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Abstract

Multimodal knowledge editing is an impor-
tant method for modifying outdated or in-
correct knowledge in Multimodal Large Lan-
guage Models (MLLMs). However, exist-
ing datasets for multimodal knowledge editing
lack multi-granularity knowledge. In this pa-
per, we present a more realistic dataset called
M2Edit, which includes three distinct types of
knowledge: entity, relation, and action. Addi-
tionally, existing knowledge editing methods
for MLLMs lack the ability to handle multi-
granularity knowledge and generalize to mul-
timodal data. To address these limitations,
we propose the multimodal knowledge edit-
ing method MLE. This approach identifies key
knowledge layers within different components
and collaboratively edits the various compo-
nents of MLLMs. As a result, we observe sig-
nificant improvements in visual generality per-
formance, ranging from 4.8% to 10.8%, and
achieve the best overall performance on knowl-
edge data of different granularities.

1 Introduction

With the continuous development of multimodal
large language models (MLLMs) (Li et al., 2023;
Alayrac et al., 2022; Zhu et al., 2023; Dai et al.,
2023; Liu et al., 2023), the efficient modification
of knowledge within these models, called multi-
modal knowledge editing (MKE), has garnered
widespread attention (Yao et al., 2023; Pang et al.,
2024). Studies on MKE (Cheng et al., 2023; Li
et al., 2024) want to directly edit the knowledge
within MLLMs, allowing for the addition of new
knowledge or the modification of old knowledge.
For instance, as illustrated in Figure 1, when an
MLLM is asked to describe the content of the
image, it might incorrectly interpret the outdated
knowledge that “Obama is the President of the
United States”. This outdated knowledge can be
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Figure 1: Overview of Multi-Granularity Knowledge
Editing. After editing multi-granularity knowledge
(knowledge that includes three distinct forms: entity, re-
lation, action) in the multimodal large language model,
it can solve the problem correctly.

updated by editing the model. Additionally, if the
model does not recognize that the person shaking
hands with “Obama” is “Putin”, the new knowl-
edge needs to be injected into the MLLM.

Several research efforts have been dedicated to
knowledge editing in MLLMs. There is still a
lack of multi-granular knowledge in the exist-
ing datasets for Multimodal Knowledge Editing
(MKE). Specifically, MIKE (Li et al., 2024) has de-
veloped its knowledge editing benchmark based on
an entity-level question-answering dataset, which
encompasses a significant amount of entity-level
knowledge. However, in real-world scenarios, re-
lying solely on entity-level knowledge proves to
be insufficient. As depicted in Figure 1, answer-
ing the question correctly, three different types of
knowledge (i.e., entity, relation, action) need to
be edited. In addition, the effectiveness of vari-
ous knowledge editing methods cannot be accu-
rately reflected solely by the entity-level knowl-
edge dataset. On the other hand, MMedit (Cheng
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et al., 2023) builds its knowledge editing dataset
based on open-domain knowledge visual question-
answering (Marino et al., 2019) and image caption
datasets (Chen et al., 2015). They also fail to con-
sider that the knowledge in the dataset should be
multi-granular.

To address this challenge, we construct the
M2Edit (Multi-Granularity Multimodal knowl-
edge Editing), a dataset contains multi-granularity
knowledge. This dataset consists of 3 types of
knowledge samples: 35,673 entity samples, 2,167
relation samples, and 4,557 action samples.

However, when applying existing methods
(Meng et al., 2022; Mitchell et al., 2022a,b; Cao
et al., 2021) to M2Edit, we encounter two problems:
lack of ability to process multi-granularity knowl-
edge and lack of generalization on multimodal
data. Lack of ability to process multi-granularity
knowledge: The existing work has not considered
the modeling differences for knowledge of differ-
ent granularities. However, our experiments have
revealed that knowledge of different granularities is
stored in distinct regions of MLLMs. Consequently,
the existing methods for modeling knowledge are
imprecise and lack precision. Lack of generaliza-
tion on multimodal data: While existing methods
have shown some effectiveness when directly trans-
ferring editing methods from the text modality to
existing datasets, they exhibit insufficient gener-
alization on multimodal data. MLLMs are more
complex than LLMs (Yao et al., 2023), as they
typically comprise multiple components, includ-
ing an LLM, a visual encoder, and a multimodal
interface. Failing to edit these modules simulta-
neously is likely to result in poor performance on
multimodal data, as confirmed by our experiments.

