Demystifying optimized prompts in language models

Rimon Melamed ! Lucas H. McCabe > H. Howie Huang !

! The George Washington University
2 LMI Consulting
{rmelamed, lucasmccabe, howie}@gwu.edu

Abstract

Modern language models (LMs) are not robust
to out-of-distribution inputs. Machine gener-
ated (“optimized”) prompts can be used to mod-
ulate LM outputs and induce specific behaviors
while appearing completely uninterpretable. In
this work, we investigate the composition of op-
timized prompts, as well as the mechanisms by
which LMs parse and build predictions from
optimized prompts. We find that optimized
prompts primarily consist of punctuation and
noun tokens which are more rare in the train-
ing data. Internally, optimized prompts are
clearly distinguishable from natural language
counterparts based on sparse subsets of the
model’s activations. Across various families of
instruction-tuned models, optimized prompts
follow a similar path in how their representa-
tions form through the network. !

1 Introduction

Language models (LMs) (Grattafiori et al., 2024;
Biderman et al., 2023a; Team et al., 2024; Abdin
et al., 2024) are trained on large amounts of filtered
internet data (Gao et al., 2020; Raffel et al., 2020;
Penedo et al., 2024; Soldaini et al., 2024), which
consist primarily of interpretable natural language
text. Recent work has found that these models are
sensitive to machine-generated optimized prompts,
which, although seemingly uninterpretable, can be
used to elicit targeted behaviors (Shin et al., 2020;
Wen et al., 2023; Zou et al., 2023b; Melamed et al.,
2024). Specifically, we define optimized prompts
as prompts that are generated via the gradient-based
discrete prompt optimization method called Greedy
Coordinate Gradient (GCG) (Zou et al., 2023b); see
Section 2 for further background.

In this work, we seek to better understand the
underlying mechanisms by which language models

!Code and models available at https://github.com/
rimon15/demyst_optim_prompts

parse these seemingly garbled inputs. In particular,
we ask the question:

Are discretely optimized prompts truly
uninterpretable?

This question has major implications in sev-
eral areas, including safety and privacy. Specif-
ically, discrete prompt optimization has commonly
been applied in the adversarial setting to “jail-
break” LMs, resulting in toxic or undesirable be-
havior (Zou et al., 2023b; Liao and Sun, 2024;
Andriushchenko et al., 2024; Zhu et al., 2024); see
Section 2 for further details. A better understand-
ing of these optimized prompts is crucial to ensure
robustness and safety in LMs.

To this end, we explore the nature of optimized
prompts through experiments which consider both
the discrete makeup of optimized prompts, as well
as how these prompts are processed internally by
LMs; see Section 3.

1.1 Our contributions

To the best of our knowledge, this is the first
work which systematically investigates optimized
prompts over a wide range of models.

Optimized prompts consist of influential and
specific tokens. We find that both natural lan-
guage and optimized prompts consist of specific
“influential” tokens which have an out-sized impact
on eliciting desired behavior, and these influential
tokens consist primarily of nouns and punctuation;
see Table 1 for examples of these prompts and Sec-
tion 4 for details.

Optimized prompts rely on rare tokens. When
comparing tokens in both optimized and natural lan-
guage prompts to the pre-training corpus, we find
that the majority of tokens in optimized prompts
are more rare with respect to the training data than
their natural language counterparts. Furthermore,

2983

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 2983-2999
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/rimon15/demyst_optim_prompts
https://github.com/rimon15/demyst_optim_prompts

Table 1: Examples of prompt pairs and their most influential tokens. For each token we show its text and influence
score (higher means a larger behavioral change when removed). Both natural language prompts and optimized
prompts rely on punctuation, which typically appears at the end of the prompts. This can be attributed to the
auto-regressive nature of the models, where the final token can have a pronounced influence; see Section 4.

Original prompt | Top-3 original removals | Optimized prompt | Top-3 optimized removals
word-stories
Tom was nice and they played | . (14.80) Bee Squeak Dickie paw An- | . (16.23)
together in the grass . Tom (7.65) geles Wee Table Bananas | Bee (2.75)
played (2.13) goat Jazz Tom least care | dancers (0.74)
Or raking pinched waved
glanced dancers .
Bob proudly showed them the | . (17.82) Timothy telling None display | ! (14.04)
picture he had just printed . Bob (1.07) colours page wipes Pete vi- | Timothy (2.55)
picture (0.94) sor beamed Their recognise | Pete (0.70)
3 deleted pear symbol mitten
show puzzle !
Pythia-1.4B
Construct a web address for | . (4.00) onas books auored A gateway | ?). (3.68)
a book recommendation web- | Construct (2.04) URL:** EzAzureongeOm | URL (2.65)
site. book (1.74) orn Yorker OKnote?). 2% (0.77)
At around 10:30 a.m., ., (7.83) irling Singh Dillonanchez | $), (2.78)
m (1.48) approached approached | detectives (1.27)
At (1.02) detectives HertEDem |). (1.24)
CLEC={traceSONumbled
700 EVENT).$),

the token distribution of optimized prompts visi-
bly deviates from standard Zipfian behavior; see
Section 5.

Optimized prompts have distinct internal rep-
resentations. We train sparse probing classifiers
to distinguish between optimized and natural lan-
guage prompts based on their activations, and find
that these classifiers achieve high accuracy even
under sparsity constraints. These findings suggest
fundamental differences in how optimized prompts
and natural language prompts are represented inter-
nally; see Section 6.

2 Related work

Discrete prompt optimization Discrete opti-
mization for prompt-based LMs typically con-
sists of perturbing a set of arbitrary tokens in a
meaningful way in order to induce desired behav-
ior. Pioneering work includes HotFlip (Ebrahimi
et al., 2018) which finds adversarial examples for
character-level neural classifiers by performing
guided token substitutions based on gradient in-
formation. AutoPrompt (Shin et al., 2020) builds
on the HotFlip algorithm, and appends “trigger’
tokens to the prompts of masked language mod-
els such as BERT (Devlin et al., 2019). These
trigger tokens are modified in a similar fashion to

B

HotFlip, and are used to improve performance on
downstream tasks such as sentiment analysis and
natural language inference (NLI). More recently,
Zou et al., 2023b introduce Greedy Coordinate Gra-
dient (GCG), which uses an algorithm similar to
AutoPrompt to find adversarial triggers which elicit
desired output in modern decoder LMs.

Modern LMs undergo an alignment pro-
cess (Ouyang et al., 2022; Rafailov et al., 2023)
which is meant to improve model safety and refusal
to harmful instructions (Bai et al., 2022). Typically,
the goal of discrete optimization is to “jailbreak”
these models, and cause them to operate outside
of their aligned state (Zou et al., 2023b; Zhu et al.,
2024; Liao and Sun, 2024; Guo et al., 2024; Thomp-
son and Sklar, 2024; Andriushchenko et al., 2024),
resulting in malicious output and degraded perfor-
mance on downstream tasks.

