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Abstract

Modern language models (LMs) are not robust
to out-of-distribution inputs. Machine gener-
ated (“optimized”) prompts can be used to mod-
ulate LM outputs and induce specific behaviors
while appearing completely uninterpretable. In
this work, we investigate the composition of op-
timized prompts, as well as the mechanisms by
which LMs parse and build predictions from
optimized prompts. We find that optimized
prompts primarily consist of punctuation and
noun tokens which are more rare in the train-
ing data. Internally, optimized prompts are
clearly distinguishable from natural language
counterparts based on sparse subsets of the
model’s activations. Across various families of
instruction-tuned models, optimized prompts
follow a similar path in how their representa-
tions form through the network. !

1 Introduction

Language models (LMs) (Grattafiori et al., 2024;
Biderman et al., 2023a; Team et al., 2024; Abdin
et al., 2024) are trained on large amounts of filtered
internet data (Gao et al., 2020; Raffel et al., 2020;
Penedo et al., 2024; Soldaini et al., 2024), which
consist primarily of interpretable natural language
text. Recent work has found that these models are
sensitive to machine-generated optimized prompts,
which, although seemingly uninterpretable, can be
used to elicit targeted behaviors (Shin et al., 2020;
Wen et al., 2023; Zou et al., 2023b; Melamed et al.,
2024). Specifically, we define optimized prompts
as prompts that are generated via the gradient-based
discrete prompt optimization method called Greedy
Coordinate Gradient (GCG) (Zou et al., 2023b); see
Section 2 for further background.

In this work, we seek to better understand the
underlying mechanisms by which language models

!Code and models available at https://github.com/
rimon15/demyst_optim_prompts

parse these seemingly garbled inputs. In particular,
we ask the question:

Are discretely optimized prompts truly
uninterpretable?

This question has major implications in sev-
eral areas, including safety and privacy. Specif-
ically, discrete prompt optimization has commonly
been applied in the adversarial setting to “jail-
break” LMs, resulting in toxic or undesirable be-
havior (Zou et al., 2023b; Liao and Sun, 2024;
Andriushchenko et al., 2024; Zhu et al., 2024); see
Section 2 for further details. A better understand-
ing of these optimized prompts is crucial to ensure
robustness and safety in LMs.

To this end, we explore the nature of optimized
prompts through experiments which consider both
the discrete makeup of optimized prompts, as well
as how these prompts are processed internally by
LMs; see Section 3.

1.1 Our contributions

To the best of our knowledge, this is the first
work which systematically investigates optimized
prompts over a wide range of models.

Optimized prompts consist of influential and
specific tokens. We find that both natural lan-
guage and optimized prompts consist of specific
“influential” tokens which have an out-sized impact
on eliciting desired behavior, and these influential
tokens consist primarily of nouns and punctuation;
see Table 1 for examples of these prompts and Sec-
tion 4 for details.

Optimized prompts rely on rare tokens. When
comparing tokens in both optimized and natural lan-
guage prompts to the pre-training corpus, we find
that the majority of tokens in optimized prompts
are more rare with respect to the training data than
their natural language counterparts. Furthermore,
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Table 1: Examples of prompt pairs and their most influential tokens. For each token we show its text and influence
score (higher means a larger behavioral change when removed). Both natural language prompts and optimized
prompts rely on punctuation, which typically appears at the end of the prompts. This can be attributed to the
auto-regressive nature of the models, where the final token can have a pronounced influence; see Section 4.

Original prompt | Top-3 original removals | Optimized prompt | Top-3 optimized removals
word-stories
Tom was nice and they played | . (14.80) Bee Squeak Dickie paw An- | . (16.23)
together in the grass . Tom (7.65) geles Wee Table Bananas | Bee (2.75)
played (2.13) goat Jazz Tom least care | dancers (0.74)
Or raking pinched waved
glanced dancers .
Bob proudly showed them the | . (17.82) Timothy telling None display | ! (14.04)
picture he had just printed . Bob (1.07) colours page wipes Pete vi- | Timothy (2.55)
picture (0.94) sor beamed Their recognise | Pete (0.70)
3 deleted pear symbol mitten
show puzzle !
Pythia-1.4B
Construct a web address for | . (4.00) onas books auored A gateway | ?). (3.68)
a book recommendation web- | Construct (2.04) URL:** EzAzureongeOm | URL (2.65)
site. book (1.74) orn Yorker OKnote?). 2% (0.77)
At around 10:30 a.m., ., (7.83) irling Singh Dillonanchez | $), (2.78)
m (1.48) approached approached | detectives (1.27)
At (1.02) detectives HertEDem | ). (1.24)
CLEC={traceSONumbled
700 EVENT).$),

