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Abstract
The rapid progress of Large Language Mod-
els (LLMs) has empowered omni models to
act as voice assistants capable of understand-
ing spoken dialogues. These models can pro-
cess multimodal inputs beyond text, such as
speech and visual data, enabling more context-
aware interactions. However, current bench-
marks fall short in comprehensively evaluating
how well these models generate context-aware
responses, particularly when it comes to implic-
itly understanding fine-grained speech charac-
teristics, such as pitch, emotion, timbre, and
volume or the environmental acoustic context
such as background sounds. Additionally, they
inadequately assess the ability of models to
align paralinguistic cues with complementary
visual signals to inform their responses. To
address these gaps, we introduce MULTIVOX,
the first omni voice assistant benchmark de-
signed to evaluate the ability of voice assistants
to integrate spoken and visual cues including
paralinguistic speech features for truly multi-
modal understanding. Specifically, MULTIVOX
includes 1000 human-annotated and recorded
speech dialogues that encompass diverse par-
alinguistic features and a range of visual cues
such as images and videos. Our evaluation
on 10 state-of-the-art models reveals that, al-
though humans excel at these tasks, current
open-source models consistently struggle to
produce contextually grounded responses.1

1 Introduction

With recent advancements in Multimodal Large
Language Models (MLLMs) (Xu et al., 2025; Mi-
crosoft et al., 2025), there is a growing interest in
developing models that can understand and gener-
ate information across multiple modalities, such
as images, video, and audio-simultaneously. This
evolution is paving the way for the development of
Omni Language Models (OLMs), which are cru-
cial for building efficient and versatile Artificial

1https://github.com/ramaneswaran/multivox

Transcript: What does it say on the
plane?

It says Westjet on the
plane

Transcript: I want to attempt this
what's a good target time for me?

I would recommend aiming
for 45-60 minutes ...

Transcript: Do you hear the siren
getting away from us?

I actually think its coming
towards us ...

Existing Benchmarks

MULTIVOX

IMAGE

IMAGE

VIDEO

Primarily tests visual grounding
Non-verbal speech not used

Visual grounding to 5K race context
Infer speaker’s age from speech

Visual input is misleading (siren light)
Infer sound event from speech

Figure 1: Comparison of existing benchmark with MULTI-
VOX. Existing benchmark for omni-modal voice assistant
evaluation are derived from vision-centric text VQA bench-
marks. In MULTIVOX, models need leverage not only visual
cues but also non-verbal speech signals.

General Intelligence (AGI) (Bubeck et al., 2023;
Morris et al., 2024). While OLMs provide a wide
range of applications (Xu et al., 2025), one of their
primary use cases is developing omni-modal voice
assistants (OVA) (Huang et al., 2024). Unlike tra-
ditional speech voice assistants that rely solely on
speech instruction, OVAs powered by OLMs such
as GPT-4o (OpenAI, 2024) and Qwen2.5 Omni (Xu
et al., 2025), can understand speech dialogues and
reason over multimodal inputs, including images
and videos.

Advancing the application of OLMs in voice
assistants poses challenges not only in model de-
velopment but also in constructing effective eval-
uation benchmarks. While existing OLM bench-
marks like OmniBench (Li et al., 2024) incorpo-
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rate multimodal inputs such as images and video,
they lack spoken dialogues—an essential modality
for assessing the conversational and auditory capa-
bilities required of voice assistants. On the other
hand, current voice assistant benchmarks such as
VoXDialogue (Cheng et al., 2025), SD-Eval (Ao
et al., 2025), and S2S-Arena (Jiang et al., 2025)
focus primarily on evaluating a model’s ability to
generate contextually appropriate responses based
on auditory cues like content, emotion, or speaker
demographics embedded in a speech instruction.
However, these benchmarks fall short of capturing
the full multimodal reasoning abilities expected of
OVAs, particularly in integrating visual cues along-
side speech instructions.

To address this gap, we introduce MULTIVOX,
a novel benchmark designed to evaluate an OLMs
ability to incorporate multimodal cues to provide
accurate and contextual responses. MULTIVOX

includes 1000 questions consisting of human spo-
ken questions paired with either a video or an im-
age. Unlike existing benchmarks which primarily
test visual grounding and use speech to deliver the
content of a straightforward instruction, MULTI-
VOX consists of questions which require a model
to combine visions skills such as object recognition,
scene understanding, scene text understanding with
speech skills such as acoustic scene understanding,
paralanguage understanding and speaker profiling
(See fig. 1). The spoken questions in MULTIVOX

are recorded by professional voice actors to cover
a diverse range of paralinguistic and emotional
features that are not possible with current text-to-
speech systems. A key problem in benchmarks
that evaluate multi-modal reasoning capability is
that models can take shortcuts by exploiting priors
from other modalities, to mitigate this we introduce
confounding samples in MULTIVOX. Specifically,
each question in our benchmark has another associ-
ated question which has the same textual and visual
content but their speech property is flipped such
that expected answers should be different. Our key
contributions are:

1. We present MULTIVOX, the first benchmark
designed to evaluate omni-modal language
models (OLMs) using human-spoken queries
paired with visual inputs. The 1000 examples
require models to jointly ground visual and
paralinguistic speech cues to produce accurate,
context-aware responses.

