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Abstract

Variation is inherent in opinion-based annota-
tion tasks like sentiment or hate speech analy-
sis. It does not only arise from errors, fatigue,
or sentence ambiguity but also, for example,
from genuine differences in opinion shaped by
background, experience, and culture. In this pa-
per, first, we show how annotators’ confidence
ratings can be of great use for disentangling
subjective variation from uncertainty, without
relying on specific features present in the data
(text, gaze etc.). Our goal is to establish distinc-
tive dimensions of variation which are often not
clearly separated in existing work on modeling
annotator variation. We illustrate our approach
through a hate speech detection task, demon-
strating that models are affected differently by
instances of uncertainty and subjectivity. In ad-
dition, we show that human gaze patterns offer
valuable indicators of subjective evaluation and
uncertainty.

Disclaimer: This paper contains sentences that
may be offensive.

1 Introduction

Many areas of NLP rely on human-annotated data
and treat these annotations as so-called ground truth
for training, fine-tuning, or testing models. In es-
tablished annotation workflows, ground-truth data
is often generated by multiple annotators and very
commonly contains variation, e.g., with different
annotators assigning different labels to the same
sentence, as exemplified in Figure 1. How to deal
with this variation has been a long-standing and no-
torious question for research in NLP (Alm, 2011;
Poesio and Artstein, 2005; de Marneffe et al., 2012;
Aroyo and Welty, 2015).

Traditional annotation approaches typically aim
to reduce variation as much as possible by tailoring
annotation guidelines, removing annotation errors,
or employing majority voting, etc. Such efforts of-
ten take a prescriptive annotation approach (Rottger
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Figure 1: Different kinds of variation in data. The first
three rows align with the majority vote, representing collective
opinion. The fourth and fifth rows reflect minority votes with
varying levels of reported certainty, distinguishing between
subjective opinion and subjective uncertainty. The final row
aligns with the majority vote, albeit with reduced certainty,
representing collective uncertainty.

et al., 2022), unlike a descriptive one. As exten-
sively discussed in Anand et al. (2024); Arazo
et al. (2019); Mokhberian et al. (2022), variation
in annotation is not only due to annotation errors
(such as careless drops or annotator fatigue) or
uncertainty (from lack of knowledge, ambiguous
instructions, or ambiguous instances), but also to
differences in opinions between annotators. Re-
cent approaches, therefore, have argued that it may
not be possible or even desirable to exclude varia-
tion, arguing for descriptive annotation, and made
proposals to embrace so-called human label varia-
tion (Plank, 2022), especially in highly subjective
tasks (Leonardelli et al., 2021; Uma et al., 2021;
Basile et al., 2021; Casola et al., 2023).

In this study, we examine different sources of hu-
man label variation in a hate speech detection task
and explore whether it is possible to disentangle
uncertainty from genuine subjectivity. Hate speech
is inherently multifaceted and hard to define with
discrete categories (e.g., offensiveness vs. hateful-
ness), contributing to annotator uncertainty. Our
approach systematically categorizes the instances
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of subjectivity and uncertainty (see Figure 2) using
self-reported confidence and hatefulness ratings.
Next, we demonstrate how this approach can serve
as a diagnostic tool for analyzing model behavior
across different types of instances in hate speech
detection (HSD). Finally, we turn to gaze-infused
hate speech detection which has recently been pro-
posed as an approach that “naturally” handles anno-
tators’ subjectivity (Alacam et al., 2024). Using our
quadrant-based approach, we examine how gaze
infusion affects the behavior of a hate speech de-
tection model for different sources of human label
variation. Disentangling these notions within the
data offers several key benefits across various di-
mensions: (i) it facilitates a deeper understanding
of the data characteristics, such as quantifying the
proportions of collective opinions and subjective
variation; (ii) it enables the analysis and compar-
ison of models’ sensitivities to different types of
instances, including their robustness to noise, their
capabilities to represent individual variation and
uncertainties.

2 Related Work

Notions of label variation. The concepts of sub-
jectivity and disagreements are integral to opinion-
mining tasks where it is clear that annotators can
exhibit different/subjective opinions leading to in-
dividual variations (Sap et al., 2022).

Despite ongoing efforts in the NLP and ML
communities, there remains little consensus on the
definition and measurement of human label (an-
notation) variation. A non-exhaustive list of the
most occurring terms in this domain includes error,
noise, bias, random & systematic variation, sub-
Jectivity, disagreement, uncertainty etc. Whereas
some of them are used interchangeably, many have
nuanced differences.

In particular, while there have been recent at-
tempts to highlight the importance of retaining dis-
agreements originating from genuine subjective
opinion (Fleisig et al., 2023), remaining variations
are usually treated under the umbrella term noise,
which may encompass different notions: uncer-
tainty, experimental errors with response latency
(too fast or too slow), annotator fatigue, a lack of
knowledge (Sandri et al., 2023; Basile et al., 2021;
Zhang and de Marneffe, 2021). Among these, the
notion of uncertainty (e.g. treating the instances
with uncertainties as noise (Jinadu and Ding, 2024)
has received particular attention. It is critical to

note that apart from a few exceptions (Baan et al.,
2023; Peterson et al., 2019), the term uncertainty
primarily is attributed to the model’s uncertainty
in predicting correct class rather than the human
uncertainty reported during the annotation process.

A deeper understanding of the nature of these
closely related but distinct concepts, and their care-
ful disentanglement through behavioral and psycho-
logical analysis (e.g., identifying which instances
are genuinely noise versus meaningful data reflect-
ing subjective variation), is crucial for accurately
modeling opinion-mining tasks.

Methods for dealing with variation. Many ex-
isting ML models implicitly assume statistical in-
dependence between instances. Mitigating this
simplification requires a more deliberate approach
such as removing variation from the data (Zampieri
et al., 2019), training individual models, adjust-
ing loss functions (Jinadu and Ding, 2024; Anand
et al., 2024; Simchoni and Rosset, 2023; Arazo
et al., 2019), or employing multi-task learning
(Mostafazadeh Davani et al., 2022).

Variation-removing strategies such as discarding
data points or majority voting are commonly used
to create more streamlined datasets. However, as
mentioned before, opinion-mining tasks are inher-
ently subjective, and such normalization processes
may significantly diminish this valuable aspect. An-
other strategy to mitigate variation is noise correc-
tion through loss modeling approaches (Jinadu and
Ding, 2024; Swayamdipta et al., 2020; Mokhbe-
rian et al., 2022). Such automated data evaluation
strategies seem to be leading to improved model
performance on the majority voting prediction. To
increase the subjectivity, there are also successful
attempts to utilize annotator-dependent features e.g.
annotator embeddings (Hoeken et al., 2025, 2024;
Vitsakis et al., 2024; Deng et al., 2023; Casola
et al., 2023), where the idea is to adjust the model
to be either less or more confirming with majority
opinions, where the former is about improving the
alignment with disagreement patterns.