the token distribution of optimized prompts visi-
bly deviates from standard Zipfian behavior; see
Section 5.

Optimized prompts have distinct internal rep-
resentations. We train sparse probing classifiers
to distinguish between optimized and natural lan-
guage prompts based on their activations, and find
that these classifiers achieve high accuracy even
under sparsity constraints. These findings suggest
fundamental differences in how optimized prompts
and natural language prompts are represented inter-
nally; see Section 6.

2 Related work

Discrete prompt optimization Discrete opti-
mization for prompt-based LMs typically con-
sists of perturbing a set of arbitrary tokens in a
meaningful way in order to induce desired behav-
ior. Pioneering work includes HotFlip (Ebrahimi
et al., 2018) which finds adversarial examples for
character-level neural classifiers by performing
guided token substitutions based on gradient in-
formation. AutoPrompt (Shin et al., 2020) builds
on the HotFlip algorithm, and appends “trigger’
tokens to the prompts of masked language mod-
els such as BERT (Devlin et al., 2019). These
trigger tokens are modified in a similar fashion to

B

HotFlip, and are used to improve performance on
downstream tasks such as sentiment analysis and
natural language inference (NLI). More recently,
Zou et al., 2023b introduce Greedy Coordinate Gra-
dient (GCG), which uses an algorithm similar to
AutoPrompt to find adversarial triggers which elicit
desired output in modern decoder LMs.

Modern LMs undergo an alignment pro-
cess (Ouyang et al., 2022; Rafailov et al., 2023)
which is meant to improve model safety and refusal
to harmful instructions (Bai et al., 2022). Typically,
the goal of discrete optimization is to “jailbreak”
these models, and cause them to operate outside
of their aligned state (Zou et al., 2023b; Zhu et al.,
2024; Liao and Sun, 2024; Guo et al., 2024; Thomp-
son and Sklar, 2024; Andriushchenko et al., 2024),
resulting in malicious output and degraded perfor-
mance on downstream tasks.

Language model interpretability Several prior
works attempt to shed light on the black-box na-
ture of neural language models. Elhage et al., 2021
take a mechanistic circuit-based approach, exam-
ining how individual neurons and connections im-
pact model predictions. They view the model’s
outputs at each layer as the “residual stream”, a
communication channel that each individual layer
can modify.
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In contrast, other work adopts a high level view
by examining model outputs at a representation
level (Zou et al., 2023a; Wu et al., 2024) through
various means such as linear probes (Alain and Ben-
gio, 2017; Gurnee et al., 2023) and sparse autoen-
coders (Bricken et al., 2023; Huben et al., 2024).
Several works explore the dynamics by which LMs
promote concepts and representations. Nostalge-
braist, 2020 investigates how predictions are built
by projecting each of the model layer’s outputs to
the vocabulary space. Geva et al., 2021 find that
transformer feed-forward layers serve as key-value
memories, and encode interpretable concepts and
patterns. Furthermore, LM predictions appear to be
constructed by propogating representations that are
interpretable in the vocabulary space (Geva et al.,
2022; Belrose et al., 2023). In our work, we apply
several techniques such as sparse probing and pro-
jections to the vocabulary space in order to study
how LMs build predictions for optimized prompts.

