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Abstract

Temporal information extraction (IE) aims to
extract structured temporal information from
unstructured text, thereby uncovering the im-
plicit timelines within. This technique is
applied across domains such as healthcare,
newswire, and intelligence analysis, aiding
models in these areas to perform temporal rea-
soning and enabling human users to grasp the
temporal structure of text. Transformer-based
pre-trained language models have produced rev-
olutionary advancements in natural language
processing, demonstrating exceptional perfor-
mance across a multitude of tasks. Despite the
achievements garnered by Transformer-based
approaches in temporal IE, there is a lack of
comprehensive reviews on these endeavors. In
this paper, we aim to bridge this gap by system-
atically summarizing and analyzing the body
of work on temporal IE using Transformers
while highlighting potential future research di-
rections.

1 Introduction

Temporal information extraction (IE) is a critical
task in natural language processing (NLP). Its ob-
jective is to extract structured temporal information
from unstructured text, thereby revealing the im-
plicit timelines within the text. This not only helps
improve temporal reasoning in other NLP tasks,
such as timeline summarization and temporal ques-
tion answering, but also helps human users in gain-
ing a deeper understanding of the evolution of text
content over time. For example, Figure 2 displays
a snippet of George Washington’s Wikipedia page
and the timeline of his position changes; relying
solely on text-heavy documents to trace his position
changes over different years is time-consuming and
may lack accuracy as facts and temporal expres-
sions are scattered throughout the text. In contrast,
a timeline enables both NLP models and humans to
understand the changes in these positions over time
more succinctly and clearly. The application of this

structured temporal information is not limited to
Wikipedia but is also widely used in other domains
such as healthcare (Styler IV et al., 2014).

The advent of the Transformer architecture
(Vaswani et al., 2017) has sparked a revolutionary
change in the field of NLP, particularly with the re-
cent Transformer-based generative large language
models (LLM), such as LLAMA3 (Dubey et al.,
2024) and GPT-4 (Achiam et al., 2023), demon-
strating exceptional performance across many tasks.
Nevertheless, there has yet to be an in-depth study
that provides a comprehensive review or analy-
sis of the Transformer architecture’s application
in the field of temporal IE. Existing surveys (Lim
et al., 2019; Leeuwenberg and Moens, 2019; Al-
fattni et al., 2020; Olex and McInnes, 2021) focus
on rule-based systems or traditional machine learn-
ing models (e.g., support vector machines) which
are reliant on hand-crafted features. Only Olex
and McInnes (2021) touches on the application of
Transformer models, but they offer only a brief de-
scription of BERT-style models and focus largely
on the clinical domain.

To address this gap, we systematically review
the applications of Transformer-based models in
the field of temporal IE. Broadly, temporal IE
refers to any tasks involving the extraction of tem-
poral information from text. We focus on three
important tasks which are defined in the most
widely adopted temporal IE annotation framework,
TimeML (Pustejovsky, 2003): time expression
identification, time expression normalization, and
temporal relation extraction. Our contributions are
summarized as follows: (1) We systematically re-
view, summarize, and categorize the existing tem-
poral IE datasets, Transformer-based methods, and
applications. (2) We identify and highlight the re-
search gaps in the field of temporal IE and suggest
potential directions for future research.
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Congress created the Continental Army on June 14, 1775, and Samuel and John 
Adams nominated Washington to become its Commander-in-Chief. ... TLDR (hundred words) 

Washington bade farewell to his officers at Fraunces Tavern in December 1783 and 
resigned his commission days later.

Figure 1: A snippet from George Washington’s
Wikipedia page and the corresponding temporal graph.

2 Overview

The goal of temporal IE is to extract structured
temporal information from unstructured text, facili-
tating its interpretation and processing by comput-
ers, thereby achieving a transformation from text to
structure. The final result of a temporal IE system
is the construction of a directed acyclic graph, or
a temporal graph, which represents the structured
temporal information in the text. In the temporal
graph, nodes represent time expressions and events
(temporal entities), while edges depict the tempo-
ral relations between these nodes, such as “before,”
“after,” etc. For instance, Figure 1 illustrates a text
snippet from George Washington’s Wikipedia page
and its corresponding temporal graph.

Constructing a temporal graph involves several
sub-tasks: time expression identification, time ex-
pression normalization, event extraction, and tem-
poral relation extraction. The following is a brief
introduction to these sub-tasks; see Appendix B for
a discussion of common evaluation methods.

Time Expression Identification and Normaliza-
tion Time expression identification refers to iden-
tifying specific time points, durations, or periods
within the text, such as the explicitly dateable ex-
pression “February 25, 2024,” or more ambigu-
ous expressions like “three days ago” (Pustejovsky,
2003). Time normalization involves converting
identified expressions into a standardized format to
improve their interpretability. For example, under
the ISO-TimeML framework (Pustejovsky et al.,
2010), “February 25, 2024” might be converted
into the TIMEX3 format as “2024-02-25”.

Event Trigger Extraction In temporal IE, event
extraction differs from other NLP event extraction
tasks; it simply marks the event trigger words that
represent actions, such as “accident” in “about two
weeks after the accident occurred”. We will not re-
view event extraction works because, to our knowl-
edge, there is currently no temporal IE research

focused solely on event extraction. Furthermore,
most existing work on temporal IE assumes that
event triggers have already been identified. For a
comprehensive survey of event extraction, we refer
readers to (Li et al., 2022).

Temporal Relation Extraction The task of tem-
poral relation extraction aims to identify the tempo-
ral relations among given events and time expres-
sions. Common temporal relations include before,
after, and simultaneous. For example, in Figure 1,
the temporal relation between “June 14, 1775” and
the event “become” is marked as “after”.

3 Datasets

A clearly defined annotation framework is essen-
tial when constructing a dataset for temporal IE. It
needs to precisely define time expressions, events,
and their relations. We summarize all the datasets
in Table 1 of Appendix C.

3.1 TimeML Annotation Framework Datasets

An end-to-end temporal IE dataset encompasses
various tasks, including the identification and nor-
malization of time expressions and the extraction
of temporal relations. Most end-to-end temporal in-
formation datasets have been based on the TimeML
framework (Pustejovsky, 2003) or its derivatives,
such as ISO-TimeML (Pustejovsky et al., 2010).
We present datasets based on the TimeML frame-
work in the first section of Table 1.

