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Abstract

Large Language Models (LLMs) have shown
significant progress in Open-Domain Question
Answering (ODQA), yet most evaluations fo-
cus on English and assume locale-invariant
answers across languages. This assumption
neglects the cultural and regional variations
that affect question understanding and answer,
leading to biased evaluation in multilingual
benchmarks. To address these limitations,
we introduce XLQA, a novel benchmark ex-
plicitly designed for locale-sensitive multilin-
gual ODQA. XLQA contains 3,000 English
seed questions expanded to eight languages,
with careful filtering for semantic consistency
and human-verified annotations distinguish-
ing locale-invariant and locale-sensitive cases.
Our evaluation of five state-of-the-art multilin-
gual LLMs reveals notable failures on locale-
sensitive questions, exposing gaps between En-
glish and other languages due to a lack of
locale-grounding knowledge. We provide a sys-
tematic framework and scalable methodology
for assessing multilingual QA under diverse
cultural contexts, offering a critical resource to
advance the real-world applicability of multi-
lingual ODQA systems. Our findings suggest
that disparities in training data distribution con-
tribute to differences in both linguistic com-
petence and locale-awareness across models.
https://github.com/ro-ko/XLQA

1 Introduction

Open-domain question answering (ODQA) aims to
generate accurate and natural language answers to
user queries without explicit domain constraints or
provided context (Chen et al., 2017; Karpukhin
et al., 2020). Recently, large language models
(LLMs) (Brown et al., 2020; Anil et al., 2023;
Workshop et al., 2022) have driven significant ad-
vances in ODQA by generating correct and natu-
ral answers. Despite strong advances in ODQA,
most efforts have focused on English, leaving mul-

Q: How long did it take the Twin Towers to be built? 11 years

Q: 쌍둥이빌딩건설에얼마나걸렸나요?
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Q: 双子塔花了多长时间建成？
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Q: كم من الوقت استغرق بناء الأبراج التوأم؟
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World Trade Center
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Figure 1: Knowledge conflict in multilingual ODQA.
Although all versions of the question aim to ask how
long it took to build the “Twin Towers”, different lan-
guages elicit different answers based on locale-variant
understanding. While English and Arabic refer to the
World Trade Center (11 years), Korean and Chinese
interpret “Twin Towers” as the LG Twin Towers and
Tianjin IFC, respectively.

tilingual capabilities that remain relatively under-
explored. This gap underscores the need for mul-
tilingual ODQA benchmarks that assess perfor-
mance across languages (Maxutov et al., 2024).

To evaluate multilingual ODQA systems, ex-
isting benchmarks, such as MLQA (Lewis et al.,
2020), MKQA (Longpre et al., 2021), and TyDiQA
(Clark et al., 2020), are typically constructed by
translating or aligning parallel questions across
multiple languages. These benchmarks have the
locale-agnostic assumption that both the meaning
of a question and its correct answer remain con-
stant across linguistic boundaries. However, this
assumption overlooks variations in meaning that
arise naturally from distinct cultural or regional
contexts (Lin and et al., 2021; Liu et al., 2024;
Zhang et al., 2023).

Recent benchmarks such as CaLMQA (Arora
et al., 2025), NativQA (Hasan et al., 2025b), and
BLEnD (Myung et al., 2024) attempt to overcome
this limitation by constructing culturally grounded
questions independently for each language. While
these approaches provide valuable insights into

28809

https://github.com/ro-ko/XLQA


culture-specific reasoning, they do not directly en-
sure cross-lingual consistency, making systematic
comparison across languages more challenging.

This issue introduces evaluation bias (Talat et al.,
2022; Woo et al., 2023) by penalizing responses
that are correct within specific regional or cultural
contexts. For instance, as illustrated in Fig. 1,
the answer to the question “How long did it take
the Twin Towers to be built?” differs depending
on which entity the question refers to: the World
Trade Center in the U.S. or the LG Twin Towers
in South Korea. Multilingual question requires
the locale-variant references that arise from differ-
ing cultural contexts and background knowledge,
not merely generating translated answers. In addi-
tion, relying on naive translation to construct mul-
tilingual benchmarks risks semantic drift, where
subtle shifts in meaning occur due to inadequate
contextual grounding (Yu et al., 2023). While hu-
man annotation can mitigate the drift, it is costly,
labor-intensive, and difficult to scale across many
languages and cultures (Pandey et al., 2022).

