i.e., P-IQL trained with VLP labels) against IQL with VLM rewards. The results are
reported with mean and standard deviation across five random seeds. The result of VLP is shaded and the best
score of all methods is bolded.

Task R3M VIP LIV CLIP VLM-RM (0.0) VLM-RM (1.0) VLP

Button Press 10.1 ± 2.3 68.4 ± 6.4 56.3 ± 1.9 59.5 ± 6.1 60.3 ± 6.1 64.3 ± 8.4 90.1 ± 3.9

Door Close 70.9 ± 5.3 74.8 ± 9.5 43.3 ± 3.2 43.6 ± 3.9 45.8 ± 8.5 41.1 ± 3.4 79.2 ± 6.3

Drawer Close 46.6 ± 2.6 70.4 ± 4.5 61.8 ± 5.7 69.4 ± 4.1 69.4 ± 4.5 73.5 ± 5.4 64.9 ± 2.9

Faucet Close 25.7 ± 23.6 40.9 ± 8.0 42.2 ± 6.3 59.6 ± 7.5 60.1 ± 5.1 33.7 ± 15.3 51.1 ± 7.5

Window Open 39.0 ± 6.6 42.7 ± 11.3 33.8 ± 6.4 26.4 ± 2.0 23.9 ± 1.9 23.7 ± 4.9 69.7 ± 6.8

Average 38.5 59.4 47.5 51.7 51.9 47.3 71.0

Table 5: Success rate of VLP (i.e., P-IQL trained with VLP labels) against P-IQL with VLM preferences (denoted
with prefix P-). The results are reported with mean and standard deviation across five random seeds. The result of
VLP is shaded and the best score of all methods is bolded.

Task P-R3M P-VIP P-LIV P-CLIP P-VLM-RM (0.0) P-VLM-RM (1.0) RoboCLIP VLP

Button Press 84.7 ± 5.8 41.2 ± 3.9 61.7 ± 5.1 62.9 ± 6.2 72.8 ± 5.0 44.2 ± 4.2 56.4 ± 7.3 90.1 ± 3.9

Door Close 72.4 ± 11.5 54.2 ± 13.8 67.9 ± 6.3 53.3 ± 10.3 57.6 ± 2.9 45.7 ± 7.6 47.6 ± 6.7 79.2 ± 6.3

Drawer Close 59.6 ± 6.5 63.0 ± 3.7 45.5 ± 10.4 63.4 ± 3.2 62.7 ± 3.0 49.2 ± 6.9 73.0 ± 6.2 64.9 ± 2.9

Faucet Close 58.0 ± 4.5 51.1 ± 7.5 62.3 ± 7.2 60.2 ± 10.4 57.3 ± 7.0 51.3 ± 9.5 62.1 ± 6.3 51.1 ± 7.5

Window Open 27.3 ± 5.0 50.2 ± 1.8 22.2 ± 18.1 28.4 ± 3.2 33.2 ± 5.4 20.7 ± 2.3 28.1 ± 4.6 69.7 ± 6.8

Average 60.4 51.9 51.9 53.6 56.7 42.2 53.4 71.0

Table 6: The correlation coefficient of VLM rewards with ground-truth rewards and VLP labels with scripted
preference labels. Larger correlation means the predicted values are more correlated with the ground-truth.

Task R3M VIP LIV CLIP VLM-RM (0.0) VLM-RM (1.0) VLP

Button Press 0.313 0.204 -0.281 0.127 0.153 -0.082 0.581
Door Close 0.735 0.125 0.600 -0.309 -0.152 -0.492 1.000
Drawer Close -0.106 0.043 0.052 -0.151 -0.137 -0.031 0.438
Faucet Close 0.676 0.851 0.563 -0.301 -0.291 0.084 1.000
Window Open 0.411 0.725 -0.568 0.336 0.405 -0.333 0.571

Average 0.406 0.390 0.073 -0.060 -0.005 -0.171 0.718

language description) of the task.

Evaluation. We first evaluate our method with
the VLM baselines by directly training IQL with
VLM rewards. VLP is tested by training P-IQL
with VLP labels, and the experimental setting of
our method is the same as that of Section 5.2. We
further compare VLP with VLM preferences, i.e.,
using predicted VLM rewards to compute prefer-
ence labels for a fair comparison with our method.
However, RoboCLIP obtains scalar trajectory-level
rewards and we utilize them as trajectory return
for preference labels calculation. Implementation
details of IQL and VLM baselines can be found in
Appendix A.

