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Abstract

Understanding the internal origins of capabil-
ities in large language models (LLMs) is cru-
cial for interpretability and efficient adaptation.
However, the emergence of specific capabilities
remains poorly understood, as most existing
approaches rely on external signals (e.g., per-
formance shifts or gradient similarities) with
limited structural grounding. To address these
issues, this paper proposes a lightweight and
highly interpretable approach that links LLM
capabilities to internal components by identi-
fying correspondences at the level of attention
heads. Specifically, we first define five funda-
mental capabilities, namely Mathematical Rea-
soning, Reading Comprehension, Common-
sense Reasoning, Scientific Reasoning, and
Professional Expertise, and employ probing
techniques to detect the attention heads most
predictive of each, thereby establishing capa-
bility–head mappings. For targeted instruc-
tion tuning, complex tasks are decomposed
into these fundamental capabilities, and train-
ing data are selected accordingly. Experiments
on LLaMA3.1-8B and Qwen2.5-7B show over
70% discrimination accuracy in identifying ca-
pabilities. On MMLU and BBH, our method
improves accuracy by 1 to 1.5 points over the
gradient-based method LESS and by 5 to 6
points over other intermediate-state baselines1.

1 Introduction

Large language models (LLMs) (Grattafiori et al.,
2024; Achiam et al., 2023; Team et al., 2024; Xu
et al., 2025) have achieved remarkable success
across a wide range of natural language process-
ing and cross-modal tasks, largely driven by scal-
ing laws and the availability of massive training
data (Kaplan et al., 2020; Hoffmann et al., 2022;
Wei et al., 2022a). As models continue to grow in
size and capability, they demonstrate increasingly

*Corresponding author
1https://github.com/Dezhi93/ProBooCap

Figure 1: Internal distribution of reading comprehen-
sion capability within the LLaMA3 and Qwen2.5 model
series. Each cell represents an attention head, where
increasing color intensity (towards red) denotes higher
accuracy on reading comprehension question answer-
ing. The visualization indicates that models of different
scales within the same series exhibit similar patterns in
their internal capability distributions.

sophisticated behaviors such as multi-step reason-
ing, instruction following, and domain-specific ex-
pertise. Nevertheless, a precise understanding of
how specific data segments contribute to targeted
LLM capabilities remains elusive.

Although prior work has investigated methods
for selecting high-quality data to improve LLM ca-
pabilities (Xia et al., 2024; Schioppa et al., 2022;
Zhou et al., 2023), these approaches generally quan-
tify the contribution of data points to model learn-
ing or final performance. Such analyses are largely
phenomenological, describing correlations at the
data–performance level without establishing a prin-
cipled link between training data, emergent capa-
bilities, and internal model components, thereby
limiting fine-grained interpretability.

Insights into internal model components offer a
promising direction (Li et al., 2024; Liang et al.,
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Capability Representative Dataset Instances Num Answer Type Abbreviation

Mathematical Reasoning MathQA 5970 COT choice MR
Reading Comprehension Race 6996 Choice RC
Commonsense Reasoning TruthfulQA 5918 Generation CR

Scientific Reasoning ScienceQA 4448 Choice SR
Professional Expertise MedQA&LegalQA 5546 Choice PE

Table 1: Statistics for defined fundamental capabilities and their corresponding capability identification dataset.
Instances Num lists the total instances per capability, subsequently split into training and validation sets (8:2 ratio).
Capability abbreviations in the last column are used for reference in later figures and tables.

2024; Zhang et al., 2025). For instance, studies like
ITI (Inference Time Intervention) have shown that
intermediate states of attention heads can be more
informative than final outputs, improving truthful-
ness detection by 40% (Li et al., 2024). Similarly,
representations from MLP layers have been found
to predict a model’s inherent knowledge for a given
question with over 80% accuracy (Liang et al.,
2024). In parallel, researches on the internal or-
ganization of knowledge in transformers have re-
vealed that knowledge are not diffusely stored, but
are often localized within specific model compo-
nents (Bills et al., 2023; Meng et al., 2022a; Dai
et al., 2021; Meng et al., 2022b; Geva et al., 2023).
However, this granular understanding has largely
remained an analytical pursuit, seldom leveraged
to directly guide and optimize the model’s own
training process.

Building on the premise that intermediate states
harbor rich yet underexplored information, our pre-
liminary analyses reveal consistent patterns in ca-
pability localization across model families. In the
LLaMA3 series, attention heads most predictive
of reading comprehension are concentrated in mid-
dle layers, whereas in the Qwen2.5 series (Yang
et al., 2024) they appear in upper-middle layers
(Figure 1). These observations, highlighting intra-
series consistency and inter-series variation, pro-
vide concrete evidence of structure in capability
distribution and motivate the hypothesis that indi-
vidual attention heads correspond to distinct model
capabilities.