Analyzing machine generated prompts There
have been several investigations probing the prop-
erties of discretely optimized prompts. Ishibashi
et al., 2023 explore the robustness of prompts op-
timized via AutoPrompt (Shin et al., 2020), and
find that these prompts are highly sensitive to to-
ken ordering and removal when evaluated on NLI
tasks. Similarly Cherepanova and Zou, 2024 find
that GCG optimized prompts can be degraded via
token-level perturbations. Furthermore, machine
generated prompts are easier to generate if the tar-
get text is shorter and comes from an in-distribution
dataset such as Wikipedia (Cherepanova and Zou,
2024). In contrast, Kervadec et al., 2023 examine
the attention patterns and activations of optimized
prompts for two OPT models (Zhang et al., 2022),
finding that optimized prompt tend to trigger dis-
tinct “pathways” in the model, which differ from
how natural language prompts are processed.
Concurrent work (Rakotonirina et al., 2024) ex-
plores properties of prompts optimized via GCG,
and find that these prompts consist of several “filler”
tokens which do not affect the generation, and that
the effectiveness of these prompts relies heavily on
the last token. They also discover that there exist
local dependencies within gibberish prompts based
on specific keywords and bigrams. On the other
hand, in our work we investigate the properties
of optimized prompts both from a token perspec-
tive by training a new model with a word-level
tokenizer, as well as from the perspective of the
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Figure 1: Token rank influence. The influence score
is computed via Equation 2. We find that the most
influential token for each prompt has an out-sized effect.

model’s internal representations via hidden state
analysis, probing, and causal intervention.

3 Experimental setup

We focus our work on transformer de-
coder (Vaswani et al.,, 2017; Radford and
Narasimhan, 2018) models. We use the Tiny
Stories (Eldan and Li, 2023) dataset, which
consists of synthetically generated stories meant to
be understandable by a three year old child. We
train a transformer decoder language model based
on the GPT-NeoX (Black et al., 2022; Biderman
et al., 2023a) architecture; see Appendix A.1 for
full training details. Originally, the model uses
a Byte-pair encoding (BPE) tokenizer (Sennrich
et al., 2016), which results in optimized prompts
that include several nonsensical characters and
subwords (Melamed et al., 2024; Cherepanova and
Zou, 2024). Because we wish to better understand
which specific words appear in optimized prompts,
we train a new word-level tokenizer over the Tiny
Stories corpus. Using word-level tokenization
allows us to better interpret optimized prompts,
since we do not need to extrapolate meaning from
sub-word tokens and can directly evaluate each
word in the prompt individually.

In addition to the word-level Tiny Stories model,
we optimize prompts using 18 open models from
various model families, including both base mod-
els, and their instruction-tuned variants which have
been aligned for chat purposes. We use a vari-
ety of datasets for the optimization including Al-
paca (Taori et al., 2023), WikiText-103 (Sales-
force, 2021), OpenHermes-2.5 (Teknium, 2023),
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Figure 2: Token category analysis by rank. For each model and token influence rank (as computed in Section 4), we
show the proportion of tokens belonging to each part of speech category. The most common category at each rank is
highlighted in bold. While the specific distributions vary between models, nouns consistently make up the largest
portion of tokens (with the exception of rank 1 in the base models, where punctuation dominates).

and Dolly-15k (Conover et al., 2023); see Ap-
pendix A.2 for further details.

In order to perform the discrete optimization, we
use the “evil twins” framework (Melamed et al.,
2024). Formally, given a natural language prompt
p* € RV which is a sequence of k tokens
mapped to the LM’s vocabulary V, the objective is
to find a new prompt p € RV with [ tokens which
is functionally similar to p*. This optimization
corresponds to an empirical approximation of the
KL divergence between p* and p, and is realized
by sampling a set of continuations from the LM,
di,...,d, ~Prm(-|p*), and running the Greedy
Coordinate Gradient (GCG) algorithm (Zou et al.,
2023b). For the full algorithm and further details
we refer the reader to Appendix B and Melamed
et al., 2024.

The KL divergence between prompts is defined
as

Zlog Pra(dilp))

=1

dir(p*||p) =

—log(Prm(di|p)). (1)

The lower dg 1, (p*||p) is, the more functionally
similar p* and p are, and dx,(p*||p) = 0 if and
only if the two prompts are functionally equiva-
lent (Melamed et al., 2024).

