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Abstract

Retrieval of previously fact-checked claims
is a well-established task, whose automation
can assist professional fact-checkers in the ini-
tial steps of information verification. Previ-
ous works have mostly tackled the task mono-
lingually, i.e., having both the input and the
retrieved claims in the same language. How-
ever, especially for languages with a limited
availability of fact-checks and in case of global
narratives, such as pandemics, wars, or inter-
national politics, it is crucial to be able to re-
trieve claims across languages. In this work,
we examine strategies to improve the multi-
lingual and crosslingual performance, namely
selection of negative examples (in the super-
vised) and re-ranking (in the unsupervised set-
ting). We evaluate all approaches on a dataset
containing posts and claims in 47 languages
(283 language combinations). We observe that
the best results are obtained by using LLM-
based re-ranking, followed by fine-tuning with
negative examples sampled using a sentence
similarity-based strategy. Most importantly, we
show that crosslinguality is a setup with its own
unique characteristics compared to the multi-
lingual setup.1

1 Introduction

Fighting online mis/disinformation is a challenging
task for professional fact-checkers and human mod-
erators alike, given that false information spreads
six times faster than true information (Vosoughi
et al., 2018). In the fact-checking pipeline, one
of the tasks that can remarkably speed up opera-
tors’ activity and support their work is previously
fact-checked claim retrieval (PFCR), defined as
follows (Pikuliak et al., 2023; Shaar et al., 2020):
“Given a text making an input claim (e.g., a social
media post) and a set of previously fact-checked

*These authors contributed equally to this work.
1§ Code and data are publicly available at: https://gi

thub.com/kinit-sk/multiclaim-emnlp2025

Figure 1: An example of an input post paired with a
previously fact-checked claim related to the same event
(positive pair) and a claim that is similar to the input
post but unrelated (negative pair), which can be used
to fine-tune a retriever. Redacted examples from the
MultiClaim dataset (Pikuliak et al., 2023).

claims, the task is to rank the fact-checked claims
so that those that are the most relevant with respect
to the input claim are ranked as high as possible.”

The task, whose goal is to avoid fact-checking
the same claim again and taking advantage of exist-
ing verified knowledge, is meant to address differ-
ent operators’ needs. For example, a fact-checking
agency may want to reuse the internal knowledge
collected over the years mainly in a monolingual
fashion, i.e., when input and retrieved claims are in
the same language. Another option may concern
cases in which a fact-checking agency needs to ver-
ify a global narrative (e.g., related to COVID-19)
and is interested in retrieving already fact-checked
claims in any language, regardless of the language
of the input claim. This case requires a multilingual
approach. Finally, fact-checkers may be aware of
the fact that a narrative arising in their country was
already present and debunked in other countries (or
in other languages of their country), so they need
to retrieve fact-checked claims in a language that
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is different from their input claim. In this case the
required approach is crosslingual. Figure 1 illus-
trates this last case, with an input post in Spanish,
the associated fact-checked claim in Portuguese
and a similar but unrelated claim in English, which
can make it difficult to retrieve the correct one.

Most prior works such as Shaar et al. (2020)
and Hardalov et al. (2022) tackled the task mono-
lingually focusing on English. Few recent works
have proposed to extend the task to multilingual se-
tups (Pikuliak et al., 2023; Panchendrarajan et al.,
2025), following the initiatives by international
fact-checking agencies aimed at sharing and con-
necting the different databases of verified informa-
tion.2 Only two works so far addressed the task
in crosslingual setups, with the input claim being
always in a different language than the retrieved
fact-checked claims (Pikuliak et al., 2023; Vykopal
et al., 2025). Both confirm that crosslingual PFCR
is a very challenging task, and show the potential
of translating posts and fact-checks into English,
especially for low-resource languages.

Despite the promising performance obtained
through translation, however, a range of new mul-
tilingual embedding models (e.g., mE5; Wang
et al., 2024b) and large language models (e.g.,
Qwen; Yang et al., 2024) has been released, which
could greatly benefit crosslingual tasks. Further-
more, prior works have shown a positive impact of
fine-tuning these models on PFCR data, specifically
when using (multiple) negative examples (Pikuliak
et al., 2023; Neumann et al., 2023). However, spe-
cific strategies tailored to the task and focused on
crosslingual retrieval were left unexplored.

To address this gap, we compare supervised and
unsupervised PFCR in multilingual and crosslin-
gual setups, identifying the best strategies and ex-
perimental settings for the task without resorting to
translation. In particular, we investigate three main
aspects: (RQ1) how the different text embedding
models for retrieval and re-ranking perform on the
task, (RQ2) what strategies should be used to select
negative examples in a supervised framework and
how these compare to unsupervised approaches,
and (RQ3) what the specifics of crosslingual setup
are compared to the multilingual one. We carry out
our experiments on a dataset derived from the pub-
licly available MultiClaim dataset (Pikuliak et al.,
2023). Even if we use a pre-existing dataset, we
curate it specifically for multilingual and crosslin-

2https://www.poynter.org/ifcn/

gual PFCR obtaining 283 post–fact-check language
combinations. In particular, we ensure proper data
splits of not only posts, but also fact-checks to pre-
vent data contamination, which was not done in
prior works and thus can be considered an addi-
tional contribution of this work. We publish our
subset and data splits to ensure reproducibility.

2 Related Work

Previously fact-checked claim retrieval, also known
as claim matching or claim detection, is a standard
task in the fact-checking pipeline, both manual and
automated (Panchendrarajan and Zubiaga, 2024;
Vykopal et al., 2024), and it can also serve as a
signal of content credibility (Srba et al., 2024).
It was addressed by a series of CheckThat! Lab
shared tasks organized at CLEF in 2020 (Barrón-
Cedeño et al., 2020), 2021 (Shaar et al., 2021),
and 2022 (Nakov et al., 2022); most recently, it
was also part of a SemEval 2025 shared task (Peng
et al., 2025).