Results. Results in Table 4 show that our method
exceeds the VLM baselines that train IQL from
VLM rewards by a large margin with an average

success rate of 71.0. As shown in Table 5, when the
VLM baselines are trained with preferences com-
puted by VLM rewards, our method still surpasses
the baselines. We further compute the preference
label accuracy of each method, detailed in Table 15.
The results show that VLP exceeds VLM baselines,
which do not learn relative relations of reward val-
ues.

Reward / Preference Correlation. To further in-
vestigate the advantages of VLP model compared
with VLM reward models, we compare the cor-
relation between VLM rewards with ground-truth
rewards and VLP labels with scripted preference
labels. Results in Table 6 indicate that VLP labels
exhibit a stronger correlation with scripted labels
compared with VLM rewards.
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Table 7: The generalization abilities of our method on 5 unseen tasks with different types of language instructions.
Acc. denotes the accuracy of preference labels inferred by VLP compared with ground-truth labels.

Metric Seen Phrase Description Correct Color Incorrect Color

ITP Acc. (↑) 97.4 95.8 97.0 97.0 97.0
IVP Acc. (↑) 91.7 90.5 91.9 91.9 91.8
ILP Loss (↓) 0.705 0.704 0.704 0.705 0.705
Average Loss (↓) 0.555 0.554 0.558 0.556 0.557

5.4 How does VLP generalize to unseen tasks
and language instructions?

Evaluation. We first evaluate how accurate 3
kinds of VLP labels are on the test tasks. We test
the preference model with phrases, descriptions,
and correct and incorrect object colors. Since the la-
bel of ILP is 0.5 (i.e., two segments are equally pre-
ferred), we compute ILP loss with the (b) term in
Eq. (4), i.e., −∑

b∈B CE
(
Pψ[v

b
1 ≻ vb2|l ̸=b], yILP

)
.

Performance of ITP and IVP are measured with
accuracy. Experimental details can be found in
Appendix A.

Results. Table 7 shows that VLP generalizes to
unseen language instructions on unseen tasks with
high ITP and IVP accuracy and low ILP loss. How-
ever, using unseen phrases as language conditions
leads to a performance drop, while unseen descrip-
tions have a slight negative impact on ITP but a
positive impact on IVP and ILP. We think the rea-
son is that phrases contain insufficient information
about completing the task, while descriptions con-
tain enough task information. VLP generalizes
well with suitable language information of tasks.
Also, VLP exhibits strong generalization abilities
on color.

6 Conclusion

In this paper, we propose VLP, a vision-language
preference learning framework providing general-
ized preference feedback for embodied manipula-
tion tasks. In our framework, we learn a vision-
language preference model via proposed language-
conditioned preference relations from the collected
vision-language preference dataset. Experimental
results on multiple simulated robotic manipulation
tasks demonstrate that our method exceeds previ-
ous VLM rewards approaches and predicts accurate
preferences compared with scripted labels. The
results also show our method generalizes well to
unseen tasks and unseen language instructions.

7 Limitations

In this paper, we focus on providing preferences for
robotic manipulation tasks. First, VLP is limited to
the tasks that can be specified via videos and lan-
guage instructions. While this covers a wide range
of robotic tasks, certain tasks cannot be fully ex-
pressed via videos and language, such as complex
assembly tasks requiring intricate spatial reason-
ing. Consequently, the risk of predicting incorrect
preferences grows for complex tasks that are diffi-
cult to express. Second, if the language instruction
lacks sufficient information of the task goal, the
risk of giving incorrect labels still grows, as shown
in Table 7. We do not see any potential risks of our
work.
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A Experimental Details

A.1 Tasks

The tasks used in the experiments are from the test
tasks of MTVLP. For Meta-World, ML45 defines
a standard split with 45 training tasks and 5 testing
tasks and we directly follow to this split propor-
tion. For ManiSkill2, due to resource constraints,
we collected 11 tasks and split them into 8 train-
ing and 3 testing tasks, ensuring diversity in task
difficulty. To evaluate the method across varying
levels of difficulty, we choose tasks with different
levels of complexity. For example, PushChair-v1 is
highly challenging, while LiftCube-v0 is easier, as
shown in Fig. 2 of Xie et al. (2024). This diversity
demonstrates the robustness of our method across
tasks of varying difficulty. Figure 3 shows the tasks
used in Meta-World and the task descriptions are
as follows:

• Button Press: The goal of the robotic arm is
to press the button. The initial position of the
arm is randomly sampled.