4 Optimized prompts consist of specific
influential tokens

Using the set of optimized prompts from the LMs,
we analyze the influence of each token in the

prompt by removing each token and measuring
the change in KL divergence to the prompt with
the token kept. Specifically, given an optimized
prompt p = [p1, ..., px| consisting of k tokens, we
define the influence score s; of token 7 as

s; = drr(pllp_;), (2)

where pb_; = [p17 -y Pi—1, Pi+1, 7pk] is the
prompt with token ¢ removed, and dx, is defined

in Equation 1. A larger influence score indicates
that removing token ¢ causes a greater deviation
from the functional behavior of the original prompt.

For each optimized prompt, we sort its tokens by
their influence scores in descending order to obtain
token ranks, where rank 1 corresponds to the most
influential token (highest influence score s;). We
group tokens from all optimized prompts by their
rank in order to understand their composition at
different influence levels. We find that the most
influential token (rank 1) has an outsized effect,
and tokens at higher ranks have minimal influence;
see Figure 1. Natural language prompts follow a
similar pattern, which we describe in Appendix C.
These findings are consistent with recent work in-
dicating that optimized prompts largely consist of
“filler” tokens that minimally impact prompt behav-
ior (Rakotonirina et al., 2024).

4.1 Grammatical categories of optimized
prompt tokens

Given that certain tokens have an outsized impact
on the prompt, we explore the grammatical makeup
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Figure 3: Zipf plots of token frequencies (excluding the
end-of-sequence token) in the corpus, original prompts,
and optimized prompts. The token distribution of opti-
mized prompts visibly deviates from the expected Zip-
fian behavior.

of these influential tokens. We perform part-of-
speech tagging on each token in each prompt using
spaCy (Honnibal and Montani, 2017). Interest-
ingly, we find that punctuation forms the largest
proportion of most influential (rank-1) tokens. In
addition, for all models, nouns consistently make
up the largest portion of tokens; see Table 1 for
examples of these prompts and Figure 2 for full
results. Furthermore, these trends are not unique
to optimized prompts, as natural language prompts
are also dependent on punctuation and nouns; see
Appendix C.

5 Optimized prompts use rare tokens

For the word-stories and Pythia-1.4b models where
we have access to the pre-training corpus, we fur-
ther analyze the frequency of tokens in both natural
language prompts and optimized prompts.
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Figure 4: CDF of token corpus-frequency. For each
token used by either the original natural language or the
optimized prompts, we plot its probability of appearing
in the training corpus, versus the cumulative fraction of
tokens up to that probability. The optimized prompts
rely more on corpus-rare tokens than their original natu-
ral language counterparts.

5.1 Optimized prompts do not look like
natural language (distributionally)

The distribution of tokens in both the corpus and
original prompts exhibit power law-like behavior,
consistent with the Zipfian distribution of natural
language. In contrast, the sub-linear behavior for
optimized prompts in log-transformed space indi-
cates that there are fewer tokens with high frequen-
cies than a power law would predict (Figure 3).
This is underscored by normalized entropy (i.e., en-
tropy divided by that of a uniform distribution over
the same alphabet size), which is much higher for
the optimized prompts’ token distribution (0.8968
for word-stories, 0.9338 for Pythia) vs. that of the
original prompts (0.7102 for word-stories, 0.7988
for Pythia).
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Figure 5: Sparse linear classifier probe accuracy on top-k features of the model output at each layer. We identify
top features using Equation 4, and train a linear classifier to discriminate between optimized and natural language
prompts. The first column compares optimized and natural language prompts. The second and third columns show
a baseline comparison of natural language prompts vs. other natural language prompts, and of natural language
prompts vs. random prompts, respectively. We refer the reader to Figure 10 in Appendix D for the full results on all

models.

5.2 Optimized prompts rely on tokens that
are rare in the training data

For convenience, we use the shorthand corpus-rare
to refer to tokens that are rare in the training data
and corpus-common for those that are common in
the training data. Natural language prompts tend
to use more corpus-common tokens than their opti-
mized counterparts; see Figure 4. Prior work finds
that LMs are sensitive to tokens which are under-
trained and not found as frequently in the training
corpus, dubbed “glitch tokens” (Rumbelow and
Watkins, 2023; Li et al., 2024; Land and Bartolo,
2024). The higher frequency of corpus-rare to-
kens may be due to the fact that these tokens are
potentially under-trained, and are thus more likely
to have a stronger signal during the optimization
procedure.