TimeBank (Pustejovsky, 2003) was the first
dataset to adopt the TimeML framework, focusing
on the English news domain. Follow-up works in-
cluded the TempEval shared task series (Verhagen
et al., 2007, 2010; UzZaman et al., 2013), covering
multiple languages, including Chinese, English,
Italian, French, Korean, and Spanish. There are
also language-specific datasets like French Time-
Bank (Bittar et al., 2011), Spanish TimeBank (Ni-
eto et al., 2011), Portuguese TimeBank (Costa and
Branco, 2012), Japanese TimeBank (Asahara et al.,
2013), Italian TimeBank (Bracchi et al., 2016), and
Korean TimeBank (Lim et al., 2018). Similarly, the
MeanTime dataset (Minard et al., 2016) offers data
in English, Italian, Spanish, and Dutch. Datasets
based on TimeML and its variants showcase lan-
guage diversity and also cover several different
domains: the Spanish TimeBank focuses on history
text, the Korean TimeBank is based on Wikipedia
content, and the Richer Event Description dataset
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(O’Gorman et al., 2016) provides data from both
news and forum discussion domains.

Additionally, efforts have been made to improve
the temporal relation annotations in the original
TimeBank. TimeBank-Dense (Chambers et al.,
2014) addresses the sparsity of temporal relation
annotations in TimeBank by requiring annotators
to label all temporal relations within a given scope,
thus increasing the number of temporal relations
in the dataset. The TORDER dataset (Cheng and
Miyao, 2018) annotates the same documents as
TimeBank-Dense, introducing temporal relations
automatically by anchoring times and events to ab-
solute points, reducing the annotation burden. The
MATRES dataset (Ning et al., 2018) focuses on
events from TimeBank-Dense, anchoring events to
different timelines and comparing their start times
to enhance inter-annotator consistency.

Several datasets have been developed specific to
the clinical domain, of which the Thyme datasets
(Bethard et al., 2015, 2016, 2017) are most notable.
They are based on the Thyme-TimeML (Styler IV
et al., 2014) annotation framework, which ad-
justs and adds new temporal attributes from ISO-
TimeML to suit medical texts. Like the TimeBank
series, the Thyme dataset involves identifying and
normalizing time expressions and extracting tem-
poral relations, focusing on English. Another simi-
lar dataset is i2b2-2012 (Sun et al., 2013), which
adapts the TimeML framework for clinical texts.

Besides end-to-end datasets, several others based
on TimeML or its variants focus on specific tem-
poral IE tasks. For instance, the AncientTimes
dataset (Strötgen et al., 2014) covers a broad range
of languages, concentrating on the identification
and normalization of time expressions. The TD-
Discourse dataset (Naik et al., 2019), based on
TimeBank-Dense, expands the annotation window
for temporal relations, focusing on their extraction.
The German time expression (Strötgen et al., 2018)
and German VTEs (May et al., 2021) datasets are
dedicated to identifying and normalizing time ex-
pressions in German. The PATE dataset (Zarcone
et al., 2020) provides data aimed at time expres-
sion identification and normalization for the virtual
assistant domain.

3.2 Other Annotation Framework Datasets

Unlike datasets for temporal IE based on TimeML,
other annotation frameworks typically focus on
specific sub-tasks of temporal IE, such as time ex-

pression identification and normalization or the
extraction of temporal relations. We present these
datasets in the second section of Table 1.

For time expression identification and normal-
ization, WikiWars (Mazur and Dale, 2010) and
SCATE (Laparra et al., 2018) are two major
datasets. WikiWars contains data from English and
German Wikipedia, annotated based on TIMEX2
(a precursor to TimeML’s TIMEX3) to mark ex-
plicit time expressions. The SCATE dataset, based
on English news and clinical documents, aims to
address limitations in TimeML that prevent express-
ing multiple calendar units, times relative to events,
and compositional time expressions. To achieve
this, SCATE represents time expressions as compo-
sitions of temporal operators.

For temporal relations, there are datasets based
on the temporal dependency tree/graph (Zhang and
Xue, 2018, 2019; Yao et al., 2020) and CaTeRS
(Mostafazadeh et al., 2016) frameworks. Unlike
the pairwise temporal relations considered in the
TimeML framework, temporal dependency tree as-
sumes that all time expressions and events in a
document have a reference time, allowing for the
representation of overall temporal relations through
a dependency tree. The subsequent temporal de-
pendency graph dataset (Yao et al., 2020) relaxed
this assumption by enabling each event in a docu-
ment to have a reference event, a reference time, or
both, thus forming a temporal graph structure. The
temporal dependency tree dataset covers news and
narrative domains in English and Chinese, while
the temporal dependency graph dataset focuses on
English news. Meanwhile, CaTeRS concentrates
on analyzing temporal relations between events in
English commonsense stories, with event defini-
tions based on ontologies, different from the verb-,
adjective-, or noun-based definitions in TimeML.
CaTeRS’ annotation of temporal relations is story-
wide, with a simplified set of relations. We present
additional timeline focused datasets at Appendix D.

3.3 Discussion and Research Gaps

Domain Bias Existing annotated datasets exhibit
significant domain biases. As demonstrated in Ta-
ble 1, among the 32 datasets we reviewed, 20 (or
63%) are predominantly focused on the newswire
domain. While temporal information is crucial for
understanding news content, an excessive concen-
tration in a single domain hampers the advance-
ment and generalizability of systems trained on
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these datasets, since the challenges and difficulties
encountered in temporal IE vary across different
domains. Notably, the Clinical TempEval 2017
shared task (Bethard et al., 2017) reveals that most
tasks suffer an approximately 20-point drop in per-
formance in a cross-domain setting, underscoring
how domain shifts can significantly degrade model
accuracy. For example, temporal information, espe-
cially time expressions, in newswire texts tend to be
explicitly stated, whereas in other domains, like his-
torical Wikipedia entries, they might appear in sub-
tler ways. Consider a statement from a page about
George Washington that reads, “. . . 1798, one year
after that, he stepped down from the presidency,”
which would demand a more nuanced interpreta-
tion for accurate time normalization. Cultivating
datasets that represent a variety of domains is vital
to driving innovation in temporal IE.

Language Diversity Unlike the domain homo-
geneity of the datasets, the existing datasets dis-
play rich linguistic diversity, covering 15 differ-
ent languages. The representation of time varies
across languages, and even when semantically sim-
ilar, the specific time intervals on the timeline can
differ. For example, analysis in Shwartz (2022)
shows that different cultures/languages have sig-
nificant variations in the understanding of “night”
and “evening” during the day. One instance is that
Brazilian Portuguese speakers often use “evening”
and “night” interchangeably to denote the same
time period, possibly because the tropical climate
in Brazil causes evening to transition quickly into
night. However, this might not be applicable to
other cultures or languages. Therefore, the lan-
guage diversity in datasets is crucial for developing
models capable of effectively extracting temporal
information across different languages.

Annotation and Dataset Framework Develop-
ment Slows Down Aside from the original
TimeML and some incremental modifications to it,
no new end-to-end temporal IE annotation frame-
works have been proposed. A significant issue with
the existing TimeML-based annotation frameworks
is the limited amount of information that the resul-
tant temporal graphs can represent. For instance, in
Figure 1, we only see trigger words for events, time
expressions, and some temporal relations. When
these temporal graphs are isolated from their origi-
nal context and treated as stand-alone entities, they
struggle to provide a comprehensive understand-

ing of the textual information. This might explain
why, in the upcoming Section 6, we see no work
directly employing these extracted temporal graphs
for reasoning to accomplish specific tasks, such
as answering temporal questions. Instead, these
temporal graphs are used as auxiliary tools or addi-
tional knowledge to assist task-specific models in
temporal reasoning.