Language model interpretability Several prior
works attempt to shed light on the black-box na-
ture of neural language models. Elhage et al., 2021
take a mechanistic circuit-based approach, exam-
ining how individual neurons and connections im-
pact model predictions. They view the model’s
outputs at each layer as the “residual stream”, a
communication channel that each individual layer
can modify.

2984

In contrast, other work adopts a high level view
by examining model outputs at a representation
level (Zou et al., 2023a; Wu et al., 2024) through
various means such as linear probes (Alain and Ben-
gio, 2017; Gurnee et al., 2023) and sparse autoen-
coders (Bricken et al., 2023; Huben et al., 2024).
Several works explore the dynamics by which LMs
promote concepts and representations. Nostalge-
braist, 2020 investigates how predictions are built
by projecting each of the model layer’s outputs to
the vocabulary space. Geva et al., 2021 find that
transformer feed-forward layers serve as key-value
memories, and encode interpretable concepts and
patterns. Furthermore, LM predictions appear to be
constructed by propogating representations that are
interpretable in the vocabulary space (Geva et al.,
2022; Belrose et al., 2023). In our work, we apply
several techniques such as sparse probing and pro-
jections to the vocabulary space in order to study
how LMs build predictions for optimized prompts.

Analyzing machine generated prompts There
have been several investigations probing the prop-
erties of discretely optimized prompts. Ishibashi
et al., 2023 explore the robustness of prompts op-
timized via AutoPrompt (Shin et al., 2020), and
find that these prompts are highly sensitive to to-
ken ordering and removal when evaluated on NLI
tasks. Similarly Cherepanova and Zou, 2024 find
that GCG optimized prompts can be degraded via
token-level perturbations. Furthermore, machine
generated prompts are easier to generate if the tar-
get text is shorter and comes from an in-distribution
dataset such as Wikipedia (Cherepanova and Zou,
2024). In contrast, Kervadec et al., 2023 examine
the attention patterns and activations of optimized
prompts for two OPT models (Zhang et al., 2022),
finding that optimized prompt tend to trigger dis-
tinct “pathways” in the model, which differ from
how natural language prompts are processed.
Concurrent work (Rakotonirina et al., 2024) ex-
plores properties of prompts optimized via GCG,
and find that these prompts consist of several “filler”
tokens which do not affect the generation, and that
the effectiveness of these prompts relies heavily on
the last token. They also discover that there exist
local dependencies within gibberish prompts based
on specific keywords and bigrams. On the other
hand, in our work we investigate the properties
of optimized prompts both from a token perspec-
tive by training a new model with a word-level
tokenizer, as well as from the perspective of the

—4— llama-3.1-8b
pythia-1.4b-deduped

—f— llama3.2-1b

—4— llama3.2-3b
qwen2.5-1.5b
smollm2-1.7b

—#— gemma-2-2b

Average KL influence score

3 4 6 7 8
Token influence rank (1 = most influential)

Figure 1: Token rank influence. The influence score
is computed via Equation 2. We find that the most
influential token for each prompt has an out-sized effect.

model’s internal representations via hidden state
analysis, probing, and causal intervention.

3 Experimental setup

We focus our work on transformer de-
coder (Vaswani et al.,, 2017; Radford and
Narasimhan, 2018) models. We use the Tiny
Stories (Eldan and Li, 2023) dataset, which
consists of synthetically generated stories meant to
be understandable by a three year old child. We
train a transformer decoder language model based
on the GPT-NeoX (Black et al., 2022; Biderman
et al., 2023a) architecture; see Appendix A.1 for
full training details. Originally, the model uses
a Byte-pair encoding (BPE) tokenizer (Sennrich
et al., 2016), which results in optimized prompts
that include several nonsensical characters and
subwords (Melamed et al., 2024; Cherepanova and
Zou, 2024). Because we wish to better understand
which specific words appear in optimized prompts,
we train a new word-level tokenizer over the Tiny
Stories corpus. Using word-level tokenization
allows us to better interpret optimized prompts,
since we do not need to extrapolate meaning from
sub-word tokens and can directly evaluate each
word in the prompt individually.

In addition to the word-level Tiny Stories model,
we optimize prompts using 18 open models from
various model families, including both base mod-
els, and their instruction-tuned variants which have
been aligned for chat purposes. We use a vari-
ety of datasets for the optimization including Al-
paca (Taori et al., 2023), WikiText-103 (Sales-
force, 2021), OpenHermes-2.5 (Teknium, 2023),

2985

Rank 1
10-

s gemma-2-2b
mm |lama-3.1-8b
llama3.2-1b
© mmm llama3.2-3b
pythia-1.4b-deduped
qwen2.5-1.5b
word-stories-66m

o .|| - Il " h "
Q/é

\
Qf&"
& &

o o o
- o)

Proportion of total tokens

o
N

o
o\)

JI L
@ e&

® N ®
N
< ¢

O& 0"

Rank 2

Rank 3
il
‘0

|| ‘l il “ -y
&
V‘b \\ Q,

& & 6\ & N
& 3\\\ v & @\\

Figure 2: Token category analysis by rank. For each model and token influence rank (as computed in Section 4), we
show the proportion of tokens belonging to each part of speech category. The most common category at each rank is
highlighted in bold. While the specific distributions vary between models, nouns consistently make up the largest
portion of tokens (with the exception of rank 1 in the base models, where punctuation dominates).

and Dolly-15k (Conover et al., 2023); see Ap-
pendix A.2 for further details.

In order to perform the discrete optimization, we
use the “evil twins” framework (Melamed et al.,
2024). Formally, given a natural language prompt
p* € RV which is a sequence of k tokens
mapped to the LM’s vocabulary V, the objective is
to find a new prompt p € RV with [tokens which
is functionally similar to p*. This optimization
corresponds to an empirical approximation of the
KL divergence between p* and p, and is realized
by sampling a set of continuations from the LM,
di,...,d, ~Prm(-|p*), and running the Greedy
Coordinate Gradient (GCG) algorithm (Zou et al.,
2023b). For the full algorithm and further details
we refer the reader to Appendix B and Melamed
et al., 2024.

The KL divergence between prompts is defined
as

Zlog Pra(dilp))

=1

dir(p*||p) =

—log(Prm(di|p)). (1)

The lower dg 1, (p*||p) is, the more functionally
similar p* and p are, and dx,(p*||p) = 0 if and
only if the two prompts are functionally equiva-
lent (Melamed et al., 2024).