Recent research has also explored using LLMs
to address individual variation in opinion-mining
tasks: evaluating the capabilities of LLM as judge
(Lu et al., 2025), estimating disagreement through
fine-tuning with preference optimization (Loftus
et al., 2025), leveraging annotator-specific prompts
(Orlikowski et al., 2025), and applying in-context
learning with entropy derived from annotator dis-
agreement (Caselli and Plaza-del Arco, 2025).
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However, the results suggest that there is still con-
siderable room for improvement in making LLMs
more sensitive to subjectivity.

Although we acknowledge the value of model-
driven correction strategies aimed at mitigating the
negative impact of noise to build more robust clas-
sifiers, our approach takes a different direction. We
propose a diagnostic concept designed to reveal
model sensitivities across fine-grained categories
of subjective evaluation. By shifting the focus to
the data collection process, we highlight the im-
portance of incorporating an often-overlooked yet
critical parameter — confidence ratings (on a contin-
uous scale ) — to gain deeper insights into the data
and the model’s behavior.

Gaze signals for opinion-mining tasks. Previ-
ous research has shown that human gaze provides
valuable insights into word complexity, implicit
language and sentiment perception (Mishra et al.,
2016). As noted in Alacam et al. (2024), eye-
movement parameters capture distinct aspects of
hate speech: pupil size reflects sentiment inten-
sity, while fixation-based parameters help distin-
guish hate from non-hate speech. Moreover, gaze
features are user-specific, revealing subconscious
biases and cognitive processes without the need
for explicit judgments, and they offer continuous-
scaled data instead of being confined to binary
(yes/no) responses.

Another study by Cala et al. (2023) tested
whether users’ gaze can be leveraged to estimate
implicit attitudes toward climate change using
a standardized Implicit Association Test (IAT)
that measures concept associations underlying im-
plicit biases and prejudices. The assumption is
that decision-making reaction times are faster for
congruent associations than for incongruent ones.
Their results showed that three of 13 selected gaze
features differed significantly and proved useful
for predicting users’ implicit attitudes. Similarly,
Hansen et al. (2015) investigated whether implicit
or explicit racial prejudice can be revealed by eye
gaze through scanpath analysis. Their results indi-
cate that, regardless of prejudice type, participants
with high and low levels of racial prejudice exam-
ined faces differently — providing further evidence
of gaze as a predictor of subjective evaluations.
Their fine-grained quadrant-based analysis, incor-
porating scores from standardized implicit and ex-
plicit association tests, also demonstrated gaze’s
sensitivity in revealing different attitudes. The as-
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Figure 2: Conceptualization to disentangle subjective
variation from uncertainty based on annotators’ confi-
dence scores and individual variation at the instance
level.

sociation between gaze and decision making pro-
cesses has also long been established in prior re-
search (Thomas et al., 2019; Krajbich et al., 2010;
Shimojo et al., 2003). These studies consistently
showed that gaze patterns are strongly linked to
individuals’ decision making processes, and can be
leveraged both to predict individual differences and
to explain variability in choice behavior.

Beyond sentiment and implicit attitudes, gaze
has also been shown to predict readers’ subjec-
tive understanding (the readers’ perception of their
own understanding) (Lima Sanches et al., 2018).
Results revealed that the texts rated with high and
low subjective understanding elicited different gaze
patterns in terms of saccade direction and length,
number of fixations, and other parameters. Yet, the
authors note that the benefits of incorporating gaze
diminish under certain reading behaviors (e.g., fast
reading without engagement), emphasizing both
the complexity of the task and the complementary
role of gaze.

On the computational modeling side, recent ad-
vancements in gaze-integrated models for opinion
mining tasks further highlight the utility of gaze sig-
nals (Alacam et al., 2024; Wang et al., 2024; Deng
et al., 2024; Yang and Hollenstein, 2023). The main
principle behind these models is to detect the most
attended tokens in a sentence using eye-tracking
and guide the model’s attention with this rich in-
formation (Wang et al., 2024; Deng et al., 2024).
These developments raise the question of whether
gaze signals also contribute to effectively predict
subjectivity and uncertainty in opinion tasks.

3 Ouwur Approach

In this paper, we conceptualize different sources of
variation in labeling data by proposing a system-
atic approach to disentangling subjective variation
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from uncertainty. The main sources of information
are: (i) individual labels (or ratings) by annotators,
which are used to calculate the individual variation
from all the other annotators, (ii) scores of the an-
notators’ individual uncertainty (confidence score)
and (iii) user’s gaze as optional behavioral data.

Our conceptualization — illustrated in Figure 2 —
is built upon two of these core dimensions: con-
fidence of an individual annotator and individual
variation in evaluations (e.g. hatefulness rating)
between different annotators (both collected at the
instance level on a continuous scale). We test our
conceptualization on subjective hate speech detec-
tion using the GAZE4HATE dataset (as detailed in
the next section). Utilizing the hatefulness scores,
the individual variation is calculated for each in-
stance ¢ based on how much the individual’s (p)
hatefulness score HS? deviates from the average
hatefulness score assigned by all other annotators
(¢ € [1,.., N] where g # p) on the same instance
using the following formula, where N is the total
number of annotators who evaluated the sentence
(excluding the same annotator):

AHS? — HSP

D3y tr
| N-1

Using these two dimensions, we categorize in-
stances into four groups: collective opinion, subjec-
tive opinion, collective uncertainty and subjective
uncertainty (Figure 2), as described next. Overall,
the right side of the Cartesian plane denotes high
confidence (certainty) instances.

The bottom-right quadrant (Q-IV: Collective
Opinion) includes instances where annotators re-
port high confidence and exhibit low variation from
the mean majority rating. These represent relatively
clear-cut cases with broad consensus and are ex-
pected to be easier for a HSD model to classify.
As an example, the sentence Women are underper-
formers in our society was predominantly evaluated
with low variation and high confidence, indicating
a collective opinion.

The top-right quadrant (Q-I: Subjective Opin-
ion) is of high certainty with disagreement and
more closely associated with subjective opinion, as
those annotators confidently deviate from the aver-
age hatefulness score of this sentence. For example,
the statement Women are psychologically not made
for complex work was equally observed in both
Q-I and Q-II, receiving high confidence scores but
varying levels of agreement. This suggests that per-

ceptions of its hatefulness differ across annotators.
In comparison, the implicit and positive statement
Equality is a human rights issue exhibited greater
variation in responses while maintaining a high
level of confidence.