Due to the relative popularity of the task, there is
a range of relevant existing datasets, as summarized
in recent surveys by Panchendrarajan and Zubiaga
(2024) and Srba et al. (2024). These resources
differ in the number of included languages, data
volume, means of identification of pairs between in-
put social media posts and fact-checked claims, and
in sources of input posts. The highest number of
input posts is in CrowdChecked (≈300k; Hardalov
et al., 2022) and MuMiN (≈21M; Nielsen and Mc-
Conville, 2022); however, they either contain a high
level of noise in the identified pairs (the former)
or do not explicitly provide the pairs (the latter).
The most linguistically diverse datasets are Mu-
MiN with 41 languages (Nielsen and McConville,
2022), MultiClaim with 27 languages in posts and
39 languages in fact-checked claims (Pikuliak et al.,
2023), and MMTweets with 4 languages in posts
and 11 languages in fact-checked claims (Singh
et al., 2024). Other relevant multilingual datasets
(focusing on distinct but related tasks) include
the EUvsDisinfo dataset of disinformation articles
matched with trustworthy articles from credible
sources (Leite et al., 2024) and MultiClaimNet, a
dataset that combines three existing datasets (in-
cluding MultiClaim) and enriches them with iden-
tified claim clusters (Panchendrarajan et al., 2025).
Despite this linguistic diversity, crosslingual re-
trieval remains underexplored for the task, since
the identified pairs of fact-checks and input posts
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are often in the same language.
Regarding the approaches employed for PFCR,

the existing works most typically employ one or
more text embedding models to encode input posts
and claims for similarity search (Shaar et al., 2021;
Pikuliak et al., 2023; Martín et al., 2022). Oc-
casionally, a re-ranker is employed (Shaar et al.,
2021), the models are fine-tuned for the task (Piku-
liak et al., 2023; Kazemi et al., 2021), or both
approaches are combined (Hardalov et al., 2022).
Most recently, large language models (LLMs) have
been also employed in zero- and few-shot set-
tings for PFCR using a range of prompting strate-
gies (Vykopal et al., 2025; Pisarevskaya and Zu-
biaga, 2025), highlighting that no single strategy
proved as the best overall and also that the per-
formance is lower for low-resource languages. Fi-
nally, Neumann et al. (2023) proposed to use mul-
tiple negative examples during fine-tuning of the
embedding models, improving overall retrieval per-
formance. In our work, we extend this approach by
exploring and comparing a wider range of selection
strategies and fine-tuned models.

3 Dataset

To perform our experiments, we extract a subset of
the MultiClaim v2 dataset.3 MultiClaim v2 dataset
is composed of pairs of posts and fact-checked
claims, which can be in different languages, pro-
vided that each post is linked to at least one claim
(see Figure 1). It is constructed by extracting claims
from fact-checking articles obtained through the
Google Fact-Check Explorer API or via custom
scrapers and links to posts from the ClaimReview
schema,4 provided directly by the fact-checkers in
the articles. Additional pairs are created through
fact-checking labels on the Meta platforms (i.e.,
Facebook and Instagram).

To curate a subset of data for multilingual and
crosslingual PFCR, we work only with posts’ text
(i.e., omitting text extracted from OCRed images as
it is often noisy) in their original languages. We in-
clude only languages originally represented with at
least 200 posts and keep only fact-checked claims
that have at least one paired post.5

Next, we split posts, fact-checked claims, and

3MultiClaim v2 is an updated version of the original Mul-
tiClaim dataset (Pikuliak et al., 2023) and is available at:
https://doi.org/10.5281/zenodo.15413169

4https://www.claimreviewproject.com/
5This leads to a cut-off of 180 posts after additional filter-

ing to ensure non-overlapping fact-checks in the data splits.

Multilingual Crosslingual

# posts 55,421 7,975
training set 44,553 6,343
development set 5,185 782
test set 5,683 850

# fact-checks 52,911 7,869
training set 41,060 6,118
development set 5,706 850
test set 6,145 901

# pairs 63,913 9,066
training set 51,658 7,261
development set 5,880 876
test set 6,375 929

Table 1: Distribution of social media posts, fact-checked
claims, and their pairs across train, development, and
test splits for the multilingual and crosslingual setups.

pairs into training, development, and test sets strat-
ified by language by withholding 10% of the data
for development and 10% for testing. We also en-
sure that no fact-checked claim appears in more
than one split (i.e., not only posts are split, but also
the search spaces differ across the splits to prevent
data contamination and to have a less biased esti-
mate of the true retrieval performance). The data
distribution is shown in Table 1. For the full list of
supported languages and their distribution across
posts and fact-checks, see Table 4 in Appendix A.

With 47 languages in total (30 languages rep-
resented in the posts, 46 languages in the fact-
checked claims) and 283 language combinations,
the experiments reported in this paper are carried
out, to the best of our knowledge, with the most
linguistically diverse dataset for PFCR to date.

4 Methodology

In line with previous work, we cast PFCR as a rank-
ing task. Specifically, given a post p and a set of
fact-checked claims c1, ..., cn ∈ C that includes
the gold claim cp for the given post, the goal is
to rank the fact-checked claims so that cp ranks
as high as possible. We design unsupervised and
supervised approaches, and for both of them we
preliminarily compute and index, for each post and
fact-checked claim in the dataset, the correspond-
ing text embedding representation.

In the unsupervised setting, in the first stage,
we use similarity-based dense retrieval to rank the
available fact checks. In a further step, we ap-
ply re-ranking to the retrieved fact-checks in or-
der to improve accuracy. To this end, we evalu-
ate two re-ranking techniques: cross-encoder re-
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ranking and LLM-based re-ranking (for a compari-
son, see Déjean et al., 2024). While cross-encoder
re-rankers (Nogueira and Cho, 2020) work by com-
paring query-document pairs and produce a relat-
edness or similarity score as output, LLM-based
re-rankers (Muennighoff, 2022; Sun et al., 2023)
are instructed to generate a ranking of a set of docu-
ments given a query, thus harnessing the reasoning
capabilities of the underlying model.

In the supervised setting, both positive and neg-
ative examples are required to fine-tune text em-
bedding models. Although positive examples can
be easily obtained from the pairs of posts and fact-
checks in the dataset, there is not a single and well-
established way to select negative examples for
training. Previous work has mainly focused on ran-
dom sampling (Pikuliak et al., 2023), i.e., creating
a negative example by pairing a given post with
a fact-checked claim randomly picked from those
not associated with the input post. Albeit straight-
forward, such a strategy leads to rapid saturation of
the training set because negative and positive exam-
ples can be easily discriminated after a few training
iterations.6 We therefore design two approaches to
mitigate training set saturation during fine-tuning
through the sampling of challenging negative pairs.