6 Internal representations of optimized
prompts

Given that optimized prompts consist of corpus-
rare tokens and differ significantly in composition
from natural language prompts, we ask whether the
same differences exist within the model’s internal
representations.

6.1 Sparse probing for optimized prompts

We investigate whether it is possible to detect opti-
mized prompts purely from the model’s activations.
Given optimized and natural language prompt pairs,
we follow Gurnee et al., 2023 and train sparse
probe classifiers at each layer to differentiate opti-
mized prompts from their natural language counter-
parts. Concretely, each transformer block in the net-
work consists of a multi-head self-attention layer
(MHSA) and a multi-layer perceptron (MLP) layer
applied either in parallel or sequentially, depending
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Figure 6: Average top-10 token prediction overlap. The overlap is computed via Equation 5. Overall, the importance
of the top identified features appears to be model dependent, and it is not necessarily the case that the optimized
prompts rely more heavily on these features. However, it is clear that there are certain layers which influence the
output more (specifically the first and last layers); see Figure 11 in Appendix D for the full results.

on the model architecture.

Given a prompt p € R**V | a specific token ¢,
layer ¢, and that the model applies the MHSA and
MLP layers in parallel, the output is given by

WO = p{Y L MHSAO (v (nY))
+ MLPO(5(h{" ™)), (3)

where ~ is LayerNorm (Ba et al., 2016).

At each layer, we take the last token’s activations
for both the optimized prompts and the natural lan-
guage prompts. We use the maximum mean dif-
ference (MMD) (Gurnee et al., 2023) to sort the
features in the extracted activations by importance.
Specifically, given a set of activations from natu-

ral language prompts {h((fi)gi A
(0 M

prompts {hoptimized i }izq at layer /, the mean dif-
ference for feature j is defined as

and optimized

0 _ 1,0 1 <, 0
A =D horgi; = 37 2 opimigr (4
=1 =1
where h(z)

i denotes the j-th feature (neuron) of
the ¢-th example.

We then train a logistic regression classifier us-
ing the top identified features with varying levels of
sparsity; see Appendix A.3 for additional training
details. Overall, we find that the classifier is able
to discriminate ground truth and optimized exam-
ples with high accuracy, even with high levels of
sparsity; see Figure 5. This is in contrast to the
near-random accuracy found in the baseline eval-
uations which compare original natural language
prompts to randomly generated prompts and other
natural language prompts. It is important to note
that even though for optimized prompts, models
clearly contain unique representations which are
easily distinguishable from natural prompts, these
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representations still generate functionally similar
outputs.

6.2 Do optimized prompts rely on a distinct
subspace?

Given that we can classify prompts based on dis-
tinct features in the activations, we test the impor-
tance of these features in eliciting desired output
from optimized prompts. Prior work finds that
optimized prompt are sensitive to discrete perturba-
tions (Ishibashi et al., 2023; Melamed et al., 2024;
Cherepanova and Zou, 2024), and we hypothesize
that this sensitivity is also present in the model’s
internal representations. In order to verify our hy-
pothesis, we perform causal intervention and zero-
out the top features identified layer-wise via Equa-
tion 4, and then measure the top-10 token overlap
for each (original, optimized) prompt pair.

Given a prompt p, let Py (-|p) € RY be the
output distribution over vocabulary size V' at the
last position. For layer ¢ and hidden state dimen-
sion d, let h®) € R be the hidden state output.
Define Z;; C {1,...,d} as the indices of the k
most important dimensions as found by Equation 4.
The intervened distribution is

Pgﬁ?('@) =Prm(-|p; hge) =0fori e Zy). (5

We find that intervening on top features for both
natural and optimized prompts has a pronounced
effect when compared to the baseline of interven-
ing on random features. However, surprisingly,
our experiment contradicts the hypothesis. As
shown in Figure 6, for the majority of layers in
each model, there is not a large difference between
the effect of ablations of top-k features on natural
language prompts versus optimized prompts. This
means that although optimized prompts may be
more sensitive to discrete token-level perturbations
than natural language prompts, they do not neces-
sarily share this sensitivity when evaluated from
the perspective of the model’s internal represen-
tations. We do note that for some models, there
are specific layers (first and final) which induce a
more pronounced change on the output when top
features are ablated.