To address these challenges, we propose XLQA,
a benchmark explicitly constructed to evaluate mul-
tilingual ODQA systems under locale-sensitive
conditions. XLQA consists of 3,000 seed ques-
tions in English, each paired with a reference an-
swer and language-specific supporting evidence.
These questions are extended to eight languages
(English, Korean, Arabic, Hebrew, Japanese, Rus-
sian, Vietnamese, and Simplified Chinese), result-
ing in 24,000 high-quality evaluation items. We de-
sign XLQA to assess whether multilingual ODQA
systems can handle locale-sensitive variation by ex-
plicitly distinguishing between two types of ques-
tions: those whose correct answers remain consis-
tent across languages (locale-invariant), and those
whose answers vary depending on regional or lin-
guistic context (locale-sensitive).

To construct this benchmark at scale, we ap-
ply a back-translation-based filtering method to
identify and remove translations that exhibit po-
tential semantic inconsistencies. Then, we gen-
erate locale-aware answers for each semantically
consistent multilingual question by producing re-
sponses based on language-specific evidence cu-
rated for each locale with an LLM. These gener-
ated answers that semantically differ from the orig-
inal English answer is categorized as a potentially
locale-sensitive question. Human annotators exam-
ine each candidate instance to verify the answer’s
correctness and the relevance of the supporting evi-

dence. This approach enables scalable multilingual
QA dataset creation with limited human involve-
ment, ensuring quality through selective verifica-
tion rather than full manual annotation.

To demonstrate the effectiveness of this pipeline,
we evaluate five multilingual LLMs on our bench-
mark, such as GPT-4.1 (Achiam et al., 2023),
Qwen-3 (Zheng et al., 2025), Gemma-3 (Team
et al., 2025), LLaMA-3.1 (Grattafiori et al., 2024),
and EXAONE (Research et al., 2024) under stan-
dard evaluation metrics, including exact match
and F1 score. Our analysis reveals that, despite
strong zero-shot and multilingual capabilities, these
models frequently fail to produce appropriate an-
swers to locale-sensitive questions. We observe
differences in both language proficiency and locale-
specific knowledge across models, shaped by the
distribution of language data used during training.
These findings highlight the limitations of existing
multilingual QA benchmarks and underscore the
importance of explicitly modeling cultural context
in evaluation. We summarize our contributions as
follows:

• We introduce the first systematic framework
for evaluating locale-aware correctness in mul-
tilingual QA, directly addressing the cultural
insensitivity and English-centric assumptions
embedded in prior benchmarks.

• We propose a scalable method for identi-
fying and validating questions whose cor-
rect answers vary across regions, produc-
ing a benchmark of 3,000 high-quality ques-
tion–answer–evidence triples annotated for lo-
cale sensitivity.

• We provide empirical evidence that cur-
rent multilingual LLMs struggle with locale-
grounded question answering, revealing a crit-
ical gap in their real-world applicability.

2 Related Work

2.1 Multilingual ODQA Benchmarks
In recent years, numerous multilingual question
answering (QA) benchmarks have been proposed
to evaluate the performance of multilingual lan-
guage models. Prominent examples include MLQA
(Lewis et al., 2020), XQuAD (Artetxe et al., 2020),
TyDiQA (Clark et al., 2020), and MKQA (Longpre
et al., 2021), which are widely used to compare
model performance across different languages.
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Figure 2: The overall pipeline for constructing the XLQA benchmark. The process consists of three stages:
(1) Multilingual Question Generation generates multilingual questions based on seed questions from existing
QA datasets. (2) Locale-Aware Answer Generation uses LLM to generate locale-aware answers. (3) Human
Verification verifies the answers with supporting evidence. The Output is a high-quality, locale-aware multilingual
QA dataset.

MLQA and XQuAD are constructed by trans-
lating English question–answer pairs into multiple
target languages, and rely on the assumption that
the translated versions are semantically equivalent
to the original. This approach enables direct com-
parison across languages but may overlook subtle
linguistic or cultural differences that affect answer
validity. In contrast, TyDiQA enhances linguistic
diversity by collecting questions written natively in
each language by fluent speakers, rather than rely-
ing on translation. However, it still assumes a sin-
gle ground-truth answer per question within each
language, potentially limiting its ability to capture
within-language ambiguity or region-specific varia-
tion. MKQA takes a different approach by sourcing
questions from anonymized Google Assistant logs,
reflecting more natural, real-world user queries.
These questions are then manually translated into
26 languages for open-domain question answer-
ing. While these benchmarks provide a foundation
for measuring multilingual capabilities and cross-
lingual consistency, they largely focus on surface-
level correctness and lexical alignment. As such,
they fall short of evaluating model performance in
scenarios that require the understanding of cultural
context or locale-specific knowledge.