We experiment by sampling topically relevant
(topic) and semantically similar (similarity)
negative pairs, using the random strategy as a base-
line for comparison. An example of negative pair
based on similarity is reported in Figure 1, with
the fact-checked claim sharing terms such as ‘abor-
tion(s)’ and ‘9 months’ with the input post. This
example is very challenging for the model, since it
should be able to discriminate between measures
on abortion proposed in California and in Ohio. On
the contrary, pairs sampled randomly may be fully
unrelated, and the classifier may learn to discrimi-
nate them simply because they are about different
topics. Furthermore, we investigate the impact of
using a varying number k of negative examples on
performance across our negative sampling strate-
gies and the random sampling baseline.

For topic, we compute text embeddings for
both posts and fact-checked claims, cluster them
through topic modeling,7 and then create k nega-
tive pairs by selecting and associating to the post
a number k of fact-checks at random from within

6This is also likely to happen if we consider the set of
(filtered) claims without any paired post as negative examples.

7We use BERTopic (Grootendorst, 2022) for topic model-
ing and multilingual-e5-large for text embeddings.

the same cluster to which the post belongs.8 For
similarity, we compute the cosine similarity be-
tween each post and all the fact-checked claims and
create k negative pairs by associating each post to
the top-k most similar fact-checks. In creating all
negative pairs, we ensure that each sampled fact-
checked claim is not already associated with the
post as a positive pair. To avoid costly computa-
tion during fine-tuning and ensure reproducibility,
we create negative examples across strategies of-
fline and serialize them to be used at training time.
Details and hyper-parameters are in Section 5.2.

5 Experimental Setup

We experiment with unsupervised retrieval
with and without re-ranking (Section 5.1) and
supervised retrieval using three negative sampling
strategies and a varying amount of negatives
(Section 5.2). We evaluate these approaches
on the test set in two main data settings: i)
a multilingual setting, without distinction
between monolingual and crosslingual pairs,
and ii) a crosslingual setting, including only
post–fact-check pairs in different languages.
We rely on two widely used text embedding
models of varying size to compare the two ap-
proaches, namely multilingual-e5-large and
paraphrase-multilingual-mpnet-base-v2,
and further compare the performance of 14
additional models in the unsupervised setting.9

All are evaluated using Pair Success at 10 (S@10)
and Mean Reciprocal Rank at 10 (MRR@10). The
former measures, for each post, whether the paired
claim appears in the top-10 retrieved results, while
the latter also considers its position (i.e., rank).

5.1 Unsupervised Text Embedding Models

We select 16 among the most recent, top perform-
ing multilingual embedding models, resulting
in a diverse set of architectures, pre-training
techniques, number of parameters (278M–7B) and
data, including the use of synthetic data. Models
have been selected based on their performance
for the ‘Retrieval’ task in the Multilingual Text

8In the case there are ≤ k fact-checked claims in the
cluster, we draw them from a cluster of uncategorized fact-
checks (i.e., without assigned topic) as a fallback. This is
similar in spirit to random selection.

9We select two widely-used models for the su-
pervised setting due to computational constraints.
paraphrase-multilingual-mpnet-base-v2 was se-
lected as it was the best multilingual model in Pikuliak et al.
(2023).
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Embedding Benchmark10 (MTEB; Enevoldsen
et al., 2025). Experiments11 are run on both the
test set (in order to ensure fair comparison with
the supervised approach) and the full set of claims
in the dataset. This enables us to estimate the
scalability capabilities of the models. In fact, while
in the test set the set of claims C consists of over
6,100 claims (Table 1), in the full set the model is
required to rank over 52,000 claims for each input
post. To this end, we test traditional models like
paraphrase-multilingual-mpnet-base-v2
and multilingual-MiniLM-L12-v2 (Reimers
and Gurevych, 2019), encoder-based
models like bge-m3 (Chen et al., 2024),
jina-embeddings-v3 (Sturua et al., 2024),
multilingual-e5-large (Wang et al., 2024b),
snowflake-arctic-embed-l-v2.0 (Yu et al.,
2024), and gte-multilingual-base (Zhang
et al., 2024), as well as LLM-based models
like bge-multilingual-gemma2 (Chen et al.,
2024), E5-mistral-7b (Wang et al., 2024a),
Linq-Embed-Mistral (Choi et al., 2024),
KaLM-embedding-multilingual-mini-v1 (Hu
et al., 2025), and gte-Qwen2-7B-instruct (Li
et al., 2023b). Where available, we include
instructed versions. While prioritizing open
source and research models, we also test Ope-
nAI’s text-embedding-3-large (OpenAI,
2024) as a benchmark. For re-rankers, we
use bge-reranker-v2-m312 (Li et al., 2023a)
(cross-encoder) and RankGPT (Sun et al., 2023)
(LLM-based). We test the RankGPT re-ranker
on the three best performing embedding models
in retrieval (on the test set).13 The only hyper-
parameter for re-ranking, i.e., the top-n claims to
re-rank, has been explored in a preliminary phase,
experimenting with n ∈ [20, 30, 50, 100]. We
found 20 and 30 to be the best values. To not intro-
duce additional burden to our already composite
experimental setup, throughout the paper we report
re-ranking results with top-n = 30.

10https://huggingface.co/spaces/mteb/leaderboa
rd (last visited: 05/13/2025).

11All experiments have been conducted on a single Nvidia
A40 GPU, equipped with 48 GB RAM.

12https://huggingface.co/BAAI/bge-reranker-v
2-m3

13This was motivated by computational and funding rea-
sons, as each test set experiment costed approximately $50.
The three models have been chosen because of their high per-
formance in pure retrieval and to enable comparison with the
supervised approach (multilingual-e5-large).

5.2 Supervised Text Embedding Models
We employ multilingual-e5-large and
paraphrase-multilingual-mpnet-base-v2 as
our pretrained text embedding models to fine-tune.
We select them since they are widely used models,
represent varied parameter sizes (278M–560M),
and can be fine-tuned on an average GPU14 without
the need for a costly computing infrastructure. We
use multiple negatives ranking loss and perform
hyper-parameter tuning for selecting the best value
for the learning rate (among 1e-9, 5e-9, 1e-8,
5e-8, 1e-7), the batch size (4, 8, 16), and warm-up
steps (800, 1,600) based on S@10 multilingual
performance on the development set for both
models using all negative sampling approaches.
We select 1e-8 as the learning rate, 8 as batch
size, and 1,600 as warm-up steps. The full list of
hyper-parameters is reported in Appendix C.