6.3 How do LMs build predictions from
optimized prompts?

Considering both instruction-tuned and base mod-
els, we compute the KL divergence between pairs
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Figure 7: Layer-wise KL divergence. The layer-wise
KL divergence is computed as described in Section 6.3.
We find that instruction-tuned models follow a similar
path; see Figure 12 in Appendix D for the full results
on all models.

of optimized and natural prompts at each layer of
the model. Specifically, we take the output of the
last token ¢ at each layer ¢, and multiply it by the fi-
nal LayerNorm and the LM head in order to project
back to the vocabulary space. These outputs are
then used to compute the KL divergence between
prompt pairs at each layer, and we denote this as
dicy (p"l[p).

Interestingly, as shown in Figure 7, across model
families, the instruction-tuned versions of the mod-
els follow a similar path, with the early layers
showing similar representations of prompt pairs,
a gradual divergence in the middle layers, and a
final sharp trend back to functional similarity in
the last few layers. Base models tend to have more
divergent representations at the early layers, and
also experience a similar sharp trend in the later
layers. Clearly, the later layers are crucial for ensur-
ing the functional similarity between the optimized
prompts and their natural language counterparts.
This supports our findings in Sectio 6.1, namely
that feature ablations in later layers appear to have
a stronger effect on optimized prompts, as we can
see that the later layers are primarily responsible
for aligning the representations of natural language
and optimized prompts.
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7 Discussion

Our work analyzes the mechanisms and ways in
which language models parse and interpret dis-
cretely optimized prompts. We find that optimized
prompts consist primarily of punctuation and noun
tokens which are, on average, more rare in the train-
ing data than their natural language counterparts.
Through sparse probing, we are able to classify
optimized prompts and their natural language coun-
terparts with high accuracy. Furthermore, when
ablating neurons from model layers, the effective-
ness of optimized prompts does not drop in a sig-
nificant way compared to their natural language
counterparts.

One possible application of our analysis is to
identify optimized “jailbreak” prompts before these
prompts are even fully processed by the model. For
example, one can train a simple linear classifier on
a set of optimized prompts and natural language,
and efficiently alert the model provider if a user
is inputting suspicious optimized prompts based
on the classifier at intermediate layer. Although
the majority of prior work has studied optimized
prompts through the lens of adversarial attacks, it is
also possible that such prompts are benign in nature.
It will require further investigation to differentiate
benign and malicious optimized prompts.

Finally, prior work finds that discretely opti-
mized prompts transfer between different model
families (Rakotonirina et al., 2023; Zou et al.,
2023b; Melamed et al., 2024). While we focus
our discussion on the specific models that gener-
ate these prompts, future work can explore how
these representations for “universally transferrable”
optimized prompts differ between models.

Limitations

In our work, we primarily consider the “evil
twins” framework and use GCG (Melamed et al.,
2024; Zou et al., 2023b). There are several
other techniques for discrete optimization such
as FLRT (Thompson and Sklar, 2024) and Auto-
DAN (Zhu et al., 2024) which may induce differing
behaviors. Additional work is required to adapt our
analysis to these frameworks.

Due to computational constraints, we limit our
analysis to models up to 8 billion parameters, as
the discrete optimization process requires signifi-
cant GPU memory and compute. Nevertheless, we
test 18 different models. Future work can consider
analyzing larger models and investigating trends in

optimized prompts across a wider array of model
sizes. This will also enable research on scaling
effects for prompt optimization.
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A Additional experimental details

A.1 Tiny stories training setup

We train the word-level Tiny Stories model with
a similar model configuration as Pythia-70m 2.
Specifically, we use a batch size of 64, maximum
sequence length of 512, hidden dimension of 512,
feedforward layer dimension of 2048, 6 layers, and
8 attention heads. For the optimizer and hyper-
parameters, we choose AdamW (Loshchilov and
Hutter, 2019) with 5; = 0.9, 52 = 0.95, a learning
rate of 6 x 10~* with cosine annealing, 500 warmup
steps, no gradient accumulation, and 3 epochs of
training on a single NVIDIA RTX 6000 Ada GPU.
The word-level tokenizer has a vocabulary size of
46,137 after being trained on the entire Tiny Stories
corpus.