In addition to the stagnation in the innovation
of end-to-end annotation frameworks, there has
been a notable decline in dataset development ef-
forts in the field of temporal IE in recent years.
This trend may primarily stem from the intrinsic
complexity of the annotation process for tempo-
ral IE datasets. Such complexity accounts for the
low annotator agreement observed in many anno-
tation tasks (Cassidy et al., 2014). Furthermore,
as demonstrated by analysis in Su et al. (2021),
even Ph.D. students in relevant fields find it chal-
lenging to comprehend annotation guidelines and
annotate high-quality data within a short period.
These issues highlight the difficulties in developing
temporal IE datasets, suggesting that improvements
in the annotation framework might be necessary to
address these challenges.

4 Time Expression Methods

4.1 Methods Overview

In the realm of time expression identification, most
prior work (Almasian et al., 2021; Chen et al.,
2019; Mirzababaei et al., 2022; Olex and McInnes,
2022; Laparra et al., 2021; Almasian et al., 2022;
Cao et al., 2022) leverages discriminative models
built upon Transformer encoders like BERT (De-
vlin et al., 2019). These approaches typically frame
time expression identification as a token classifi-
cation task, wherein a sequence of tokens is in-
put, processed through a base encoder model to
obtain contextualized representations, and these
representations are fed into a classifier (such as a
simple linear classification layer or a Conditional
Random Field layer) to identify time expressions
and their specific types. Almasian et al. (2021)
is the only work exploring a generative approach
for time expression identification, framing the task
as a sequence-to-sequence problem and employ-
ing a pair of Transformer encoders to formulate
an encoder-decoder model—where one serves as
the encoder and the other as the decoder—to gener-
ate additional TIMEX3 tags for the input, thereby
recognizing time expressions and their types.
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Shwartz (2022) and Kim et al. (2020) focus
on the normalization of time expressions and use
Transformer-based models. Shwartz (2022) aims
to normalize time expressions from various cultural
contexts (e.g., morning, noon, afternoon) into pre-
cise hourly representations within a day. They train
a BERT model with a masked language modeling
task to predict specific times of day that are masked,
given the time expressions. Kim et al. (2020) seeks
to normalize time expressions in novels into spe-
cific daily hours, fine-tuning the BERT model for
a 24-class classification task to ascertain the corre-
sponding times of day for given expressions.

Lange et al. (2023) addresses both extraction
and normalization of time expressions, adopt-
ing a pipeline approach. Initially, they fine-tune
the XLM-R model using the token classification
method to extract time expressions, then denote
identified expressions with TIMEX3 tags with
masked time values, and finally fine-tune the XLM-
R model with masked language modeling to predict
the normalized masked time values.

Several of the aforementioned works also uti-
lize data augmentation techniques to improve the
model’s multilingual performance (Lange et al.,
2023; Mirzababaei et al., 2022; Almasian et al.,
2022). For instance, Lange et al. (2023) employs
the rule-based HeidelTime method (Strötgen and
Gertz, 2010) to annotate time expressions and their
normalizations across 87 languages, generating a
semi-supervised dataset to facilitate model training.

4.2 Discussion and Research Gaps

Despite the significant achievements of Trans-
former models in various NLP tasks, research in
the area of time expression identification and nor-
malization has remained relatively limited over the
past few years. This is particularly true of time nor-
malization, where the volume and depth of research
are low, especially when compared to similar tasks
such as named entity recognition, entity normaliza-
tion, and entity linking. Furthermore, the method-
ological diversity in existing works is notably con-
strained, with most research relying on pre-trained
Transformer models for simple token classification.
While generative LLMs like GPT-4 or LLAMA3
have demonstrated impressive performance in other
NLP tasks, their potential in the identification and
normalization of time expressions has barely been
explored. This suggests a significant research gap
exists; exploration of generative approaches may

offer the potential for advancement in time expres-
sion identification and normalization.

5 Temporal Relation Methods

The task of temporal relation extraction typically
assumes that events and time expressions in the
text have already been identified, with the only
objective being to extract the temporal relations
between them. We summarize all the reviewed
temporal relation extraction works in Appendix E
Table 2. Discriminative methods typically employ
a pretrained discriminative language model like
BERT or RoBERTa (Liu et al., 2019) as the base
encoder model to derive contextualized representa-
tions of events or time expressions. Subsequently,
these representations are paired and input into a
classification layer for a multi-class classification
task, with each class representing a different tempo-
ral relation. Generative methods typically leverage
encoder-decoder models such as T5 (Raffel et al.,
2020) or decoder-only models like GPT (Radford
et al., 2019) to generate a target sequence that en-
capsulates the temporal relation between the input
events and times. These methods often rely on post-
processing techniques to extract specific temporal
relations from the predicted target sequences.

5.1 Discriminative Methods Overview

Works on discriminative temporal relation extrac-
tion have mainly focused on integrating external
knowledge and improving model robustness.

5.1.1 Integrating External Knowledge
Commonsense Knowledge Commonsense
knowledge for temporal relations usually involves
typical sequences of events, such as eating typi-
cally occurring after cooking. Such commonsense
knowledge might be fundamental for humans, but
absent from the base encoder model. Ning et al.
(2019), Wang et al. (2020) and Tan et al. (2023)
integrated knowledge from external commonsense
knowledge graphs. Tan et al. (2023) employs a
complex Bayesian learning method to merge the
knowledge with the contextualized representations
from the base encoder, whereas Ning et al. (2019)
and Wang et al. (2020) simply concatenate the
vectorized representations of the commonsense
knowledge with those from the base encoder.

Syntactic and Semantic Knowledge Syntactic
and semantic knowledge, typically extracted using
off-the-shelf external tools or straightforward rules,
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enrich the base encoder models’ representations.
For instance, Wang et al. (2022) utilizes SpaCy’s
dependency parser to parse the syntactic depen-
dency trees from the input text and neuralcoref to
identify coreferential relationships among entities.
Mathur et al. (2021) employs the discoursegraphs
library to parse rhetorical dependency graphs from
the text. To integrate this structured knowledge
into the contextualized event or time expression
representations, graph neural networks are often
employed over syntactic or semantic pairwise rela-
tions (Wang et al., 2022; Mathur et al., 2022; Zhou
et al., 2022; Mathur et al., 2021). For example,
Wang et al. (2022) first encodes an input sequence
containing event pairs with the RoBERTa model to
generate initial contextual representations, which
are then enhanced with extracted syntactic and se-
mantic knowledge using additional graph neural
network layers. Another method is to prelearn
or extract vectorized representations of the knowl-
edge, which are later concatenated with the event or
time expression representations (Ross et al., 2020;
Wang et al., 2020; Han et al., 2019a; Ning et al.,
2019; Han et al., 2019b; Yao et al., 2024a), as in
Wang et al. (2020), where RoBERTa token embed-
dings and one-hot vectors of part-of-speech tags
are combined.