2. We evaluate 10 omni-modal models on MUL-

TIVOX and find that, while humans excel with
ease, current OLMs consistently struggle, par-
ticularly with grounding speech signals, re-
vealing a critical bottleneck in their capabili-
ties.

3. We perform extensive qualitative and quanti-
tative analysis on model’s responses and un-
cover key insights: Models exhibit strong vi-
sual grounding but rely heavily on textual cues
for speech-related tasks; they often ignore
non-verbal audio signals like tone or back-
ground sounds.

2 Related Work

Omni Voice Assistants The recent development
of Omni Language Models (OLMs) has enabled
development of omni-modal voice assistants that
can simultaneously infer across both visual and
speech inputs. Recent iterations of previously men-
tioned voice assistants now support visual inputs
in form of either images like in the case of Mini-
Omni2 (Xie and Wu, 2024) and MoshiVis (Royer
et al., 2025) or video inputs such as Qwen2.5-
Omni (Xu et al., 2025). While these models demon-
strate impressive instruction-following capabilities
as voice assistants, when extensively evaluated on
MULTIVOX, we find that they often overlook cru-
cial paralinguistic cues—such as tone, emotion,
and pitch—in speech input, which are essential for
generating context-aware responses.
Benchmarks For Voice Assistants While there
are works such as OmniBench (Li et al., 2024) and
OmniXR (Chen et al., 2024a) that evaluate OLMs,
there have been few efforts to standardize the evalu-
ation of omni voice assistants. Recent work such as
Lyra (Zhong et al., 2024) repurpose existing visual
question answering (VQA) benchmarks by con-
verting the textual questions to speech. However,
such approach overlooks crucial non-verbal infor-
mation typically present in spoken conversations.
While some progress has been made in evaluating
speech VAs, many existing benchmarks still fall
short. VoiceBench (Chen et al., 2024b) assesses
capabilities like world knowledge and instruction
following by converting textual benchmarks like
MMLU (Hendrycks et al., 2021) and AlpacaE-
val (Dubois et al., 2024) to speech, but overlooks
the non-verbal speech information. SD-Eval (Ao
et al., 2025) is a pioneering work in evaluating
paralinguistic features but is limited to only four
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Q: I just installed these, can you
hear them?

Q: How do I use this to hang a
poster that I just got?

Q: My friend Sarah gave me this
expensive item out of nowhere

Yes, I clearly
hear them

Counterfactual Underspecification Confounders

Scenario 2
Clear wind
chime sound

Paralangauge
(27.8%)

Speaker
Profiling
(27.8%)

Acoustic Scene
(44.4%)

Distribution of Non-
verbal Skills

Acoustic Scene Speaker Profilling Paralanguage

Contradictory Cues

Q: This is so bitter [hmm] its
not often you get something
like this [appreciative tone]
Q: This is so bitter [hmm] its
not often you get something
like this [disgust]

Q: Hm, does that sound off to
you?
Reason: The guitar is out of
tune, the model needs to
detect the reference to guitar

Q: Can that be thunder sound
during a sunny day?
Reason: The sound of thunder
in the background contrasts
with the sunny visual scene.

Q: I just love the rain, makes
you sit at home [excitement]
Q: I just love the rain, makes
you sit at home [sarcastic]

Examples Examples Examples Examples

No wind
chime sound

Scenario 1

Response
No I cannot
hear them

Response
That is a very
dangerous...

Scenario 2

Drill holes
with the ...

Scenario 1

Response

Spoken by
child

Response

Scenario 2
Spoken with
happy tone

Scenario 1

Response

Spoken with
suspicious tone
Response

Spoken by
adult

It sounds like
you're unsure 

What a
surprise ...

High Level Categorization in MultiVox

Q/A complexity in MultiVox

Figure 2: Illustration of various types of questions in MULTIVOX. We broadly define three categories of speech-understanding
skills that a voice assistant needs in order to provide an accurate and contextual response. Each question in MULTIVOX has
a speech confounder, where the textual question remains same but the speech property is flipped to counter the possibility of
models exploiting unimodal priors

categories with a narrow range of labels in each
category. While VoxDialogue (Cheng et al., 2025)
covers more diverse speech attributes, it relies heav-
ily on synthetic speech generated through TTS sys-
tems that struggle to accurately convey emotional
nuances and prosodic variations present in natural
human speech.

3 MULTIVOX

We introduce MULTIVOX, a novel benchmark for
evaluating omni-modal language models on their
ability to jointly interpret speech and visual in-
puts, and integrate them with world knowledge
and reasoning to produce contextually appropriate
responses. This section outlines the benchmark’s
design goals, construction process, and key dataset
statistics.

3.1 Benchmark Design

Motivation Real-world communication is inher-
ently multimodal, combining what is said with how,
by whom, and in what environment. To achieve
human-like understanding, an omni-modal voice

assistant (OVA) must jointly interpret visual and
auditory inputs—not just for content, but for par-
alinguistic cues such as tone, emotion, and acoustic
context.