A.2 Optimization and data setup

For all models, we perform the evil twins optimiza-
tion procedure for 500 steps, with early stopping
if dxr(p*||p) < 5.0. In total, we obtain 5000
unique prompts for the word-stories model, and
1200 unique prompts for the open models (from
the four aforementioned prompt datasets), with 300
prompts from each dataset. We then filter all final
optimized prompts such that dx 7 (p*||p) < 10.0.

*https://huggingface.co/Eleuther Al/pythia-70m
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Table 2 displays the number of prompts that were
optimized for each model after filtering. For the
discrete optimization, we use one 8x A100 node.

Table 2: Total optimized prompts after filtering for each
tested model.

Model # prompts
gemma-2-2b-base (Team et al., 2024) 1156
gemma-2-2b-instruct (Team et al., 2024) 1068
llama3.2-1b-base (Grattafiori et al., 2024) 891
llama3.2-1b-instruct (Grattafiori et al., 2024) 765
llama3.2-3b-base (Grattafiori et al., 2024) 638
1lama3.2-3b-instruct (Grattafiori et al., 2024) 624
llama3.1-8b-base (Grattafiori et al., 2024) 106
pythia-1.4b-base (Biderman et al., 2023b) 1121
qwen2.5-0.5b-base (Qwen et al., 2025) 671
qwen2.5-0.5b-instruct (Qwen et al., 2025) 1081
qwen2.5-1.5b-base (Qwen et al., 2025) 532
qwen2.5-1.5b-instruct (Qwen et al., 2025) 1079
smollm2-1.7b-base (Allal et al., 2025) 887
smollm?2-1.7b-instruct (Allal et al., 2025) 682
smollm2-135m-base (Allal et al., 2025) 1144
smollm?2-135m-instruct (Allal et al., 2025) 1079
smollm2-360m-base (Allal et al., 2025) 1073
smollm2-360m-instruct (Allal et al., 2025) 1118
word-stories 2043

A.3 Classifier probe training

The classifier is a logistic regression trained via
scikit-learn (Buitinck et al., 2013) for 100 itera-
tions with l5 penalty, 1iblinear solver, and 1e~*
convergence tolerance.

B Evil twins and greedy coordinate
gradient

The Greedy Coordinate Gradient (GCG) algorithm
is commonly used to generate adversarial opti-
mized prompts. The procedure starts with an ar-
bitrarily initialized prompt with a fixed number of
tokens. At each iteration, it computes the gradient
of the loss with respect to each token in the prompt,
and identifies some top-k promising replacements
for each token in the prompt based on the gradient
signal. These candidate replacements for each to-
ken are then tested by running a forward pass and
taking the new prompt with the lowest loss. We
refer the reader to Zou et al., 2023b for full details
regarding the algorithm.

C Composition of natural language
prompts

Original natural language prompts have a similar
dependency on punctuation and noun tokens as
their optimized counterparts; see Figure 8 and Fig-
ure 9.

D Experimental results on all models

We report the full results on the remainder of the 18
tested models for the probing classifier experiment,
the feature ablation experiment, and the layer-wise
KL divergence experiment. Figure 10 displays the
results for all model suites on the sparse probing
experiment. Figure 11 displays the results for all
model suites on the intervention experiment. Fig-
ure 12 displays the results for all model suites on
the layer-wise KL divergence experiment.
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Figure 8: Token category analysis by rank for natural language prompts. For each model and token influence rank
(as computed in Section 4), we show the proportion of tokens belonging to each part of speech category.
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Figure 9: Token rank influence for natural language
prompts. The influence score is computed via Equa-
tion 2.
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Figure 12: Layer-wise KL Divergence results on all models.
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