To overcome the above two challenges, we pro-
pose a novel knowledge editing method named
MLE (Multimodal Location-based Editing). To
handle the problem of Lack of ability to pro-
cess multi-granularity knowledge, MLE sequen-
tially identifies key knowledge layers within the
three components of MLLMs for different types of
knowledge. To overcome the challenge of lack of
generalization on multimodal data. Subsequently,
MLE collaboratively edits these key knowledge
layers in the three components by the least squares-
based method to obtain better generality on multi-
modal data. Our contributions can be summarized
as follows:

• To the best of our knowledge, we are pio-

neers in advocating for a differentiated treat-
ment of various types of knowledge within
MLLMs during knowledge editing. To sub-
stantiate this, we have developed a Multi-
Granularity Multimodal knowledge Editing
dataset (M2Edit), which incorporates three
types of knowledge.

• We design a novel multimodal knowledge lo-
cate then edit method (MLE), which can lo-
cate different knowledge in MLLMs to better
process multi-granularity data and collabora-
tively edit different components of MLLMs
to achieve superior generalization.

• The experimental results demonstrate the ef-
fectiveness of our proposed method compared
to Baselines. Additionally, these results vali-
date the differences in the storage of different
types of knowledge within the components
of MLLMs. We will release the source code
and the dataset for further research (https://
github.com/TimeBurningFish/M2Edit).

2 Methodology

2.1 Task Definition
For a multimodal large language model (MLLM)
(Caffagni et al., 2024), let Θ denote it. An MLLM
(Θ) often contains three components: a visual en-
coder for encoding images, a multimodal inter-
face for converting visual information into a large
language model (LLM) space, and an LLM for
processing information from images and text si-
multaneously. Let Θ = {θve, θmi, θllm} be the
components parameters. For a multimodal knowl-
edge editing dataset D = {(xi, vi, yi)|i ∈ [1, N ]},
where xi, vi, yi represent the input text prompt, im-
age and editing target respectively, and N repre-
sents the number of samples in the dataset. For one
sample (xi, vi, yi), the after editing MLLM denotes
to Θ̂. The goal of knowledge editing (Yao et al.,
2023) is to successfully output the editing target
after editing (Reliability) and to have universality
on similar samples (Generality) and should have
no effect on irrelevant samples (Locality).

Reliability. Editing reliability needs model to
answer the knowledge problem to yi. Specifically,
to evaluate the reliability Orel(Θ̂) of the editing
methods can be expressed by the following formula:

Orel(Θ̂) = E(xi,vi,yi)∈D[I(Θ̂(xi, vi) = yi)], (1)
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where I(·) denotes the indicator function.
Generality. Editing generality needs model to

answer similar questions about the same knowl-
edge to yi. Following MMEdit (Cheng et al.,
2023), the generality of the editing method is
tested from two perspectives: Visual generality
(Ogen

v (Θ̂)): samples similar to the original image
(i.e., (xi, vj , yi) s.t. vj ∼ vi), which can be calcu-
lated as

Ogen
v (Θ̂) = E(xi,vi,yi)∈D[I(Θ̂(xi, vj) = yi)]. (2)

Text generality (Ogen
t (Θ̂)): samples similar to the

original prompt (i.e., (xj , vi, yi) s.t. xj ∼ xi),
which can be calculated as

Ogen
t (Θ̂) = E(xi,vi,yi)∈D[I(Θ̂(xj , vi) = yi)]. (3)

Locality. The locality of editing methods is eval-
uated by the MLLM can maintain its original out-
put on irrelevant samples, which can be calculated
as follows:

Oloc(Θ̂) = E(xk,vk)∈D[I(Θ̂(xk, vk) = Θ(xk, vk))]

s.t. (xk, vk) ⊥ (xi, vi), (4)

where ⊥ denotes the two samples are unrelated.

2.2 M2Edit Dataset

Knowledge Type Entity Relation Action
#Entities 877 1,403 2,850
#Relations - 6 -
#Actions - - 47
#Images 89,182 6,017 4,557
#Questions 179 30 235
#Samples 35,673 2,167 4,557

Table 1: Statistics of M2Edit dataset. M2Edit contains
instances involving three types of knowledge: entity,
relation, and action.

In order to overcome the challenge of exist-
ing multimodal knowledge editing datasets’ lack
of multi-granularity knowledge, we construct the
M2Edit dataset, which consists of three types of
knowledge samples: entity, relation, and action.
The overall statistics of the M2Edit dataset are
shown in Table 1.