The left of the Cartesian plane represents un-
certain cases. Although our primary focus is on
disentangling subjective variation from uncertainty,
it remains important to distinguish between Sub-
jective Uncertainty (Q-II) and Collective Uncer-
tainty (Q-III) for practical reasons. The bottom-
left quadrant (collective uncertainty) includes in-
stances where annotators report low confidence but
still align with the majority, indicating some degree
of sentence-level systematicity. For example, an
expert-provided (a priori) neutral statement such
as Women have significantly higher pain tolerance
was assessed with low confidence but high agree-
ment, reflecting collective uncertainty. Conversely,
the a priori hateful statement Women have a sig-
nificantly lower will to assert themselves appeared
equally in Q-III and Q-IV. While it exhibited low
variation in terms of hatefulness, it shows high vari-
ation in the confidence dimension.

In contrast, instances in Q-II: Subjective Uncer-
tainty represent cases where annotators are uncer-
tain and do not align with the majority, potentially
including random guessing by annotators. For ex-
ample, the statement The Gender-Pay-Gap is not a
problem of sexism was more frequently observed
in Q-II, with evaluations characterized by low con-
fidence and high variation.

3.1 Data

Our approach to distinguish subjective variation
from uncertainty requires fine-grained instance-
level hatefulness and confidence ratings from each
annotator for each sentence, rather than coarse bi-
nary labels alone. Unfortunately, many datasets
provide this information at a coarse-grained level
only. Therefore, to categorize variation regarding
hate speech, we utilize the GAZE4HATE dataset
(Alacam et al., 2024)!" which — to the best of our
knowledge — is the only dataset providing confi-
dence and gaze on subjective data. It provides
confidence and hatefulness scores (on continuous
scale) for 90 sentences of positive, neutral and
hateful statements towards women (in German),
each rated by 43 participants resulting in 3,630 in-
stances. It contains further data (response time, and

'GAZE4HATE dataset: https://osf.io/fgdjw
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various gaze parameters) collected at the instance-
level. The data used in this paper is coming from
three experimental phases, namely sentence read-
ing, hatefulness rating, confidence rating. From the
first phase, we utilize the gaze recordings collected
during sentence reading phase. From the second
and third phases, we obtain hatefulness and con-
fidence ratings on each instance. The hatefulness
ratings are collected for each instance on a 1-to-7
Likert Scale.> Confidence score ratings are self-
reported on a 1-to-5 Likert scale,® collected right
after annotators read a sentence and rate its hate-
fulness. The individual variation is calculated as
explained above by complementing instance-level
rating with that of all annotators. All numerical
values were normalized at the annotator level using
z-score transformation.

A key feature of GAZE4HATE is the wide vari-
ation in subjective hatefulness scores (as clearly
illustrated in Appendix Figure 5), with some sen-
tences rated differently than their a priori category
and with high disagreement levels. The authors
treat all deviations from the majority as variation,
without distinguishing uncertainty from genuine
opinion differences. In contrast, we analyze the
data to explore whether certain parameters can help
disentangle subjectivity from uncertainty — an es-
sential yet challenging task in opinion mining.

3.2 Operationalization

Following our approach, instances are projected
onto the Cartesian plane based on two variables:
confidence rating, and individual variation at the
instance level, as shown in Figure 3. The number
of instances per quadrant from highest to lowest
is as follows: Q-IV (N = 1137), followed by Q-
I (N = 881), Q-IIT (/N = 775) and finally Q-II
(N = 570). The distributions of various parame-
ters for each quadrant are detailed in Appendix Fig-
ure 9. The code for the disentanglement approach
and analysis is available at https://github.com/
oalacam/disentangle_subjectivity.

For visualization, we color-coded multiclass
HSD labels by aggregating ordinal hatefulness rat-
ings into three categories: positive (1 to 3), neutral
(4), and hateful (5 to 7). For the classification
task in the next section, we combined the positive
and neutral classes into a single nohate category.

%1: very positive, 2: positive, 3: somehow positive, 4:
neutral, 5: mean, 6: hateful, 7: extremely hateful

31: not certain, 2: somewhat certain, 3: moderate, 4: cer-
tain, 5: very certain

Confidence versus Individual Variation Plot

¢ hate
neutral
5 ° positive

Individual Variation (scaled)

-6 -4 -2 0 2
Confidence score (scaled)

Figure 3: z-score normalized confidence ratings vs. in-
dividual variation.

While we focus on variation in hatefulness, fur-
ther analysis of annotator tendencies, confidence
score variability, and the distribution of quadrant
instances by annotator gender is provided in the
Appendix A.2.

4 Disentanglement Approach as a
Diagnostic Tool for HSD Models

We train BERT-based hate speech classifiers on the
GAZE4HATE dataset and use the quadrant-based
approach from Section 3 to evaluate model per-
formance across different types of variation. This
highlights how our method can serve as a diagnos-
tic tool to better understand model behavior, with a
focus on the following research question:

RQ1 Do the models’ behaviors change across dif-
ferent quadrants?

Models. We experiment with two pretrained
BERT-based transformer model variations. The
first one is the pretrained German BERT model*
from Hugging Face. Furthermore, we also test with
a task-specific fine-tuned model provided alongside
the dataset, namely rott model’ fine-tuned on the
German HateCheck dataset® (Réttger et al., 2021).
For the first part of the analysis, we employ these
pretrained models and apply light additional fine-
tuning on the GAZE4HATE data using only sen-
tences and their labels. This results in two model
variations: bert-text and hsd-text. For the second
4https://huggingface.co/dbmdz/bert—|oase—german—uncased

https://huggingface.co/chrisrtt/gbert-multiclass-german-hate
https://huggingface.co/datasets/Paul/hatecheck-german

28711


https://github.com/oalacam/disentangle_subjectivity
https://github.com/oalacam/disentangle_subjectivity
https://huggingface.co/dbmdz/bert-base-german-uncased
https://huggingface.co/chrisrtt/gbert-multiclass-german-hate
https://huggingface.co/datasets/Paul/hatecheck-german

part of the analysis, we infuse gaze features during
the fine-tuning of the transformer models as pro-
posed by Wang et al. (2024) using the Gaze-infused
BERT model. This results in two more models:
bert-gaze and hsd-gaze. For both text-only and
gaze-infused finetuning, we employ the same im-
plementation by disabling or enabling the gaze in-
fusion. The model parameters are optimized using
grid-search, with details provided in Appendix A.8.

We train individualized models for each annota-
tor, ensuring that the same sentence cannot occur
in different splits. For each annotator, we employ a
quadrant-driven splitting method by randomly sam-
pling 80-10-10 percentages from each quadrant for
train, val, and test sets. This controls that each
quadrant has a proportional sample size from each
hate category. Then, we obtain final splits by com-
bining the respective sets of all quadrants. To see
the effect of each quadrant, we filtered the annota-
tors (/N = 10) who did not have enough samples in
any of these quadrants. Since we keep the propor-
tion of each quadrant per annotator while creating
train-val-test splits, the individualized models still
align with the annotator’s tendency, without intro-
ducing additional class imbalance noise as noted
by Mostafazadeh Davani et al. (2022).