4 Optimized prompts consist of specific
influential tokens

Using the set of optimized prompts from the LMs,
we analyze the influence of each token in the

prompt by removing each token and measuring
the change in KL divergence to the prompt with
the token kept. Specifically, given an optimized
prompt p = [p1, ..., px| consisting of k tokens, we
define the influence score s; of token 7 as

s; = drr(pllp_;), (2)

where pb_; = [p17 -y Pi—1, Pi+1, 7pk] is the
prompt with token ¢ removed, and dx, is defined

in Equation 1. A larger influence score indicates
that removing token ¢ causes a greater deviation
from the functional behavior of the original prompt.

For each optimized prompt, we sort its tokens by
their influence scores in descending order to obtain
token ranks, where rank 1 corresponds to the most
influential token (highest influence score s;). We
group tokens from all optimized prompts by their
rank in order to understand their composition at
different influence levels. We find that the most
influential token (rank 1) has an outsized effect,
and tokens at higher ranks have minimal influence;
see Figure 1. Natural language prompts follow a
similar pattern, which we describe in Appendix C.
These findings are consistent with recent work in-
dicating that optimized prompts largely consist of
“filler” tokens that minimally impact prompt behav-
ior (Rakotonirina et al., 2024).

4.1 Grammatical categories of optimized
prompt tokens

Given that certain tokens have an outsized impact
on the prompt, we explore the grammatical makeup

2986

word-stories

1071': —— Corpus
: —— Original
Optimized

1074+

Token probability (log scale)
55 5

—_
o
|
@

=
o
|
©

10° 10t 102 10° 104
Token rank (log scale)

Pythia-1.4B

-1,
10 —— Corpus

—— Original
Optimized

Token probability (log scale)
= — = — = — —
o o o o o o o
s Looe L oE Ll

/
|

=
o
|

©

10° 10t 102 103 10*
Token rank (log scale)

Figure 3: Zipf plots of token frequencies (excluding the
end-of-sequence token) in the corpus, original prompts,
and optimized prompts. The token distribution of opti-
mized prompts visibly deviates from the expected Zip-
fian behavior.

of these influential tokens. We perform part-of-
speech tagging on each token in each prompt using
spaCy (Honnibal and Montani, 2017). Interest-
ingly, we find that punctuation forms the largest
proportion of most influential (rank-1) tokens. In
addition, for all models, nouns consistently make
up the largest portion of tokens; see Table 1 for
examples of these prompts and Figure 2 for full
results. Furthermore, these trends are not unique
to optimized prompts, as natural language prompts
are also dependent on punctuation and nouns; see
Appendix C.

5 Optimized prompts use rare tokens

For the word-stories and Pythia-1.4b models where
we have access to the pre-training corpus, we fur-
ther analyze the frequency of tokens in both natural
language prompts and optimized prompts.

word-stories

1.0 - —— Original tokens
g Optimized tokens
9
< 0.8-
1
“
o
5 06
]
o
o
=
o 0.4-
2
=
o
=2 -
g 0.2
3
Q
0.0 -
1071 107 1077 107° 1073 1071
Corpus probability (log scale)
Pythia-1.4B
1.0- — Original tokens
2 Optimized tokens
g
° 0.8 -
“
o
S 0.6-
=]
o
(1]
Pt
o 0.4-
=
=
©
>3 0.2 -
£
jun
@]

0.0 -

107 10 100 107* 1073 1072
Corpus probability (log scale)

Figure 4: CDF of token corpus-frequency. For each
token used by either the original natural language or the
optimized prompts, we plot its probability of appearing
in the training corpus, versus the cumulative fraction of
tokens up to that probability. The optimized prompts
rely more on corpus-rare tokens than their original natu-
ral language counterparts.

5.1 Optimized prompts do not look like
natural language (distributionally)

The distribution of tokens in both the corpus and
original prompts exhibit power law-like behavior,
consistent with the Zipfian distribution of natural
language. In contrast, the sub-linear behavior for
optimized prompts in log-transformed space indi-
cates that there are fewer tokens with high frequen-
cies than a power law would predict (Figure 3).
This is underscored by normalized entropy (i.e., en-
tropy divided by that of a uniform distribution over
the same alphabet size), which is much higher for
the optimized prompts’ token distribution (0.8968
for word-stories, 0.9338 for Pythia) vs. that of the
original prompts (0.7102 for word-stories, 0.7988
for Pythia).

2987

Optimized vs. Natural

gemma-2-2b
Accuracy

04-. 04-. . .
5 10

gemma-2-2b-it
Accuracy

pythia-1.4b-deduped
Accuracy

Llama-3.2-1B
Accuracy
o
s

Natural vs. Natural

WA, it

Random vs. Natural

15 20 25 o 5 10 15 20 25
Layer

G et

. RIS - PR

10 12 14 16 2 4 6

8 10 12 14 1 2 4 6
Layer

Features

—— 16 —e— 32

64 128

—e— 256 —e— 512

Figure 5: Sparse linear classifier probe accuracy on top-k features of the model output at each layer. We identify
top features using Equation 4, and train a linear classifier to discriminate between optimized and natural language
prompts. The first column compares optimized and natural language prompts. The second and third columns show
a baseline comparison of natural language prompts vs. other natural language prompts, and of natural language
prompts vs. random prompts, respectively. We refer the reader to Figure 10 in Appendix D for the full results on all

models.

5.2 Optimized prompts rely on tokens that
are rare in the training data

For convenience, we use the shorthand corpus-rare
to refer to tokens that are rare in the training data
and corpus-common for those that are common in
the training data. Natural language prompts tend
to use more corpus-common tokens than their opti-
mized counterparts; see Figure 4. Prior work finds
that LMs are sensitive to tokens which are under-
trained and not found as frequently in the training
corpus, dubbed “glitch tokens” (Rumbelow and
Watkins, 2023; Li et al., 2024; Land and Bartolo,
2024). The higher frequency of corpus-rare to-
kens may be due to the fact that these tokens are
potentially under-trained, and are thus more likely
to have a stronger signal during the optimization
procedure.

6 Internal representations of optimized
prompts

Given that optimized prompts consist of corpus-
rare tokens and differ significantly in composition
from natural language prompts, we ask whether the
same differences exist within the model’s internal
representations.