While recent progress has advanced visual under-
standing, speech remains a key bottleneck. Most
benchmarks treat spoken input as text, overlooking
critical non-verbal signals. Yet in real interactions,
these cues determine how instructions are inter-
preted. For example, a user asking “Am I being too
loud?” in a library depends on speech volume, not
words alone.

To address the limitations of current benchmarks,
MULTIVOX evaluates OLMs across three core skill
domains—with a particular emphasis on speech
grounding, which is an underdeveloped area in ex-
isting omni-modal benchmarks.

Speech Skills The ability to infer non-verbal at-
tributes from speech, such as emotion, background
sounds, speaker age, or tone—beyond what is con-
veyed in textual content.

Vision Skills The ability to recognize and interpret
visual elements in images or videos, including ob-
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Figure 3: Data Curation And Annotation Pipeline Of MULTIVOX. The pipeline begins with task design and
a taxonomy of speech traits, followed by expert annotation using multimodal sources. Professionally recorded
prompts undergo quality assessment, with final review guiding benchmark construction.

ject identity, scene understanding, reading scene
text etc.
General Skills The ability to integrate visual and
auditory inputs with world knowledge and common
sense to make contextually appropriate decisions.
Confounder Pairs To test whether models gen-
uinely ground non-verbal speech attributes—rather
than relying on linguistic or visual shortcuts—we
introduce confounder pairs. Each pair consists of
two instances that share identical textual content
and visual input, but differ in a targeted speech
property (e.g., tone, emotion, background sound).
Crucially, this difference is sufficient to invert the
expected answer.

For example, a user asking “Am I being too
loud?” in a library setting may expect reassur-
ance when spoken softly, but concern or correc-
tion when spoken in a normal tone. By controlling
for all other modalities, confounder pairs isolate
the model’s ability to interpret non-verbal speech
signals.

3.2 Benchmark Construction

Task Definition Our benchmark is organized
around a three-level taxonomy of speech-related
categories. The top level defines three domains:
acoustic scene, speaker profile, and paralanguage.
We then worked with eight expert annotators (grad-
uate students in speech processing) to expand each
domain into:

• Categories: High-level categories of non-
verbal speech attributes (e.g., emotion,
speaker age, ambient environment)

• Sub-categories: Fine-grained, measurable
skills within each group which can be speci-
fied as a measurable task (e.g., detect emotion,
estimate age as elderly or young adult).

For each task, experts authored a specification
card detailing the speech attribute being evaluated.
These cards included a clear definition of the target
attribute, illustrative scenarios combining speech
and vision, and structured guidelines for how an-
notators should construct samples and determine
correct answers.
Expert Annotation Each expert was assigned a
subset of tasks and followed a standardized pipeline
to create benchmark samples. For each task, anno-
tators first constructed a realistic scenario in which
an OVA must correctly interpret the target speech
attribute. They also created a corresponding con-
founder scenario, identical in text and visual input
but differing in the relevant speech property, to
ensure robust grounding.

To pair each question with appropriate visual
content, annotators were given access to stock
media libraries, prioritizing real videos. If no
suitable match was found, AI-generated videos
were used, though these were often insufficient
for scenes involving text or fine-grained detail. In
such cases, high-quality images—either retrieved
or generated—were used instead. For tasks involv-
ing ambient audio (e.g., acoustic scenes), annota-
tors selected relevant background sounds or music
from curated sound libraries. In the end we collect
206 unique images and 287 unique videos.

Each finalized sample includes a textual query,
accompanying visual input (image/video), and any
required background audio. For paralanguage-
based tasks, annotators also specified detailed voice
delivery guidelines to guide later voice recording.
Reference Answers Annotators also authored ref-
erence answers and rationales for each sample,
describing the expected model behavior and ex-
plaining how the relevant speech (and visual) cues
should inform the response. These were later used
for evaluation.
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Voice Recording We employed professional voice
actors to record the spoken queries, providing deliv-
ery guidelines based on the target speech property.
To preserve authenticity, actors were given creative
freedom in expression as long as the intended cue
was conveyed. Due to ethical concerns we use
TTS systems for children voice. A professional au-
dio engineer handled background sound overlays
where applicable.
Quality Control Two annotators independently
verified whether the intended speech attribute was
clearly conveyed in each recording. Recordings
without unanimous approval were revised based
on feedback—either through re-recording or by
adjusting the script to better support the desired
delivery.
Expert Analysis In the final review stage, anno-
tators assessed each completed sample for overall
quality. They were instructed to verify that (1) the
scenario was realistic, (2) the sample minimized
reliance on language or vision priors, and (3) the
recorded speech clearly conveyed the intended at-
tribute.