2.2 Multilingual QA Evaluation Bias and
Fairness

Recent works (Singh et al., 2024; Hasan et al.,
2025a) have examined these issues from multiple

perspectives. Singh et al. (2024) evaluates language
models across culturally diverse multiple-choice
questions. They show that performance varies sub-
stantially across languages and regions, indicating
potential cultural bias. Hasan et al. (2025a) intro-
duces a dataset of naturally occurring, culturally
aligned queries in multiple languages. Their find-
ings highlight the limitations of translation-based
benchmarks in capturing region-specific informa-
tion needs.

Bias is observed in model behavior across lan-
guages with differing resource levels, particularly
in the form of stereotypical associations related
to gender, profession, or ethnicity. Buscemi et al.
(2025) proposes an automated evaluation frame-
work to assess such social biases across both high-
and low-resource languages. The study finds that
these biases, such as associating certain professions
more frequently with specific genders, tend to be
more pronounced in low-resource settings, where
training data is sparser and less balanced.

Similarly, Zulaika and Saralegi (2025) adapts
the English-centric BBQ benchmark to Basque in
order to investigate bias propagation in a typolog-
ically distant language. Their findings reveal that
common bias mitigation strategies developed for
English, such as data augmentation or counterfac-
tual training, often fail to generalize effectively to
underrepresented languages, underscoring the need
for culturally and linguistically tailored approaches.
These studies point to the need for evaluation meth-
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ods that distinguish between culturally invariant
and culturally dependent questions, and that reflect
the diversity of real-world language use above high-
resource settings.

2.3 Evaluation for LLM-as-judges

LLM-as-judge is a generative evaluator paradigm
where LLMs are trained to produce an evaluation
(natural language explanation and judgment) given
the original user input, evaluation protocol (rules
and criteria for evaluation), and model responses as
input. JudgeLM (Zhu et al., 2025) formalizes this
approach as a generative evaluation framework and
demonstrates that LLM-based judges can approxi-
mate human evaluations in tasks such as reasoning
and factual correctness. PandaLM (Wang et al.,
2024) further investigates the reliability and robust-
ness of LLM-based evaluators by comparing their
preferences across model outputs with those of hu-
man annotators.

3 XLQA Dataset

To rigorously evaluate multilingual ODQA in
locale-sensitive contexts, we introduce XLQA, a
new benchmark constructed through our multi-
stage pipeline. This pipeline consists of three steps:
multilingual question generation, locale-aware an-
swer generation, and human verification, as illus-
trated in Fig. 2.

3.1 Step 1: Multilingual Question Generation

We begin by collecting high-quality English seed
questions from the test sets of existing ODQA
benchmarks, such as MKQA (Longpre et al., 2021),
MLQA (Lewis et al., 2020), and HotpotQA (Yang
et al., 2018), to ensure alignment with our evalu-
ation objectives. To refine the seed pool, we first
remove duplicate entries based on an exact match
of either the question or the answer. We then filter
out unanswerable questions or those lacking a ref-
erence answer, as such items prevent meaningful
comparison of locale-sensitive responses. This fil-
tering process results in the exclusion of 28.4% of
the initial seed questions.

For the refined seed questions, we generate mul-
tilingual questions translated into diverse target lan-
guages by utilizing GPT-4.1 as an Oracle Language
Model (OracleLM), which refers to a theoretical
upper-bound model that is assumed to know the
correct answer, often used to estimate performance
ceilings and analyze the gap between idealized and

real-world behavior (Achiam et al., 2023; Chen
et al., 2024). GPT-4.1 demonstrates strong perfor-
mance in translation quality and contextual under-
standing, making it a suitable choice for ensuring
the reliability of the generated multilingual ques-
tions. To ensure semantic consistency across the
translated questions, we apply a back-translation
filtering step. Each translated question is first back-
translated into English. Then, the resulting back-
translated version is compared against the original
English question using the LLM-as-judge frame-
work. GPT-4.1 is prompted to determine whether
the two questions are semantically equivalent, pro-
viding a binary “yes/no” judgment. If any of the
eight language translations are judged as incon-
sistent (i.e., the model outputs “no”), the entire
question is discarded from the dataset. By discard-
ing questions with inconsistent translations, this
back-translation filtering step plays a crucial role
in eliminating translation artifacts and mitigating
cross-lingual meaning drift.