Temporal-Specific Rules These rules are intrin-
sic to temporal relations themselves, with symme-
try and transitivity being the most common. For
instance, if event A happens before event B, then
symmetry can be used to infer that B happens after
A. And if A precedes B and B precedes C, transitiv-
ity can be used to infer that A precedes C. Detailed
explanations of the symmetry and transitivity rules
and a comprehensive transitivity table are provided
in Ning et al. (2019). Recent works have incor-
porated these rules during both training and infer-
ence. During training, models employ various ap-
proaches including box embedding (Hwang et al.,
2022), hyperbolic embedding (Tan et al., 2021),
loss function regularization (Zhou et al., 2021;
Wang et al., 2020), contrastive objectives (Niu et al.,
2024), logical expressions over event time points
(Huang et al., 2023), and hierarchical logical con-
ditions (Ning et al., 2024). For inference, methods
include custom heuristics (Wang et al., 2022; Zhou
et al., 2022, 2021; Liu et al., 2021), linear program-
ming formulation (Wang et al., 2020; Han et al.,
2019c), and structured prediction with support vec-
tor machines (Han et al., 2019a).

Label Distribution Knowledge of label distribu-
tion pertains to the frequency distribution of spe-
cific temporal relations in the training set. Wang
et al. (2023) and Han et al. (2020) integrate this dis-
tribution knowledge into their frameworks, using
it as a regularization term in the loss function or
for inference-time linear programming, aiming to
mitigate potential biases in model predictions.

5.1.2 Improving Model Robustness
Multitask Learning Wang et al. (2022), Lin et al.
(2020) and Cheng et al. (2020) categorize tempo-
ral relations and treat the extraction of different
types of temporal relations as independent tasks,
employing multitask learning to extract all types of
relations simultaneously. For instance, Wang et al.
(2022) delineates tasks into event-event, event-time,
and event-document creation time, undergoing mul-
titask training across these three tasks. Mathur et al.
(2022) applies multitask learning in their model
to concurrently predict temporal relations and de-
pendency links between nodes in a temporal de-
pendency tree. Similarly, Ballesteros et al. (2020)
implements multitask learning by integrating the
extraction of temporal relations with the extraction
of entity relations in the general domain.

Data Augmentation Wang et al. (2023) gener-
ates counterfactual instances from the training set
samples to mitigate model bias, while Tiesen and
Lishuang (2022) employs predefined templates to
create additional training examples.

Continued Pre-training of Base Encoder In
Zhao et al. (2021) and Han et al. (2021), heuristic
methods are used to identify temporal indicators
in a corpus of unlabeled data, further training the
base encoder using a masked language modeling
(MLM) approach to recover masked indicators. Lin
et al. (2019) focuses on the medical domain, using
MLM on electronic health records from MIMIC-
III to adapt the base encoder for domain-specific
training prior to temporal relation extraction.

Adversarial Training Kanashiro Pereira (2022)
and Pereira et al. (2021) introduce adversarial per-
turbations at different layers of the Transformer
encoder during training to enhance model robust-
ness.

Self-training Cao et al. (2021) and Ballesteros
et al. (2020) initially train a temporal relation ex-
traction model on annotated datasets and then ap-
ply the model to unlabeled data to obtain model-
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generated labels as pseudo labels. They subse-
quently select pseudo-labeled examples as sliver ex-
amples based on the model’s uncertainty scores and
confidence scores (probability scores for specific
temporal relation predictions) to train the model.

5.2 Generative Methods Overview
Generative approaches in Temporal IE fall into two
main categories: fine-tuned encoder-decoder mod-
els and large language model (LLM) prompting
methods. For fine-tuned generative models, Dli-
gach et al. (2022) investigate BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020) architectures,
finding that producing outputs for each temporal
entity pair separately outperforms triplet format
(entity, relation, entity). Recent work has also ex-
plored LLM-based approaches. Yuan et al. (2023)
and Huang et al. (2023) examine various prompt-
ing strategies, with Huang et al. (2023) demonstrat-
ing that structured, logic-informed prompts signifi-
cantly improve performance over standard prompt-
ing. Hu et al. (2025) formulates temporal relation
extraction as a question-answering task with ratio-
nale generation that includes coreference and transi-
tive chains. Meanwhile, Niu et al. (2024) integrates
LLMs specifically to enhance commonsense rea-
soning in their hybrid system. More recently, Eirew
et al. (2025) address the computational inefficiency
of pairwise classification by proposing a zero-shot
method that generates a document’s complete tem-
poral graph in a single inference step. They em-
ploy temporal constraint optimization with Inte-
ger Linear Programming to ensure global consis-
tency across relations, and introduce OmniTemp, a
dataset with complete temporal relation annotations
for all event pairs within documents. Despite these
advances, current findings indicate that prompting-
only approaches still underperform compared to
fine-tuned discriminative models.

5.3 Discussion and Research Gaps
Homogenization of Methods and Evaluations
While numerous Transformer-based methods for
temporal relation extraction have emerged, they
tend to be algorithmically similar, utilizing discrim-
inative base models like BERT to represent tempo-
ral entities and incorporating additional knowledge
into these representations. A common strategy in-
volves using off-the-shelf IE tools to extract syn-
tactic knowledge and enhance the base model’s
representations with graph neural networks. The
small gains in state-of-the-art performance from

one model to the next probably represent addi-
tional hyperparameter tuning more than substantial
progress in understanding the relations between
temporal entities in text.

Most works also focus on only three datasets –
MATRES, TimeBank-Dense, and TDDiscourse –
which are predominantly in the newswire domain
with only 274, 36, and 34 documents, respectively,
and exhibit significant overlap. This limitation in
datasets might lead to an incomplete assessment of
the models’ generalization capabilities. Repeated
testing and fine-tuning on these small, overlapping
datasets could result in overfitting, failing to re-
flect the models’ effectiveness on broader and more
diverse datasets. Moreover, this singular domain-
focused evaluation approach could cause severe do-
main bias, leaving the applicability of these meth-
ods outside the news domain uncertain. For a de-
tailed comparative analysis of different method-
ological approaches and their trade-offs, see Ap-
pendix H.