4.1 Subjective Labels vs. Model Confidence

As discussed in Section 2 (Jinadu and Ding, 2024;
Anand et al., 2024), uncertainty usually refers to
model uncertainty in predicting the correct class
and is one of the heavily used parameters in ex-
isting research to handle subjective variation. In
this study, we extend this analysis to quantify the
relation between subjective labels and class proba-
bilities per quadrant by using point-biserial corre-
lation’ (Figure 4). These results are obtained from
the models trained without any quadrant-based
weight reduction (that will be discussed in the next
Section). The confidence scores of the bert-text
model exhibit a significant correlation with subjec-
tive gold labels, particularly in Q-IV (Collective
Opinion) and Q-III (Collective Uncertainty), where
there is little individual variation. Notably, an inter-
esting difference emerges regarding Q-I instances
(Subjective Opinion): the bert-text exhibits a signif-
icantly higher correlation with the subjective labels
compared to the HSD pretrained model. While
HSD pretraining enhances the alignment with the
collective opinion, it hurts the alignment with the

"scipy.stats.pointbiserialr

Prediction probabilities vs. subjective gold labels
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Figure 4: The correlation between the class probabilities
of model predictions and the gold labels per quadrant.

high individual variation instances (Q-I, Q-II), with-
out showing significant correlation with Q-II. This
finding confirms that the model behavior varies
per quadrant, highlighting their distinct nature (ad-
dressing RQ1).

4.2 Quadrant-based Weighing of Training
Instances

We expect the instances in the four quadrants to
affect the training of hate speech detection models
in different ways, since these models, trained with
text-only data, are not exposed to any information
reflecting user subjectivity. We examine the change
in the models behavior by reducing the weight of
the instances per quadrant in the loss function dur-
ing training HSD models. The purpose of weight
reduction is not to optimize hate speech classifi-
cation but rather to serve as a diagnostic tool for
understanding how different instances influence the
model’s behavior.

We control the weight of each instance in the
training data using the weight parameter of the
BCELoss function using two reduction settings:
fixed reduction versus distance-based reduction. In
the fixed reduction setting, the weights for the in-
stances in the respective quadrant are assigned to
a fixed value (0.3)® that diminishes the contribu-
tion of instance by 70%. The rest of the instances’
weights are set to 1. In the distance-based setting,
the weight is conditioned on the Euclidean distance
of normalized scores of the instance to the Carte-
sian plane centroid (0,0) — the further apart the
instance is, the higher the discount of the instance.
The distance-based method reduces the impact of
instances at the extremes but still retains the impact

8determined by manual inspection on the projected space
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of the ones closer to the centroid. The three possi-
ble model behaviors in response to the reduction of
a specific quadrant are provided below.

B1. If performance improves when the influence
of specific instances is reduced, it suggests
that these instances were a source of confusion
for the model in the subjective HSD task.

B2. If performance declines, it indicates that these
instances were crucial for the model.

B3. If performance remains unchanged, the model
appears invariant to those instances.

To ensure that the observed differences origi-
nate from the characteristics of the quadrants rather
than the quantity of downgraded data, we conduct
additional tests by randomly reducing samples ir-
respective of their quadrant assignment (including
Q-IV). As detailed in Appendix A.9, performance
not only remains stable or declines, but in some
cases improves, despite a substantial number of
instances being downgraded. This indicates that
the performance drops are not solely attributable to
the quantity of data being manipulated.

Table 1 shows average F1 scores for the sample
weighing conditions on two model variations. We
also report the performances without any sampling
weight reduction during training (equal weights) as
comparison. We provide the averaged performance
metrics over all participants per model.

Equal Fixed
Model All | Q-1 Q-1I Q-111
bert-text | .574 | .544] 0.556— 0.592-
hsd-text | .679 | .675—- 0.671- .649]|
Equal Distance-based
Model All | Q-1 Q-1I Q-111
bert-text | .574 | .62811 .586—  .60371
hsd-text | .679 | .668 — .618]] .675-

Table 1: Average F1 scores with and without HSD fine-
tuning. Lowest value: underlined. Highest value: bold.
A <= 0.02% indicates negligible or no change (-). |
or 1 signifies A > 0.02%. JJ} or 11 indicates a higher
difference, A > 0.05%. A is the absolute difference
between the respective score and performance of the
same model trained with equal weights.

Although our approach serves as a diagnostic
tool to explore individual model behavior, we still
expect differences on the HSD task originated from
the pretraining model. The results reveal that with
the de-facto training regime (equal weights), the
models with HSD pretraining (hsd-text) (precision:

0.59, recall: 0.85, F1: 0.68 on average) outperform
the bert-text model (precision: 0.59, recall: 0.61,
F1: 0.57) on average.

Fixed Reduction. To assess the impact of each
quadrant, we performed within-model comparisons
by measuring the A between scores with equal and
reduced weights. Q-I includes instances with sub-
jective variation, and down-weighting them during
bert-text training degrades performance on subjec-
tive hate classification (B2), indicating that for a
model, which is blind to notions of subjective vari-
ations, these instances were informative. However,
the hsd-text model is unaffected by the reduction
of Q-I instances, possibly due to its exposure to
hate speech concepts that capture some variation.
For both bert-text and hsd-text, reducing Q-II in-
stances — despite their high variation and uncer-
tainty — does not impact performance compared
to training with equal weights (B3), suggesting
the models may already handle noisy data effec-
tively. While reducing Q-III instances has little
effect on bert-text (B3), the hsd-text model shows
a performance drop, indicating these instances are
important for its learning (B2).

Distance-based Reduction. This method primar-
ily penalizes the extremes in the respective quad-
rants. Q-I extremes are source of confusion for the
bert-text model (B1), while reducing their impact
has no effect on the hsd-text model (B3). Con-
sistent with the fixed-reduction method, reducing
Q-II does not affect bert-text’s performance (B3);
however, these instances appear critical for hsd-
text (B2), and suppressing them nearly cancels out
the benefits of task-specific fine-tuning. Addition-
ally, bert-text and hsd-text respond differently to
reductions in Q-III instances (B1 and B3, respec-
tively). Figure 3 illustrates a possible reason for
this pattern. Dispersion in Q-III and Q-IV (low vari-
ation) is lower than in Q-I and Q-II (high variation),
with Q-I (subjective variation) showing the highest
spread. This helps explain why Q-I and Q-II are
more affected by distance-based reduction.’
Differences in model outcomes under both reduc-
tion methods indicate that instances across quad-
rants — each capturing distinct characteristics based
on behavioral notions of subjective variation — carry
varying degrees of informativeness for these two
models (addressing RQ1 for text-only models).