3.3 Evaluation Criteria
The goal of MULTIVOX is to assess how well omni-
modal language models integrate speech and vision
to produce contextually grounded responses. To
enable fine-grained diagnosis, we adopt a modular
evaluation framework that tests both multimodal
integration and unimodal grounding. Each bench-
mark sample is designed to probe one or more of
the following components:
Speech Grounding Evaluates whether the OLM
correctly interprets paralinguistic cues such as emo-
tion or ambient sound. Each question contains a
speech hook, a non-verbal attribute that is critical
for answering correctly. These tasks help isolate
model sensitivity to speech signals beyond text.
Visual Grounding Evaluates whether the OLM
can interpret and incorporate key visual cues. Each
sample includes a visual hook—a necessary visual
detail (e.g., object, background element) that the
model must recognize to respond appropriately.
Contextual Appropriateness We adopt appropri-
ateness (Chen et al., 2023) as our core evaluation
metric which measures how well an OLM produces
a response that aligns with the intent, context, and
modality of the input.

We evaluate contextual appropriateness using
sample-specific rubrics that guide judgment based
on three elements: (1) a reference answer authored

Type Name Vis. Para. Src. Conf.
Foundation AudioBench ✗ ✓ Human ✗

Foundation MMAU ✗ ✓ Mixed ✗

Foundation OmniBench ✓ ✓ Human ✗

Chat SD-Eval ✗ ✓ Human ✗

Chat VoxDialog ✗ ✓ Synthetic ✗

Chat S2S-Arena ✗ ✓ Mixed ✗

Chat Lyra SVQA ✓ ✗ Synthetic ✗

Chat Ours ✓ ✓ Human ✓

Table 1: Comparison of MULTIVOX with related bench-
marks.

by the expert annotator, (2) a short rationale ex-
plaining what cues are necessary to arrive at the
correct answer, and (3) task-level metadata speci-
fying which modality is critical (e.g., speech hook,
visual hook). These are provided to a GPT-4 judge,
which scores model responses on a 1–5 scale, re-
flecting increasing levels of multimodal integration
and contextual fidelity. To evaluate speech and vi-
sion grounding, we again utilize a LLM judge. To
prevent score hacking using modality shortcuts we
penalize OLMs that explicitly use text or visual
content to respond to speech grounding

3.4 Comparison With Other Benchmark

In this section we highlight how MULTIVOX is
different in terms of question types, modality cov-
erage, speech source, and diagnostic power. Table 1
summarizes these differences.
Chat-based Questions Benchmarks such as Au-
dioBench (Wang et al., 2025), MMAU (Sakshi
et al., 2024), and OmniBench (Li et al., 2024) pri-
marily test foundational tasks, with only the latter
supporting full omni-modality. In contrast, MULTI-
VOX is grounded in chat-style interaction, reflect-
ing how OVAs are deployed in real-world use. This
setting demands deeper contextual understanding
and flexible reasoning.
Multi-Modal Inputs Benchmarks like SD-
Eval (Ao et al., 2025), VoxDialog (Cheng et al.,
2025), and S2S-Arena focus on speech-only in-
puts, targeting paralanguage or acoustic scene
understanding in isolation. Others like Lyra
SVQA (Zhong et al., 2024) incorporate visual in-
put but neglect paralinguistic cues. MULTIVOX

is unique in requiring models to jointly interpret
speech, vision, and background context, aligning
with the OVA use case.
Human Speech Most existing chat benchmarks
rely on synthetic speech, which current TTS sys-
tems struggle to render with accurate emotion
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Name Size Acoustic Scene Paralanguage Speaker Profile Avg. CA
VG SG CA VG SG CA VG SG CA

Human - 95.30 82.50 4.37 96.00 92.5 4.33 96.50 95.10 4.36 4.35

Open Source Models

Mini Omni2 7.0B 79.24 16.14 1.53 79.20 23.12 1.79 84.50 09.00 2.01 1.74
VITA 1.5 1.6B 78.12 16.50 2.60 81.14 34.57 2.56 88.60 14.20 3.01 2.69
VideoLlama2 7.0B 68.12 28.75 1.52 73.42 2.71 1.59 79.20 14.79 1.38 1.50
Baichuan-Omni 7.0B 76.15 34.37 1.90 77.24 32.71 2.25 84.20 16.20 2.01 2.02
Mini CPM 8.0B 87.62 35.35 2.87 89.14 39.28 2.35 88.40 25.40 2.90 2.69
Intern Omni 8.7B 80.75 20.25 2.54 80.71 14.57 1.94 82.60 06.60 2.64 2.35
phi4 multimodal 5.6B 81.24 23.12 2.26 79.14 33.57 2.63 84.57 12.40 2.48 2.44
Qwen 2.5 Omni 7.0B 84.87 15.37 3.19 89.42 38.71 2.98 91.40 11.20 3.06 3.08
Qwen 2.5 Omni COT 7.0B 83.50 24.50 3.27 88.28 26.71 3.00 88.80 18.00 3.33 3.19

Proprietary Models

Gemini 2.5 Flash - 89.50 59.00 3.55 91.14 75.42 3.19 92.20 65.60 3.64 3.44
Gemini 2.5 Pro - 91.25 54.75 3.65 92.00 77.42 3.32 91.60 71.60 3.74 3.56