Generative LLMs: Progress and Challenges
Despite increasing interest in generative LLMs for
temporal relation extraction, a significant research
gap remains: current generative approaches con-
sistently underperform compared to fine-tuned dis-
criminative models (Yuan et al., 2023). Although
recent works have explored structured prompts
(Huang et al., 2023), question-answering frame-
works (Hu et al., 2025), and hybrid systems (Niu
et al., 2024), none have matched state-of-the-art
discriminative methods. Promising directions for
future research include: (1) specialized temporal
fine-tuning techniques for LLMs; (2) more effec-
tive methods to encode temporal rules and con-
straints in LLM prompts; and (3) improved evalua-
tion frameworks for generative outputs in temporal
tasks.

Increased Demand for Model Openness As
shown in the last column of Table 2, most temporal
relation extraction models are not publicly avail-
able, possibly due to the absence of code releases
or the need to re-train models on new datasets even
when code is provided. Re-training a model in-
volves significant replication work. This inaccessi-
bility directly impacts the practical application and
testing of these trained models in other temporal
reasoning tasks, thereby affecting the development
of the temporal relation extraction field. Given the
application-oriented nature of temporal relation ex-
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traction tasks, only by understanding the specific
issues encountered in actual applications can we
propose strategies to address these real-world chal-
lenges.

6 Applications

6.1 Methods Overview

Temporal IE is often regarded as an “upstream”
system, akin to other general IE systems. These
systems aim to extract structured information to im-
prove the reasoning of “downstream” tasks, such
as temporal reasoning. A natural question is how
the models from Sections 4 and 5 are used in down-
stream tasks to help temporal reasoning.

Despite a wealth of research on Transformer-
based temporal IE systems in recent years, there
has been scant application of these systems’ out-
puts in temporal reasoning tasks. Only a few tem-
poral reasoning tasks, such as timeline extraction,
timeline summarization and temporal question an-
swering, leverage the results of temporal IE. Time-
line extraction is a direct product of temporal IE,
where the extracted events and time expressions,
along with their temporal relations, naturally form
a chronologically ordered timeline following the
traditional TimeML paradigm. For example, the
recent Chemotherapy Timeline Extraction shared
task (Yao et al., 2024b) focuses on constructing
patient-level treatment timelines from electronic
health records, with most participating systems us-
ing fine-tuned Transformer models for event and
time expression extraction, followed by temporal
relation classification. The timeline summariza-
tion task aims to chronologically order and label
key dates of events within a collection of news
documents, while temporal question answering re-
lies on unstructured context documents to answer
temporal-related questions. Both tasks require rea-
soning about time and events to generate outcomes.

One approach to utilizing temporal IE systems
is to explicitly construct temporal graphs to assist
with temporal reasoning. Some works use only
simple temporal graphs containing only time ex-
pressions extracted by rules (Su et al., 2023) or
Transformers (Yang et al., 2023; Xiong et al., 2024)
and normalized by rules. Other works use complete
temporal graphs constructed by a complete tempo-
ral IE pipeline, including time expression identifi-
cation, normalization, and temporal relation extrac-
tion, with Mathur et al. (2022) using Transformer-
based relation extraction, and Li et al. (2021) using

LSTM-based relation extraction and rules for the
other components. As for the usage of the con-
structed temporal graph, they can be input into
models directly in text form (Su et al., 2023; Yang
et al., 2023; Xiong et al., 2024) or encoded into
the hidden states of a Transformer model through
an attention fusion mechanism or graph neural net-
works (Li et al., 2021; Mathur et al., 2022; Su et al.,
2023).

Some works only preprocess the input with a
specific temporal IE component rather than build-
ing a temporal graph. For instance, Bedi et al.
(2021) employs the rule-based HeidelTime (Ströt-
gen and Gertz, 2010) for extracting and normaliz-
ing time expressions in texts for constructing the in-
put of a temporal question generation model; while
Cole et al. (2023) uses the rule-based SUTime
(Chang and Manning, 2012) to process the entire
Wikipedia, supporting the temporal pre-training of
the Transformer model.

6.2 Discussion and Research Gaps

Although there is considerable work on
Transformer-based temporal IE, especially
in temporal relation extraction tasks, these
methods have not been widely applied to down-
stream tasks. For example, there are many
Transformer-based works that have been trained on
the MATRES dataset, but none have been utilized
in downstream tasks. This may be attributed
to most temporal IE models not being publicly
available, as shown in Table 2. Replicating these
models can be both complex and time-consuming,
requiring substantial effort. Furthermore, existing
models exhibit domain bias. For example, in
temporal relation extraction tasks, most research
relies on the TimeBank-Dense and MATRES
datasets, which primarily contain data from the
newswire domain. Hence, the generalization
capabilities of these models in other domains
might be limited.

7 Conclusion

In this paper, we provide an overview of three clas-
sic tasks in the field of temporal IE: time expression
identification, time expression normalization, and
temporal relation extraction. We discuss datasets,
Transformer-based methods, and their applications
within these areas. We found that although Trans-
former models have demonstrated outstanding per-
formance on many NLP tasks, there remain sig-
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nificant research gaps in the domain of temporal
IE. We hope this survey will offer a comprehensive
review and insights to researchers in the field, in-
spiring further research to address these existing
gaps. We expand on the research opportunities
arising from these gaps in Appendix F.

Limitations

In this review, we focus exclusively on
Transformer-based temporal IE methods, without
including rule-based approaches. We also center
our discussion on the most common temporal IE
tasks rather than addressing every possible subtask.
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George Washington... on June 14, 1775, …become its
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down his presidency position.

Wikipedia: George Washington

Figure 2: A snippet from George Washington’s
Wikipedia page and a timeline regarding his positions.

Minnesota. Association for Computational Linguis-
tics.

Xinyu Zhao, Shih-Ting Lin, and Greg Durrett. 2021.
Effective distant supervision for temporal relation ex-
traction. In Proceedings of the Second Workshop on
Domain Adaptation for NLP, pages 195–203, Kyiv,
Ukraine. Association for Computational Linguistics.

Jie Zhou, Shenpo Dong, Hongkui Tu, Xiaodong Wang,
and Yong Dou. 2022. RSGT: Relational structure
guided temporal relation extraction. In Proceedings
of the 29th International Conference on Computa-
tional Linguistics, pages 2001–2010, Gyeongju, Re-
public of Korea. International Committee on Compu-
tational Linguistics.

Yichao Zhou, Yu Yan, Rujun Han, J Harry Caufield,
Kai-Wei Chang, Yizhou Sun, Peipei Ping, and Wei
Wang. 2021. Clinical temporal relation extraction
with probabilistic soft logic regularization and global
inference. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14647–
14655.

A Timeline Examples

We present in Figure 2 a snippet from George Wash-
ington’s Wikipedia page alongside the correspond-
ing timeline of his position changes.