To select the model configurations to be used
for test set evaluation, we further investigate which
number k of negative examples provides the best
overall performance across models and the three
negative sampling strategies. For stability, we
run each model configuration three times, each
with a different seed, and report average results.
We experiment with k ∈ [1, 2, 3, 4, 5, 10] and
find that using k = 10 negative examples pro-
vides the best overall performance for all strate-
gies on the development set. As shown in Fig-
ure 2 for the fine-tuned multilingual-e5-large
model, similarity consistently outperforms both
the topic and random strategies according to the
S@10 multilingual score, with the best results ob-
tained when using 10 negatives. These results are
consistent with those obtained when fine-tuning
paraphrase-multilingual-mpnet-base-v2 (cf.
Figure 15 in Appendix C) and motivate our selec-
tion of k = 10 for test set evaluation.

6 Results and Discussion

In this section, we present the results on the test set
of unsupervised (Section 6.1) and supervised (Sec-
tion 6.2) approaches, along with a detailed discus-
sion. We then compare the approaches and discuss
limitations and future directions (Section 6.3).

6.1 Unsupervised Results
Retrieval In the multilingual setting (Figure 3
(a), purple bars) text-embedding-3-large leads
the ranking, with bge-multilingual-gemma2

14We rely on a single Tesla V100-SXM2-32GB GPU.

29061

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/BAAI/bge-reranker-v2-m3
https://huggingface.co/BAAI/bge-reranker-v2-m3
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0.85

0.84

without fine-tuning

k (# negative examples)

S@
10

random similarity topic

Figure 2: Multilingual S@10 performance across neg-
ative sampling strategies and number of negative ex-
amples k for the fine-tuned multilingual-e5-large
model on the development set. Reported results are av-
eraged over three runs using different seeds. The dashed
line indicates results when no fine-tuning is conducted.

as the best open source model and
multilingual-e5-large as the best lightweight
model. This trend is consistent across the test and
the full data settings, as well as across both metrics
(for all details on multilingual evaluation, see Table
5 and Figure 5 in Appendix B). The crosslingual
setting (Figure 3 (b), purple bars) which proved
more challenging, provides a different picture,
with bge-multilingual-gemma2 scoring the best
result on the test set and gte-multilingual-base
ranking first on the full set of claims. The two
models outperform text-embedding-3-large
by a margin of 3.27 and 3.58 MRR@10 points
respectively. Also in this case, results are con-
sistent across the two adopted metrics (for all
details on crosslingual evaluation, see Table 6
and Figure 6 in Appendix B). In order to better
understand models’ performance, we further
filtered the results by removing pairs containing a
post or a claim in English, which is the dominant
language in the dataset. In this setting, open-source
models like snowflake-arctic-embed-l-v2.0
and bge-multilingual-gemma2 significantly
outperform text-embedding-3-large. Results
are reported in Figure 3 (c), purple bars.

Re-ranking For cross-encoder re-ranking, re-
sults show different effects across models and lin-
guistic settings. In the multilingual setting (see
Figure 3 (a), orange bars), the effect of re-ranking
is nuanced: in terms of MRR@10, and compared
to pure retrieval, cross-encoder re-ranking does not
yield better rankings, except for low-performing
models (for the complete results on multilingual re-
ranking, please refer to Table 5 and Figures 7, 8, 9

and 10 in Appendix B). This trend is also reflected
by the S@10 metric, which shows that re-ranking
boosts the performance of weaker and moderately
increases performance in mid-performing models,
but it reduces the performance of high-performing
models. In fact, in the multilingual setup, cross-
encoder re-ranking has an average MRR@10 gain
of 0.60 and 0.02 points on the test and the full
set respectively, while S@10 shows an average in-
crease of 1.37 and 1.77 points, respectively. The
effects of re-ranking, by contrast, emerge much
more clearly in the crosslingual setting (Figure 3
(b), orange and cyan bars). In fact, in this case
cross-encoder re-ranking proves effective in boost-
ing performance across all models, both in terms
of MRR@10 and S@10, thus yielding better qual-
ity rankings. Indeed, the average gain is 8.11 and
7.04 points for MRR@10 (see details in Tables 12
and 14 in Appendix B) and 5.32 and 4.93 points
for S@10 (Tables 11 and 13 in Appendix B). A
comparable performance increase can be observed
in the crosslingual setup when English data are ex-
cluded (see Figure 3 (c), orange bars), with gains of
8.08 (test) and 5.91 (full) MRR@10 points. LLM-
based re-ranking, on the other hand, demonstrates
superior performance in multilingual, crosslingual,
and crosslingual without English setups. It results
in an average increase of 4.54, 13.80, and 6.93
MRR@10 points respectively, besides yielding the
best overall results (Figure 3, cyan bars).

To better understand the results, we also con-
ducted a correlation analysis between a) the embed-
ding dimension and b) the number of parameters
of each embedding model on the one hand, and the
observed performance on the other. The analysis,
conducted using Pearson’s r coefficient, shows that
there is no correlation between these variables and
the observed performance (Table 8 in Appendix B).

Overall, our unsupervised experiments high-
light the following relevant trends: a) with
the exception of bge-multilingual-gemma2,
which shows high performance in both contexts,
models that perform best in the multilingual
setting do not always perform equally well in the
crosslingual setting, and vice versa. This, once
again, reflects the uniqueness of the crosslingual
context. Moreover, b) smaller, encoder-only em-
bedding models (like multilingual-e5-large
and gte-multilingual-base) often chal-
lenge or even outperform larger decoder-only
models (like bge-multilingual-gemma2 or
text-embedding-3-large) in the task of claim
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Figure 3: Test set performance (MRR@10) for retrieval and re-ranking across models in multilingual (a), crosslin-
gual (b) and crosslingual no eng (i.e., without English) (c) settings. Results refer to 6,375 pairs (a), 929 pairs (b),
and 118 pairs (c), and are sorted by crosslingual retrieval performance.

retrieval, in particular in the crosslingual setup.
When combined with the above-mentioned
correlation analysis, this indicates that model size,
embedding dimensionality, and model architecture
do not impact significantly performance, suggest-
ing that other factors, such as language coverage,
data variety, and the used pre-training method
may have greater influence on results. Finally, c)
re-ranking proves effective in many cases, although
its contribution is more evident in the crosslingual
setup. Albeit tested on a limited number of models,
LLM-based re-ranking yields major performance
improvements with respect to cross-encoder
re-ranking, but at a higher computational cost.