• Door Close: The goal of the robotic arm is to
close the door. The initial position of the arm
is randomly sampled.

• Drawer Close: The goal of the robotic arm is
to close the drawer. The initial position of the
arm is randomly sampled.

• Faucet Close: The goal of the robotic arm is
to close the faucet. The initial position of the
arm is randomly sampled.

• Window Open: The goal of the robotic arm is
to open the window. The initial position of the
arm is randomly sampled.

A.2 Implementation Details

We implement our method based on the pub-
licly released repository of LAPP1 and the overall
framework is illustrated in Figure 2. Following
LAPP (Xie et al., 2023), we use a pre-trained ViT-
B/16 CLIP (Radford et al., 2021) model as our
video encoder and language encoder. To achieve
efficient learning, we uniformly sample 8 frames
to represent each video. The detailed hyperparam-
eters of our method are shown in Table 8. Train-
ing a VLP model takes about 6 hours on a single
NVIDIA RTX 4090 GPU with 12 CPU cores and

1https://github.com/amberxie88/lapp

120 GB memory, without costly pre-training pro-
cess like VLM reward or VLM preference meth-
ods (Nair et al., 2023; Ma et al., 2023b,a).

Table 8: Hyperparameters of VLP.

Hyperparameter Value

Prediction head (512, 256)
Number of self-attention layers 2
Number of attention heads 16
Batch size 16
Optimizer Adam
Learning rate 3e-5
Learning rate decay cosine decay
Weight decay 0.1
Dropout 0.1
Number of epochs 15k
Number of negative samples 4
Number of video frames 8
Weight of ILP loss λ1 0.1
Weight of IVP loss λ1 0.5

IQL, P-IQL, IPL and CPL are implemented
based on the official repository of CPL and IPL.23

The hyperparameters of offline RL and RLHF algo-
rithms are listed in Table 9, Table 10, and Table 11.
For the inference of VLP labels, we first use K-
means clustering to divide the trajectories of each
test task into 2 sets, following Liu et al. (2024b).
Then we sample 100 trajectory segments of length
50 from each set to construct segment pairs and
predict preference labels of these pairs with trained
VLP model. Training RL and RLHF algorithms
take about 10 minutes using a single NVIDIA RTX
4090 GPU with 6 CPU cores and 60 GB memory.

The tests with phrases, descriptions, and correct
and incorrect object colors were designed to evalu-
ate the model’s robustness to variations and errors
in language instructions. Specifically:

• Phrases: Simple instructions like “close door.”

• Descriptions: More detailed instructions de-
scribing the same objective.

• Incorrect object colors: Intentional mis-
matches, such as referring to a “green button”
when the button is red.

These perturbations are introduced by modifying
the language input during testing to assess the
model’s generalization to noisy or misaligned lan-
guage instructions.

2https://github.com/jhejna/cpl
3https://github.com/jhejna/

inverse-preference-learning
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(a) Button Press (b) Door Close (c) Drawer Close (d) Faucet Close (e) Window Open

Figure 3: Five simulated robotic manipulation tasks used for experimental evaluation.

Table 9: Shared hyperparameters.

Hyperparameter Value

Network architecture (256, 256)
Optimizer Adam
Learning rate 1e-4 (CPL), 3e-4 (IQL, IPL and P-IQL)
Batch size 64
Discount 0.99
Dropout 0.25
Training steps 100000

Segment length 50 (RLHF)
Number of queries 100 (RLHF)
Temperature 0.3333 (IQL, IPL and P-IQL)
Expectile 0.7 (IQL, IPL and P-IQL)
Soft target update rate 0.005 (IQL, IPL and P-IQL)

Table 10: Hyperparameters of CPL.

Hyperparameter Value

Temperature 0.1
Contrastive bias 0.5
BC weight 0.0
BC steps 10000

Table 11: Hyperparameters of IPL and P-IQL.

Hyperparameter Value

Regularization weight (IPL) 0.5
Reward learning steps (P-IQL) 30

For VLM methods, R3M, VIP, LIV, VLM-RM,
and RoboCLIP are implemented based on their
official repositories.45678 The CLIP baseline is a
variant of VLM-RM and is implemented based on
the code of VLM-RM. The language inputs of the
VLM baselines except are as listed in Table 12.
R3M, LIV, CLIP, and RoboCLIP only require the
target column as language inputs, while VLM-RM
additionally needs a baseline as a regularization
term. R3M requires an initial image and we use
the first frame of each trajectory as the initial im-
age, while VIP requires a goal image for VLM
rewards inference and we use the last frame of ex-
pert videos.