6.1 Sparse probing for optimized prompts

We investigate whether it is possible to detect opti-
mized prompts purely from the model’s activations.
Given optimized and natural language prompt pairs,
we follow Gurnee et al., 2023 and train sparse
probe classifiers at each layer to differentiate opti-
mized prompts from their natural language counter-
parts. Concretely, each transformer block in the net-
work consists of a multi-head self-attention layer
(MHSA) and a multi-layer perceptron (MLP) layer
applied either in parallel or sequentially, depending

2988

num feats = 1

°
8

0.975 -

num feats = 32

0975 -
s g x
.

num feats = 64

num feats = 128

0975 -

T e P T B p e g e e =] &
g o= 2 AR PR oY i Sl b L N
o = 50 -
5y L] 7 on ® 0950 L) e 4 * e 0%
5 096" . $ o " s A o ey Tre— 1
/ . F 5- / " w 0925 -
T e Rl ¥ TN e R R T T T
Sose- | A - e e L [, AN Lt W /N AL L
ae U Dag AT os00- t W B A L 0900 - .t ',‘)'\‘)' 3 e 0900
© [} L] NERL LR ° [.
g0 b2\ T Y RREAY osrs- L 4 A L4 S 9 " osns P % . w 0875-
ES oo ta M1 LI A | et /v et # o850
- i 5 / \ . 5 / \ .
g9 ¥ e Ay 0.850 .; N AL 080 o 1] by
: { L \
2 gg H N1 0.825 - T vy 0.825 - ¥ Ve, 0.825 -
e \ s v) \
086 - ¢ 0.800 - L 0.800 - ® 0.800 -
0 10 15 20 2 4 10 it 20 25 4 10 bt 20 25
Layer Layer Layer
num feats = 32 num feats = 64 num feats = 128
1.00 -
rE A a 098 X, A aa_ak -
3 098- & AEwTATE W 098- A AT NN y I
o T 098 § i o) L 2w o | o Tuy. % ¥ napl
=2 g oqat o | 8ot e L 0.96- A ¢ Saal
No 096 TR o7 . 0961 AT e g AL / o\ Rka
& € 0.96- AP e, 1 AT 4 A e I 0% W g Va
Vg jLIm G gl \ £ A N ey A oo iyl oW o
©% RV LA LYY ¥ 094- TR LY Voo d Y g
€8 0.94 R TR g B IRYAR! 5 pl VoY] \
Eo 094- § @ N 4 i ‘ % v Vo \
59 ¢ Hat sy é 092 ¢ t
75 Voo 092~ o f] @/ ¢
8 oo s A Y ;
s
) : ! ;)) 090- ! !) "
0 H 10 15 20 25 o 5 10 15 20 25 o 5 10 15 20 25 0 5 10 15 20 25
Layer Layer Layer Layer
num feats = 1 num feats = 128
1.00 -
T os- M | 0o
2z Seriep e sed st S M
. 4 LW
3 os0- PO ¢ 4 et H 08
g° Y0 L] O]
Qc [t
g oss [1 0 07
g3 i i ¢
=S L £ i
wo %% 1 0.6~ [06 el 06
] W
£ i i a
=] ["
2807 i 05- o 05 8 05
ar u y
070 H 04 . L 04
; !) " ; v 04- ") T ; ; ;
0 5 10 15 20 o 5 10 15 20 4 5 10 15 20 0 5 10 15 20
Layer Layer Layer Layer
num feats = 1 num feats = 32 num feats = 64 num feats = 128
4 o
g FFNEE LB 2} N - N 2 i 5 & iy »
2 099- P s 0o £ AN 09- NFY p
o 09- ¥ i v t / i
= " v Wl VA W/ v
o g / vy / | o8- !
3 098 ’ \a ’ ! ’ 1
&2 08- & A 08 i T . \
2 . \ 07 1.
™o Y 1
v 0.97- ' i
© 07 \
£S 07 i i 06 \
°3 \ f \
=11 . | t
a7 0se i 06 | 05 '
0.6 -] 1
2 oo f J |- i
. 05 s o. [
o 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Layer Layer Layer

-#- Optim top feats

—— Optim random feats

#- Orig top feats ~ —¥— Orig random feats

Figure 6: Average top-10 token prediction overlap. The overlap is computed via Equation 5. Overall, the importance
of the top identified features appears to be model dependent, and it is not necessarily the case that the optimized
prompts rely more heavily on these features. However, it is clear that there are certain layers which influence the
output more (specifically the first and last layers); see Figure 11 in Appendix D for the full results.

on the model architecture.

Given a prompt p € R**V | a specific token ¢,
layer ¢, and that the model applies the MHSA and
MLP layers in parallel, the output is given by

WO = p{Y L MHSAO (v (nY))
+ MLPO(5(h{" ™)), (3)

where ~ is LayerNorm (Ba et al., 2016).

At each layer, we take the last token’s activations
for both the optimized prompts and the natural lan-
guage prompts. We use the maximum mean dif-
ference (MMD) (Gurnee et al., 2023) to sort the
features in the extracted activations by importance.
Specifically, given a set of activations from natu-

ral language prompts {h((fi)gi A
(0 M

prompts {hoptimized i }izq at layer /, the mean dif-
ference for feature j is defined as

and optimized

0 _ 1,0 1 <, 0
A =D horgi; = 37 2 opimigr (4
=1 =1
where h(z)

i denotes the j-th feature (neuron) of
the ¢-th example.

We then train a logistic regression classifier us-
ing the top identified features with varying levels of
sparsity; see Appendix A.3 for additional training
details. Overall, we find that the classifier is able
to discriminate ground truth and optimized exam-
ples with high accuracy, even with high levels of
sparsity; see Figure 5. This is in contrast to the
near-random accuracy found in the baseline eval-
uations which compare original natural language
prompts to randomly generated prompts and other
natural language prompts. It is important to note
that even though for optimized prompts, models
clearly contain unique representations which are
easily distinguishable from natural prompts, these

2989

representations still generate functionally similar
outputs.

6.2 Do optimized prompts rely on a distinct
subspace?

Given that we can classify prompts based on dis-
tinct features in the activations, we test the impor-
tance of these features in eliciting desired output
from optimized prompts. Prior work finds that
optimized prompt are sensitive to discrete perturba-
tions (Ishibashi et al., 2023; Melamed et al., 2024;
Cherepanova and Zou, 2024), and we hypothesize
that this sensitivity is also present in the model’s
internal representations. In order to verify our hy-
pothesis, we perform causal intervention and zero-
out the top features identified layer-wise via Equa-
tion 4, and then measure the top-10 token overlap
for each (original, optimized) prompt pair.

Given a prompt p, let Py (-|p) € RY be the
output distribution over vocabulary size V' at the
last position. For layer ¢ and hidden state dimen-
sion d, let h®) € R be the hidden state output.
Define Z;; C {1,...,d} as the indices of the k
most important dimensions as found by Equation 4.
The intervened distribution is

Pgﬁ?('@) =Prm(-|p; hge) =0fori e Zy). (5

We find that intervening on top features for both
natural and optimized prompts has a pronounced
effect when compared to the baseline of interven-
ing on random features. However, surprisingly,
our experiment contradicts the hypothesis. As
shown in Figure 6, for the majority of layers in
each model, there is not a large difference between
the effect of ablations of top-k features on natural
language prompts versus optimized prompts. This
means that although optimized prompts may be
more sensitive to discrete token-level perturbations
than natural language prompts, they do not neces-
sarily share this sensitivity when evaluated from
the perspective of the model’s internal represen-
tations. We do note that for some models, there
are specific layers (first and final) which induce a
more pronounced change on the output when top
features are ablated.