6.2 Supervised Results

For supervised experiments, we observe that fine-
tuning the models using similarity as a nega-
tive sampling strategy consistently improves the
MRR@10 performance over the topic approach
as well as the random selection baseline in both
multilingual and crosslingual settings (Table 2).
This is further confirmed by S@10 scores (Ta-
ble 9 in Appendix D). Among the two models,
multilingual-e5-large provides the best over-
all results across all strategies, showing an im-
provement of 1.45 and 5.31 MRR@10 points and
0.94 and 4.96 S@10 points over random when us-
ing the similarity strategy in multilingual and
crosslingual setups, respectively. Although also
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the topic strategy outperforms the commonly em-
ployed random selection baseline (Pikuliak et al.,
2023), it still lags behind the similarity approach
(by 0.41 and 0.54 MRR@10 points and 0.25 and
0.38 S@10 points in multilingual and crosslingual
setups). The similarity sampling strategy there-
fore appears to be a viable approach for selecting
hard negative examples for fine-tuning due to stable
performance improvements over the other methods.
Furthermore, it does not rely on the costly com-
putation of topic clusters of the topic strategy to
draw negative examples from (Section 4).

Looking at the crosslingual MRR@10 perfor-
mance across strategies and the number of nega-
tive examples (see Figure 4), we observe a large
performance gain between the proposed strategies
and the random baseline and the unsupervised set-
ting over all k values (results using S@10 show
the same trend, see Figure 16 in Appendix C). The
topic strategy seems more effective when few neg-
ative examples are used for fine-tuning (i.e., ≤ 5),
whereas similarity confirms to be the most ef-
fective approach in the PFCR task when sampling
more negative examples for each pair. Overall,
compared to using multilingual-e5-large in an
unsupervised fashion, fine-tuning it with just 10
negative examples selected using the similarity
strategy leads to a crosslingual MRR@10 score
of 0.4947 (+6.24 points) and a crosslingual S@10
score of 0.7076 (+7.52 points). This indicates that
our approach is effective even in the more chal-
lenging crosslingual setup. When excluding the
highly-represented English language in the data
from crosslingual evaluation (i.e., “crosslingual
(no eng)” in Table 2), we observe the same trend,
with topic and similarity achieving large per-
formance gains compared to random.

6.3 Comparing Unsupervised and Supervised
Approaches

Overall, by comparing the test results for
the unsupervised and supervised approaches
obtained by the best shared model (i.e.,
multilingual-e5-large, see Table 2 and
Table 9 in Appendix D), we observe that in
both the multilingual and crosslingual setups
the best results in terms of MRR@10 score are
obtained by using LLM-based re-ranking (0.8042
and 0.6140, respectively). This is confirmed
also by S@10 performance, with 0.8324 and
0.7283 S@10 for the multilingual and crosslingual
setups, respectively. The second best approach is

1 2 3 4 5 10

0.43
0.44
0.45
0.46
0.47
0.48
0.49

without fine-tuning

k (# negative examples)

M
R

R
@

10

random similarity topic

Figure 4: Crosslingual MRR@10 performance across
negative sampling strategies and number of negative ex-
amples k for the fine-tuned multilingual-e5-large
model on the test set. Reported results are averages
over three runs using different seeds. The dashed line
indicates results when no fine-tuning is conducted.

cross-encoder re-ranking, which proves effective
in producing better rankings than supervised
approaches, especially in the crosslingual setup
(0.5442 MRR@10). However, we observe that fine-
tuning with negative examples sampled using the
similarity strategy leads to better MRR@10 and
S@10 performance than cross-encoder re-ranking
in the multilingual setup (0.7768 MRR@10 and
0.8228 S@10, respectively). All other approaches
follow these two, with plain unsupervised retrieval
showing the worst (or the second worst) results
in both scenarios, namely obtaining MRR@10
scores of 0.7475 in the multilingual setup and
0.4323 in the crosslingual setup, and S@10
scores of 0.7971 in the multilingual setup and
0.6324 in the crosslingual setup. As regards
paraphrase-multilingual-mpnet-base-v2,
results confirm that fine-tuning with similarity-
sampled negatives is the best strategy in the
supervised scenario (0.5537 and 0.3500 MRR@10
and 0.6320 and 0.5157 S@10 in multilingual and
crosslingual settings, respectively), but retrieval
in an unsupervised fashion provides better perfor-
mance (0.5690 and 0.3547 MRR@10 and 0.6416
and 0.5188 S@10), ranking after cross-encoder
re-ranking (0.6485 and 0.4482 MRR@10 and
0.6796 and 0.5779 S@10). We speculate that this
could be due to the small parameter size of this
model, which could limit the learning of nuanced
patterns from negative and positive pairs.

Moreover, in both unsupervised and supervised
approaches, we observe a notable difference in the
contribution of re-ranking and negative sampling,
with a much more significant benefit in the crosslin-
gual context. This shared pattern highlights the
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Model Strategy Multilingual Crosslingual Crosslingual (no eng)

multilingual-
e5-large

re-rank 0.7323 0.5442 0.5653
retrieve 0.7475 0.4323 0.4543
random 0.7623±0.0002 0.4416±0.0007 0.4810±0.0017

topic 0.7727±0.0001 0.4893±0.0004 0.5349±0.0000

similarity 0.7768±0.0001 0.4947±0.0001 0.5269±0.0004

llm re-rank 0.8042 0.6140 0.5797

paraphrase-
multilingual-
mpnet-base-v2

random 0.5202±0.0003 0.3177±0.0001 0.3518±0.0000

topic 0.5412±0.0002 0.3367±0.0001 0.3729±0.0004

similarity 0.5537±0.0002 0.3500±0.0003 0.3961±0.0002

retrieve 0.5690 0.3547 0.3975
re-rank 0.6485 0.4482 0.5080

Table 2: Multilingual, crosslingual, and crosslingual (no eng) MRR@10 performance across negative sampling
strategies (random, topic, similarity) for fine-tuned models on the test set compared to unsupervised strategies
(retrieve, cross-encoder re-rank, llm re-rank). Results are ordered by increasing multilingual score; for the
supervised setup, we report averages with standard deviation over three runs using different seeds.