Entity data. M2Edit entity data is built by fil-
tering samples from the Oven dataset (Hu et al.,
2023), where each image is linked to a Wikipedia
entity via a text query. We select "(image, question,
answer)" triples with single-word entity names and

manually choose questions with at least 5 synony-
mous queries and entities with over 5 related im-
ages for the generality evaluation. As shown in
Figure 2 top part, each question contains one entity
knowledge, and we replace the edit target with a
similar word to ensure models do not contain this
knowledge in advance. As illustrated in Figure
2 top part, each question only contains one entity
knowledge. For example, the entity “capybara” has
some related images and can be answered through
some synonym questions. Besides, to ensure that
all models do not contain this knowledge in ad-
vance, we replace the edit target with a similar
word. For instance, “koala” and “capybara” be-
long to the same category “animal”, so this exam-
ple adopts “koala” as the editing target. And adopts
different categories of entity problems to evaluate
the locality.

Relation data. M2Edit relation data is built
from the FB15k-237-IMG dataset (Liu et al., 2019;
Bordes et al., 2013), a subset of Freebase (Bol-
lacker et al., 2008), which automatically assigns
images to entities from the Internet. We filter triples
with simple and unambiguous tail entities and se-
lect triples with at least 3 images related to the
head entity for visual generality evaluation. To con-
struct text generality sample sets, we use ChatGPT
to generate and paraphrase relation questions. As
illustrated in Figure 2 middle part, each problem
contains knowledge about one relation and two
entities. The head entity “Francis Bacon” can be
represented by multiple images, and the relation
“Profession” can be represented by some synonym
questions. Similarly, we also replace the tail entity
with another similar entity to ensure that the knowl-
edge model is free. And adopts different relation
problems to evaluate the locality.

Action data. M2Edit relation data is based on
the ImSitu (Yatskar et al., 2016) dataset, where
each image often depicts a primary action, and pro-
vides annotations for the entities involved in the
action. We manually select action verbs with clear
definitions and use ChatGPT to connect roles in the
action schema to form questions and paraphrase
them for text generality evaluation. To construct
the visual generality set, we select multiple syn-
onymous images from the dataset. As illustrated
in Figure 2 bottom part, each problem contains
knowledge about one action and a lot of entities
involved. The red words represent the semantic
slots in the question, which for each image will be
filled by the specific entities involved. For example,
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actor

What profession does the person in the 
image have?
What job does the individual in 
the picture do?

Relation
What is the nationality of the person 
captured in the image?

(             ,      profession,      scientist)

In-scope Out-of-scope Edit target Original knowledge Synonymous questions

Entity 

What animal is presented in the image?
What is this animal?
What kind of animal is this? 
What is the category of this animal?

What is this place?

koala

(             ,      is a,       capybara)

Action

Can you describe what the [agent] is  doing 
at [place] to move?
What action is the [agent] undertaking 
at [place] that involves moving quickly?

running
agent woman

place outside

(             ,      action,                           ) 

sitting

How is the [agent] 
interacting with the 
[coagent]'s [bodypart] 
at [place]?

Figure 2: Editing examples for the three knowledge types of M2Edit. After editing the MLLMs, the in-scope
samples need to be generalizable, and the out-of-scope samples should not be unchanged. For action samples, the
semantic slots are filled with specific objects in the image.

the “[agent]” of the “running” that happened in the
image is “a woman”. Similarly, we also replace the
action verb with another verb to be the edit target.
And adopts different verb problems to evaluate the
locality.

We divide the data into training and testing sets
at a 4:1 ratio to accommodate methods that require
training.

2.3 Casual Tracing For Multimodal Large
Language Model

We apply Causal Mediation Analysis (Shanmugam,
2001; Vig et al., 2020) to track the causal im-
pact of the internal components of the MLLMs,
which plays a role in producing answers with multi-
granularity knowledge. To trace the important state
of the model always needs to take three runs: a
clean run that the model can answer the question
correctly with normal input, a corrupted run that
corrupts the input to make the model get corrupted
output, a corrupted-with-restoration run that re-
stores a certain state to judge the restoring of the
output. After corrupted-with-restoration run, if
the probability of producing the correct answer
increases (indirect effect), then the causal relation-
ship between this state and the final result is con-
sidered strong. Otherwise, it is considered weak.
For detailed procedures, please refer to Appendix
C.

2.4 Multimodal Locate then Edit Method
To address the limitation of existing knowl-
edge editing methods that cannot handle multi-
granularity knowledge and lack of generalization
on multimodal data, we propose a method called

MLE (Multimodal Location-based Editing). MLE
focuses on different components of the MLLMs,
first identifying the specific locations of differ-
ent knowledge within the model (key knowledge
layer), and then performing the least squares-based
method to edit them collaboratively. The overall
architecture of the model is shown in Figure 3.