See Figure 9 for mean, max, and standard deviation of
the normalized distance measures.
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5 Gaze for Subjectivity and Uncertainty

As discussed in Section 2, human gaze inherently
reflects an individual’s internal processes, making
it instrumental for understanding subjective eval-
uations and uncertainties. In order to understand
to what extent human gaze correlates with the core
components of our approach, we first conduct a sta-
tistical analysis and identify key gaze features for
modeling hatefulness, confidence ratings, and indi-
vidual variation (Section 5.1). We then integrate the
most informative gaze correlates into the classifica-
tion model to assess how it affects model behavior
across different variation types represented in each
quadrant (Section 5.2).

5.1 Statistical Analysis on Gaze Signals

Subjective Hatefulness. To explore the gaze cor-
relates of subjective hate, we fit a mixed effect
logistic regression model with one independent
(gaze) feature at a time including random effects
(as annotator and sentence). The list of the indepen-
dent features and the detailed statistical analysis are
presented in Appendix A.3 and A.4 respectively.
Later, we fit an incremental model, adding only
significant predictors — ranked by their estimated
magnitude to the final model. Here, we only re-
port the significant gaze features. The strongest
gaze predictor of hatefulness category is the fo-
tal fixation count, (X*(1) = 39.66, p < .0001).
As the (subjective) hatefulness of the statement in-
creases, the number of fixation counts increases.
Minimum pupil size also has a significant effect
(X2(1) = 10.34, p < .005) with a negative rela-
tion.

Confidence Ratings. To explore the behavioral
correlates of the confidence rating, we fit “Cumu-
lative Link Models for Ordinal Regression” and
check the individual effect of each predictor fol-
lowed by building an incremental model based
on the magnitude of the estimates. The most
contributing gaze predictor is the mean fixation
count (X?(1) = 5.89, p < .05), improving the
model fit (with negative correlation). A higher fix-
ation count is observed as the confidence score
drops. Moreover, adding minimum pupil size
(X%(1) = 6.39, p < .05), variation in pupil size
(X%(1) = 5.91, p < .05) significantly improved
the fit (with positive correlation). Finally total
regression-out count had a significant effect as
well (X?(1) = 7.07, p < .01), more back-and-
forth movement is observed as the confidence score

drops. These results give us a set of parameters we
collect from the reading period as indicators of the
user’s uncertainty about the sentence.

Individual Variation. To check the gaze corre-
lates of individual variation, we used a mixed-effect
linear model. The results indicated none of the gaze
features collected during reading are significant
predictors of individual variation. We intuitively
do not expect annotators to be consciously aware
of how much their responses deviate from others
while they are reading. This high-level awareness
is unlikely during such tasks. Nevertheless, we
should note that individual variation is computed
based on hatefulness scores, which themselves are
significantly correlated with certain gaze features.

Interim Discussion. Several reading-phase gaze
features'® strongly reflect subjective hatefulness
and confidence judgments. Here we summarize
the list of gaze features collected from the reading
phase as strong indicators of respective parameters.

* Subjective Hatefulness Category: total fixa-
tion count, regression count, average fixation
count, minimum pupil size, total gaze dura-
tion.

* Confidence Ratings: mean fixation count,
minimum pupil size, variation in pupil size,
total regression-out count.

* Individual Variation: no gaze correlates.

We use these statistical correlations to explain
why gaze infusion enhances model performance
on HSD (see Section 5.2). We expect gaze data
to improve the model’s representation of confi-
dence. Since gaze features correlated with sub-
jective hatefulness evaluation and confidence are
encoded across all instances, we expect these mod-
els being less sensitive to the reductions in the quad-
rants focusing on the following question:

RQ2 Does incorporating gaze signals change model
behaviors in regards to different quadrants?

5.2 Gaze-infused Subjective HSD

As the predictors of subjective hate and confidence,
we inject five gaze features'! on each instance us-
ing Wang et al. (2024)’s gaze-infused BERT. Simi-

!0The gaze features used in this analysis are recorded while
the participant reads the statement, before they rate for confi-
dence or hatefulness.

Total fixation count, minimum pupil size, total regression
count, mean fixation count, and gaze duration.
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lar to text-only counterparts, we conduct our anal-
ysis on two model variations: bert-gaze and hsd-
gaze. Table 2 shows the F1 scores of the models
on the fixed reduction condition.

In line with expectations, reducing Q-I instances
do not have an impact on the gaze infused mod-
els (B3). Unlike bert-text, task-specific fine-tuning
(hsd-text, hsd-gaze) and gaze infusion (bert-gaze,
hsd-gaze) allow models to learn aspects of hate
speech, subjectivity, and confidence through the
remainder of the instances. The models behave
differently on Q-II and Q-III depending on their
pretrained model. It should be highlighted that
the commonality of these quadrants is uncertainty
(low confidence) scores. Both models suffer when
Q-III instances (collective uncertainty) are limited
(B2), though the effect is particularly pronounced
in the latter. The subjectivity and confidence in-
fused by these instances appear confusing for this
model. HSD pretraining together with gaze infu-
sion results in an overall higher performance, this
combination is sensitive to the Q-II (subjective un-
certainty) instances, indicating this model benefits
from the noisy instances to perform better.

The performance with distance-based reduction
drops substantially for the gaze infused models (see
Appendix A.7 for the details). This indicates that
gaze-infused model learn from the extreme points,
and reducing their weights impairs the training.

Backbone/ Equal Fixed

Pretrained Model All Q-1 Q-1I Q-111
bert-gaze | .627 | .613- 601, .591]
hsd-gaze | .694 | .683- .637|| .701-

Table 2: Average F1 scores of gaze infused models.
Please refer to Table 1 for the details.

Overall, the findings show that different model
variants exhibit distinct sensitivities across quad-
rants (RQ1), confirming that these quadrants dif-
fer both conceptually and practically. Addition-
ally, models without gaze supervision (Section 4),
which do not capture subjectivity, display different
patterns from those with gaze supervision (RQ2).
Fine-tuning and gaze infusion lead models to be-
have differently across quadrants by enabling them
to learn different data patterns. These differences
are especially clear through our diagnostic tool,
which reveals the models’ varying sensitivity to
confidence and individual variation. These results
highlight two key insights: (i) understanding data

characteristics before any data cleaning is essen-
tial — what seems like noise may be key to perfor-
mance (Q-II vs. Q-I, Q-II vs. Q-III) and (ii) en-
riching the training (e.g. HSD pretraining, gaze
infusion) influences the model’s learning patterns —
instances confusing for one model may be informa-
tive for another.