Table 12: Language inputs used for evaluating VLM
baselines on the test tasks.

Task Target Baseline (for VLM-RM)

Button Press press button button
Door Close close door door
Drawer Close close drawer drawer
Faucet Close turn faucet left faucet
Window Open move window left window

B Additional Experimental Results

Attention Map Visualization. We further ana-
lyze VLP by visualizing the attention maps of the
cross-attention. Results in Figure 4 show that re-
gions of the objects related to language instructions
exhibit high attention weights. For example, in the
Drawer Close task, our vision-language preference
model specifically focuses on whether the drawer
is closed, with the attention map highlighting the
edges of the drawer to monitor its position and
similarly for Door Close task. These observations
demonstrate that our vision-language preference
model effectively learns to guide language tokens

4https://github.com/facebookresearch/r3m
5https://github.com/facebookresearch/vip
6https://github.com/penn-pal-lab/LIV
7https://github.com/AlignmentResearch/vlmrm
8https://github.com/sumedh7/RoboCLIP
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to attend to relevant regions in the videos and illus-
trate the effectiveness of our cross-attention mech-
anism in bridging vision and language modalities
for precise task understanding.

(a) Drawer Close (Shift closer and secure
the drawer shut)

(b) Door Close (Direct the gripper to the
door handle and press to seal it)

Figure 4: Attention map visualization of Drawer Close
and Door Close. The language instruction is shown at
the bottom of each subfigure.

Effects of λ1 and λ2. λ1 and λ2 in Eq. (4) con-
trol the strength of ILP and IVP learning, respec-
tively. To investigate how λ1 and λ2 influence
VLP, we conduct experiments by vary λ1 across
{0.0, 0.1, 0.5} and λ2 across {0.0, 0.5, 1.0}. Re-
sults in Table 13 show that the performance of
VLP drops with too small or too large λ1. Mean-
while, without IVP learning (i.e., λ2 = 0), the per-
formance of IVP and ILP significantly decreases.
We speculate that IVP is crucial for language-
conditioned preference learning. Without IVP
learning, the learned VLP model degenerates into
a vanilla preference model without language as
conditions.

Table 13: Accuracy of VLP labels with different loss.
Acc. denotes the accuracy of preference labels inferred
by VLP compared with ground-truth labels.

λ1 λ2 ITP Acc. (↑) IVP Acc. (↑) ILP Loss (↓) Avg. Loss (↓)

0.0 0.5 95.4 74.1 0.728 0.618
0.5 0.5 85.8 74.7 0.702 0.578

0.1 0.0 96.2 63.0 0.775 0.646
0.1 1.0 95.8 96.5 0.699 0.554

0.1 0.5 97.4 91.7 0.705 0.555

Effects of Preference Dataset Size. We inves-
tigate how the preference dataset size influences
our method. We conduct additional experiments by

varying the dataset size across {50%, 75%, 100%}.
Results in Table 14 indicate that the performance
of VLP downgrades as the dataset size decreases.

Table 14: Accuracy of VLP labels with different data
size. Acc. denotes the accuracy of preference labels
inferred by VLP compared with ground-truth labels.

Data ITP Acc. (↑) IVP Acc. (↑) ILP Loss (↓) Avg. Loss (↓)

50% 94.2 89.6 0.699 0.557
75% 95.2 89.7 0.707 0.555
100% 97.4 91.7 0.705 0.555

Preference Label Accuracy. To compare the rel-
ative relation of VLM rewards with VLP, we com-
pute the preference label accuracy of each method.
The accuracy is measured by comparing the pre-
dicted preference labels with scripted preference
labels. The results in Table 15 show that VLP ex-
ceeds the VLM baselines by a large margin, demon-
strating VLM rewards do not capture the relative
reward relationship.

Different VLMs/LLMs for Language Instruc-
tion Generation. To see the influence of differ-
ent language model on our method, we we conduct
additional experiments using instructions from less
capable model, such as GPT-3.5 and open-source
Llama-3.1-8B-Instruct. We observe that generating
diverse language instructions does not necessar-
ily require strong VLMs like GPT-4V, even open-
source Llama-3.1-8B-Instruct can accomplish this
job since the language model is prompted with a
diverse set of examples, following LAMP (Adeniji
et al., 2023). The results in Table 16 show that
the model’s performance is relatively stable across
different LLMs.