2.4.1 Locate Key Knowledge Layers
For a knowledge editing sample si = (xi, vi, yi),
the key layers for storing knowledge (Key Knowl-
edge Layer) in different components are located
in turn. First, we will use the MLLM to represent
the samples in a specific training set, which can be
M(xi, vi). Then, we will apply K-means cluster-
ing to these representations to create k clustering
center samples as Knowledge Centers C = {cj =
(xj , vj , yj)|j ∈ [1, k]}. In addition, we define Edit
Score to be used to measure the success of editing,
which can be

Edit Score =
4

1
Orel +

1
Ogen

v
+ 1

Ogen
t

+ 1
Oloc

. (5)

After that, MLE edits each knowledge center sam-
ple in each layer from each component of MLLM.
The editing layer combination with the maximum
Edit Score, that is, the Key Knowledge Layer, is
calculated as the most effective editing way for this
cluster. The above process can be expressed as

Lkey(cj) = (rj , sj , tj)

= max
r,s,t

(Edit score(Θ̂r,s,t(cj)))

r ∈ [1, Lllm], s ∈ [1, Lve], t ∈ [1, Lmi] (6)
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Figure 3: The overall architecture of MLE. The MLE multimodal knowledge editing framework locates the key
knowledge layers storing knowledge in different components of the MLLMs through similar knowledge, then edits
the key knowledge layers through least squares fitting expected output (z), and finally evaluates the editing results
based on four editing evaluation indicators.

where rj , sj , tj represents for a center knowledge
sample cj only editing the rj-th layer of LLM, sj-
th layer of the visual encoder, and tj-th layer of
the multimodal interface can get the highest Edit
Score. Afterward, for a sample in the test set ai,
we calculate its cosine similarity with the samples
in the knowledge center set to find the closest sam-
ple. We then use the Key Knowledge Layer of that
center sample for knowledge editing, which can be
formulated as

Lkey(ai) = Lkey(cj)

j = max
j

M(ai)M(ci)

|M(ai)||M(ci)|
, (7)

where M(·) denotes the representation from
MLLM of the sample ai.

2.4.2 Edit Key Knowledge Layer
After identifying the key layers, inspired by (Meng
et al., 2022), we can use the least squares-based
method for model knowledge editing. We sequen-
tially edit the model using the order of the r-th layer
of LLM, the s-th layer of the visual encoder, and
the t-th layer of the multimodal interface. Specifi-
cally, given some pairs (ai, bi) expressing the same
knowledge, where ai = (xi, vi) is the input sam-
ple, bi is the edit target, for the parameter matrix
W , to update the parameter, it should solve the
optimization problem:

min
W

N∑

i=1

||Wki − zi||22 + λ||W −W ′||22, (8)

where λ is a regularizer, and W ′ is original pa-
rameter, ki is the input vector of this layer corre-
sponding to ai and zi is the expected output vector
corresponding to bi, N is the number of pairs. The
optimization problem has a closed-form solution,
which can be expressed as the following:

W = (λW ′ +
N∑

i=1

zik
T
i )(λI +

N∑

i=1

kik
T
i )

−1, (9)

where I denotes the Identity Matrix.

3 Experiments

3.1 Implementation Details

The editing MLLMs in the experiment are BLIP2-
OPT 6.7B and MiniGPT4. BLIP2-OPT (Li et al.,
2023) adopts a frozen visual transformer (VIT) in
EVA-CLIP, frozen OPT as the LLM, and trains
a Query Transformer (Q-Former) to connect vi-
sual representation with language representation.
MiniGPT4 (Zhu et al., 2023) is similar to BLIP2,
utilizing the same frozen VIT in EVA-CLIP, the
same Q-Former and addition linear layer as the mul-
timodal interface, and a frozen Vicuna (Touvron
et al., 2023) as the LLM.

To simplify the calculation process and accord-
ing to the key-value theory (Geva et al., 2021),
we only consider modifying the parameter of the
linear mapping matrix W for the output of each
transformer layer. The hyperparameter knowledge
centers k is set to 50. We adopt BLIP2-FlanT5xxl
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Method Entity Relation Action
R T-G V-G L R T-G V-G L R T-G V-G L

BLIP2-OPT

FT 70.2 30.5 20.3 46.9 54.3 23.8 12.4 55.9 80.6 42.4 12.4 60.4
KE 74.1 70.0 60.8 88.4 65.8 59.1 43.6 90.2 85.4 84.4 45.2 86.5
MEND 90.7 85.0 67.4 89.6 80.4 77.4 55.3 95.3 98.2 96.5 51.4 94.3
SERAC 89.2 88.7 60.1 90.6 75.6 70.3 42.3 96.2 99.0 95.3 55.2 95.6
ROME 80.4 73.4 58.8 91.2 69.2 63.7 32.5 94.2 93.7 90.2 52.5 93.2
MLE 93.2 91.7 76.2 90.8 88.4 82.0 64.1 94.3 99.2 98.4 60.4 96.1