3.2 Step 2: Locale-Aware Answer Generation
To construct QA pairs that capture locale-specific
variation, we generate candidate answers for the
multilingual questions obtained in the previous step.
For each input question, GPT-4.1 is prompted to
generate an answer that reflects the locale associ-
ated with the language in which the question is
written. For questions that are not sensitive to lo-
cale, the model is prompted to provide a general,
culturally neutral answer. We leverage a retrieval-
augmented generation (RAG) framework in which
GPT-4.1 is connected to a web search component.
This setup enables the model to generate answers
grounded in verifiable external sources, provid-
ing both the response and its corresponding ev-
idence. The retrieval process prioritizes author-
itative sources, with a preference for Wikipedia.
In case that relevant information is not found on
Wikipedia, the system falls back to reputable news
outlets.

As a post-processing step, we discard any QA
pairs in which the generated reference lacks a valid
URL or does not include reliable source indica-
tors such as the keywords “wikipedia” or “news”.
This filtering ensures that all retained answers are
grounded in verifiable and trustworthy sources.
This approach offers an efficient alternative to hu-
man annotation by enabling scalable, high-quality
data generation while maintaining contextual rele-
vance and answer verifiability.
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3.3 Step 3: Human Verification

All candidate triples flagged for answer conflict are
subjected to human verification. Annotators are
provided with the question, answer, and support-
ing evidence for each language. They are asked
to determine whether the answer is correct and
supported by the evidence. This process yields a
high-quality set of QA-evidence triples, each la-
beled as either locale-invariant or locale-sensitive.
To ensure consistency and reduce annotation noise,
we adopt a majority voting scheme across three
annotators per instance. Only instances where at
least two annotators agree on both correctness and
sensitivity labels are retained; otherwise, the item is
discarded. Statistics on annotator agreement rates
after voting are provided in Appendix Table 7.

4 Dataset Analysis

4.1 Dataset Statistics

Our benchmark consists of 3,000 ques-
tion–answer–evidence triples across eight
languages: English, Korean, Arabic, Hebrew,
Japanese, Russian, Vietnamese, and Simplified
Chinese. Each English-origin question is translated
into the target languages and paired with answers
and evidential support adapted to the cultural or
linguistic context of the target locale.

On average, questions contain 17–40 tokens de-
pending on the language, while answers remain
short (4–6 tokens). A total of 24,000 QA in-
stances were created, including 3,000 in English
and 21,000 across the seven other languages.

4.2 Consistency Filtering Results

To ensure semantic consistency across transla-
tions, we applied a back-translation-based filtering
pipeline. QA pairs with substantial semantic shifts,
such as changes in named entities, factual scope, or
temporal modifiers, were flagged and removed. In
total, 10.8% of the generated multilingual instances
were discarded through this process.

We observed that the majority of the filtered in-
stances involved mistranslations of culturally spe-
cific terms or reinterpretations of ambiguous ex-
pressions that altered the intended meaning. These
cases were particularly prevalent in Arabic and
Hebrew, where semantic drift often resulted from
incorrect rendering of proper nouns and idiomatic
language. Table 5 summarizes the number of dis-
carded instances per language following the consis-
tency filtering process.

4.3 Conflict Detection
A conflict is defined as a case where at least one
language provides an answer that is semantically
inconsistent with the English reference, under the
assumption that such variation is due to regional
knowledge or interpretation. For each question,
we collected answers across all languages and
compared them using string normalization and
embedding-based semantic similarity. Questions
exhibiting divergence in meaning, rather than sur-
face expression, were manually validated as locale-
sensitive. Among the 3,000 source questions, 2,356
(73.9%) were categorized as locale-sensitive, based
on the presence of conflicting answers in at least
one language. Table 5 presents the distribution of
conflicts across languages. Arabic and Hebrew dis-
played the highest proportion of conflicts, while
Japanese and Vietnamese showed comparatively
lower divergence.

5 Benchmark Evaluation

We conduct a series of experiments to evaluate mul-
tilingual LLM performance on our locale-aware
QA dataset. Our goal is to assess how well cur-
rent models handle both locale-invariant and locale-
sensitive questions, and to quantify the limitations
of existing evaluation protocols when applied to
culturally or regionally diverse inputs.