Table 2: Performance breakdown of human and model responses on MULTIVOX across key skill domains. Visual Grounding
(VG) and Speech Grounding (SG) evaluates the ability to perceive specific information in the modality needed for answering the
question. Contextual Appropriateness (CA) evaluates the ability to produce contextually appropriate and accurate answers given
the multimodal cues

or prosody (Wu et al., 2024; Tang et al., 2023).
In MULTIVOX, all spoken queries are recorded
by professional voice actors to preserve natural
paralinguistic signals. To validate this, we con-
duct a user study across 100 paralanguage-focused
samples, comparing human-recorded speech to
CosyVoice (Du et al., 2024) and ElevenLabs
TTS (ElevenLabs Inc., 2025). Ten annotators rated
speech on (1) attribute match and (2) naturalness.
Human speech scored 4.6/4.5, compared to 2.4/2.1
(CosyVoice) and 3.1/3.3 (ElevenLabs), supporting
the decision to use professional recordings.
Confounders Many existing benchmarks are sus-
ceptible to shortcut exploitation via textual or vi-
sual priors (Kiela et al., 2021; Goyal et al., 2017).
MULTIVOX introduces confounder pairs, where
paralinguistic speech properties are inverted while
keeping textual and visual input constant. This
isolates the model’s ability to process non-verbal
speech information and provides a more diagnostic
and fine-grained evaluation framework.

4 Experiments

Evaluated Models We evaluate a wide range of
OLMs. The proprietary model assessed is Gemini-
2.0-flash (Developers, 2024).For open-source
OLMs we use Mini-Omni2 (Xie and Wu, 2024),
VideoLLama (Zhang et al., 2023), MiniCPM-
o2.6 (Hu et al., 2024), Phi4-MM (Microsoft

et al., 2025), VITA1.5 (Fu et al., 2025), Baichuan
Omni (Li et al., 2025), Intern Omni (Chen et al.,
2024c).

5 Main Results

Table 2 summarizes the performance of several
proprietary and open-source OVAs on MULTIVOX.
We highlight three key findings:

• MULTIVOX is challenging. Although the
tasks are straightforward for humans (average
CA score: 4.33), the best-performing model
(Gemini) only achieves 3.56—indicating that
current OLMs struggle to integrate multi-
modal cues, particularly non-verbal speech
signals, even in seemingly simple scenarios.

• Gap between proprietary and open-source
models. Gemini 2.5 Flash and Pro models out-
perform open-source models in their ability
to ground in multi-modal inputs and provide
contextual responses.

• Speech grounding remains the bottleneck.
All models show relatively strong visual
grounding, but consistently struggle to inter-
pret non-verbal speech cues such as tone, emo-
tion, and background sounds.

To better understand the sources of these limi-
tations, we conduct a detailed analysis of Gemini
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2.5 Pro, the best-performing model on MULTIVOX.
We examine its behavior across core skill domains,
focusing on how well it grounds responses in visual
and speech cues, and identifying the types of errors
that arise.

5.1 Where do models fall short?

We analyze Gemini 2.5 Pro and Qwen 2.5 Omni
performance across three skill domains: visual
grounding, speech grounding, and multimodal rea-
soning. This breakdown highlights where current
OLMs are reliable—and where they still fall short.

5.1.1 Visual Grounding: A Strength
Table 2 shows the vision grounding scores for Gem-
ini and Qwen 2.5 Omni. We find that these models
demonstrate consistently strong visual grounding
capabilities across tasks like object detection, scene
understanding, and scene text recognition. These
results indicate robust understanding of both fine-
grained visual elements and broader scene context.
While Qwen performs competitively with Gem-
ini, Gemini performs better in acoustic scene cat-
egory, where there are several tasks that require
scene text understanding. Apart from this, most
errors arise from under-specificity in open-ended
scenarios - for instance, recognizing a “person hold-
ing game controllers” without identifying attributes
like “retro game controllers”. This level of ambi-
guity is expected in real-world scenes and the high
performance even in such conditions represents
strong visual grounding capabilties.

5.1.2 Speech Grounding: A Bottleneck
In contrast to visual grounding strengths, our anal-
ysis reveals weaknesses in speech grounding capa-
bilities (Table 2). We analyze the final responses
generated by the model to evaluate if it is able to
integrate audio characteristics in its responses.
Models hear the voice, but doesn’t “recognizes”
the speaker profile We check the model’s abil-
ity to infer demographic characteristics (age and
gender) from speech cues. Analysis of Qwen’s re-
sponses show that the model relies on textual rather
than acoustic content to identify speaker attributes
in 30% of cases. Additionally, the model rarely
commits to definitive answers (16.0% of cases),
instead offering ambiguous answers (14.6%), ex-
pressing uncertainty (14.4%), or refusing to re-
spond (65.6%). In contrast to open-source mod-
els, we observe that Gemini consistently performs
much better at perceiving speaker attributes such