MiniGPT4

FT 22.2 10.2 5.6 40.6 17.7 14.7 1.2 53.2 26.1 21.9 3.7 70.5
KE 76.7 69.5 60.6 87.6 66.8 56.4 42.3 88.1 86.0 82.9 44.3 84.9
MEND 92.2 83.5 68.8 90.6 80.2 79.1 55.7 98.2 98.3 98.7 52.1 96.4
SERAC 91.5 88.4 60.5 90.5 79.5 72.7 45.2 97.9 99.5 97.7 57.6 94.9
ROME 81.9 74.7 61.4 91.1 70.9 66.2 32.3 94.8 95.7 90.9 34.0 95.4
MLE 92.9 91.8 78.6 92.6 91.4 81.7 66.5 96.3 99.4 99.0 62.0 97.9

Table 2: Main Multimodal Knowledge Editing Result on the M2Edit dataset. R refers to reliability, T-G refers
to text generality, V-G refers to visual generality, and L refers to Locality. The upper part shows the results on
BLIP2-OPT (Li et al., 2023) and the lower part on MiniGPT4 (Zhu et al., 2023).

as the MLLM to calculate the similarity between
samples. In addition, we randomly choose one sim-
ilar image sample for visual generality evaluation
and one synonymous prompt for text generality
evaluation. ALL experiments are conducted using
NVIDIA GeForce RTX 3090 GPUs.

3.2 Baselines

We evaluate the knowledge editing methods imple-
mented in the EasyEdit (Wang et al., 2023) toolkit
as baselines.

FineTune (FT). It directly fine-tunes all param-
eters of the last layer of the model for editing sam-
ples.

Model Editor Networks with Gradient De-
composition (MEND) (Mitchell et al., 2022a). It
learns to efficiently locate knowledge in the LLM,
and the knowledge is edited by leveraging the low-
rank decomposition of gradients.

Semi-Parametric Editing with a Retrieval-
Augmented Counterfactual (SERAC) (Mitchell
et al., 2022b). It is a memory-based editing method,
which consists of a scope classifier, a base model,
and a counterfactual model.

Knowledge Editor (KE) (Cao et al., 2021).
It locates the knowledge via a hypernetwork (a
bidirectional-LSTM) and predicts parameter up-
dates at inference time via constrained optimiza-

tion.
Rank-One Model Editing (ROME) (Meng

et al., 2022). It locates the knowledge in LLM
via Causal Mediation Analysis, the sixth layer of
MLP of LLM is updated by the least squares-based
method.

3.3 Comparisons Editing Methods

Table 2 shows that our method (MLE) outperforms
other methods on all knowledge types of data of
M2Edit in most indicators, which demonstrates the
effectiveness of our approach. In addition, from
the table, we notice:

• Our method achieves effective knowledge
editing performance across a wide range of
metrics and different types of knowledge data.
This indicates that our method can dynami-
cally adapt to different types of knowledge
data and effectively edit all three components
simultaneously.

• Our method shows the highest improvement
in visual generality compared to the baseline
model (with improvements ranging from 4.4
to 10.8 in different settings). This demon-
strates that collaborative editing of different
components of the MLLM can effectively en-
hance the model’s ability to generalize images,
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addressing the issue of insufficient generaliza-
tion in the editing.

3.4 Different Model Size for Editing
To evaluate the effectiveness of our method for
editing multimodal large models of different sizes,
we conducted experiments on LLava models of
various sizes. The experimental results are shown
in the table 3, which demonstrates that our method
yields consistent performance across multimodal
large models of different sizes.

Model Method Entity Relation Action
7B FT 18.7 15.2 24.3

MEND 79.5 63.3 81.0
ROME 75.1 61.8 76.4
MLE 81.2 70.2 83.6

13B FT 42.5 36.2 43.6
MEND 85.2 78.9 84.7
ROME 81.5 72.4 84.6
MLE 89.2 79.9 86.8

34B FT 53.2 37.7 44.5
MEND 87.0 79.2 85.3
ROME 82.2 74.4 85.0
MLE 88.4 79.5 85.9

Table 3: The effect of multimodal knowledge editing on
LLaVa (Liu et al., 2023) models of different sizes.

3.5 Distribution of Knowledge in MLLMs
We conduct the Causal Mediation Analysis on dif-
ferent components of the BLIP2-OPT and found
that the storage of different knowledge varies
across these components. Particularly in the LLM,
different knowledge is stored hierarchically. As
shown in Figure 4, it illustrates the AIE (average
indirect effect) of the state in the MLP (Multilayer
Perceptron) of LLM under different knowledge
types. Entity-related knowledge tends to be stored
in the foremost part of the LLM, while relation-
related knowledge is stored in the foremost section,
and event-related knowledge is stored in the rear-
most part of the large model.