6 Conclusion

In this paper, we showed that human label variation
in hate speech detection can come from different
sources: uncertainty and genuine subjectivity. We
examined how these types of variation can be dis-
entangled using annotator’s confidence and demon-
strate the importance of having continuous scale
ratings during data collection, showing their sub-
stantial effect on understanding variation. Our re-
sults confirm that the instances in different areas of
the subjectivity-uncertainty space (i.e. quadrants)
exhibit distinct impacts on model performance, rep-
resenting conceptually different types of variation
(RQ1). Our study also highlights the potential
of moving from text-only models for hate speech
detection, to models that incorporate behavioral
features such as gaze. Importantly, these features
cannot only serve as significant predictors of sub-
jective opinion (Alacam et al., 2024; Yang and
Hollenstein, 2023; Mishra et al., 2016), but serve
as key indicators of annotator confidence. While
HSD pretraining enhances the performance as ex-
pected, gaze-infusion, which implicitly captures
both subjective hate evaluation and annotator’s con-
fidence, improves the models over their text-only
counterparts (particularly for the bert-text model)
and changes the model behavior (RQ?2).

This paper lays the foundational work showing
that gaze integration (specifically, significant gaze
predictors of hatefulness and confidence scores as
components of subjective variation) offers a way of
making models aware of different sources of vari-
ation, without explicit labeling of these different
sources. We therefore believe that gaze is a natural
source of data worth exploring to develop models
that can “naturally” learn to deal with subjectivity
and certainty at the same time.

Limitations

While our approach is designed to be both dataset-
and model-agnostic, our current validation focuses
on a single hate speech detection dataset. This ini-
tial focus provides a strong foundation, and future
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extensions to additional opinion-mining tasks and
datasets will further demonstrate the generalizabil-
ity of our method. Although many studies collect
confidence ratings, such information is often ex-
cluded from final datasets or simplified into binary
formats. As the availability of datasets with fine-
grained confidence scores continues to grow, we
plan to broaden our evaluations of our approach.

The annotator pool in the dataset we used could
benefit from increased diversity, strengthening the
applicability of our approach across different de-
mographic and socio-cultural groups.

Our train-model-per-annotator approach effec-
tively accounts for subjectivity in hate speech detec-
tion but operates with a relatively limited number of
training instances per annotator. Yet, we conducted
extensive parameter-tuning (including the number
of frozen layers), while observing the training and
validation loss. Based on these experiments, we
are confident in the effectiveness of the models’
training despite the limited dataset size.

While it can be argued that fine-grained Likert
scoring is more resource-intensive than simpler ap-
proaches such as binary labeling, this may limit its
suitability for certain research contexts. In the case
of subjective evaluations — such as opinions — finer
scales offer increased sensitivity to subtle varia-
tions in judgment, which is the primary focus of
our study. As such, they are preferable for captur-
ing this type of nuanced information.

The original GAZE4HATE dataset is prepro-
cessed with basic signal-level noise reduction dur-
ing gaze data collection and extraction. The orig-
inal dataset reports trial-level drift correction and
follows the standard SR-EyeLink filters during the
data export. In this paper, we use the existing data
as is and do not apply any filtering on the gaze data
for the sake of reproducibility.

This paper does not aim to provide state-of-the-
art HSD performance, but rather to have a deeper
understanding of the subjective variation and un-
certainty. The BERT-like model architecture is
selected due to its already existing gaze-infusion
implementation in the field (Wang et al., 2024;
Deng et al., 2024; Alacam et al., 2024), enabling
a comparative analysis of the impact of gaze (that
reflects subjectivity) to text-only models (Section
5). However, any BERT-like architecture could
be used in plug-and-play fashion for both binary
and multiclass classification. To diagnose text-only
models (Section 4), the only criterion is to be able
to include sample weighting during the finetuning

process, which remains (for the time being) a less
straight-forward method for recent large language
models. We aim to explore preference optimization
in the reward model in future experiments.

Ethics Statement

This study examines subjective variation and uncer-
tainty in hate speech annotation using an existing
dataset that contains potentially harmful language
along with annotator metadata. Given the sensi-
tive nature of the data and the inherent biases in
annotation, our study aims a better understanding
of the subjectivity and uncertainty involved, ulti-
mately informing fairer data practices in this area.
The dataset includes annotator metadata, such as
behavioral features and demographic characteris-
tics (e.g. gaze data, gender and age). However, all
annotator identities remain fully anonymized, and
no personally identifiable information is included
in our analysis. The dataset was made available
upon request under ethical guidelines established
by its curators. We adhere strictly to these guide-
lines, comply with all associated terms of use. This
paper was proofread with the assistance of an Al
grammar checker.
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A Appendix

A.1 Supplementary Information on Data

The hateful sentences in the GAZE4HATE dataset
originate from the FEMHATE dataset!?, which
compiles annotations from multiple annotators of
different genders. These sentences exhibit varia-
tion in the degree of hatefulness, as discussed in
(Wojatzki et al., 2018).

Unlike the analyses conducted by (Alacam et al.,
2024) that focus solely on the reading phase, our
disentanglement approach incorporates gaze fea-
tures from all four experimental phases: sentence
reading, hatefulness rating, confidence rating, and
rationale annotation. Aligning data at the instance
level requires complete gaze recordings from all
phases. However, missing gaze values, particularly
during the confidence and hatefulness rating phases,
pose challenges for statistical modeling. To address
this, we exclude instances with missing values in
any phase (N = 267). The final dataset used in this

Zhttps://github.com/muchafel/femhate

study consists of 3,360 instances with aligned gaze
and behavioral data from all four phases'>.

Additionally, a priori labels in this dataset com-
prise six distinct categories: strongly hateful to-
wards women, mean statements towards women,
strongly hateful towards men, empowering state-
ments about women, neutral statements about
women, neutral statements unrelated to gender.
These categories are later consolidated into three
a priori labels as hateful, neutral and positive. It
should be highlighted that in this study instead of
predicting a priori label, we focus on subjective
hate ratings provided by users.

43 university students (native speakers of Ger-
man) participated in the experiment (32 female, 10
male, 1 non-binary, Mean age = 23.5, SD = 5.3),
each annotating 90 sentences. They were paid or
given a course credit to participate. The experiment
took approximately 40 minutes for each participant.
for the details of experimental setup, please refer
to the original dataset paper (Alacam et al., 2024) .

A.2 Supplementary Explanatory Analysis on
the components of subjective variation

We utilize sentence and annotator entropy measures
to check the existence of extreme outliers based on
setting a threshold on z-score transformed entropy.
We set the z-score threshold +3.29 since instances
beyond these values are commonly treated as ex-
treme outliers (Field et al., 2012).

Figure 5 shows the heatmap (bottom part) for
hatefulness score on each instance. X-axis corre-
sponds to sentences, whereas y-axis denotes the
annotators. Top part visualizes the sentence en-
tropy values.

In our study, sentence entropy quantifies the pu-
rity of the sentence in terms of evaluated hateful-
ness categories. The more the annotators rate the
item in the same category, the lower the sentence
entropy (darker colors in Figure 5, that visualizes
the high variation in the hatefulness ratings across
participants and sentences).