5.1 Experimental Setup
We evaluate five widely used large language mod-
els with multilingual capabilities: GPT-4.1, Qwen
3, Gemma 3, LLaMA 3.1, and EXAONE. These
models vary in architecture, size, and pretraining
corpora, representing a broad range of capabilities
in multilingual understanding and generation.

All models are evaluated in a zero-shot QA
setting without fine-tuning. For each QA pair,
the model generates an answer using a consistent
prompting format adapted for the language. We
apply two evaluation metrics:

• Exact Match (EM): A binary metric that
assigns 1 if the predicted answer exactly
matches any of the reference answers, and
0 otherwise:

EM =

{
1, if prediction = reference
0, otherwise

• F1 Score: Measures the token-level overlap
between the predicted and reference answers.
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Lang Oracle LM Gemma3 12B Qwen3 14B LLaMA3.1 8B EXAONE 7.8B

EM F1 EM F1 EM F1 EM F1 EM F1

en 89.11 90.97 43.26 52.68 40.73 49.43 40.38 50.56 31.44 39.64
ar 87.86 90.05 18.54 23.62 11.83 19.30 8.53 16.92 3.98 6.04
he 88.30 90.46 20.05 24.83 11.04 16.08 11.86 16.60 5.52 7.20
ja 88.45 92.50 22.81 45.10 19.74 44.03 9.10 37.73 7.34 26.22
ru 87.83 89.54 28.52 35.20 17.67 27.97 14.53 24.18 7.41 9.91
ko 86.73 88.29 22.18 26.56 15.44 19.91 11.55 15.68 15.81 20.32
zh_cn 89.68 93.41 16.22 37.91 26.39 47.57 11.58 36.48 7.66 25.22
vi 89.39 91.19 36.55 44.77 26.83 39.34 26.45 38.38 10.95 14.70

Avg. 88.42 90.80 26.02 36.33 21.21 32.95 16.75 29.57 11.26 18.65

Table 1: Results of the base models on the XLQA benchmark using EM and F1 scores.

Lang GEMMA3 12B QWEN3 14B EXAONE 7.8B

Non-Conflict Least-Conflict Non-Conflict Least-Conflict Non-Conflict Least-Conflict
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

en 59.09 72.25 37.69 45.79 64.02 75.36 32.51 40.28 53.67 65.28 23.60 30.59
ar 37.06 46.26 12.01 15.64 27.80 40.54 6.20 11.80 8.90 12.21 2.25 3.86
he 38.63 47.18 13.50 16.94 23.71 32.16 6.58 10.41 9.63 12.49 4.07 5.33
ja 41.16 67.03 16.34 37.36 41.03 65.30 12.22 36.53 15.28 38.24 4.54 21.98
ru 47.41 57.02 21.86 27.50 30.69 49.38 13.07 20.42 10.95 15.48 6.15 7.95
ko 39.35 46.06 16.13 19.69 31.05 38.11 9.93 13.49 30.93 38.48 10.48 13.91
zh_cn 27.32 56.12 12.31 31.49 50.54 71.87 17.87 39.00 15.16 37.15 5.01 21.01
vi 51.62 63.79 31.24 38.07 41.40 61.34 21.69 31.58 18.05 24.30 8.45 11.31

Average 42.70 56.96 20.13 29.06 38.78 54.26 15.01 25.44 20.32 30.45 8.07 14.49

Table 2: EM and F1 scores of GEMMA3 12B, QWEN3 14B, and EXAONE 7.8B under different conflict levels.

It is computed as the harmonic mean of preci-
sion and recall: F1 Score measures the token-
level overlap between the prediction and the
reference answer. It is computed as the har-
monic mean of precision and recall:

Precision =
|Prediction ∩ Reference|

|Prediction| (1)

Recall =
|Prediction ∩ Reference|

|Reference| (2)

F1 =
2 · Precision · Recall
Precision + Recall

(3)

We evaluate both locale-invariant and locale-
aware settings.

5.2 Main Results
(1) Performance gap between English and other
languages. Table 1 presents the performance of

five LLMs on the XLQA benchmark. While En-
glish achieves the highest scores across all mod-
els, performance on other languages drops, par-
ticularly for those involving culturally diverse or
underrepresented regions such as Arabic, Hebrew,
Korean, and Vietnamese. This suggests that despite
multilingual pretraining, current models struggle
to generalize locale-aware reasoning beyond high-
resource languages like English.