6.3 How do LMs build predictions from
optimized prompts?

Considering both instruction-tuned and base mod-
els, we compute the KL divergence between pairs

Gemma-2-2B

o
e
9]
>

o 7s-
-
<
—— Base

Instruct

2 3 4 5 6 7 8 9 101112131 15 16 17 18 19 20 21 22 23 2 25

Layer
Llama-3.2-1B

25 — Base
Instruct

KL Divergence

Layer
Pythia-1.4B

—— Base

KL Divergence
w - «

0 01 2 3 4 5 6 7 8 9 1o 1l 12 13 14 15 16 17 18 19 20 21 22 23
Layer

Figure 7: Layer-wise KL divergence. The layer-wise
KL divergence is computed as described in Section 6.3.
We find that instruction-tuned models follow a similar
path; see Figure 12 in Appendix D for the full results
on all models.

of optimized and natural prompts at each layer of
the model. Specifically, we take the output of the
last token ¢ at each layer ¢, and multiply it by the fi-
nal LayerNorm and the LM head in order to project
back to the vocabulary space. These outputs are
then used to compute the KL divergence between
prompt pairs at each layer, and we denote this as
dicy (p"l[p).

Interestingly, as shown in Figure 7, across model
families, the instruction-tuned versions of the mod-
els follow a similar path, with the early layers
showing similar representations of prompt pairs,
a gradual divergence in the middle layers, and a
final sharp trend back to functional similarity in
the last few layers. Base models tend to have more
divergent representations at the early layers, and
also experience a similar sharp trend in the later
layers. Clearly, the later layers are crucial for ensur-
ing the functional similarity between the optimized
prompts and their natural language counterparts.
This supports our findings in Sectio 6.1, namely
that feature ablations in later layers appear to have
a stronger effect on optimized prompts, as we can
see that the later layers are primarily responsible
for aligning the representations of natural language
and optimized prompts.

2990

7 Discussion

Our work analyzes the mechanisms and ways in
which language models parse and interpret dis-
cretely optimized prompts. We find that optimized
prompts consist primarily of punctuation and noun
tokens which are, on average, more rare in the train-
ing data than their natural language counterparts.
Through sparse probing, we are able to classify
optimized prompts and their natural language coun-
terparts with high accuracy. Furthermore, when
ablating neurons from model layers, the effective-
ness of optimized prompts does not drop in a sig-
nificant way compared to their natural language
counterparts.

One possible application of our analysis is to
identify optimized “jailbreak” prompts before these
prompts are even fully processed by the model. For
example, one can train a simple linear classifier on
a set of optimized prompts and natural language,
and efficiently alert the model provider if a user
is inputting suspicious optimized prompts based
on the classifier at intermediate layer. Although
the majority of prior work has studied optimized
prompts through the lens of adversarial attacks, it is
also possible that such prompts are benign in nature.
It will require further investigation to differentiate
benign and malicious optimized prompts.

Finally, prior work finds that discretely opti-
mized prompts transfer between different model
families (Rakotonirina et al., 2023; Zou et al.,
2023b; Melamed et al., 2024). While we focus
our discussion on the specific models that gener-
ate these prompts, future work can explore how
these representations for “universally transferrable”
optimized prompts differ between models.

Limitations

In our work, we primarily consider the “evil
twins” framework and use GCG (Melamed et al.,
2024; Zou et al., 2023b). There are several
other techniques for discrete optimization such
as FLRT (Thompson and Sklar, 2024) and Auto-
DAN (Zhu et al., 2024) which may induce differing
behaviors. Additional work is required to adapt our
analysis to these frameworks.

Due to computational constraints, we limit our
analysis to models up to 8 billion parameters, as
the discrete optimization process requires signifi-
cant GPU memory and compute. Nevertheless, we
test 18 different models. Future work can consider
analyzing larger models and investigating trends in

optimized prompts across a wider array of model
sizes. This will also enable research on scaling
effects for prompt optimization.

References

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,
Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jian-
min Bao, Harkirat Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Qin Cai,
Martin Cai, Caio César Teodoro Mendes, Weizhu
Chen, and 96 others. 2024. Phi-3 technical report:
A highly capable language model locally on your
phone. Preprint, arXiv:2404.14219.

Guillaume Alain and Yoshua Bengio. 2017. Under-
standing intermediate layers using linear classifier
probes.

Loubna Ben Allal, Anton Lozhkov, Elie Bak-
ouch, Gabriel Martin Blazquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlicek,
Agustin Piqueres Lajarin, Vaibhav Srivastav, Joshua
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clé-
mentine Fourrier, Ben Burtenshaw, Hugo Larcher,
Haojun Zhao, Cyril Zakka, Mathieu Morlon, and 3
others. 2025. Smollm2: When smol goes big — data-
centric training of a small language model. Preprint,
arXiv:2502.02737.

Maksym Andriushchenko, Francesco Croce, and Nico-
las Flammarion. 2024. Jailbreaking leading safety-
aligned llms with simple adaptive attacks. Preprint,
arXiv:2404.02151.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. Preprint,
arXiv:1607.06450.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
and 32 others. 2022. Constitutional ai: Harmlessness
from ai feedback. Preprint, arXiv:2212.08073.

Nora Belrose, Zach Furman, Logan Smith, Danny Ha-
lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
Preprint, arXiv:2303.08112.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023a.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 2397-2430. PMLR.

2991

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://openreview.net/forum?id=ryF7rTqgl
https://openreview.net/forum?id=ryF7rTqgl
https://openreview.net/forum?id=ryF7rTqgl
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2404.02151
https://arxiv.org/abs/2404.02151
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2303.08112
https://arxiv.org/abs/2303.08112
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, and 1 others.
2023b. Pythia: A suite for analyzing large language
models across training and scaling. In International
Conference on Machine Learning, pages 2397-2430.
PMLR.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin

Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of BigScience Episode #5 — Workshop on Chal-
lenges & Perspectives in Creating Large Language
Models, pages 95—136, virtual+Dublin. Association
for Computational Linguistics.

Trenton Bricken, Adly Templeton, Joshua Batson,

Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac
Hatfield-Dodds, Alex Tamkin, Karina Nguyen, and
6 others. 2023. Towards monosemanticity: Decom-
posing language models with dictionary learning.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian

Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Ar-
naud Joly, Brian Holt, and Gagl Varoquaux. 2013.
API design for machine learning software: experi-
ences from the scikit-learn project. In ECML PKDD
Workshop: Languages for Data Mining and Machine
Learning, pages 108—122.