as age and gender.
We further analyze the final responses to evaluate

how well OLMs utilize this speech information in
their final response. In case of Qwen, for questions
requiring gender inference, the model provides neu-
tral responses in 60% of cases, with the remaining
responses showing no significant bias toward ei-
ther male or female speakers. Notably, when the
model does make a gender inference, it appears to
be influenced primarily by visual context and the
question’s content rather than speech characteris-
tics. Gemini surprisingly shows similar trends, in-
dicating that OLMs prefer a neutral response even
if it can accurately infer their gender. Age-related
inferences on the other hand reveal a stronger bias
pattern, with both OLMs overwhelmingly favoring
young-to-middle-aged adult in their responses re-
gardless of the speaker’s actual age. While Gemini
is able to make accurate inferences regarding age,
when generating final responses, this aspect is not
integrated in its final responses. These errors have
functional implications. For instance, these OLMs
suggested potentially unsafe activities to speakers
with children’s voices in 20% of the cases.
Models struggle to utilize background sounds
In this category we test OLMs understanding of
background music, sound and ambient noise. The
evaluation of acoustic scene understanding reveals
significant limitations, with Qwen achieving 15%
grounding score. Among these correct inferences,
there is no significant different in performance
among music recogntion and environmental sound
recognition. Gemini performs much better at under-
standing background sound and music, achieving
54% accuracy and we observe that it is also notably
better at music understanding tasks. In questions
with ambient noise, we observe that both OLMs
demonstrate resilience to noise when processing
queries. However, they still are limited in their
capability to perceive noise. For instance, Qwen
appears to rely predominantly on visual cues rather
than acoustic features, as evidenced in approxi-
mately 39.5% of cases where noisy environments
were identified primarily through visual context
(such as crowded airports).
Models rely on textual cues for emotion under-
standing While OLMs perform comparatively bet-
ter in emotion understanding, we observe that they
tend to rely on textual content rather than acoustic
features. For instance Qwen explicitly relies on
text in 71% of cases and 26% of the cases with
Gemini. While emotions typically have a strong
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Reasoning 
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Instruction
11.8%

Knowledge
1.6%

Refusal
1.2%
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Figure 4: Distribution of error types in Gemini’s responses on
the MULTiVOX benchmark. The majority of errors (75.3%)
stem from speech grounding, indicating difficulty in interpret-
ing non-textual auditory cues.

Figure 5: Distribution of model responses across confounder
pairs. Bars indicate whether model answers were the same
or different when speech cues were flipped. Ideally, answers
should differ (left bar), but models often give identical re-
sponses (right bar), showing insensitivity to non-verbal speech
cues.

correlation with text, we deliberately introduced ad-
versarial samples (Fig 2 where textual and acoustic
emotional cues conflict. Moreover, the confounder
pairs have different emotions and we observe that
Qwen only gets both emotions right in 27% cases
and Gemini in 50% of the cases. We observe simi-
lar performance trends in other paralanguage cat-
egories where there is an over-reliance on textual
cues and the overall visual context.
Limitation in spoken instruction following We
observe that open-source OLMs are limited in their
spoken instruction following (Chen et al., 2024a),
especially for instructions used in speech ground-
ing where a grounding questions precedes the ac-
tual sample in our benchmark. Moreover, detailed
explanations for answer could help in further de-
tecting and penalizing modality shortcuts. For fu-
ture work, we could consider using text modality
as input to speech grounding questions for deeper
analysis with instructions to explain its response.

5.2 What causes these errors?

We conducted a manual error analysis of Gemini’s
outputs on MULTIVOX to identify underlying fail-
ure patterns. Fig. 4 shows that perception errors
dominate, accounting for 75.3% of all failures, pri-
marily reflecting the model’s inability to ground to
speech cues. Reasoning failures constitute 7.0%
of errors, indicating that even when the model suc-

cessfully perceives multimodal inputs, it struggles
to effectively integrate this information to generate
appropriate responses. Instruction understanding
failures represent a similarly significant error cate-
gory, where the model defaults to describing visual
content rather than addressing the intended query.
The overwhelming majority of speech perception er-
rors indicates a clear bottleneck: improving speech
perception capabilities is essential for building ef-
fective OVAs in multimodal contexts.

5.3 Do models really listen to speech cues?

To assess whether models are truly leveraging
speech cues, we analyze their responses across con-
founder pairs, focusing on the top two performers:
Gemini 2.5 Pro and Qwen2.5-Omni (Fig 5). With-
out considering confounders, both models appear
moderately accurate, getting around 50% of re-
sponses correct across these pairs. However, this
aggregate accuracy can be misleading. When we
examine whether models actually change their an-
swers in response to flipped speech cues, we find
that in a majority of the confounder pairs (57% for
Gemini, 51% for Qwen), the model outputs are
paraphrases, i.e., they show NO FLIP in answer.
Crucially, within those NO FLIP cases, most in-
stances with one correct answer suggest that the cor-
rectness arises from chance or visual/textual bias,
not from grounding in speech. This indicates that,
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despite non-trivial accuracy, models are largely ig-
noring non-verbal speech cues when answering.