For the right side of the cartesian plane shown
in Figure 3, we observe instances with higher sen-
tence entropy, whereas they are not frequent on
the left side of the plane (associated with lower
confidence). This indicates that annotators who
distribute labels evenly across hate, neutral and
positive classes tend to exhibit higher confidence

13 During aligning the instances among different experimental phases (sentence reading,

hatefulness rating, confidence rating, and rationale annotation), the instance is removed if it
contains any missing values in any experimental phase (N = 267) as detailed in Appendix A.1)
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in their assessments.

Although sentence entropy — as commonly used
metric — can be used to obtain candidate sentences
with variation, this approach alone does not give
further information whether the variation is ob-
served due to subjectivity or uncertainty. The sen-
tence entropy (z-score transformed) of all sentences
lie between +2 z-score (from -1.84 to 1.57) indi-
cating no particular outlier at the sentence level.

We also calculate annotator entropy (that quanti-
fies the class distribution of the labels given by the
same annotator), where lower entropy indicates a
stronger tendency toward a particular class.

As illustrated in detail in Appendix Figure 5
some annotators exhibit a preference for assigning
higher hatefulness ratings (e.g., P6, P43), while
others tend to give more neutral ratings (e.g., P35)
or more positive ratings (e.g., P32).

The annotator attributes (gender). The an-
notator attributes (similar to sentence attributes)
could serve to understand the dataset and model’s
tendencies when fitted to the proposed concept.
GAZE4HATE paper (Alacam et al., 2024) reports
that there is no statistically significant difference
in the hatefulness ratings between female and male
gender categories. For the confidence scores, male
participants indicate higher confidence in evalu-
ating positive or neutral statements compared to
female participants, although this difference is not
significant. In terms of confidence for hateful state-
ments, there is no difference between these two
gender categories at all. When we added the gen-
der into the base GLMs introduced in Section 5, it
did not provide any statistically significant contri-
bution in any of these three settings, confirming the
original paper’s results.

Here we additionally provide the distribution of
evaluations on the quadrants based on the partici-
pant’s gender (Table 3). Q-1IV (collective opinion)
is the most populated quadrant by both genders,
and Q-II (subjective uncertainty) is the least popu-
lated quadrant. Male participants slightly favored
Q-III (collective uncertainty) over Q-I (subjective
opinion); a more pronounced reversed effect was
observed for the female participants.

Variation in confidence dimension. Due to
space limitations, in this paper, we focused primar-
ily on the variation in the hate-speech dimension,
while leaving the detailed analysis of annotator con-
fidence variation aside. However, we conducted
a similar explanatory analysis on the confidence

Q-1 QII Q-III Q-IV
female 27.2% 15.8% 22.1% 34.9%
male 244% 19.0% 26.5% 30.1

Table 3: The distribution of evaluations on the quadrants
based on the participant’s gender.

variation (as in Figure 5), it is safe to say that there
are some annotators who exhibit less confidence
overall (41, 6) or high confidence (25,36). We ap-
plied z-score transformation to all of our measures
at the participant level.

A.3 Features
META information

* annotator ID

* Sentence ID

* A priori label multi: hate, neutral, positive

* A priori label binary: hate, nohate

* Gender of the annotator

* Age of the annotator

* Ling type: whether the sentence connotation
is made explicitly or implicitly

Gaze Features information (MEAN, MAX, MIN,
SUM)

* Min Pupil: Min. Fixation Pupil Size on AOI
* FC: Fixation Count on AOI

* RC: Run count on AOI

* RIC: Regression In Count on AOI

* ROC: Regression Out Count

DT: Dwell Time on AOI

* FFD: First Fixation Duration

* Var Pupil: Pupilsize variation

» TDT: TRIAL DWELL TIME

* TFC: TRIAL FIXATION COUNT

Annotation Features

* Intensity rating by each annotator in 1-to-7
Likert Scale (Intensity rating)

* Multiclass Hatefulness category (Intensity
Category)

* Binary Hatefulness category based on inten-
sity ratings (Intensity Category Binary)

* Confidence rating by each annotator in 1-to-5
Likert Scale (Confidence rating)

» whether the token is clicked or not (Clicked)

A.4 Statistical Models

Subjective Hatefulness Category The signifi-
cant predictors of the subjective hate ordered by the
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Figure 5: Top: Sentence Entropy (x-axis represents the sentences). Yellow color denotes high entropy, low purity
in the class distribution. Bottom: Annotator-Sentence Hatefulness Category Heatmap (navy: hateful, dark green:

neutral, light green: positive).

magnitude of their estimates: total fixation count,
regression count, average fixation count, minimum
pupil size, total gaze duration, average pupil size,
regression-in count, maximum saccade amplitude
(in reading), pupil size variation, maximum sac-
cade velocity (in reading), average gaze duration.

base =glmer(hate_cat. ~ (1|part.))
model; =glmer(hate_cat. ~ ind_var;
+ (1|part.))

First, we add the features individually to the base
model that only has random effects to measure
their individual effects on the hatefulness evalua-
tion. The model comparison of the model with the
particular variable to the base model is performed
using ANOVA.

Confidence Ratings. We fit a Cumulative Link
Models for Ordinal Regression with 32 indepen-
dent features (one at a time) and 2 random effects
(as annotator and sentence). Figure 7 (top) presents

the distribution of the z-score transformed confi-
dence ratings.

base =clmm(conf_rate ~ (1|part.) + (1]sent.))
model; =clmm(conf_rate ~ ind_var;
+ (1|part.) + (1]sent.))

Individual Variation. We fit a mixed effect lin-
ear model with 32 independent features (one at a
time) and two random effects (as annotator and sen-
tence). Figure 7 (bottom) presents the distribution
of the z-score transformed individual variation.

Nine predictors showed significant effect on the
individual variation: sentence entropy, maximum
saccade velocity (in conf. rating), confidence rat-
ing, maximum saccade amplitude (in conf. rating),
maximum saccade amplitude (in hate rating), peak
saccade velocity (in conf. rating), average saccade
amplitude (in hate rating), clicked token ratio and
intensity rating.
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Figure 7: Distribution of Confidence Score (top)
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score—transformed)

base =lmer(individual_variation. ~ (1|sent.))
model; =lmer(individual_variation ~ indep._feat;
+ (1sent.))

A.5 Class Distributions per Quadrant

In order to facilitate qualitative analysis on the dis-
entanglement method, the frequencies of observa-

tions for each parameters per quadrant are summa-
rized in Table 9.

Train-val-test splits. The provided train-val-test
splits in the GAZE4HATE dataset are created in a
way that there is no overlap among the splits in
terms of sentence. On the other hand, our approach
requires a finer-grained splitting strategy focusing
on the quadrants. The projected instances of same
sentence could be distributed to all quadrants, i.e.
same sentence can be evaluated with less certainty
by one annotator, but with certainty by another (or
with varying variation by another. Thus, we de-
cided to utilize individualized models as explained
in the main paper.