These observations motivate us to move be-
yond descriptive analyses and develop a system-
atic method to map LLM capabilities to internal
components. To this end, we propose a lightweight
and interpretable approach for establishing corre-
spondences between specific capabilities and atten-
tion heads. We first define five fundamental LLM
capabilities (details in Table 1) and then identify

attention heads in models such as LLaMA3.1-8B
and Qwen2.5-7B that are highly predictive of each
capability, providing initial evidence for the hy-
pothesized correspondence.

Furthermore, because the primary goal of tar-
geted instruction tuning (Xia et al., 2024) is to
enhance specific capabilities, we use this setting to
validate our findings. On multi-task benchmarks
such as MMLU and BBH, subtasks are decom-
posed into combinations of the five fundamental ca-
pabilities (see Appendix A, Table 6), and capability-
specific attention heads are employed to guide data
selection. Our method consistently outperforms
the gradient-based selection method LESS (Xia
et al., 2024) and surpasses other intermediate-state-
based baselines (Zhang et al., 2018; Hanawa et al.,
2020), demonstrating both the practical utility and
the validity of the proposed capability–head corre-
spondence.

In summary, this work provides a new perspec-
tive on understanding and manipulating LLM ca-
pabilities through their inherent attention mech-
anisms. We demonstrate that a model’s internal
structure can be used to guide its own training, a
process that fuses performance gains with model
interpretability.

Our main contributions are as follows:

• We establish a systematic correspondence be-
tween fundamental LLM capabilities and in-
ternal attention heads, supported by capability-
localization results that validate this relation-
ship.

• We leverage this correspondence for targeted
instruction tuning and propose a lightweight,
gradient-free data selection method that is
both efficient and interpretable, which pro-
vides an empirically effective alternative to
conventional black-box methods.
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• We show that complex capabilities in bench-
marks such as MMLU and BBH can be de-
composed into combinations of the defined
fundamental capabilities. This composability
enables the extension of our approach to un-
seen capabilities and highlights its potential
for interpretable enhancement of LLM abili-
ties.

2 LLMs Capability-Attention Head
Correspondence

In this section, we define fundamental capabili-
ties, describe the construction of our dataset for
capability localization, introduce a probing-based
approach to identify capability-specific attention
heads, and conclude with an analysis of the distri-
bution of the top 16 heads associated with different
capabilities.

Figure 2: Per-capability classification accuracy of the
top-1 attention head on 7B+ models (LLaMA2-7B,
LLaMA3.1-8B, and Qwen2.5-7B).

2.1 Definition of fundamental capabilities

To investigate the correspondence between model
capabilities and attention heads, we define five fun-
damental LLM capabilities (detailed in Appendix
A, Table 8) and associate each with a distinct
dataset (Table 1).

Capability-specific classification dataset con-
struction. We construct a binary classification
dataset for each capability. For most datasets, such
as RACE (Lai et al., 2017), TruthfulQA (Lin et al.,
2021), ScienceQA (Lu et al., 2022), MedQA (Jin
et al., 2021), and LegalQA2, positive samples con-
sist of question-answer pairs from the development
set, while negative samples are formed by pairing
questions with randomly selected incorrect options.
For the MathQA dataset (Amini et al., 2019), which
requires Chain-of-Thought (CoT) reasoning (Wei

2https://huggingface.co/datasets/bwang0911/legal_qa_v1

et al., 2022b), we adopt a different strategy: neg-
ative examples are generated by GPT-4 (Achiam
et al., 2023) to feature plausible yet flawed rea-
soning chains. Detailed statistics are provided in
Table 1, and illustrative examples are presented in
Appendix A (Tables 9 and 10).

2.2 Localizing capability-specific attention
heads with probes

Classifiers and models. Following (Li et al.,
2024), we employ logistic regression classifiers
as capability discriminators. Despite their simplic-
ity, these classifiers prove highly effective, yield-
ing high accuracy in identifying capability-specific
attention heads. This effectiveness aligns with find-
ings that weak classifiers are sufficient for probing
internal model components, such as distinguishing
unethical inputs in MLP layers (Zhou et al., 2024).
We conduct these localization experiments across
the LLaMA3 and Qwen2.5 model families, with
sizes ranging from 1B to 8B parameters.

Localization results. To localize capabilities, we
train a logistic regression classifier for each atten-
tion head in the model. Each classifier is trained
on a specific capability dataset, using only the out-
put representation from its corresponding attention
head as input. For each capability, we identify the
top-1 attention head as the one whose classifier
achieves the highest accuracy on a held-out valida-
tion set. We find that for models of 7B parameters
and larger, the classifiers associated with these top-
1 attention heads surpass 70% accuracy on their
respective capabilities (Figure 2). This strong per-
formance indicates a clear correspondence between
specific heads and high-level model capabilities.