6 Conclusion

We introduce MULTIVOX, the first benchmark de-
signed to evaluate Omni Language Models (OLMs)
as omni-modal voice assistants (OVAs) that in-
tegrate speech and vision for context-aware rea-
soning. Unlike prior benchmarks that rely on
synthetic speech or focus only on unimodal cues,
MULTIVOX includes 1000 professionally recorded,
human-spoken questions paired with images or
videos, emphasizing paralinguistic signals like
tone, emotion, and background noise. A key inno-
vation is the use of confounder pairs—speech vari-
ants with identical text and visuals—to ensure mod-
els attend to speech beyond surface cues. MULTI-
VOX enables fine-grained diagnosis across speech,
vision, and general reasoning skills. Evaluation
of 10 state-of-the-art models shows that, while vi-
sual grounding is robust, speech grounding remains
a significant bottleneck. Our benchmark will be
open-sourced to support the development of truly
multimodal voice assistants.

Limitations

• We limit ourself to questions to the english
language, extending to multilingual settings is
an important future direction to assess OLM
generalization across languages.

• In this work, we limit our evaluation to the
content of the speech outputs and not the
speech quality of the output, such as natural-
ness and appropriateness. Evaluating speech
synthesis and conversational prosody is an im-
portant but orthogonal direction left for future
benchmarks.
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A Appendix

In the Appendix, we provide:

1. Section B: Other Dataset Details

2. Section C: Annotator Details

3. Section D: LLM-as-a-judge Details

4. Section E: Voice Quality Assessment

B Other Dataset Details

Here we detail the categories and sub-categories
present in our benchmark.

B.1 Acoustic Scene Understanding
Background Music Understanding: These tasks
require the model to detect and interpret the pres-
ence and nature of background music in spoken
queries. This includes genre classification, mood
inference from music, and distinguishing music
from speech or noise.

Sound Event Recognition: This task evaluates
the model’s ability to detect and categorize discrete,
identifiable audio events (e.g., dog barking, glass
breaking, door closing) that occur within the audi-
tory scene alongside spoken content.

Ambient Environment Sound: Models are
tested on their capacity to recognize broader acous-
tic environments (e.g., airport, cafe, subway) based
on background audio cues. We construct these
scenes using the MS-Noise (Nachmani et al., 2024)
dataset, overlaying clean speech with environmen-
tal recordings at a signal-to-noise ratio (SNR) of -2
dB to simulate challenging real-world conditions.

B.2 Paralanguage Understanding
Detailed distribution of the categories here are
listed in Fig 7

Emotion: The task focuses on identifying the
emotional state of the speaker as conveyed through
prosodic features (e.g., pitch, energy), independent
of lexical content.

Voice Modulation: Evaluates the model’s sensi-
tivity to dynamic vocal variations such as emphasis,
intonation, and expressiveness, which can affect in-
tent or meaning.

Pronunciation: Tasks involve recognizing de-
viations from standard pronunciation, which may
signal emotion, emphasis, or speaker background.

Volume: Assesses the ability to perceive and
reason about loudness cues, which can convey ur-
gency, emotion, or social context.

Pace: Evaluates how well the model understands
speech rate—e.g., rushed versus slow delivery—as
a cue to emotional or cognitive states.

Stuttering: Measures recognition and interpre-
tation of speech disfluencies, including repeated
sounds or syllables, as part of speaker modeling or
intent understanding.

Breathiness: Focuses on detecting breathy voice
quality, which may indicate fatigue, emotion, or
affective state.

B.3 Speaker Profiling
Biological Gender Estimation: The task is to esti-
mate the speaker’s biological gender based solely
on voice characteristics, controlling for content and
visual input.

Age Group Estimation: Models must infer the
age group (e.g., child, adult, elderly) of the speaker
using acoustic cues.

C Annotator Details

1. Annotator Composition
We formed a panel of six domain experts for
our dataset creation and filtering process and our
dataset review process. The panel consisted of four
Ph.D students pursuing speech and audio-visual
research and two MS students having research in
speech and audio processing. The expertise of all
domain experts is evidenced by their research pub-
lications and contributions to the field.

2. Meetings to decide question creation process
All six annotators had three 2-hour online meet-
ings to discuss the question and corresponding an-
swers creation process to reach a consensus of the
pipeline to be followed for dataset creation. The
online meetings covered these details:

• Multimodal Question-Answering Founda-
tions: Aligning nonverbal audio cues (e.g.,
tone, background sounds) with visual context
(e.g., scene imagery).
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• Confounder Pair Design: Generating min-
imal audio variants that invert answers
(e.g., adding subtle noise to flip “quiet” vs.
“noisy”).

• Annotation Platform & Guidelines: Hands-
on use of our custom interface and details
about input/output formats, edge cases, and
scoring rubrics.

Following the online meetings, annotators jointly
labeled 50 pilot samples and attained ≥ 90% inter-
annotator agreement before proceeding to full-scale
work.

3. Question Creation Process

Each annotator followed a three-step pipeline:

• Scenario Drafting: Write a conversational
prompt targeting modality cues (e.g., “Can
you tell if this room is too loud for a confer-
ence call?”).

• Confounder Generation: Create a paired ver-
sion of the prompt with the same text and vi-
suals but alter one audio attribute (e.g., add
background machinery noise).