(2) Performance degradation on culturally sen-
sitive questions. Table 2 offers a more granular
view by separating questions into non-conflict and
least-conflict subsets. Here, we define a question
as exhibiting least conflict when at least one of the
language-specific responses differs semantically
from all other responses. This categorization cap-
tures cases where locale-sensitive variation arises
across languages, allowing us to directly measure
the challenge posed by culturally grounded knowl-
edge. The results show a consistent and substantial

28814



performance drop across all models when faced
with locale-sensitive questions. This highlights
that answering such questions effectively requires
not only understanding the language but also re-
taining culturally grounded knowledge specific to
each region. Interestingly, models trained with a
regional focus tend to perform better on conflict
questions in their respective languages. For ex-
ample, EXAONE achieves the highest conflict F1
score on Korean and QWEN3 on Chinese. While
exact language-wise pretraining proportions are
not publicly disclosed, these results suggest that
higher exposure to specific locale-language data
during pretraining enables models to better handle
culturally nuanced inputs in that region.

5.3 Prompt Sensitivity
We examine the impact of prompt design using
Qwen3 across four variants: EN (English prompt)
and EN-LOC (English with locale emphasis).

Table 4 shows that prompts with explicit locale
guidance (EN-LOC) improve accuracy, especially
for culturally sensitive languages like Arabic and
Korean. However, over-conditioning can some-
times lead to stereotype-driven outputs. While EN-
LOC prompts generally improve performance, the
degree of improvement varies significantly across
languages. The gains are especially pronounced in
Japanese (+25.03), Chinese (+17.42), and Korean
(+7.58), suggesting that locale-specific grounding
is particularly beneficial in languages with strong
locale reference frames.

ko ar he ja ru vi zh_cn
Language

4

6

8

10

12

14

16

Er
ro

r R
at

e 
(%

 o
f E

ng
lis

h)

Figure 3: Comparison of translation error rates between
naive translation and our back-translation pipeline.

5.4 Ensuring Semantic Consistency in
Multilingual Questions

A back-translation-based filtering helps identify
and remove mistranslations that may introduce

unintended meaning shifts during naive machine
translation. As shown in Figure 3, our back-
translation pipeline significantly reduces transla-
tion error rates across most languages, particularly
in Arabic, Hebrew, and Chinese languages that
often exhibit greater semantic divergence from En-
glish. By improving the alignment between origi-
nal and translated questions, this filtering step en-
hances the overall quality and reliability of locale-
sensitive evaluation.

5.5 Categorization of Conflict-Inducing
Questions

To better understand the sources of semantic diver-
gence across languages, we manually categorize
a subset of conflict-inducing questions based on
the nature of the discrepancy observed in answers.
This typology enables a more fine-grained analysis
of the types of ambiguity and regional variability
that arise in multilingual QA.

We categorize conflict-inducing questions into
four types. These include Entity Conflict, Factual
Conflict, Cultural Reference, and Ambiguous Ques-
tion. Entity Conflict refers to cases where the
referent entity varies across locales due to differ-
ing popularity or interpretation, such as entertain-
ers or sports figures. Factual Conflict includes
questions grounded in historical or statistical facts
that may be represented differently depending on
regional data sources. Cultural Reference cov-
ers instances involving awards, media, or events
where local recognition or framing differs. Finally,
Ambiguous Question includes vague or broadly
interpretable queries that elicit culturally biased or
interpretive responses.

Table 3 summarizes each conflict type along with
representative subtopics, example questions, and
the number of instances observed in our annotated
subset. Entity-related conflicts were the most fre-
quent, accounting for 1,032 questions, followed by
Cultural References and Factual Conflicts. This
distribution highlights the significant role of cultur-
ally grounded knowledge and localized salience in
generating cross-lingual answer variability.

6 Conclusion

In this work, we identify a critical gap in existing
multilingual QA benchmarks, the lack of consider-
ation for locale-specific knowledge and culturally
valid answer divergence. While prior evaluations
assume semantic equivalence and a single correct
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Conflict Type Subtopics (Categories) Representative Questions Conflict Count

Entity Conflict Music, TV actors, Sports
players

Who sang Oh What a Night?, Who played TJ on
Head of the Class?, Who is the coach for the Toronto
Raptors?

1032

Factual Conflict Geography, Political his-
tory, Team records

How many states does the Rocky Mountains cover?,
When was the last time the Lakers made the playoffs?