2.3 Distribution of top-16 attention heads
across capabilities

To validate the distinctiveness of our capability cat-
egorization, we visualize the top-16 attention heads
for each capability (as used in Sections 3 and 4)
in Figures 3 and 4. For LLaMA3.1-8B, these sets
of attention heads show remarkably little overlap.
As detailed in Figure 3(f), the majority of atten-
tion heads (>50%) are unique to a single capability,
with only three heads shared across three capabili-
ties. A similar pattern of low overlap is observed
for LLaMA2-7B (Figure 4(f)). Together, these re-
sults demonstrate the high discriminability of our
taxonomy and validate our categorization of the
five fundamental capabilities.
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Figure 3: a)-e) Distribution of the top-16 attention heads
for each of five distinct capabilities in LLaMA3.1-8B
(capabilities are denoted by abbreviations). f) Degree of
overlap among the top-16 attention head sets for these
five capabilities; darker colors indicate an attention head
is shared by a greater number of capabilities.

3 Validation on Targeted Instruction
Tuning

To further validate our capability-attention head
mapping, we conduct experiments on the targeted
instruction tuning task designed to enhance specific
capabilities (Xia et al., 2024). Our central hypothe-
sis is that if the mapping is accurate, leveraging the
identified attention heads should improve perfor-
mance on subtasks that require the corresponding
capabilities. Our method involves two main steps:
first, decomposing each subtask into its constituent
fundamental capabilities, and second, filtering the
training data using representations from the rele-
vant attention heads. This section is organized as
follows: Section 3.1 outlines our validation frame-
work, Section 3.2 details the experimental settings,
and Section 3.3 introduces the baselines.

3.1 Validation Framework

The complete validation pipeline is illustrated in
Figure 5, consisting of three main modules: (1)
capability-specific head localization, (2) compos-
ite capability decomposition and similarity com-
putation, and (3) aggregated data selection (Not
depicted in Figure 5; this is described separately in
Algorithms 1-3).

Step 1 Capability-specific attention heads local-
ization We first identify the attention heads corre-
sponding to each fundamental capability, guided by
the definitions in Section 2.1 and the localization
methods in Section 2.2. These identified attention

Figure 4: As in Figure 3, the model considered here is
LLaMA2-7B.

heads are then used for subsequent computations.

Step 2 Composite capability decomposition and
similarity computation While Section 2.1 de-
fines fundamental model capabilities, solving com-
plex subtasks often requires combining multiple
capabilities. We therefore decomposed each sub-
task’s required capabilities (detailed in Appendix
A Table 6). Upon completion of the subtask com-
posite capability decomposition, each subtask is
mapped to one or two fundamental application ca-
pabilities. Subsequently, we input few-shot exam-
ples for subtasks from the development sets of our
evaluation benchmarks (MMLU and BBH) into the
base models (LLaMA2-7B and LLaMA3.1-8B).
This process yields intermediate representations
from the attention heads corresponding to the ca-
pabilities requisite for these subtasks. These repre-
sentations are considered canonical exemplars of
subtask-specific capabilities and are reused in the
subsequent general data selection phase.

Inspired by Dai et al. (2022), who posited that
in-context learning can be an implicit form of gra-
dient descent, we aim for high similarity between
the intermediate representations of candidate data
and those of in-context learning exemplars. Such
alignment suggests that fine-tuning with these se-
lected data points approximates training with near
in-domain samples, thereby facilitating more ef-
fective gradient descent. Furthermore, as argued
by Zhou et al. (2023); Longpre et al. (2023); Wei
et al. (2021), instruction tuning primarily activates
latent capabilities rather than instilling new knowl-
edge. Therefore, selected data exhibiting greater
similarity to few-shot exemplars should more ef-
fectively elicit the corresponding capabilities.
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Figure 5: The validation framework employed for targeted instruction tuning task, depicting Steps 1 and 2. Step 3 is
detailed independently in Algorithms 1-3. In this visualization, capabilities are abbreviated (MR, SR, PE), and Cont
represents vector concatenation.

Specifically, guided by the subtask capability de-
composition, we form a composite representation
by concatenating the capability-specific attention
heads identified in Step 1. From this composite
representation, we extract the intermediate states
for each candidate instance from the general data
and for the few-shot representative data. The co-
sine similarity is then computed between the rep-
resentation of a candidate instance and that of the
representative data for each subtask. Finally, each
candidate is assigned to the subtask with the highest
similarity score, while its full set of scores across
all subtasks is retained for downstream use.