Valeriia Cherepanova and James Zou. 2024. Talking

nonsense: Probing large language models’ under-
standing of adversarial gibberish inputs. In /ICML
2024 Next Generation of Al Safety Workshop.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,

Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned 1Im.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 31-36,
Melbourne, Australia. Association for Computational
Linguistics.

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How
small can language models be and still speak coherent
english? Preprint, arXiv:2305.07759.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly,
Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy
Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, and 6 others. 2021. A mathemati-
cal framework for transformer circuits. Trans-
former Circuits Thread. Https://transformer-
circuits.pub/2021/framework/index.html.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
Preprint, arXiv:2101.00027.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Gold-
berg. 2022. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary
space. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Process-
ing, pages 30—45, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484-5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Xingang Guo, Fangxu Yu, Huan Zhang, Lianhui Qin,
and Bin Hu. 2024. COLD-attack: Jailbreaking LLMs
with stealthiness and controllability. In Forty-first
International Conference on Machine Learning.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
2023. Finding neurons in a haystack: Case stud-
ies with sparse probing. Transactions on Machine
Learning Research.

2992

https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://openreview.net/forum?id=traR5SsqUt
https://openreview.net/forum?id=traR5SsqUt
https://openreview.net/forum?id=traR5SsqUt
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2022.emnlp-main.3
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=yUxdk32TU6
https://openreview.net/forum?id=yUxdk32TU6
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith,
Aidan Ewart, and Lee Sharkey. 2024. Sparse autoen-
coders find highly interpretable features in language
models. In The Twelfth International Conference on
Learning Representations.

Yoichi Ishibashi, Danushka Bollegala, Katsuhito Su-
doh, and Satoshi Nakamura. 2023. Evaluating the
robustness of discrete prompts. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 2373—
2384, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Corentin Kervadec, Francesca Franzon, and Marco Ba-
roni. 2023. Unnatural language processing: How do
language models handle machine-generated prompts?
In The 2023 Conference on Empirical Methods in
Natural Language Processing.

Sander Land and Max Bartolo. 2024. Fishing for
magikarp: Automatically detecting under-trained to-
kens in large language models. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 11631-11646, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Yuxi Li, Yi Liu, Gelei Deng, Ying Zhang, Wenjia Song,
Ling Shi, Kailong Wang, Yuekang Li, Yang Liu, and
Haoyu Wang. 2024. Glitch tokens in large language
models: Categorization taxonomy and effective de-
tection. Preprint, arXiv:2404.09894.

Zeyi Liao and Huan Sun. 2024. AmpleGCG: Learning a
universal and transferable generative model of adver-
sarial suffixes for jailbreaking both open and closed
LLMs. In First Conference on Language Modeling.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Rimon Melamed, Lucas Hurley McCabe, Tanay
Wakhare, Yejin Kim, H. Howie Huang, and Enric
Boix-Adsera. 2024. Prompts have evil twins. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4674,
Miami, Florida, USA. Association for Computational
Linguistics.

nostalgebraist. 2020. interpreting gpt: the
logit lens. https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens.
2024-07-27.

Accessed:

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,

Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Guilherme Penedo, Hynek Kydli¢ek, Loubna Ben al-
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. Preprint, arXiv:2406.17557.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 oth-
ers. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Nathanaél Carraz Rakotonirina, Roberto Dessi, Fabio
Petroni, Sebastian Riedel, and Marco Baroni. 2023.
Can discrete information extraction prompts general-
ize across language models? In The Eleventh Inter-
national Conference on Learning Representations.

Nathanaél Carraz Rakotonirina, Corentin Kervadec,
Francesca Franzon, and Marco Baroni. 2024.
Evil twins are not that evil: Qualitative in-
sights into machine-generated prompts. Preprint,
arXiv:2412.08127.

Jessica Rumbelow and Matthew Watkins. 2023. Solid-
goldmagikarp (plus, prompt generation). Accessed:
2025-02-09.

Salesforce. 2021. The wikitext long-term de-
pendency modeling dataset. https://blog.
einstein.ai/the-wikitext-long-term-%
dependency-language-modeling-dataset/.
Accessed: 2024-07-27.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 17151725,

2993

https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://openreview.net/forum?id=F76bwRSLeK
https://doi.org/10.18653/v1/2023.eacl-main.174
https://doi.org/10.18653/v1/2023.eacl-main.174
https://openreview.net/forum?id=6KyZrSp8y3
https://openreview.net/forum?id=6KyZrSp8y3
https://doi.org/10.18653/v1/2024.emnlp-main.649
https://doi.org/10.18653/v1/2024.emnlp-main.649
https://doi.org/10.18653/v1/2024.emnlp-main.649
https://arxiv.org/abs/2404.09894
https://arxiv.org/abs/2404.09894
https://arxiv.org/abs/2404.09894
https://openreview.net/forum?id=UfqzXg95I5
https://openreview.net/forum?id=UfqzXg95I5
https://openreview.net/forum?id=UfqzXg95I5
https://openreview.net/forum?id=UfqzXg95I5
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/2024.emnlp-main.4
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2412.15115
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=sbWVtxq8-zE
https://openreview.net/forum?id=sbWVtxq8-zE
https://arxiv.org/abs/2412.08127
https://arxiv.org/abs/2412.08127
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://blog.einstein.ai/the-wikitext-long-term-%dependency-language-modeling-dataset/
https://blog.einstein.ai/the-wikitext-long-term-%dependency-language-modeling-dataset/
https://blog.einstein.ai/the-wikitext-long-term-%dependency-language-modeling-dataset/
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162

Berlin, Germany. Association for Computational Lin-
guistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222-4235,
Online. Association for Computational Linguistics.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, lan Magnusson,
Jacob Morrison, Niklas Muennighoff, and 17 others.
2024. Dolma: an open corpus of three trillion tokens
for language model pretraining research. Preprint,
arXiv:2402.00159.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam
Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros,
Ambrose Slone, and 89 others. 2024. Gemma: Open
models based on gemini research and technology.
Preprint, arXiv:2403.08295.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist llm assistants.

T. Ben Thompson and Michael Sklar. 2024. Flrt:
Fluent student-teacher redteaming. Preprint,
arXiv:2407.17447.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, 1. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. 2023. Hard
prompts made easy: Gradient-based discrete opti-
mization for prompt tuning and discovery. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus
Geiger, Dan Jurafsky, Christopher D Manning, and
Christopher Potts. 2024. ReFT: Representation fine-
tuning for language models. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Bar-
row, Zichao Wang, Furong Huang, Ani Nenkova, and
Tong Sun. 2024. AutoDAN: Interpretable gradient-
based adversarial attacks on large language models.
In First Conference on Language Modeling.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan
Wang, Alex Mallen, Steven Basart, Sanmi Koyejo,
Dawn Song, Matt Fredrikson, and 2 others. 2023a.
Representation engineering: A top-down approach
to ai transparency. Preprint, arXiv:2310.01405.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,
J. Zico Kolter, and Matt Fredrikson. 2023b. Univer-
sal and transferable adversarial attacks on aligned
language models. Preprint, arXiv:2307.15043.