B Evaluation Metrics

In temporal IE, the evaluation method from
TEMPEVAL-3 (UzZaman et al., 2013) is the most
widely adopted standard. This evaluation method
calculates the standard precision (P), recall (R),
and F1 score (F) between the system predictions
(System) and the gold annotations (Reference) as
follows:

P =
|System ∩ Reference|

|System| (1)

R =
|System ∩ Reference|

|Reference| (2)

F = 2 · P ·R
P +R

(3)

In time expression identification, “System”
refers to the time expressions identified by the
system, while “Reference” refers to the annotated
gold time expressions. In time expression nor-
malization, “System” and “Reference” refer to the
system-normalized time expressions and the gold
annotated normalized expressions, respectively. If
calculating the end-to-end time expression normal-
ization score, “System” only involves the correctly
identified time expressions.

For the temporal relation extraction task, the
TEMPEVAL-3 evaluation method calculates the
temporal awareness scores. This is achieved by
performing a graph closure operation on the gold
temporal graph based on temporal transitivity rules
(to incorporate all potential temporal relations) and
reducing the predicted temporal relation graph (to
remove duplicate relations). These steps are com-
pleted before calculating the standard scores. Here,
“System” denotes the temporal relations predicted
by the system, while “Reference” is the gold anno-
tated temporal relations.

C Datasets Summary

We summarize the temporal IE datasets in Table 1.
The first section is based on the most widely used
TimeML annotation framework, while the second
section covers those that adopt all other annotation
frameworks.

D Timeline-focused Datasets

A notable trend in temporal IE dataset development
is the emergence of timeline-focused annotation
frameworks that offer more comprehensive and co-
herent temporal representations compared to tradi-
tional approaches. For timeline-centric annotation,
Rogers et al. (2019) propose NarrativeTIME, which
enables dense, full-coverage temporal relation an-
notation. Unlike the pairwise TLINK annotation
in TimeML, NarrativeTIME constructs coherent
narrative timelines, supports underspecification via
event types and timeline branches, and achieves
significantly higher annotation density. Similarly,
Liu and Zhang (2025) introduce ETimeline, a large-
scale bilingual (English/Chinese) timeline dataset
comprising over 600 timelines and 13,878 anno-
tated event entries, spanning diverse domains from
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Name Framework Domain Lang Tasks

TimeML-Based

TimeBank (Pustejovsky, 2003) TimeML Newswire EN I, N, R
TempEval-1 (Verhagen et al., 2007) TimeML Newswire EN I, N, R
TempEval-2 (Verhagen et al., 2010) TimeML Newswire ZH, EN, IT,

FR, KR, ES
I, N, R

Spanish TimeBank (Nieto et al., 2011) TimeML Historiography ES I, N
French TimeBank (Bittar et al., 2011) ISO-TimeML Newswire FR I, N, R
Portuguese TimeBank (Costa and Branco, 2012) TimeML Newswire PT I, N, R
i2b2-2012 (Sun et al., 2013) Thyme-TimeML Clinical EN I, N, R
TempEval-3 (UzZaman et al., 2013) TimeML Newswire EN, ES I, N, R
TimeBank-Dense (Chambers et al., 2014) TimeML Newswire EN I, N, R
Japanese TimeBank (Asahara et al., 2013) ISO-TimeML Publication, Library,

Special purpose
JA I, N, R

AncientTimes (Strötgen et al., 2014) TimeML Wikipedia EN, DE, NL,
ES, FR, IT,
AR, VI

I, N

THYME-2015 (Bethard et al., 2015) Thyme-TimeML Clinical EN I, N, R
THYME-2016 (Bethard et al., 2016) Thyme-TimeML Clinical EN I, N, R
Richer Event Description (O’Gorman et al., 2016) Thyme-TimeML Newswire, Forum

Discussions
EN I, N, R

Italian TimeBank (Bracchi et al., 2016) TimeML Newswire IT I, N, R
MeanTime (Minard et al., 2016) ISO-TimeML Newswire EN, IT, ES,

NL
I, N, R

THYME-2017 (Bethard et al., 2017) Thyme-TimeML Clinical EN I, N, R
Event StoryLine (Caselli and Vossen, 2017) TimeML Story EN I, N, R
MATRES (Ning et al., 2018) TimeML Newswire EN I, R
Korean TimeBank (Lim et al., 2018) TimeML Wikipedia KR I, N, R
German Temporal Expression (Strötgen et al., 2018) TimeML Newswire DE I, N
TDDiscourse (Naik et al., 2019) TimeML Newswire EN R
PATE (Zarcone et al., 2020) TimeML Voice Assistant EN I, N
German VTEs (May et al., 2021) ISO-TimeML Newswire DE I, N

Other Annotation Framework-based

WikiWars (Mazur and Dale, 2010) TIMEX2 Wikipedia EN, DE I, N
SCATE (Bethard and Parker, 2016; Laparra et al., 2018) SCATE Newswire, Clinical EN I, N
CaTeRS (Mostafazadeh et al., 2016) CaTeRS Commonsense Sto-

ries
EN R

TORDER (Cheng and Miyao, 2018) TORDER Newswire EN R
Temporal Dependency Tree (Zhang and Xue, 2018, 2019) Temporal Depen-

dency Tree
Newswire, Narra-
tives

ZH R

Temporal Dependency Graph (Yao et al., 2020) Temporal Depen-
dency Graph

Newswire EN R

Table 1: Overview of datasets and their schemas, domains, languages (EN: English, DE: German, NL: Dutch, ES:
Spanish, FR: French, IT: Italian, AR: Arabic, VI: Vietnamese, JA: Japanese, PT: Portuguese, ZH: Chinese, KR:
Korean), and tasks (I: identification, N: time expression normalization, R: temporal relation extraction).

March 2020 to April 2024. Created using an LLM-
assisted annotation approach, ETimeline represents
a significant resource for cross-lingual timeline con-
struction and temporal reasoning across news do-
mains.

E Temporal Relation Extraction Methods
Summary

We summarize the temporal relation extraction
methods we review in Table 2.

F Discussion on Future Directions

In the previous sections, we have identified the
following research opportunities in the field of tem-
poral IE:

• Enrich annotation frameworks (Section 3.3),
e.g., representing event arguments or expand-
ing formal semantic systems like SCATE.

• Improve dataset diversity (Section 3.3), e.g.,
annotating more domains beyond newswire.

• Explore generative approaches (Sections 4.2
and 5.3), e.g., new input-output formulations,
new fine-tuning strategies.

• Develop public tools and benchmarks (Sec-
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Work Approach Base Model Evaluation Datasets Knwl Rbst Avl

Lin et al. (2019) Discr. BERT THYME % ! %

Han et al. (2019a) Discr. BERT TimeBank-Dense, MATRES ! % %

Ning et al. (2019) Discr. BERT TimeBank-Dense, MATRES ! % %

Han et al. (2019c) Discr. BERT TimeBank-Dense, MATRES ! ! %

Han et al. (2019b) Discr. BERT Richer Event Description,
CaTeRS

! ! %

Lin et al. (2020) Discr. BERT THYME % ! %

Cheng et al. (2020) (SEC) Discr. BERT Japanese-Timebank, TimeBank-
Dense

! ! %

Ross et al. (2020) Discr. BERT Temporal Dependency Tree ! % %

Ballesteros et al. (2020) Discr. RoBERTa MATRES % ! %

Han et al. (2020) Discr. RoBERTa i2b2-2012, TimeBank-Dense ! ! %

Wang et al. (2020) Discr. RoBERTa MATRES ! % %

Zhao et al. (2021) Discr. RoBERTa MATRES % ! !