This conclusion is further supported by the se-
lection of key knowledge layers. We divide the
layers in different components of MLLM (BLIP2-
OPT 6.7B) into four parts (Frontmost, Foremost,
Rearmost, and Last). As shown in Figure 5, it
illustrates the selection of different layers in vari-
ous components of the MLLM as key knowledge
layers for different knowledge center samples. It
can be observed that in LLM, entity knowledge

Figure 4: Causal Tracing Results for the LLM MLP of
MLLM. The horizontal axis represents different layers,
while the vertical axis represents the input characters.
The intensity of the bars indicates the probability of
generating the correct answer (after causal intervention).
Knowledge of different granularities (i.e., entity, rela-
tion, action) is scattered in different layers in the LLM.

samples tend to select layers in the Frontmost part,
relation knowledge samples tend to select layers in
the Foremost part, and action knowledge samples
tend to select layers in the Rearmost part. And
in the other two components, the editing layers of
different knowledge are also different.

3.6 The Importance for Editing Different
Components

As shown in Figure 6, it demonstrates the impact
of editing a single component on the editing of
three types of knowledge. We found that editing
the LLM yields better performance than other com-
ponents for all types of knowledge, which may
indicate that the large model stores a significant
amount of knowledge. For entity-related knowl-
edge, the decrease in performance is relatively min-
imal when editing other components, while for
action-related knowledge, the decrease is the most
significant. This suggests that a majority of action-
related knowledge is stored in the LLM, while en-
tity knowledge is stored relatively scattered.
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Figure 5: The distribution of the layers that need to be
edited for the knowledge centers in the four parts of
MLLM components.

4 Related Work

4.1 Model Knowledge Editing

Both the number of parameters and the amount of
training data used in large language models (LLMs)
are increasing (Sevilla et al., 2022). Knowledge is
constantly evolving, and for new knowledge that
is not present in the model, some researchers are
interested in studying knowledge editing (Meng
et al., 2022, 2023; Mitchell et al., 2022a; Wang
et al., 2024b,a; Hu et al., 2024; Cao et al., 2024;
Xie et al., 2025) techniques that involve precisely
incorporating knowledge entries into the model
without affecting its original performance. ROME
(Meng et al., 2022) and Memit (Meng et al., 2023)
try to locate the knowledge in LLM and then edit
them. KE (Cao et al., 2021) and MEND (Mitchell
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Figure 6: The result of MLE edits different components
of BLIP2-OPT 6.7B.

et al., 2022a) aim to use hypernetworks to identify
the parameters that need to be modified. During
prediction, they employ specific methods to out-
put the magnitude of modifications required for
those parameters. SERAC (Mitchell et al., 2022b)
achieves knowledge modification by constructing
an external memory cache and utilizing a scope
classifier to modify the knowledge. (Zheng et al.,
2023) proposes to leverage In-Context Learning
(Brown et al., 2020) to put new knowledge in the
prompts to empower models to exploit them. The
above methods are for text-only LLMs. Utilizing
multimodal data to perform knowledge editing on
an MLLM is more in line with real scenarios. The
aforementioned methods are all applied to single-
modal text-based large models using single-modal
data. However, performing knowledge editing on
multimodal large language models using multi-
modal data is more aligned with real-world scenar-
ios. MMEdit (Cheng et al., 2023) and MIKE (Li
et al., 2024) propose two new multimodal knowl-
edge editing datasets. However, they do not con-
sider the multi-granularity nature of knowledge in
the dataset. Furthermore, their research merely
transfers the aforementioned editing methods from
LLMs to a specific component in MLLMs. Al-
though they achieved promising performance, we
have discovered that simultaneously editing three
components can enhance the model’s generaliza-
tion on multimodal data.

4.2 Multimodal Large Language Model

Large language models (LLMs) (Brown et al.,
2020; Ouyang et al., 2022; Touvron et al., 2023;
Zhang et al., 2022) have demonstrated strong per-
formance on knowledge-intensive tasks (Voorhees
and Tice, 2000; Talmor et al., 2019; See et al.,
2017; Azaria et al., 2024; Yuan et al., 2025; Wang
et al., 2025). As a result, there have been efforts
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to train multimodal interfaces in large-scale image
caption data for large language models (LLMs)
(Alayrac et al., 2022; Li et al., 2023; Zhu et al.,
2023; Liu et al., 2023), enabling them to handle
different modalities simultaneously. These mod-
els are also known as multimodal large language
models (MLLMs) and have shown promising re-
sults on knowledge-intensive tasks involving mul-
tiple modalities, such as visual question answer-
ing (Marino et al., 2019; Antol et al., 2015) and
multimodal dialogue (Wang et al., 2021; Zheng
et al., 2022). These models typically consist of
three components: a modality encoder for encod-
ing data from modalities other than text (such as
visual encoders), a multimodal interface for trans-
forming representations from other modalities into
the space of the LLM, and an LLM, which handles
inputs from different modalities along with text
inputs to process multimodal tasks. Our method
edits knowledge of all components in the MLLM
collaboratively and we also analyze the distribution
of different knowledge across these components.