Language Strategy Monolingual Crosslingual

English

retrieve 0.7173 0.4024
random 0.7265±0.0003 0.4627±0.0015

topic 0.7325±0.0002 0.5024±0.0005

similarity 0.7378±0.0006 0.5159±0.0005

re-rank 0.6958 0.5503
llm re-rank 0.7661 0.5919

Hindi

random 0.8214±0.0010 0.4531±0.0010

retrieve 0.8005 0.4817
topic 0.8328±0.0001 0.4974±0.0001

similarity 0.8423±0.0006 0.5060±0.0001

re-rank 0.8036 0.5817
llm re-rank 0.8507 0.6335

Table 3: Monolingual and crosslingual MRR@10
performance across negative sampling strategies
(random, topic, similarity) for fine-tuned models
on the test set compared to unsupervised strategies
(retrieve, cross-encoder re-rank, llm re-rank)
for the most represented languages in terms of post–
fact-check pairs (i.e., English and Hindi) using the
multilingual-e5-large model. Results are ordered
by increasing crosslingual score; for the supervised
setup, we report averages with standard deviation over
three runs using different seeds.

specificity of the crosslingual context and will be
the subject of further investigation.

Overall, our experiments show that fine-tuning
embeddings models with negative sampling leads
to significant performance improvements, more evi-
dent for the crosslingual setup, but requires enough
training data for sampling and implies an additional
computational effort in the fine-tuning step. Un-
supervised PFCR performance, instead, is more
dependent on the re-ranking method: while cross-
encoder re-ranking underperforms the supervised
approach, LLM-based re-ranking yields the best
overall performance, but comes at a high compu-
tational cost. On the other hand, the unsupervised

approach does not require training data and scales
well on larger amounts of data.

Additionally, we investigate the monolingual
performance for English and Hindi, the two most
represented post–fact-check language pairs in the
dataset (Table 3). Also in this case, empirical
observations confirm the already observed trends,
namely that supervised approaches (in particular
with similarity-based negative sampling) pro-
duce better results in a mono- or multilingual setup,
whereas unsupervised, re-ranking based strategies
prove more effective in the crosslingual setup.

7 Conclusion

We carried out an extensive evaluation of unsuper-
vised and supervised PFCR focusing on multilin-
gual and crosslingual settings. We showed that
results in the two settings are remarkably differ-
ent, with crosslingual retrieval being much more
challenging. Unsupervised learning with LLM-
based re-ranking yields the best results, even out-
performing the best supervised approach. Overall,
our study highlights the importance of a thorough
evaluation of embedding models and the impact of
re-ranking and negative sampling on retrieval per-
formance. We believe that this kind of work could
guide the development of PFCR systems tailored to
fact-checkers’ needs (multilingual vs crosslingual)
and to the available computational resources.

Limitations

Despite the extensive set of experiments and com-
parisons, this work still has some limitations.
A general issue affecting datasets like Multi-
Claim, which are created by merging different fact-
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checkers’ databases, is the possibility that some
pairs of posts and fact-checked claims have not
been annotated as positive pairs, even if they should.
This is mainly due to the fact that different fact-
checking agencies tend to better curate their (mono-
lingual) database, while an extensive effort to an-
notate positive pairs also crosslingually is often
lacking. This may affect the performance of the
models and the set of sampled negatives.

Another possible issue is about the different rep-
resentation of languages in the dataset. As shown in
Table 4, English posts are paired with fact-checked
claims in almost all languages in our dataset, while
some others, such as Dutch or Romanian, have
only few crosslingual pairs. Our results and find-
ings could change with a different distribution of
languages (and cross-lingual pairs) in the data.

Finally, as detailed in Appendix A, we rely on
automatic means to detect languages in posts and
fact-checked claims. Although we combine sev-
eral approaches to increase detection robustness
and have also corrected outlier cases (e.g., when
Latin was recognized as a language for posts and
fact-checks), there might still be some noise in the
assigned languages in the data.

Ethics Statement

In this paper, we work with the MultiClaim dataset
that has been published for research purposes only.
We reuse it in line with its terms and conditions;
e.g., we do not re-share the subset of data we used,
but publish only the IDs together with informa-
tion about additional metadata (i.e., identified lan-
guages), our defined data splits, a list of identified
negative examples, and code to load the dataset and
run the models and their fine-tuning.

As a part of the paper, we fine-tune text embed-
ding models for the PFCR task. They are intended
to be used as an assistance to human fact-checkers
or moderators and not to be used in an automated
way to fact-check input claims, i.e., to ascertain
their veracity based on the retrieved claims.

Acknowledgments

This work was partially funded by the Euro-
pean Media and Information Fund (grant number
291191). The sole responsibility for any content
supported by the European Media and Information
Fund lies with the author(s) and it may not nec-
essarily reflect the positions of the EMIF and the
Fund Partners, the Calouste Gulbenkian Founda-

tion and the European University Institute. It was
also partially supported by the European Union
under the Horizon Europe project AI-CODE, GA
No. 101135437, the Slovak Research and Develop-
ment Agency under the project Modermed, GA No.
APVV-22-0414, and the PNRR project FAIR – Fu-
ture AI Research (PE00000013), under the NRRP
MUR program funded by NextGeneration EU.

The authors also wish to acknowledge the TAI-
LOR project funded by the European Union un-
der the EU Horizon 2020, GA No. 952215, which
supported the research mobility that started the
collaboration on this paper under the TAILOR Con-
nectivity fund.

References

Alberto Barrón-Cedeño, Tamer Elsayed, Preslav Nakov,
Giovanni Da San Martino, Maram Hasanain, Reem
Suwaileh, Fatima Haouari, Nikolay Babulkov,
Bayan Hamdan, Alex Nikolov, Shaden Shaar, and
Zien Sheikh Ali. 2020. Overview of Check-
That! 2020: Automatic identification and verification
of claims in social media. In Experimental IR Meets
Multilinguality, Multimodality, and Interaction - 11th
International Conference of the CLEF Association,
CLEF 2020, Thessaloniki, Greece, September 22–25,
2020, volume 12260 of Lecture Notes in Computer
Science, pages 215–236. Springer.

Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun
Luo, Defu Lian, and Zheng Liu. 2024. M3-
embedding: Multi-linguality, multi-functionality,
multi-granularity text embeddings through self-
knowledge distillation. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 2318–2335, Bangkok, Thailand. Association
for Computational Linguistics.

Chanyeol Choi, Junseong Kim, Seolhwa Lee, Jihoon
Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, and
Jy-Yong Sohn. 2024. Linq-Embed-Mistral technical
report. arXiv preprint arXiv:2412.03223.