Zhou et al. (2021) (CTRL-PG ) Discr. BERT i2b2-2012, TimeBank-Dense ! % %

Cao et al. (2021) (UAST) Discr. RoBERTa MATRES, TimeBank-Dense % ! %

Tan et al. (2021) Discr. RoBERTa MATRES ! % %

Mathur et al. (2021) (TIMERS) Discr. BERT TimeBank-Dense, MATRES,
TDDiscourse

! % %

Liu et al. (2021) Discr. BERT TimeBank-Dense, TDDiscourse ! % %

Wen and Ji (2021) Discr. RoBERTa MATRES ! % %

Pereira et al. (2021) (ALICE++) Discr. RoBERTa MATRES, TimeML % ! %

Han et al. (2021) (ECONET) Discr. RoBERTa/BERT TimeBank-Dense, MATRES,
Richer Event Description

% ! !

Kanashiro Pereira (2022) (ML-ALICE) Discr. RoBERTa MATRES, TimeML % ! %

Wang et al. (2022) (DTRE) Discr. RoBERTa TimeBank-Dense, TDDiscourse ! ! %

Mathur et al. (2022) (DocTime) Discr. BERT Temporal Dependency Tree ! ! %

Hwang et al. (2022) (BERE) Discr. RoBERTa MATRES, Event StoryLine ! % %

Dligach et al. (2022) Gen BART/T5 THYME % % %

Wang et al. (2023) Discr. BigBird MATRES, TDDiscourse ! ! %

Zhang et al. (2022) Discr. BERT MATRES, TimeBank-Dense ! % %

Tiesen and Lishuang (2022) (TempACL) Discr. BERT TimeBank-Dense, MATRES % ! %

Zhou et al. (2022) (RSGT) Discr. RoBERTa TimeBank-Dense, MATRES ! % %

Man et al. (2022) (SCS-EERE) Discr. RoBERTa MATRES, TDDiscourse ! % %

Yuan et al. (2023) Gen ChatGPT TimeBank-Dense, MATRES,
TDDiscourse

% % %

Huang et al. (2023) Discr. BERT/RoBERTa TimeBank-Dense, MATRES ! % %

Tan et al. (2023) (Bayesian-Trans) Discr. BART MATRES, imeBank-Dense ! % !

Niu et al. (2024) (ConTempo) Discr. RoBERTa TimeBank-Dense, MATRES ! ! %

Table 2: Overview of research on temporal relation extraction. “Knwl” represents the inclusion of external
knowledge. “Rbst" refers to the application of methods to enhance model robustness. “Avl” indicates whether the
model is publicly available. Symbols!and%indicate the presence or absence of a feature, respectively.

tions 4.2 and 5.3), e.g., publish temporal IE
models and datasets to the public repositories

• Explore new applications (Section 6.2), e.g.,
the utility of extracted timelines when visual-
ized for human-computer interaction.

F.1 Enrich Annotation Frameworks and
Improve the Domain Diversity of Datasets

Current annotation frameworks, such as TimeML,
often produce temporal graphs composed of tem-
poral relations and temporal entities, as illustrated

in Figure 1. However, these temporal graphs are
challenging to interpret independently or use di-
rectly for temporal reasoning without extensive
context. One future direction could be to integrate
richer content into end-to-end temporal IE anno-
tation frameworks. One example is incorporating
entity relation extraction and full event extraction
(including triggers and arguments) from the gen-
eral domain to construct a more complete temporal
graph. This concept has begun to emerge in the
literature, as seen in Li et al. (2021). Yet, that work
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mainly integrates existing temporal IE tools with
general domain IE tools without proposing a well-
defined annotation framework. Another example is
to develop user-friendly frameworks like SCATE,
which, unlike TimeML, outputs temporal intervals
that can be directly mapped onto a timeline given a
temporal expression. However, SCATE primarily
focuses on the normalization of time expressions.
Expanding its scope to include the normalization
of a broader range of temporal content, such as
events and sentences, could significantly widen its
applicability.

Furthermore, future efforts could focus on ex-
panding the domains covered by existing datasets
to mitigate the domain bias present in current
datasets. For example, the Thyme datasets rep-
resent an adaptation of TimeML to better suit the
medical field’s representation of temporal relations
between events and times. Yet, such efforts to adapt
and improve annotation frameworks for additional
fields are still scarce. Therefore, adapting existing
annotation frameworks to a broader range of do-
mains to enhance the domain diversity of datasets
represents a potential future research direction.

F.2 Improve the Application of Generative
LLMs

The application of generative LLMs in the field
of time expression identification, normalization,
and temporal relation extraction remains underex-
plored. Given the proven capabilities of LLMs like
ChatGPT and LLAMA3 across various tasks, it is
logical to probe their potential within the realm of
temporal IE. Whether it involves leveraging new
prompting methods or fine-tuning strategies for
specific tasks, there is ample room for innovation.

However, it is important to emphasize that while
these models excel in generating unstructured text
when applied to temporal IE, it is imperative to spe-
cially design suitable input-output formats. Such
designs are intended to enable generative LLMs,
which are typically used for producing unstructured
text, to also effectively output structured temporal
information.

F.3 Develop Public Toolkits and Evaluation
Benchmarks

We believe that one key reason Transformer-based
temporal IE models have not been widely adopted
might be the absence of a publicly available code
repository that facilitates easier access to models

and data. For example, HuggingFace 1 provides
language model heads or pipelines suitable for var-
ious tasks, allowing users to easily download and
deploy trained models on any dataset directly from
the HuggingFace Hub. A future research direction
should involve establishing such a repository or
pushing models/datasets to HuggingFace Hub for
the temporal IE tasks to enhance the reproducibility
and applicability of research. Another important
direction is to create a public and test-set concealed
benchmark for a more equitable comparison of
existing work. In most existing works, although
metrics such as F1 scores, precision, and recall
are commonly computed, the specific implementa-
tions can vary. For instance, in Kanashiro Pereira
(2022), only the “before” and “after” relationships
are evaluated for relation extraction performance,
whereas Zhang et al. (2022) includes all temporal
relationships except “vague” in their evaluation.