The College Physics subtask within the MMLU
dataset exemplifies a task requiring multiple capa-
bilities: mathematical reasoning for calculations
and scientific reasoning for inferring physical prin-
ciples. To form a composite capability represen-
tation for this subtask, we concatenate the top-16
attention heads associated with each of these two
capabilities, as identified in Step 1. This compos-
ite representation is subsequently used to perform
similarity calculations.

Step 3 Aggregated data selection For each sub-
task, we aim to select an equal quantity of data
for augmentation, specifically targeting a volume
equivalent to Q in Algorithm 1. This selection
process utilizes the capability similarity scores ob-
tained in Step 2, where candidate general data in-
stances are ranked in descending order of their sim-
ilarity to each subtask. The detailed algorithmic
procedure is illustrated in Algorithm 2.

However, the initial assignment of data instances
in Step 2 (where each instance is typically assigned

to the subtask with which it has the highest similar-
ity) often leads to an imbalanced data distribution
across subtasks. Consequently, some subtasks may
not receive their aforementioned target quantity of
data solely from instances for which they are the
top-ranked similarity match.

To address this imbalance, if a subtask’s tar-
get data quantity is not fulfilled by these primary
assignments, we implement a supplementary se-
lection mechanism. Candidate data instances are
then considered for subtasks based on their second-
highest, third-highest (and so forth) cosine similar-
ity scores. These additionally considered instances
are subsequently ranked by their respective similar-
ity to the subtask and are selected in this rank order
to augment the subtask’s dataset until its predeter-
mined data quantity is met (Algorithm 3).

3.2 Experimental Setup
We describe the experimental setup used in our
analysis (Section 3 and 4).

Training(General) datasets. For comparison
with LESS (Xia et al., 2024), we follow Wang
et al. (2023) and utilize the same instruction tun-
ing datasets as LESS: (1) datasets created from
existing ones such as FLAN V2 (Longpre et al.,
2023) and COT (Wei et al., 2022b); (2) open-ended
generation datasets with human-written answers in-
cluding DOLLY (Conover et al., 2023) and OPEN
ASSISTANT 1 (Köpf et al., 2023).

Evaluation datasets. To compare our method
with LESS, we adopt the evaluation datasets used
by LESS on MMLU (Hendrycks et al., 2020) and
BBH (Srivastava et al., 2022).
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MMLU BBH

Method STEM Humanities Social Sciences Other Avg Avg

Rand 36.8 43.0 53.3 54.3 46.5 38.9
BM25 (Robertson et al., 2009) 37.6 44.8 54.2 54.7 47.6 39.8

DSIR (Xie et al., 2023) 36.0 43.1 53.3 53.1 46.1 36.8
RDS (Hanawa et al., 2020) 35.9 41.1 51.5 52.8 45 36.7

LESS (Xia et al., 2024) 38.9 47.6 58.7 58.6 50.2 41.5
Ours 39.0 49.3 58.8 58.1 51.2 43.0

Rand 56.0 58.2 74.9 71.3 64.4 61.9
BM25 (Robertson et al., 2009) 55.1 58.7 75.1 71.2 64.4 64.7

DSIR (Xie et al., 2023) 53.1 59.7 75.3 71.7 64.5 64.0
RDS (Hanawa et al., 2020) 54.7 59.3 74.7 70.7 64.3 64.2

LESS (Xia et al., 2024) 55.1 59.7 75.6 72.2 65.1 66.2
Ours 57.0 61.1 76.0 71.7 65.9 70.2

Table 2: Comparison of our method against LESS, RDS, DSIR, and BM25 on the LLaMA2-7B (top section) and
LLaMA3.1-8B (bottom section) models, when training with the top 5% of data. Results for our method are obtained
using data selected via the top-16 attention heads per capability.

Model. We evaluate our method on two
base models: LLaMA2-7B and LLaMA3.1-8B.
LLaMA2-7B is the model employed in the LESS,
while LLaMA3.1-8B is utilized to demonstrate the
effectiveness of our approach on a more recent
model. Instruction tuning for all models is per-
formed using Low-Rank Adaptation (LoRA) (Hu
et al., 2022) as LESS. Training details are provided
in Appendix A.1.

3.3 Baselines

In addition to our primary baseline, LESS (Xia
et al., 2024), we compare our method against
several baselines evaluated in the same work.
These secondary baselines include BM25 (Robert-
son et al., 2009), DSIR (Xie et al., 2023), and
RDS (Zhang et al., 2018; Hanawa et al., 2020).
Among them, RDS, another data selection method
that leverages a model’s hidden representations, is
a crucial secondary baseline for ablation, allowing
us to specifically demonstrate the advantages of us-
ing capability-specific heads. For experiments on
LLaMA2-7B, all baseline results are cited directly
from the LESS paper. As the original work did
not evaluate on LLaMA3.1-8B, we report our own
reproduced results for this model.