Hervé Déjean, Stéphane Clinchant, and Thibault Formal.
2024. A thorough comparison of cross-encoders
and LLMs for reranking SPLADE. arXiv preprint
arXiv:2403.10407.

Kenneth Enevoldsen, Isaac Chung, Imene Kerboua,
Márton Kardos, Ashwin Mathur, David Stap,
Jay Gala, Wissam Siblini, Dominik Krzemiński,
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Appendix

A Dataset

Pre-processing The MultiClaim v2 dataset con-
sists of posts, fact-checked claims, and their pairs.
We preprocess the dataset to curate a subset of
data for multilingual and crosslingual PFCR. More
specifically, we work with posts’ (anonymized)
texts (post_body field) and fact-checked claims
(claim field), both in their original languages. We
thus omit texts extracted with OCR from the im-
ages associated with some of the posts because they
are too noisy, as well as the titles of the fact-checks,
as these are often missing or duplicate the informa-
tion already present in the claims. We work with
pairs, whose relationship is identified either as
claim_review or backlink, since only these re-
lationships were present in the original version of
MultiClaim and they represent the ground truth
mappings provided by the fact-checkers.

MultiClaim v2 uses Google Translate to iden-
tify the languages of posts and fact-checks. How-
ever, this being a third party black-box API, we
implement our own pipeline to identify languages
using open-source tools to have more control and
increase robustness of the predictions. Specifically,
we use a combination of four language detectors: i)
fastText,15 which supports 176 languages (Joulin
et al., 2016, 2017), ii) gCLD3 (Compact Language
Detector v3),16 which supports more than 100 lan-
guages, iii) langdetect,17 which supports 55 lan-
guages, and iv) polyglot,18 which supports 196
languages. We combine the outputs of these de-
tectors as follows: we first filter out detected lan-
guages that appear only once. Then, we average the
normalized detection scores for the remaining ones
and filter out those whose average score is <0.5.
Finally, we take the language with the highest aver-
age score as the post/claim detected language.

We also filter out posts whose languages did not
appear in at least 200 posts (leading to a cut-off of
180 posts after additional filtering to ensure non-
overlapping fact-checks in the data splits; see Sec-
tion 3). Yet, we took all fact-checked claims associ-
ated with these remaining posts irrespective of their
language – as a result, there are more languages
in claims than in posts. We manually checked the

15https://fasttext.cc/docs/en/language-identif
ication.html

16https://github.com/google/cld3
17https://pypi.org/project/langdetect/
18https://polyglot.readthedocs.io/en/latest/

languages of claims that appeared <10 times (e.g.,
Esperanto, Latin, Welsh, Corsican). Since these
were all misclassifications, we manually corrected
the language identified in these cases.

Covered languages Our subset of the dataset
covers 47 languages in total: 30 languages in posts
and 46 languages in fact-checked claims. All posts’
languages appear in claims except for Urdu, which
is represented only in posts. We obtain 283 lan-
guage combinations in total (see Figure 4). The
full list of covered languages is the following:

Afrikaans (af), Arabic (ar), Assamese (as),
Azerbaijani (az), Bulgarian (bg), Bengali (bn),
Bosnian (bs), Catalan (ca), Czech (cs), Danish
(da), German (de), Modern Greek (el), English
(en), Spanish (es), Persian (fa), Finnish (fi),
French (fr), Hindi (hi), Croatian (hr), Hungarian
(hu), Indonesian (id), Italian (it), Kazakh (kk),
Korean (ko), Macedonian (mk), Malayalam (ml),
Malay (ms), Burmese (my), Nepali (ne), Dutch (nl),
Norwegian (no), Punjabi (pa), Polish (pl), Por-
tuguese (pt), Romanian (ro), Russian (ru), Sinhala
(si), Slovak (sk), Slovenian (sl), Serbian (sr), Tel-
ugu (te), Thai (th), Tagalog (tl), Turkish (tr),
Ukranian (uk), Urdu (ur), and Chinese (zh).

B Unsupervised Approach

In this section, we report the complete, per-model
experimental results for the unsupervised setup.
Tables 5 and 6 report the results for the baseline
retrieval and cross-encoder re-ranking, in both the
test set and the full set of claims. Figures 5 and 6
report the same S@10 results in graphical format,
also integrating LLM-based re-ranking for the three
models involved. Figures 7 to 14 instead focus on
the S@10 and MRR@10 difference in performance
(delta) between base retrieval and cross-encoder
re-ranking on the test and full set, respectively.
Moreover, Table 8 reports the full results for the
correlation analysis embedding dimension/model
dimension vs. model performance.

C Supervised Approach

We report hyper-parameter values in Table 7. The
search space was: learning rate: {1e-9, 5e-9, 1e-8,
5e-8, 1e-7}, batch size: {4, 8, 16}, warm-up steps:
{800, 1,600}, # negatives (k): {1, 2, 3, 4, 5, 10}.
Further details are provided in Section 5.2.

In Figure 15, we present multilingual S@10 re-
sults across negative sampling strategies and num-
ber of negative examples for mpnet on the devel-
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Post → ar bg bn cs de el en es fr hi hr hu id it ko mk ml my nl pl pt ro ru si sk th tl tr ur zh