F.4 Explore More Application Directions

In reviewing the application of temporal IE sys-
tems, we observe that current research primarily
focuses on aiding “models” in temporal reason-
ing to enhance their performance in other tasks.
Future research in temporal IE should not only con-
tinue to support model performance improvement
but should also pay more attention to serving hu-
mans and enhancing its practical value. A promis-
ing application direction is visualizing timelines in
human-computer interaction (HCI) scenarios. The
visualization results of existing temporal graphs
are often challenging for human users to interpret.
For instance, visualizing the temporal graph of any
document in the TimeBank-Dense dataset might
result in a graph densely populated with points and
lines, offering little help for users to comprehend
the progression of events within the text.

User studies, such as those conducted by Di Bar-
tolomeo et al. (2020), have revealed the impor-
tance of visualization forms of timelines for user
understanding. Consequently, temporal IE research
should also consider incorporating user research
on temporal graphs to guide the design of temporal
IE methods, such as how to represent standardized
time expressions, identify which types of tempo-
ral relations most effectively facilitate time under-
standing, and determine the best ways to present
this information. By addressing these problems,
the extraction and representation of temporal in-

1https://huggingface.co/
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formation can be more closely aligned with user
needs, enhancing its application value in HCI.

G Comparison with Previous Surveys

Our survey offers several key advancements over
previous reviews in the field of temporal informa-
tion extraction. Prior surveys such as Lim et al.
(2019) and Leeuwenberg and Moens (2019) pro-
vide only brief mentions of standard datasets like
TimeBank and TempEval, and largely predate the
Transformer era. More recent reviews in the clin-
ical domain—such as Alfattni et al. (2020) and
Olex and McInnes (2021)—present more detailed
dataset descriptions but are limited to clinical texts
and do not cover resources from other domains.

In contrast, our survey compiles and categorizes
32 datasets across multiple domains (newswire,
clinical, Wikipedia, narratives) and 15 languages,
structured by annotation framework (TimeML-
based vs. alternative schemas such as SCATE, tem-
poral dependency trees, or CaTeRS). We provide
a systematic analysis of dataset diversity, domain
bias, language coverage, and annotation schema.
Notably, we quantitatively analyze dataset bias,
identifying that 63% of current datasets come from
the newswire domain, and highlight underexplored
areas such as the low representation of historical
and non-news domains.

Our work specifically focuses on the Trans-
former era, providing in-depth analysis of how
these architectures are applied to temporal IE tasks,
examination of fine-tuning strategies, and discus-
sion of how pre-trained language models capture
temporal information. We also offer a broader
scope in terms of domain and language coverage
compared to previous works that focus on specific
domains or primarily discuss English-language re-
sources.

This broader treatment of datasets and methods
is intentional. Since Transformer-based approaches
often depend heavily on annotated corpora for fine-
tuning or benchmarking, a full understanding of
available datasets and their annotation assumptions
is crucial to contextualizing methodological ad-
vances in temporal information extraction.

H Comparative Analysis of Temporal
Relation Extraction Methods

This appendix provides a detailed comparative anal-
ysis of different methodological approaches in tem-
poral relation extraction, examining their strengths,

limitations, and trade-offs.

H.1 Methodological Approaches Comparison
Table 3 presents a systematic comparison of ma-
jor methodological categories in temporal relation
extraction.

Table 4 presents a more detailed comparison
between discriminative and generative methods.
The consistent underperformance of generative ap-
proaches suggests the field has not yet found op-
timal ways to leverage LLMs for temporal rela-
tion extraction. Current evidence (Yuan et al.,
2023; Huang et al., 2023) shows that even with
advanced prompting strategies, LLMs achieve sub-
stantially lower F1 scores compared to fine-tuned
BERT-based models. The trade-off currently favors
discriminative models for accuracy-critical appli-
cations, while generative approaches may be pre-
ferred when flexibility, explainability, or few-shot
learning are priorities.

H.2 Dataset Scale Analysis
A critical limitation in temporal IE research is the
constrained scale of available datasets. The three
most frequently used datasets for temporal relation
extraction contain:

• MATRES: 274 documents
• TimeBank-Dense: 36 documents
• TDDiscourse: 34 documents
• Total: 344 documents
This scale is one to two orders of magnitude

smaller than comparable IE datasets in related NLP
tasks, which typically contain 1,000-5,000 docu-
ments.

This limited scale has several implications:
1. Statistical Reliability: With only 36 docu-

ments in TimeBank-Dense, individual doc-
uments represent nearly 3% of the dataset,
making performance metrics highly sensitive
to individual annotations.

2. Overfitting Risk: Extensive hyperparameter
tuning on such small datasets may lead to
learning dataset-specific patterns rather than
generalizable temporal reasoning.

3. Limited Diversity: Combined with the 63%
newswire domain concentration (as docu-
mented in Section 3.3), the small scale
severely limits assessment of model robust-
ness.
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Method Category Representative Works Strengths Limitations

Commonsense Knowl-
edge Integration

Ning et al. (2019),
Wang et al. (2020), Tan
et al. (2023)

• Captures human-intuitive
event sequences
• Improves implicit temporal
reasoning
• Better performance on narra-
tive texts

• Requires external knowledge
bases
• Incomplete knowledge cover-
age
• Domain-specific knowledge
gaps

Syntactic/Semantic
Knowledge

Wang et al. (2022),
Mathur et al. (2021),
Zhou et al. (2022)

• Leverages document structure
• Captures long-range depen-
dencies
• Improves prediction coher-
ence

• Depends on external parsing
tools
• Error propagation from
parsing
• Additional computational
overhead

Temporal Rule Con-
straints

Hwang et al. (2022),
Wang et al. (2020), Han
et al. (2019a)

• Ensures logical consistency
• Reduces impossible predic-
tions
• Global coherence improve-
ment

• Too rigid for ambiguous cases
• Difficulty handling exceptions
• Complex inference procedures

Robustness Enhance-
ment

Cao et al. (2021), Zhao
et al. (2021), Pereira
et al. (2021)

• Better cross-domain transfer
• Reduced overfitting
• More stable performance

• Increased training complexity
• Additional data requirements
• May sacrifice peak accuracy

Generative Approaches Dligach et al. (2022),
Yuan et al. (2023),
Huang et al. (2023)

• Flexible output formats
• Zero-shot capabilities
• Leverages pre-trained LLMs

• Underperforms discriminative
models
• Requires careful prompt de-
sign
• Output parsing challenges

Table 3: Comparative analysis of temporal relation extraction methodologies. Each category represents a distinct
approach to addressing challenges in temporal IE.

Aspect Discriminative Models Generative Models

Performance State-of-the-art on benchmarks Consistently lower
Efficiency Fast inference, millions of parameters Slower inference, billions of parameters
Data Requirements Requires substantial labeled data Few-shot learning capabilities
Flexibility Fixed relation types, requires retraining Adaptable to new relations without re-

training
Interpretability Limited, attention weights only Can provide natural language explana-

tions

Table 4: Trade-offs between discriminative and generative approaches in temporal relation extraction.
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