• Media Pairing: Select or synthesize match-
ing audio and visual assets from our curated
libraries to illustrate both the original and con-
founded conditions.

This ensured every question/confounder pair iso-
lated the intended cue and prevented shortcut learn-
ing by downstream models.

4. Answer Creation Process

For each question instance, annotators produced:

• Reference Answer: A concise response di-
rectly addressing the prompt (e.g., “No, it’s
quiet enough for clear conversation”).

• Rationale Statement: A brief explanation
linking the critical cue to the answer (e.g.,
“The low ambient noise level confirms a silent
office setting”).

These reference answers and rationales formed the
ground truth for our GPT-4–based judgment of
model responses.

5. Annotation Criteria & Quality Control
All questions and answers were crafted according
to these overarching principles:

• Clarity & Brevity: Simple, conversational
language devoid of syntactic complexity.

• Modality Isolation: Exactly one audio or vi-
sual “hook” per item, ensuring focused evalu-
ation.

• Balanced Distribution of Skills: Even distri-
bution of questions across different skills.

D LLM-as-a-Judge Details

1. Human vs. LLM Evaluation Experiment:
To validate whether a large language model
(LLM) could reliably substitute for our expert
reviewers, we conducted a blind evaluation on
a sample of 300 question-answer pairs drawn
evenly from our benchmark. Each pair was
independently graded on a 1-5 scale by:

• Three domain experts from our panel fol-
lowing a predecided grading criteria

• An LLM-as-a-Judge, implemented via a
single GPT-4.1-mini call per sample.

We computed average scores for each item
under both conditions and measured inter-
rater agreement using Cohen’s κ. Across
all 300 items, human–human agreement av-
eraged κ = 0.82, while human–LLM agree-
ment reached κ = 0.78, indicating the LLM’s
judgments were almost as consistent with the
experts’ as the experts were with one another.
Overall the LLM’s ratings fell within one
point of the experts’ in 92% of cases.

Given these results, we adopted the LLM-as-
a-Judge for large-scale scoring in subsequent
experiments, leveraging its efficiency without
materially sacrificing quality.

2. LLM-as-a-Judge Criteria:

We present each question to the LLM-as-a-
Judge by supplying both the corresponding
speech and visual inputs. The model is then
asked to rate the provided answer on a five-
point scale according to the following criteria:

• Score 1: The response is often off-topic
or incorrect and fails to recognize or use
the specified speaker characteristic.
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Figure 6: Pie charts showing different Speaker Profile
categories in terms of Gender and Age

Figure 7: Pie charts showing different Paralanguage
Understanding Categories and different Emotion Cate-
gories in the benchmark

• Score 2: The response occasionally
addresses the prompt but handles the
speaker characteristic inconsistently or
superficially.

• Score 3: The response shows a basic
understanding of intent, with partial inte-
gration of the speaker characteristic but
lacks depth or precision.

• Score 4: The response delivers relevant
and mostly accurate content that usually
incorporates the speaker characteristic,
with only minor lapses.

• Score 5: The response consistently pro-
duces accurate, context-rich answers that
fully and effectively integrate the speaker
characteristic.

E Voice Quality Assessment

We generated synthetic audio for 100 bench-
mark questions using two text-to-speech systems:
CosyVoice (open source) (Du et al., 2024) and
ElevenLabs (ElevenLabs Inc., 2025) (commercial).
We also recorded these questions by professional
voice actors.
To compare these renderings, we conducted a Mean
Opinion Score (MOS) Test on a random subset of
100 paralanguage-focused queries (as in Sec. 3.4).
Ten expert annotators rated each audio on two di-
mensions, using a 5-point scale:

• Attribute match: How accurately the intended
paralinguistic cue (e.g., emotion, background
noise) was conveyed.

• Naturalness: The overall human-likeness of
the voice.

The MOS results were as follows: Professional
human recordings: 4.6 (attribute match) / 4.5 (nat-

uralness), CosyVoice TTS: 2.4 / 2.1, ElevenLabs
TTS: 3.1 / 3.3 .
These findings confirm that, while modern TTS can
approximate certain prosodic features, professional
voice actors remain far superior in both fidelity and
naturalness, which led us to use human-recorded
queries by preofessional voice actors throughout
the benchmark.

F Voice Data Collection

To ensure natural and expressive speech, we em-
ployed four professional voice actors, four male
and two female, contracted via Fiverr. Each actor
was compensated according to the standard rates
listed on the platform. This approach allowed us to
capture high-quality, emotionally varied recordings
with realistic prosody and delivery across all tasks.
Our institution’s Institutional Review Board (IRB)
has granted approval for this data collection.

G Additional Details: Auxiliary

Compute Infrastructure: All our experiments are
conducted on a single NVIDIA A6000 GPU. No
training is required, and depending on the down-
stream task, a single inference run on a benchmark
requires anywhere between 30 minutes to 2 hours.
Implementation Software and Packages: We use
the official implementation of the OLMs we bench-
mark. For LLM-as-judge implementation, we uti-
lize the official OpenAI APIs.
Potential Risks: We manually curate all our ques-
tions to avoid any potential harmful or biased sam-
ples.
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