The quadrant-driven splitting method also en-
sures that the final splits for each annotator have
enough (and proportional) data from each quad-
rants. Since we keep the proportion of each
quadrant per annotator while creating train-val-
test splits, the individualized models still aligns
with the annotator’ tendency, without introduc-
ing additional class imbalance noise as noted in
(Mostafazadeh Davani et al., 2022).

A.6 Supplementary: Models

Given the individualized nature of the models, each
is trained on a relatively small amount of obser-
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Figure 8: Number of instances in each quadrant per annotator.

QII (N=570)

High: 328, 171: 2, Low: 71

Part entropy:  High: 468, Med: 100, Low: 2

Ling type: Explicit: 307, Implicit: 263

RT categories: Fast: 277, Slow: 293

Intensity: Hate: 267, Positive: 142, Neutral: 161
A priori label: Hate: 225, Positive: 231,
Distance (z-score): Max: 1.0 , Mean: 0.22, SD: 0.13

Sent entropy:

Sent entropy:
Part entropy:

Ling type:

RT categories:
Intensity:

A priori label: Hate:
Distance (z-score): Max: 0.70 , Mean: 0.18, SD:0.11

Neutral: 114

QI (N=881)

High: 350, Med: 302, Low: 229

High: 680, Med: 169, Low: 32
Explicit: 476, Implicit: 405

Fast: 663, Slow: 218

Hate: 410, Positive: 340, Neutral: 131
342, Positive: 403, Neutral’: 136

QIII (N=775)

High: 407, Med: 267, Low: 101

High: 619, Med: 156, Low: 0
Explicit: 426, Implicit: 349

Fast: 416, Slow: 359

Hate: 313, Positive: 175, Neutral: 287

Sent entropy:
Part entropy:

Ling type:

RT categories:
Intensity:

A priori label:

Distance (z-score): Max: 0.56 , Mean: 0.18, SD: 0.09

Sent entropy:
Part entropy:

Ling type:

RT categories:
Intensity:

A priori label:
Distance (z-score): Max: 0.35

Hate: 306, Positive: 244, Neutral: 225

QIV (N=1137)

High: 305, Med: 423, Low: 409

High: 885, Med: 211, Low: 41
Explicit: 627, Implicit: 510

Fast: 867, Slow: 510

Hate: 626, Positive: 219, Neutral: 292
Hate: 608, Positive: 252, Neutral: 277
, Mean: 0.14, SD: 0.06

Figure 9: The class distributions for seven variable for each Confidence-Individual Variation Quadrant

vations (with a maximum of 90 sentences). To
optimize the performance, we have experimented
with freezing the first 6, 8, 10 layers of the BERT

model and compared to a fully trainable model.

Evaluation metrics indicate that freezing the first
six layers yields best performance, thus we adopt
this configuration for the rest of the analysis.

A.7 Distance-based Reduction for
Gaze-infused HSD

As summarized in Table 4, while extreme cases
may introduce noise for the text-only models, the
variation captured in gaze features is crucial for
learning different notions of variation for the gaze-
infused models.

For the gaze-infused hsd model, excluding ex-
treme instances from Q-I has substantial negative
effect on the performance. There are notable dif-
ferences in the impacts of different quadrants on
subjective hate speech task. This table effectively
illustrates that when additional information reflect-
ing subjectivity and uncertainty is incorporated, the
models become more sensitive to extreme points
(bert-gaze). However, if the model has already

Backbone | Equal Distance-based
Pretrained Model | All | Q-1 Q-1 Q-1II

bert-gaze | .627 | 597 .556/] .618-

hsd-gaze | .694 | .636]| .680- .648 ||

Table 4: F1 scores with and without HSD fine-tuning, where
the lowest value per model is underlined and the highest values
marked as bold. A <= .02p indicates negligible or no change
(). | or 1 signifies A > 0.02p. || or 11 indicates a higher
difference, A > 0.05p. Here A is the absolute difference
between the respective score and performance of the same
model trained with equal weights.

undergone extensive pretraining on hate speech de-
tection (hsd-gaze), reducing the weight of these
instances diminishes this added value, leading to
lower performance scores.

A.8 Training Details and Parameter
Optimization

We conducted extensive parameter-tuning (includ-
ing the number of frozen layers), while observing
the training and validation loss. Based on these ex-
periments, we are confident in the effectiveness of
the individual model’s training despite the limited
dataset size.
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Training was performed on a NVIDIA® RTX™
A6000 (48 GB). Parameters are optimized with
GridSearch on the following sets.

* learning rate : le-5, 3e-5, 5e-5, le-4, 3e-4
¢ batch sizes : 10, 20, 50, 100, 200

* number of epochs : 20, 50

* number of frozen layers (first) : 0, 6, 8, 10

Based on the results, the individualized models
are trained using Ir: le-5, batch size: 10, epochs:20
and freezing the first 6 Bert layers.

A.9 Weight Reduction

The training size was kept constant across all set-
tings (no removal of instances). In order to check
whether the change in the performance is originated
from the characteristics of the downgraded data in-
stances rather than the number of the instances
being manipulated, we conducted the following
analysis.

‘ Eg‘lllal ‘ Q-1 ‘ Q-II ‘ Q-III ‘ Q-IV ‘ 7% 26% 34%

574 | 544 | 556 | 592 | 570 | 611 .644 571
679 | 675 | .671 | .649 | .632 | .662 .637 .697

bert-text
hsd-text

Table 5: Extended Results for Table 1 on the fixed-
reduction setting with random instance selection.

When we systematically lower the weights of all
instances in the dataset to varying degrees, we do
not only observe drop in the performance but also
the improvements. As an example, bert-text model
(using distance-based measures) in Table 1 exhibits
increases in the performance since extreme cases
have less effect.

Moreover, we conducted two additional manip-
ulations. First, we reduced the weights of the in-
stances in the Q-IV (as the most populated quan-
drant) that denotes to "collective opinion". Second,
we randomly reduced P% of instances from each
quadrant (where P = 17, 26, 34, P corresponds to
the ratio of data manipulated, selected based on
the ratio of instances in the quadrants to the full
data size: e.g. Q-II contains 17% of all instances,
Q-IV contains 34%, and 26% for Q-II and Q-III
on average separately (see Table-8). As shown
in Table 5, our findings indicate that reducing the
weight of Q-IV instances does not impact bert-text
performance. However, for hsd-text, it leads to a
decrease in performance, similar to Q-III, also with
low variation. On the other hand, random reduc-
tions from all quadrants in different proportions
lead to both performance increases and decreases.

Overall, these results support our conclusion that
the observed effects stem from the characteristics
of the instances rather than the number of instances
with downgraded weights.
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