5 Conclusion

In this paper, we introduce a multimodal model
editing dataset M2Edit for the problem that exist-
ing datasets lack multi-granular knowledge, with
three types of knowledge: entity, relation, and ac-
tion. In addition, To address the issue of insufficient
generalization of existing methods on multimodal
data, we propose the Multimodal Location-based
Method (MLE). Experiments demonstrated the ef-
fectiveness of our method. Additionally, the ex-
periments revealed inconsistencies in the storage
regions of different types of knowledge within the
MLLM.

Limitations

This paper introduces the a multimodal knowledge
editing dataset M2EDIT, and a knowledge edit-
ing method specifically designed for multimodal
large-scale language models MLE. However, our
work has several limitations: (1) The granularity of
knowledge division can be further improved, such
as incorporating richer image information and more
nuanced textual semantics in multimodal events (Li
et al., 2020). (2) Due to the current limitations of
available open-source multimodal large-scale lan-
guage models, it remains a topic worth exploring
whether our method is applicable to larger-scale
multimodal language models (Alayrac et al., 2022;

Peng et al., 2023). Alternatively, the storage char-
acteristics and editing methods of knowledge are
also worth discussing in MLLMs that can handle
audio or video data (Tang et al., 2023; Wu et al.,
2023). (3) Additionally, our knowledge updating
method requires a locating step followed by an up-
dating step using a least squares-based approach.
It is possible to replace this updating method with
a more efficient and effective alternative.
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A Dataset Annotation Process

As illustrated in Figure 7, the annotation process
for our method can be broadly divided into three
stages: Data Filtering, Diverse Generation, and
Quality Control.

Data Filtering. Raw data is filtered based on
specific rules, which are generally defined as fol-
lows: For entity data, each entity must be associ-
ated with more than five images, and for relation
data, the head entity must have more than three
associated images. The image resolution must ex-
ceed 64 × 64 pixels. For entity data, entity names
must consist of a single word. Similarly, for re-
lation data, tail entity names must also be single
words. The number of samples within each sub-
class (defined by entity types, relation terms, or
action terms) must exceed 100 samples.

Diverse Generation. ChatGPT is employed to
generate questions based on relation terms and ac-
tion frameworks, as illustrated in Figure 7. Ad-
ditionally, it is instructed to produce synonymous
variations of these questions.

Quality Control. Finally, the generated ques-
tions and their associated samples are manually
screened based on the following criteria:

• High diversity: The generated questions must
exhibit significant variability and avoid mere
truncations or expansions.

• Low ambiguity: Relation terms and action
terms must be distinct, and the generated an-
swers should be as unique as possible.

• Simple answers: Answers should be concise
(preferably a single word) and should avoid
abstract vocabulary.

• High-quality images: Images should be di-
verse, and the content should not contain un-
clear text or other low-quality elements.

By following this process, we constructed our
dataset M2Edit.

B Algorithm of MLE

The overall process of the proposed method
MLE is shown in Algorithm 1.
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OVEN

FB15K-IMG

ImSitu

Entity

Relation

Action

Q: What is this animal?
A: capybara

(Francis Bacon, profession, scientist)

running

agent woman

place outside

           Data Filtering             Diverse Generation

What animal is presented in the image?
What kind of animal is this? 
What is the category of this animal?

            Quality       
      Control

What profession does the person in the
image have?
What job does the individual in
the picture do?

Can you describe what the [agent] is
doing at [place] to move?
What action is the [agent] undertaking
at [place] that involves moving quickly?

High diversity

Low ambiguity

Simple answers

High-quality images

Figure 7: Data Annotation Process Flowchart. First, raw samples of Entities, Relations, and Actions are filtered
from Oven, FB15K-IMG, and ImSitu based on predefined rules. Next, the raw data is transformed into QA-form
datasets using ChatGPT, incorporating diverse variations. Finally, high-quality data is manually curated to construct
the M2Edit dataset.