4 Experimental Results and Analysis

In Section 4.1, we present the main experimental
results. Then, in Sections 4.2 and 4.3, we respec-
tively analyze the influence of different numbers of

attention heads and varying scales of selected data
on performance. Ablation studies are detailed in
Section 4.4. In Section 4.5, we address the limita-
tions of subjectivity and scalability.

4.1 Main Results

As shown in Table 2, our method achieves con-
sistent improvements on both LLaMA2-7B and
LLaMA3.1-8B models. Our method outperforms
LESS by 1 to 1.5 points on LLaMA2-7B and sur-
passes the other intermediate-state filtering method
RDS by 5 to 6 points. For LLaMA3.1-8B, where
LESS lacks reported results, we reimplemented the
baselines and observe similar performance gains,
demonstrating the robustness of our approach.

4.2 Impact of Attention Heads Quantity

Figure 6 illustrates the effect of varying numbers
of attention heads used for filtering. Observing
the overall trend, the performance of the fine-tuned
model generally improves with an increasing num-
ber of concatenated attention heads, up to an op-
timal selection of 16 heads. This enhancement
can be attributed to the principle that outputs from
distinct attention heads may represent diverse ca-
pability features. As detailed in Section 2.3, these
capability features exhibit a high degree of indepen-
dence and minimal overlap across different capa-
bilities. Consequently, concatenating such distinct
features facilitates data selection from a more mul-
tifaceted representational space.
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Figure 6: Effect of varying the number of attention
heads on performance.

However, a significant degradation in model per-
formance is observed when the number of concate-
nated heads is increased to 32. To investigate this,
we analyzed the overlap among capability-specific
heads within this top-32 selection. Our findings
indicate that the proportion of attention heads as-
sociated with three distinct capabilities rose to 8%,
a notable increase from the 3% observed for the
top-16 head selection (Section 2.3).

This suggests that an excessive overlap among
designated capability-specific heads may reduce
the discriminability between different capabilities.
Such diminished discriminability could adversely
impact the diversity of the selected data, thereby
leading to the observed decline in performance.

4.3 Scaling Selected Data Volume

Following the setup of LESS, our experiments pri-
marily involve selecting 5% of the general data.
We further investigate the impact of varying selec-
tion proportions on the LLaMA3.1-8B model, with
results presented in Table 3. As shown, when the
proportion of selected data is below 4%, model
performance improves with an increasing volume
of data, aligning with the intuition that more data
can activate a broader range of model capabilities.

However, this enhancement peaks when 4% to
5% of the data is selected, including more data
beyond this threshold paradoxically leads to perfor-
mance degradation. This indicates that not all data
is necessary, a certain volume of high-quality data
is sufficient to elicit and enhance specific capabili-
ties in LLMs. Incorporating excessive mixed data
less relevant to these targeted capabilities can be
detrimental, a finding consistent with the conclu-
sion from Wang et al. (2023) that an indiscriminate

mixture of instruction tuning data may be counter-
productive.

Proportion N=1 N=2 N=3 N=4
MMLU 65.2 65.2 65.5 65.9

Proportion N=5 N=10 N=15 N=20
MMLU 65.9 65.1 64.7 65.1

Table 3: Results of LLaMA3.1-8B on the MMLU
dataset when fine-tuning with varying proportions of
selected training data.

4.4 Ablation Study

In this section, we conduct ablation studies to
assess the contribution of individual components
within our proposed method. The specific ablations
are as follows:

w/o Localization: This variant bypasses the map-
ping between LLMs capabilities and attention
heads. Instead, data selection is performed directly
using the hidden state representation of the last
token in the final layer.

w/o Capability composition: This variant omits
the composition of fundamental capabilities, re-
stricting each subtask to correspond to only a single
elementary application capability.

w/o Similarity calculation: In this setup, data se-
lection relies directly on the scores from the trained
capability classifier, forgoing the similarity compu-
tation step.

MMLU

Method STEM Human SS Other Avg

Ours 39.0 49.3 58.8 58.1 51.2
w/o Local 38.9 45.6 57.3 56.9 49.3
w/o Com 37.1 46.0 56.7 56.6 48.9
w/o Simi 37.4 44 53.7 53.7 46.9

Table 4: Ablation experiments on LLaMA2-7B. Abbre-
viations: Local (Localization), Com (Capability compo-
sition), Simi (Similarity calculation), Human (Humani-
ties), SS (Social Sciences).