431

Cultural Reference TV show winners, Music
awards, Famous media

Who won America’s Got Talent in 2015?, Who has
the most Grammys?

512

Ambiguous Question Religion, Social media,
General trivia

Who wrote the Book of Lamentations?, Who has the
most Instagram followers?

381

Table 3: Conflict-inducing questions categorized by conflict type, with subtopics and representative examples.

Lang EN EN-LOC

en 48.03 49.43
ko 12.33 19.91
ar 11.93 19.30
he 16.37 16.08
ja 19.00 44.03
ru 16.41 27.97
vi 33.37 39.34
zh_cn 30.15 47.57
Overall 23.45 32.95

Table 4: Performance (F1 score) across languages under
different prompting strategies on Qwen3.

Lang Conflicted Answers Conflict Rate (%)

ar 1471 46.2%
he 1413 44.3%
ja 1044 32.8%
ru 963 30.2%
ko 1188 37.3%
zh_cn 1242 39.0%
vi 909 28.5%

At Least One Conflict 2356 73.9%

Table 5: Language-wise distribution of answer conflicts
in the XLQA benchmark.

answer across languages, our analysis shows that
this assumption fails in questions involving cul-
tural or regional context. To address this, we pro-
pose a method for constructing locale-aware evalu-
ation subsets that allow for valid answer variation
across languages. Our approach combines transla-
tion consistency checks and prompt-based answer
divergence detection to identify culturally sensitive
questions. We demonstrate that such questions are
not rare, and that standard evaluation protocols may
underestimate the capabilities of multilingual mod-
els in diverse linguistic settings. This work calls
for a shift in multilingual QA evaluation toward
frameworks that are not only linguistically fair but

en ar he ja ko ru zh_cn vi

Avg Question Length 37 33 31 26 22 40 17 38
Avg Answer Length 5 5 5 8 4 5 6 5

Table 6: Average question and answer lengths across
languages (rounded to nearest integer).

also culturally grounded.

Limitations

Our evaluation may be inherently bounded by the
capabilities of the proprietary large language mod-
els (LLMs) accessed via API. Since these mod-
els serve as oracle systems for translation and an-
swer generation, their performance imposes an
upper bound on the quality and diversity of our
data. To mitigate potential issues arising from
translation artifacts or inconsistencies, we applied
a semantic consistency filtering step using back-
translation and LLM-as-judge comparison to en-
sure that the generated multilingual questions pre-
serve the meaning of the original seed questions.
Additionally, due to computational resource con-
straints, we were unable to include larger-scale
open-source multilingual models that require sub-
stantial local infrastructure. To compensate for
this limitation, we evaluated a diverse set of mod-
els—both proprietary and open-source—covering
a range of capabilities and linguistic domains, and
conducted all evaluations under a unified frame-
work to ensure comparability. Future work could
expand this line of research by integrating scal-
able open-source multilingual models in controlled
environments and broadening the linguistic and
regional scope of the evaluation.
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A XLQA Construction Details

A.1 Prompt Templates
We provide the full prompt templates used through-
out the XLQA benchmark construction and evalua-
tion pipeline. These include:

Translation prompts, used to generate multilin-
gual versions of questions from English.

Given the question: {question}, please trans-
late it into {loc}. Just output the translated
question only, with no comments or format-
ting.

Back-translation prompts, used to back-
translate to English.
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Given the question:
{translated_response_output_text}, please
translate it back into English. Just output the
translated question only, with no comments or
formatting.

Consistency filtering prompts, used to verify
semantic consistency across languages.

Given the question: {question}, please check
if the back translation:
{back_translation_output_text} is correct. If it
is correct, output "yes". If it is not correct,
output "no".

Locale-aware answer generation prompts,
which condition the model to generate region-
specific answers if appropriate.

Answer the following question based on the
cultural context of a region where the {lang}
language is primarily spoken. If the correct
answer would vary depending on regional or
cultural differences, return the version that
best fits that local context. However, if the
question concerns universal or
culturally-neutral knowledge, provide the
common or globally accepted answer instead.
Respond with only the final answer in a single
word or phrase. Do not explain or add
anything else. Additionally, provide a brief
evidence or source (e.g., a Wikipedia URL,
news site, or cultural explanation) that
supports the answer. The question is: {q}

Answer generation prompts for evaluation,
which elicit general answers (EN) or, when rele-
vant, region-specific ones (EN-LOC).