Algorithm 1 Multimodal Locate Then Edit Algo-
rithm
Require: Training Samples DT = {(xi, vi, yi)|i ∈ [1, N ]},

Testing Samples DI = {(xi, vi, yi)|i ∈ [1,M ]}, Center
Number k
For Training Samples

1: Apply K-means clustering to DT to get Knowledge Cen-
ter C = {cj = (xj , vj , yj)|j ∈ [1, k]}

2: Initialize the Key Knowledge Layer set Lkey

3: for cj in C do
4: for r in [1, Lllm] and s in [1, Lve] and t in [1, Lmi]

do
5: Edit the r-th layer of LLM, s-th layer of vision

encoder and t-th layer of multimodal interface of
MLLM to obtain Θ̂r,s,t(cj) # According to Equa-
tion 9

6: Calculate the editing score of this combination
7: end for
8: Calculate the combination of layers (rj , sj , tj) that

can maximize the editing score for knowledge cj
9: Add (rj , sj , tj) to Lkey # According to Equation 6

10: end for
For Testing Samples

11: for ai in DI do
12: Calculate the most similar cj in C # According to

Equation 7
13: Lkey(ai) = Lkey(cj) = (rj , sj , tj)

14: Edit MLLM to obtain Θ̂r,s,t(ai) # According to
Equation 9

15: end for
Ensure: New Demo Bank D

C Casual Mediation Analysis

Causal mediation analysis aims to identify the
causal relationship between different intermediate
states in models and the final output of the answer.
To trace the important state of the model always
needs to take three runs: a clean run that the model
can answer the question correctly with normal in-
put, a corrupted run that corrupts the input to make
the model get corrupted output, a corrupted-with-
restoration run that restores a certain state to judge
the restoring of the output.

Clean Run: For a sample (xi, vi, yi) ∈ D, a
clean run directly obtains the final answer (ŷi)
through the original MLLM (Θ), which is P(yi) =
Θ(xi, vi). The state representation of each layer
in LLM can be Hllm = {h(i,l)llm |i ∈ [1, Tllm], l ∈
[1, Lllm]}, where Tllm denotes the input token
length, Lllm denotes the layer numbers of LLM.
The same formula holds for the state representa-
tion in the visual encoder (Hve) and the multimodal
interface (Hmi).

Corrupted Run: In the corrupted run, the cor-
rupted output (o) is obtained by adding Gaussian
noise to the input image, which can be expressed as
Pcor(yi) = Θ(xi, vi + ϵ). The state representation
of each layer in different components of MLLM
change to be Ĥc, c ∈ {llm, ve,mi}.

Corrupted-with-restoration Run: In the
corrupted-with-restoration run, it replaces each
state representation in each component of the cor-
rupted run to clean run. In this way, we can
get the new prediction of yi as P

h
(i,l)
c

(yi) =
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Method Entity Relation Action
R T-G V-G L R T-G V-G L R T-G V-G L

BLIP2-OPT

FT 67.4 20.2 15.6 26.4 53.2 18.7 8.5 40.2 81.3 32.6 8.9 43.3
MEND 48.1 44.2 32.5 80.4 42.0 38.6 31.8 83.1 73.2 65.3 35.4 90.4
ROME 45.4 41.8 26.9 82.5 38.3 35.3 35.0 79.5 76.7 63.2 41.2 91.2
MLE 65.9 45.2 46.3 83.1 47.2 37.2 43.3 80.5 77.3 66.8 54.8 91.2

MiniGPT4

FT 24.2 5.8 5.2 26.3 15.0 4.7 1.4 38.2 28.9 22.3 5.4 54.3
MEND 53.7 50.2 34.4 82.4 46.7 38.4 24.7 88.2 63.4 55.3 43.2 92.3
ROME 55.2 48.6 32.4 84.0 48.2 39.1 27.2 89.2 72.3 59.4 48.9 93.3
MLE 61.3 51.9 43.8 82.6 51.3 39.5 34.3 90.1 74.7 61.5 53.7 93.5

Table 4: Batch Editing Results in M2Edit for Multimodal Knowledge Editing (The editing of 500 samples in a
single batch).

Θ
clean h

(i,l)
c

(xi, vi+ϵ), c ∈ {llm, ve,mi}. The in-

direct effect (IE) of each state representation h
(i,l)
c

can be: IE = P
h
(i,l)
c

(yi) − Pcor(yi). Averaging
over a sample of statements can obtain the average
indirect effect (AIE).

D Batch Edit Result

Following the batch editing approach (Meng et al.,
2023), we evaluated the performance of our method
after modifying 500 samples, as shown in Fig-
ure 4. The results demonstrate that our method
still achieves overall performance superior to the
baseline, particularly in terms of visual generality
performance. However, since our approach is not
specifically designed for batch editing, its perfor-
mance does experience some decline. Nonetheless,
we consider this level of degradation to be within
an acceptable range.
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