C Details of MTVLP Collection

For the 50 robotic manipulation tasks in Meta-
World (Yu et al., 2020), we divide Button Press,
Door Close, Drawer Close, Faucet Close, and Win-
dow Open as test tasks and the other 45 tasks as
train tasks. For each task, we leverage scripted poli-
cies of Meta-World (Yu et al., 2020) to collect tra-
jectories. For expert trajectories, we add Gaussian
noise sampled from N (0, 0.1). For medium trajec-
tories, we utilize the near_object flag returned by
each task to determine whether the first subtask is
completed and add Gaussian noise sampled from
N (0, 0.5). For random trajectories, the actions are
sampled from uniform distribution U [0, 1]. We col-
lect 32 trajectories of each type of trajectory for
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Table 15: Preference label accuracy of VLP against VLM baselines. The accuracy of our method is shaded and
the best score of all methods is bolded.

Task R3M VIP LIV CLIP VLM-RM (0.0) VLM-RM (1.0) RoboCLIP VLP

Button Press 91.0 40.0 62.0 53.0 62.0 41.0 46.0 93.0
Door Close 98.0 57.0 97.0 49.0 59.0 10.0 61.0 100.0
Drawer Close 66.0 49.0 39.0 66.0 65.0 58.0 43.0 96.0
Faucet Close 98.0 100.0 97.0 38.0 25.0 65.0 63.0 100.0
Window Open 72.0 88.0 16.0 81.0 88.0 16.0 49.0 98.0

Average 85.0 66.8 62.2 57.4 59.8 38.0 52.4 97.4

Table 16: Preference label accuracy of VLP with lan-
guage instructions generated by different VLMs/LLMs.

Task GPT-4V GPT-3.5 Llama-3.1-8B-Inst.

Button Press 93.0 93.0 91.0
Door Close 100.0 100.0 98.0
Drawer Close 96.0 96.0 97.0
Faucet Close 100.0 100.0 100.0
Window Open 98.0 99.0 99.0

Average 97.4 97.6 97.0

each task, resulting in a total of 4800 trajectories
for all tasks. We query GPT-4V (OpenAI, 2023) to
generate language instructions by the prompt con-
taining an example of generating diverse language
instructions, an example of generating synonym
nouns, task name, task instruction, and an image
rendering the task. The detailed prompt we used is
shown in Table 17.

D Discussions

How does different train-test split influence
VLP? We conduct experiments on the Meta-
World ML45 benchmark, training the vision-
language preference model on its training tasks and
evaluating on its test tasks. We compute VLP label
accuracy by comparing VLP label with scripted
preference labels. The results shown in Table 18
demonstrate the strong generalization capability
of our method on unseen tasks in ML45. This
reinforces the robustness and adaptability of our
framework regardless of task split.

E License For Artifacts

Meta-World, IPL, CPL, R3M, LIV, VLM-RM, and
CLIP models are licensed under the MIT License.
VIP is licensed under the CC BY-NC 4.0 License.
For ManiSkill2, all rigid body tasks are covered by
fully permissive licenses (e.g., Apache-2.0), while
the associated assets are licensed under CC BY-NC
4.0. It should be noted that the official repositories

for LAPP and RoboCLIP currently do not include
any license information.
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Table 17: Prompt for generating diverse language instructions. The verb structures list and synonym nouns example
are from Table 2 and Table 4 in LAMP (Adeniji et al., 2023), respectively.

System Message: Suppose you are an advanced visual assistant. Your task is to generate more instructions with the
same meaning but different expressions based on the task instruction I provide, generating 40 new instructions for each
task. The instructions you generate need to be as simple and clear as possible. Below is an example of an answer for
picking up an object. The answer should be formatted as a Python list.
– Begin of instruction example –
Task instruction: "Pick up the [NOUN]"
Answer:
Verb Structures List
– End of instruction example –
Moreover, you need to be mindful to replace the nouns in the instructions with synonyms, such as replacing "bag" with
the following words in the Python list:
– Begin of synonym example –
Synonym Nouns
– End of synonym example –
The tasks are from Meta-World benchmark and the image of the task is rendered in a 3D simulation environment. In the
environment, there is a wooden table and a robotic arm. The robotic arm is placed above the table. The robotic arm
needs to manipulate the object(s) on the table to complete tasks.
My instruction for Task Name task: Task Instruction
Answer:

Table 18: Preference label accuracy of VLP on ML45
test tasks.

Task VLP Acc.

Bin Picking 95.0
Box Close 90.0
Door Lock 100.0
Door Unlock 100.0
Hand Insert 100.0

Average 97.0
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