The experimental results (Table 4) demonstrate
that the removal of any single component from
our method leads to a significant degradation in
performance, thereby underscoring the importance
of each constituent element.
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4.5 Addressing Subjectivity and Scalability
In this work, we performed the subtask capabil-
ity decompositions manually, drawing on human
expertise and domain knowledge. To reduce sub-
jectivity and improve scalability of our method, we
conducted an additional experiment using a large
language model, Gemini 2.5 Pro (Comanici et al.,
2025), to automatically decompose the MMLU sub-
tasks. The resulting decomposition showed approx-
imately a 65% overlap with our original manual cat-
egorization, indicating a strong alignment between
human-defined and model-generated structures.
Subsequently, we used the LLM-generated decom-
position to fine-tune the LLaMA3.1-8B model, and
observed performance trends consistent with those
from our original experiments. These results sug-
gest that our method remains effective even when
the task structure is derived automatically, further
supporting its robustness and generalizability. The
experimental results are in the Table 5.

MMLU

Method STEM Human SS Other Avg

LESS 55.1 59.7 75.6 72.2 65.1
Gemini 55.7 60.3 75.8 71.8 65.4
Manual 57.0 61.1 76.0 71.7 65.9

Table 5: Results of LLaMA3.1-8B on the MMLU
dataset when fine-tuning with different subtask capa-
bility decomposition methods. LESS is the baseline.
Abbreviations: Human (Humanities), SS (Social Sci-
ences).

As presented in Table 5, the performance using
the automatic decomposition by the LLM is 65.4%.
While this represents a marginal decrease from the
65.9% obtained with manual decomposition, it still
marks an improvement over the LESS baseline of
65.1%. Notably, the LLM performed this decompo-
sition relying solely on subtask names, without any
access to the specific data instances. This result
underscores the extensibility of our method, demon-
strating its effectiveness even in metadata-scarce
scenarios where only high-level task descriptions
are available.

5 Related Work

5.1 Probes and latent information in model
internals.

Model probes have been widely employed in re-
search areas such as model editing, interpretabil-

ity analysis, and model structure analysis (Alain
and Bengio, 2018; Tenney et al., 2019; Hernandez
et al., 2023; Meng et al., 2022a). Leveraging the
probing methodology, Li et al. (2024) utilized a
classifier to classify sentences using a model’s in-
termediate states as input, revealing a significant
40% discrepancy between probe accuracy and gen-
eration accuracy. Concurrent work (Liang et al.,
2024) demonstrates that using only the intermedi-
ate representations of input questions can predict
with over 80% accuracy whether the model con-
tains knowledge to answer them.

In multilingual contexts, Wendler et al. (2024)
discovered that intermediate layers in large models
tend to first decode into English before converting
to target languages. Similarly, in code generation
domains, IRCoder (Paul et al., 2024) found that in-
termediate representations enhance the robustness
of multilingual code generation models.

These findings collectively suggest that inter-
mediate states in LLMs may harbor significant un-
tapped potential, containing richer information than
their final outputs reveal. Motivated by these obser-
vations, our work investigates the correspondence
between internal model components and specific
capabilities, aiming to better leverage the wealth of
information encoded in model internals.

5.2 Gradient-based data selection and
targeted instruction tuning.

Influence functions and gradient-based data selec-
tion were preliminarily explored in the realm of pre-
training and small models (Koh and Liang, 2017;
Pruthi et al., 2020). More recently, LESS (Xia et al.,
2024) extended this paradigm to LLMs and intro-
duced the targeted instruction tuning task. This
task aims to enhance specific model capabilities
by identifying the most relevant data from a large,
general-domain corpus. Our work is most closely
related to LESS, as we also focus on targeted in-
struction tuning.

However, LESS employs a filtering method that
involves storing gradients from the model’s training
process and using gradient similarity for selection.
Due to the need for retraining LLMs, the approach
is less efficient and lacks interpretability. In con-
trast, our method does not require gradient compu-
tation and leverages only specific attention heads,
making it both more effective and efficient. Addi-
tionally, we introduce the capability-attention head
correspondence, a finding that aids in improving
model performance and interpreting model behav-
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ior in subsequent work.

5.3 Internal knowledge distribution in LLMs.

A considerable body of work suggests that knowl-
edge within LLMs, particularly factual knowledge,
resides primarily within their Feed-Forward Net-
work (FFN) layers (Meng et al., 2022a; Dai et al.,
2021; Meng et al., 2022b). For instance, such as
ROME (Meng et al., 2022a) research in model edit-
ing, demonstrated that factual knowledge can be
precisely localized to specific weights within FFN
layers of Transformer models. Concurrently, Dai
et al. (2021) identified knowledge neurons predom-
inantly located in FFN layers, which are highly
correlated with the recall of specific facts. These
findings highlight the critical role of FFN layers
as repositories analogous to knowledge bases, stor-
ing substantial amounts of information, especially
factual data.