A Additional experimental details

A.1 Tiny stories training setup

We train the word-level Tiny Stories model with
a similar model configuration as Pythia-70m 2.
Specifically, we use a batch size of 64, maximum
sequence length of 512, hidden dimension of 512,
feedforward layer dimension of 2048, 6 layers, and
8 attention heads. For the optimizer and hyper-
parameters, we choose AdamW (Loshchilov and
Hutter, 2019) with 5; = 0.9, 52 = 0.95, a learning
rate of 6 x 10~* with cosine annealing, 500 warmup
steps, no gradient accumulation, and 3 epochs of
training on a single NVIDIA RTX 6000 Ada GPU.
The word-level tokenizer has a vocabulary size of
46,137 after being trained on the entire Tiny Stories
corpus.

A.2 Optimization and data setup

For all models, we perform the evil twins optimiza-
tion procedure for 500 steps, with early stopping
if dxr(p*||p) < 5.0. In total, we obtain 5000
unique prompts for the word-stories model, and
1200 unique prompts for the open models (from
the four aforementioned prompt datasets), with 300
prompts from each dataset. We then filter all final
optimized prompts such that dx 7 (p*||p) < 10.0.

*https://huggingface.co/Eleuther Al/pythia-70m

2994

https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2402.00159
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2407.17447
https://arxiv.org/abs/2407.17447
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=VOstHxDdsN
https://openreview.net/forum?id=VOstHxDdsN
https://openreview.net/forum?id=VOstHxDdsN
https://openreview.net/forum?id=fykjplMc0V
https://openreview.net/forum?id=fykjplMc0V
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://openreview.net/forum?id=INivcBeIDK
https://openreview.net/forum?id=INivcBeIDK
https://arxiv.org/abs/2310.01405
https://arxiv.org/abs/2310.01405
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://huggingface.co/EleutherAI/pythia-70m

Table 2 displays the number of prompts that were
optimized for each model after filtering. For the
discrete optimization, we use one 8x A100 node.

Table 2: Total optimized prompts after filtering for each
tested model.

Model # prompts
gemma-2-2b-base (Team et al., 2024) 1156
gemma-2-2b-instruct (Team et al., 2024) 1068
llama3.2-1b-base (Grattafiori et al., 2024) 891
llama3.2-1b-instruct (Grattafiori et al., 2024) 765
llama3.2-3b-base (Grattafiori et al., 2024) 638
1lama3.2-3b-instruct (Grattafiori et al., 2024) 624
llama3.1-8b-base (Grattafiori et al., 2024) 106
pythia-1.4b-base (Biderman et al., 2023b) 1121
qwen2.5-0.5b-base (Qwen et al., 2025) 671
qwen2.5-0.5b-instruct (Qwen et al., 2025) 1081
qwen2.5-1.5b-base (Qwen et al., 2025) 532
qwen2.5-1.5b-instruct (Qwen et al., 2025) 1079
smollm2-1.7b-base (Allal et al., 2025) 887
smollm?2-1.7b-instruct (Allal et al., 2025) 682
smollm2-135m-base (Allal et al., 2025) 1144
smollm?2-135m-instruct (Allal et al., 2025) 1079
smollm2-360m-base (Allal et al., 2025) 1073
smollm2-360m-instruct (Allal et al., 2025) 1118
word-stories 2043

A.3 Classifier probe training

The classifier is a logistic regression trained via
scikit-learn (Buitinck et al., 2013) for 100 itera-
tions with l5 penalty, 1iblinear solver, and 1e~*
convergence tolerance.

B Evil twins and greedy coordinate
gradient

The Greedy Coordinate Gradient (GCG) algorithm
is commonly used to generate adversarial opti-
mized prompts. The procedure starts with an ar-
bitrarily initialized prompt with a fixed number of
tokens. At each iteration, it computes the gradient
of the loss with respect to each token in the prompt,
and identifies some top-k promising replacements
for each token in the prompt based on the gradient
signal. These candidate replacements for each to-
ken are then tested by running a forward pass and
taking the new prompt with the lowest loss. We
refer the reader to Zou et al., 2023b for full details
regarding the algorithm.

C Composition of natural language
prompts

Original natural language prompts have a similar
dependency on punctuation and noun tokens as
their optimized counterparts; see Figure 8 and Fig-
ure 9.

D Experimental results on all models

We report the full results on the remainder of the 18
tested models for the probing classifier experiment,
the feature ablation experiment, and the layer-wise
KL divergence experiment. Figure 10 displays the
results for all model suites on the sparse probing
experiment. Figure 11 displays the results for all
model suites on the intervention experiment. Fig-
ure 12 displays the results for all model suites on
the layer-wise KL divergence experiment.

2995

Rank 1 Rank 2 Rank 3

1.0- - -
s gemma-2-2b
mm |lama-3.1-8b
e llama3.2-1b

w 08" mmm 1lama3.2-3b -

E pythia-1.4b-deduped

] mmm gwen2.5-1.5b

T 0.6 - smolim2-1.7b - -

i

s}

S

—

o

c

QS 04- - i

£

o

a

<
&“‘0 42{0 °\><\ 6‘0} vb°° A"/{o Ib(g/ &Az Adp 000 @é ,Qo“ A?‘{O ,Ddb (§\z \\e{o o"o (S\é g@Q AZ@ b&
& & <~ & ey & & & R & & S > S RS &
® & N ® & & ® & &

& S S W S &

Figure 8: Token category analysis by rank for natural language prompts. For each model and token influence rank
(as computed in Section 4), we show the proportion of tokens belonging to each part of speech category.

llama-3.1-8b
pythia-1.4b-deduped
llama3.2-1b
llama3.2-3b
qwen2.5-1.5b
smollm2-1.7b
gemma-2-2b

bbbt

Average KL influence score

4 5 6 7 5
Token influence rank (1 = most influential)

Figure 9: Token rank influence for natural language
prompts. The influence score is computed via Equa-
tion 2.