(EN) General Prompt

Answer the following question. Respond with
only the final answer in a single word or
phrase. Do not explain or add anything else.

(EN-LOC) Locale-aware Prompt

Answer the following question based on the
cultural context of a region where the {lang}
language is primarily spoken. If the correct
answer would vary depending on regional or
cultural differences, return the version that
best fits that local context. However, if the
question concerns universal or
culturally-neutral knowledge, provide the

common or globally accepted answer instead.
Respond with only the final answer in a single
word or phrase. Do not explain or add
anything else.

A.2 Human Verification Agreements Ratio

A.3 Locale Sensitivity Annotation Guidelines

We define a question as locale-sensitive if its cor-
rect answer may differ depending on regional, cul-
tural, or national context, even when the semantic
intent of the question remains the same.

Annotators were instructed to mark a question
as locale-sensitive if:

Regionally salient knowledge affects the ex-
pected answer (e.g., “most famous tower”).

Political, institutional, or cultural prominence
varies by country or language group.

The question involves subjective norms or iden-
tity references (e.g., “national dish”, “popular
leader”).

Borderline cases were resolved by majority vot-
ing across annotators with multilingual and re-
gional backgrounds.

B Experimental Details

B.1 Models

We use the following models in our experiments:

• Gemma3 12B: Uses Gemma3 with 12B pa-
rameters. Licensed under Apache 2.0 li-
cense..

• Qwen3 14B: Uses Qwen3 with 14B parame-
ters. Licensed under the Apache 2.0 license..

• LLaMA-3.1 8B: Has 8B parameters and is
released under the LLaMA 3 Community
License Agreement.

• GPT-4.1: These models are not open-source
and are accessible only via API requests. They
are governed by proprietary licenses.

• Exaone 7.8B: Uses Exaone with 7.8B param-
eters. Licensed under EXAONE AI Model
License Agreement.

All the models set the temperature to 0.

B.2 Budget

We use the RTX A6000 GPU X 1 with 20 hours.
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Language Correctness (≥2/3) Correctness (≥2/3) Sensitivity (≥2/3) Sensitivity (≥2/3)

English (en) 91.2% 98.5% 88.3% 96.7%
Korean (ko) 89.7% 97.4% 85.2% 95.9%
Arabic (ar) 86.4% 96.1% 80.5% 93.8%
Hebrew (he) 88.1% 97.0% 82.7% 94.6%
Japanese (ja) 90.5% 98.1% 87.0% 96.2%
Russian (ru) 87.9% 96.8% 84.1% 94.3%
Vietnamese (vi) 89.3% 97.9% 86.5% 95.7%
Chinese (zh_cn) 88.7% 97.5% 83.6% 94.8%

Average 88.9% 97.4% 84.7% 95.3%

Table 7: Annotator agreement rates by language. The table shows the percentage of instances where all three
annotators (3/3) or at least two annotators (2/3) agreed on correctness and locale-sensitivity labels.

C Human Annotation

To verify the correctness and locale sensitivity of
the model-generated answers, we conducted hu-
man annotation using Amazon Mechanical Turk
(MTurk). For each language, we recruited three
independent annotators who are native or profi-
cient speakers of the respective target language to
evaluate each QA-evidence triple. Annotators were
presented with the original question, the model-
generated answer, and its associated supporting ev-
idence (e.g., URL or passage), and were instructed
to assess as in Figure 4.

Each annotation instance was reviewed by three
annotators. Final labels were determined via ma-
jority voting. Annotator agreement rates are sum-
marized in Table 7.

All annotators were compensated at a rate of $5
per 100 questions, in line with MTurk compensa-
tion standards, and informed that their responses
would be used for research purposes. No person-
ally identifiable information was collected during
the process. Tasks involving potentially sensitive
content were manually reviewed and filtered prior
to annotation to avoid harm or discomfort.

D Ethical Considerations

While XLQA promotes cultural inclusion in QA
evaluation, locale-aware generation introduces eth-
ical challenges. Prompts conditioned on locale
risk overgeneralization or reinforcement of cultural
stereotypes. We manually reviewed outputs for of-
fensiveness and excluded instances containing bias
or politically sensitive content.

Furthermore, hallucination in low-resource lan-
guages may amplify misinformation if locale
grounding is weak. We recommend that future

work incorporate human validation when deploy-
ing such systems in high-stakes settings.
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Figure 4: Survey screenshot. Interface shown to MTurk annotators during the human verification stage.
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