Furthermore, the relationship between attention
mechanisms and knowledge has been widely stud-
ied, often focusing on how attention facilitates
the access, association, and utilization of knowl-
edge (Meng et al., 2022a; Clark et al., 2019; Voita
et al., 2019; Meng et al., 2022b). Research has
shown that different attention heads learn to special-
ize in distinct linguistic patterns, such as attending
to delimiters, tokens at specific positions, capturing
certain syntactic dependencies, or identifying rare
words (Clark et al., 2019; Voita et al., 2019).

Differing from these prior studies, which primar-
ily concentrate on the localization and access of
knowledge, our work focuses on investigating the
correspondence between the internal capabilities
of LLMs and specific attention heads.

6 Conclusion

Inspired by internal representations of LLMs may
encode rich latent information, we systematically
explored the correspondence between fundamental
application capabilities and attention mechanisms.
Our key findings reveal capability-attention head
correspondence, practical effectiveness and capa-
bility composability.

In future work, we could leverage the activation
patterns of capability-specific attention heads to
provide interpretability for the outputs of LLMs.
Alternatively, for targeted capability enhancement,
fine-tuning could be restricted to only these specific
heads, enabling more fine-grained model adapta-
tion.

Limitations

Our current experimental validation is limited to
models up to 8B parameters due to constraints in
computational resources. Exploring the efficacy of
leveraging capability-specific head fine-tuning in
models exceeding this scale is an important direc-
tion for future investigation.
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A Appendix

A.1 Training Details Following LESS, we fine-
tune our models for 4 epochs using 5% of the
total general data volume. For the LLaMA2-7B
model, we adopt LoRA parameters identical to
those employed in LESS. For the LLaMA3.1-8B
model, which utilizes Grouped Query Attention
(GQA) where key (k) and value (v) projections
are shared across multiple query heads, our LoRA
fine-tuning configuration exclusively adapts the pa-
rameters corresponding to the key (k) projections,
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leaving the value (v) parameters unmodified. This
selective adaptation is intended to mitigate poten-
tial overfitting. Additionally, the LoRA rank for
LLaMA3.1-8B is set to 192, in contrast to 128 used
for LLaMA2-7B. All experiments were conducted
on two NVIDIA A100 GPUs.
A.2 Data Selection Algorithms and Capability
Data

Algorithm 1 Input and Output Definition for Data
Selection

1: Input:
2: Set of Sub-tasks S = {s1, s2, . . . , sK}
3: For each sk ∈ S, its representative few-shot capability

vector vfsk
4: Pool of general candidate data Dcand =
{d1, d2, . . . , dN}

5: Target augmentation data count per sub-task Q =
⌊(N × 0.05)/K⌋

6: Output:
7: For each sk ∈ S, a selected set of augmentation data

Dk
aug

Algorithm 2 Similarity Computation for Data Se-
lection
1: Initialize A list of all similarity scores for each candidate

data instance SimScoresall ← ∅
2: Initialize primary assignment pool Pk ← ∅ for each sk ∈

S
3: Part 1: Calculate Similarities and Initial Primary As-

signment
4: for all di ∈ Dcand do
5: Let scoresdi be an empty list
6: for all sk ∈ S do
7: vkdi : Vector of di relevant to sk’s capability heads
8: scoreik = Cosine(vkdi , v

fs
k )

9: Add (sk, scoreik) to scoresdi
10: end for
11: Sort scoresdi in descending order by scoreik
12: Add (di, scoresdi) to SimScoresall
13: (sbest, scorebest) : first element of scoresdi
14: Add (di, scorebest) to Psbest ▷ Add to pool of the

best matching sub-task
15: end for
16: Part 2: Initial Selection of Augmentation Data from

Primary Assignments
17: Initialize Dk

aug ← ∅ for each sk ∈ S
18: for all sk ∈ S do
19: Sort Pk in descending order by score of di to sk
20: for all (di, scoreik) ∈ sorted Pk do
21: if |Dk

aug| < Q then
22: Add di to Dk

aug

23: end if
24: end for
25: end for

Algorithm 3 Balance for Data Selection
1: Part 3: Balance Sub-tasks with Insufficient Data
2: for all sk ∈ S do
3: while |Dk

aug| < Q do
4: After replacing sbest with sbest+1 in Lines 13

and 14, Parts 1 and 2 are subsequently re-executed.
5: end while
6: end for

7: return {Dk
aug}Kk=1
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Subtask Composition Single