2996

Optimized vs. Natural Natural vs. Natural Random vs. Natural

@
2

Accuracy

Llama-3.2-3B-Instruct

Layer Layer Layer

3

Accuracy

@
g
H

&

: Layer Layer : Layer

Qwen2.5-1.58
Accuracy

SmoILM2-135M
Accuracy’

SmoILM2-135M-Instruct
Accuracy

SmoILM2-360M-Instruct

Uama-3.1-88
Accuracy

Features
-1 16 -3 64 o 128 —e- 256 —e— 512

Figure 10: Sparse linear probe results for additional model suits (SmolLM2, Qwen2.5, Llama-3.2)

2997

__oaBe S . - | o S B
5 -8 < m.\ " " i T\w H =]
5 v 5 5
0 0 o «© @ «© o @ o @ @ @ o @ Lo 0 0 0
~N ~N TN ~N ~N .9 ~N o~ o~ ~N ~N ~N ~N ~N N ~N
— -9 — — -2 — | — — — — -9 — —~ — — -9 —] — -2
o o o o | a0 I _ | I I o o _
jul v n 0 U 0 2] co U un 4 9 w0 o wn Jul] 0w jul jul Y] 2] [
© I T e] T E T ® T ® © I ® 3w © © R I ® =5
2 a2 L £ L2 £ £ £ =@ £ L L L =2
|3 S £ s E . E 3 2 g e g £ £ e g £ £ . Eke__ 3 N
=] 1 3 Am 5 -2 5 S =] =] 3 =] =] = 3 -2 3 et] =] -2
= S 2 2 £ -« E 2 g 2 2 2 2 =53 2 2= 2
Time i ——] |
- L = i e aa— -
—— & .-o TSeeem-o e et o T SSteem o Sw = o -o e 3 LIS e]
R L R I m2233 38E8F 313338
_a eme - e - e
mm\\ & -8 . -~ N - - N < g X ol
p R -8 - -8 3 8 &
-8 - ' g] -q
» . -3 3 . -g
< I < < < < R * 4 e < < < - “ s 5 % < <
© - © © | o © -2 © © © - © - © © © ~ © o ©) © o
[3 [[[[I I I I e I [[[
0) 0) Y a5 o0 a5 0 s o0 s o0 s o0 a5 0) s o0 s 0 =
2 i g .28 "2y i i ik i iy i =28 .28 i 2
2 238 & 3 e 3 e e 3e 23 @ 24 & Je& 3 e 3 e 3 e 238 3
-o P R 292 c® o £ o €% T
€ € £ £ £ -2 E -2 E £ £ E jm g ERI i=wm . E £ £
5% 5 5 < 5 5 5 5 5 5 5 S &= 2 5 o SF— 5 | o
2 2 2 2 . £ g g 2 2 2 c - 2 =8 = . 2
» a - T
I 3 Nne.. e o TR = g,
-o ° g -o TTe-em-0 Maw o e e - -o TTe--em -o - -o °
§E8 8% §588% R $8%2¢8 E 18388 EE R §58%5¢8 R g58%8¢8 §E588¢8
. oume .____-e ey - | @ [® uEe P —
I ol " . v\! R " R R R W\i . s S .
o [~ -8 4 N N
-R Fe -R -R -2
N N PR o o o o o o o N P N N
) n 0m s om g ™M 2 m = ™ o o m m o m S m e n oM -9
[[[[[I [I I e I [[[
0 5 o0 5 0 5 0 w5 w P)) 5 9 5 9) ay o s 5 0 5 0 5
© B miR L2 B E E] 2 54% E B E © L2 S S
2 238 3¢ 3e 3e 3 e Fe g g 238 e 3¢ 2 38 238 3
£ £ ° £ £ £ -8 £ -8 £ £ £ -2 E -2 £ - £ £ £
H S B, 2 5 e 3 Sk 5 5 H H 5 H H g S 5 -8
c = = c c < c c c c c c c c €L T i <
. ® 4 -0 -0
N . - - . o - o L
. - “oome
o [o AR e Sewe s STsszem i &
»-o ~-~ge -O ~-—a-o o ~~-e-0 ~—a-o -o - ° - ¥ o
g 2 g8 48 g Lg% 8 g L2888 52258 8 8 8 s 2 & 2 2 2 3 s 2 g 2 8 £ 8 48 8 8 R 3 A& 8 R] A& 8 8 ” 2R
. R ¥ . e " . ..u -
s g R o . - . “am. " F]
- -8 & wm {
-R -0 e B R -8 - -R
3 ~» -8 -] 3 3
— Lo 2 oo o — — — Lo - 2 - - R N
[T [| [I I I] [[' R '~
2 5 2 5 2 5 2 FRER - g 8 s Br 5 8 5 2 2 2 5 2 5 2 5
® E w2 s .28 R B © E E s s .28 E -
] LFoE 58 58 oo g8 Il 588 g g g e .52]
£ £ £ £ . e E s g E E = £ £ £ € € £
S = e 3 s 3 S 5 5 El El] S o 3k S -
2 2 2 s 2 2 . 2 2 2 2 2 2 - ™ 2 -2
- H
Lo | o « ooome . . |
e &) .
1| e me R “am sy
—] [o e d o«
- eme-o o By o e o - S % - - =
§ 08 % ERERE s g o5 o2 338 355 3 Ty § 5 % 3 § % % % 5ok o3 305 s N S5:dd TRy
4 © o e e e - < < < s © o S o =] S © o El s o S & o 5 el oo e e e e @ H S o

S 3
depiano usx03 0T-doL depjano usod o1-dop depiano uaxo) o1-dop depiano uaxoy 01-doL depano

3 3 23 3 3 2 3 3 3 2 2838 s -]
depano uaxoy oT-dol depano uayo) oT-doL
u2303 0T-doL dejuano usxol 0T-doL depisno usxol 0T-dol deiano uaxo) 0T-doL dejiano us3ol 0T-dol depsno usxoy oT-doL dejiano usyo3 oT-doL depiano usx03 0T-doL
PnAsul-gL T-zwjows PHISUFUSETZWTIOWSIINASUIWO9E-ZWTIOWS yonnsul-gT-z'-ewen gg-z €-eW

e PNIsul-ge-Z €-ewer 85°0-5°CUBMD PNASUIFES0-GUBMD BST-STUBMO PNISUGS T-GZUIMD WISET-ZWTIOWS LHOBE-ZWTIoWS 8L7T-zhlows g8-T'c-ewer

—f— Orig random feats.
1ts on all models.

- Orig top feats.
ion resu
2998

Feature ablat

~4- Optim top feats ~ —k— Optim random feats

Figure 11

Llama-3.2-3B

—— Base
Instruct

KL Divergence

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Layer
Qwen2.5-0.5B

— Base

10-
Instruct

KL Divergence

001 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer
Qwen2.5-1.5B

—— Base
14 Instruct

10 - \

KL Divergence

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Layer
SmolLM2-1.7B
20 -

/\

KL Divergence

—— Base
Instruct

01 2 3 4 5 6 7 & o 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

SmolLM2-135M

7- —— Base
Instruct

& v o

~

KL Divergence

234 5 6 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Layer
SmolLM2-360M

14 -
— Base

12- Instruct

o o B

KL Divergence

001234 5 6 78 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 20 30 31
Layer
Llama-3.1-8B

14 -

KL Divergence

001234 5 6 78 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31
Layer

Figure 12: Layer-wise KL Divergence results on all models.

2999