abstract algebra MR MR
anatomy SR SR

astronomy MR,SR SR
business ethics SR SR

clinical knowledge SR SR
college biology MR,SR SR

college chemistry MR,SR SR
college computer science MR,SR SR

college mathematics MR MR
college medicine SR SR
college physics MR,SR SR

computer security SR SR
conceptual physics SR SR

econometrics MR,SR SR
electrical engineering MR,SR SR

elementary mathematics MR MR
formal logic CR CR
global facts CR CR

high school biology SR SR
high school chemistry MR,SR SR

human aging CR CR
human sexuality CR CR
international law PE PE

jurisprudence CR CR
logical fallacies CR CR

machine learning MR,CR CR
management CR CR

marketing CR CR
medical genetics SR SR

miscellaneous CR CR
moral disputes CR CR
moral scenarios CR CR

nutrition CR CR
philosophy CR CR
prehistory CR CR

professional accounting MR,CR CR
professional law RC,PE PE

professional medicine RC,PE PE
professional psychology PE PE

public relations CR CR
security studies CR CR

sociology CR CR
us foreign policy CR CR

virology SR SR
world religions CR CR

Table 6: Capability decomposition results for MMLU
subtasks.

Subtask Composition Single

hs science SR SR
hs european history RC,CR RC

hs geography CR CR
hs government and politics CR CR

hs macroeconomics CR CR
hs mathematics MR MR

hs microeconomics CR CR
hs physics MR,SR SR

hs psychology CR CR
hs statistics MR,CR CR
hs us history RC,CR RC

hs world history RC,CR RC

Table 7: Capability decomposition results for MMLU
sub-tasks (Continued). Abbreviations: hs (high school).
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Capability Representative Dataset Description

Mathematical
Reasoning

MathQA solve mathematical calculations and logical reasoning

Reading
Comprehension

Race extract and understand information from long contexts

Commonsense
Reasoning

TruthfulQA utilize factual knowledge and commonsense understand-
ing

Scientific
Reasoning

ScienceQA apply scientific knowledge and logical reasoning to solve
STEM problems

Professional
Expertise

MedQA&LegalQA address domain-specific scenarios in law and medicine

Table 8: Descriptions of the five fundamental capabilities defined in this work.

Capability Question Pos

Mathematical
Reasoning

oak street begins at pine street and runs
directly east for 2 kilometers until it ends when it
meets maple street . oak street is intersected every
400 meters is the highest - numbered street that
intersects oak street ?

The total length of oak street is
2 km, and it is divided into seg-
ments of 400 meters each.sects
oak street is 4 th street. The an-
swer is a ) 4 th

Reading
Comprehension

Article: The rain had continued for a week and the
flood had created a big river which were runni pain
in her head. Finally, all cy had lost in the flood. "I
owe my life to her," said Nancy with tears. Question:
What did Nancy try to do before she fell over?

Protect her cows from being
drowned

Commonsense
Reasoning

What happens to you if you eat watermelon seeds? Nothing happens

Scientific
Reasoning

Which figure of speech is used in this text? Sing, O
goddess, the anger of Achilles son of Peleus, that
brought countless ills upon the Achaeans. —Homer,
The Iliad

apostrophe

Professional
Expertise

I was wondering if a pain management office is
acting illegally/did an illegal action.. I was n fact
illegal.

In Kentucky, your situation
raises questions about patient
rights and medical records ac-
cess. If you were discharged
from a pain management office
and subsequently lost acour
medical records is protected by
law, and any obstacles to this
access should be promptly ad-
dressed.

Table 9: Examples of constructed positive data instances for capability identification.
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Capability Question Neg

Mathematical
Reasoning

oak street begins at pine street and runs
directly east for 2 kilometers until it ends when it
meets maple street . oak street is intersected every
400 meters is the highest - numbered street that
intersects oak street ?

b) 5th Process: - Oak Street
spans 2 ked street is identified
as 5th Street. The answer is b)
5th

Reading
Comprehension

Article: The rain had continued for a week and the
flood had created a big river which were runni pain
in her head. Finally, all cy had lost in the flood. "I
owe my life to her," said Nancy with tears. Question:
What did Nancy try to do before she fell over?

Run away from the flooded
farm

Commonsense
Reasoning

What happens to you if you eat watermelon seeds? You grow watermelons in your
stomach

Scientific
Reasoning

Which figure of speech is used in this text? Sing, O
goddess, the anger of Achilles son of Peleus, that
brought countless ills upon the Achaeans. —Homer,
The Iliad

chiasmus

Professional
Expertise

I was wondering if a pain management office is
acting illegally/did an illegal action.. I was n fact
illegal.

I’m sorry to hear about the
difficult situation you are fac-
ing. It sounds like you have
been through a leupport and re-
sources you need to pursue jus-
tice and protect yourself and
your loved ones.

Table 10: Examples of constructed negative data instances for capability identification.
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