Claim ↓
af 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0
ar 3,360 0 0 0 0 0 14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
as 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
az 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 7 0 0
bg 0 189 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
bn 3 0 786 0 0 0 151 0 2 125 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0
bs 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ca 0 0 0 0 0 0 5 75 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cs 1 0 0 246 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11 0 0 0 0 0
da 2 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
de 1 2 0 1 2,381 1 94 5 3 0 2 0 1 3 0 0 1 0 0 1 1 1 20 0 0 0 0 1 1 0
el 3 3 0 2 0 430 4 4 1 0 0 0 0 0 0 2 0 0 0 1 1 3 2 0 0 0 0 0 0 0
en 88 7 233 9 32 12 19,341 118 78 3,673 3 9 220 23 138 6 76 157 19 35 23 9 74 366 4 198 310 7 451 463
es 6 2 0 0 3 0 69 7,470 3 0 0 0 0 7 0 1 0 0 0 5 33 3 2 0 1 0 1 2 0 0
fa 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fi 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fr 20 0 0 0 1 0 66 6 2,699 0 0 0 0 5 0 0 0 0 3 2 6 0 3 0 0 0 0 0 4 0
hi 3 0 10 0 0 2 471 3 0 2,470 0 0 1 0 0 0 4 0 0 1 1 0 0 0 0 0 0 0 6 0
hr 4 0 0 1 1 0 5 0 0 0 301 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
hu 0 1 0 0 0 0 2 0 0 0 0 178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
id 1 0 1 0 1 0 23 2 1 2 0 0 939 0 1 0 0 0 0 0 2 0 0 1 0 0 0 0 0 1
it 2 2 0 0 5 0 81 7 4 1 0 1 0 1,154 0 0 0 0 2 4 0 3 9 0 0 1 0 0 0 0
kk 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
ko 0 0 0 0 0 0 4 0 0 0 0 0 0 0 410 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
mk 0 1 0 0 0 0 1 0 0 0 3 0 0 0 0 1,137 0 0 0 0 0 0 29 0 0 0 0 0 0 0
ml 0 0 0 0 0 0 60 0 0 11 0 0 0 0 0 0 482 0 0 0 0 0 0 0 0 4 0 0 1 0
ms 0 0 0 0 0 0 6 0 0 0 0 0 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
my 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 191 0 0 0 0 0 0 0 0 0 0 0 0
ne 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
nl 0 0 0 0 0 0 29 1 0 0 0 0 0 0 0 1 0 0 923 0 0 1 0 0 0 0 0 0 0 0
no 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pa 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
pl 2 1 0 1 1 0 10 7 1 0 0 0 0 3 0 0 0 0 0 1,309 1 0 0 0 0 0 0 0 2 0
pt 4 1 0 0 1 0 49 18 5 0 0 0 0 7 0 0 0 0 0 0 3,628 3 2 0 1 0 0 0 1 0
ro 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 288 0 0 0 0 0 0 0 0
ru 0 4 0 1 2 0 18 3 3 0 0 0 0 1 0 3 0 0 0 1 0 0 454 0 0 0 0 0 0 0
si 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 67 0 0 0 0 0 0
sk 0 1 0 11 0 0 9 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 321 0 0 0 0 0
sl 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sr 0 0 0 0 0 0 0 1 0 0 31 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
te 3 0 1 0 0 0 14 1 0 21 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
th 0 0 0 0 2 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 449 0 0 0 2
tl 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
tr 3 0 0 1 2 0 91 4 3 0 0 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0 0 3,179 0 0
uk 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
zh 0 0 0 0 0 0 23 1 0 1 0 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 0 55

Table 4: Combinations of the languages in pairs of posts (columns) and fact-checked claims (rows) across all data
splits. Languages are represented via their ISO 639-1 two-letter codes. Full language names are in Appendix A.

opment set. Moreover, in Figure 16 we report the
crosslingual S@10 performance on the test set for
multilingual-e5-large, according to negative
sampling strategies and number of negatives.

D Additional Results

Table 9 shows S@10 test scores for all approaches.
Finally, since prior works showed the bene-

fits of translation of posts and fact-checks to En-
glish over the use of original data with multi-
lingual models (see e.g., Pikuliak et al., 2023),
we also provide results of the unsupervised
multilingual-e5-large model with the data
translated to English for comparison and complete-
ness despite our focus on multi- and crosslinguality.
The achieved score of 0.6996 MRR@10 and 0.7647
S@10 (on the test set in the multilingual setting)
show that it is outperformed when using the data
with its original languages in contrast to the results
by Pikuliak et al. (2023). This demonstrates the

recent progress in the multilingual text embedding
models. We hypothesize that the original language
can help to retrieve the correct fact-check, espe-
cially in the case when both post and fact-check are
in the same language. On the other hand, the results
on the test set in the crosslingual setting – 0.6017
MRR@10 (the second best when compared to the
MRR@10 results in Table 2) and 0.7514 S@10
(the best when compared to the S@10 results in
Table 9) – show that translation can still help when
the original language of the post and the fact-check
differ.
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Model
Retrieve Re-rank

Test Full Test (top-n = 30) Full (top-n = 30)
S@10 MRR@10 S@10 MRR@10 S@10 MRR@10 S@10 MRR@10

multilingual-MiniLM-L12-v2 0.5762 0.5062 0.4550 0.3829 0.6950 0.6554 0.5037 0.4561
paraphrase-multilingual-mpnet-base-v2 0.6416 0.5690 0.5180 0.4283 0.6796 0.6485 0.5714 0.5068
e5-mistral-7b-instruct 0.7516 0.6798 0.6257 0.5509 0.7811 0.7223 0.6631 0.5811
bge-m3 0.7525 0.6952 0.6586 0.5599 0.7692 0.7031 0.6752 0.5686
Linq-Embed-Mistral 0.7630 0.7199 0.6662 0.6027 0.7731 0.7174 0.6836 0.5952
text-embedding-3-small 0.7687 0.7229 0.6797 0.6015 0.7731 0.7035 0.6819 0.5770
KaLM-multilingual-instruct-v1 0.7756 0.7155 0.6661 0.5902 0.7938 0.7275 0.6907 0.5952
gte-Qwen2-7B-instruct 0.7769 0.7155 0.6791 0.5781 0.7922 0.7219 0.6937 0.5852
jina-embeddings-v3 0.7863 0.7137 0.6792 0.5737 0.7900 0.7120 0.6974 0.5766
snowflake-arctic-embed-l-v2.0 0.7870 0.7344 0.7103 0.6124 0.7902 0.7130 0.7068 0.5807
gte-multilingual-base 0.7881 0.7228 0.6953 0.5812 0.7939 0.7161 0.7068 0.5808
multilingual-e5-large-instruct 0.7912 0.7311 0.6758 0.6035 0.8055 0.7341 0.7017 0.6003
SFR-Embedding-Mistral 0.7951 0.7309 0.6830 0.6030 0.8039 0.7296 0.7057 0.5976
multilingual-e5-large 0.7971 0.7475 0.7072 0.6280 0.8075 0.7323 0.7212 0.6034
bge-m-gemma2 0.8168 0.7613 0.7265 0.6376 0.8111 0.7298 0.7230 0.5970
text-embedding-3-large 0.8462 0.7909 0.7570 0.6661 0.8241 0.7321 0.7399 0.6013

Table 5: Performance of retrieval and retrieval+re-ranking (bge-reranker-v2-m3) across models in the test set and
the full set of claims in the multilingual setting.

Model
Retrieve Re-rank

Test Full Test (top-n = 30) Full (top-n = 30)
S@10 MRR@10 S@10 MRR@10 S@10 MRR@10 S@10 MRR@10

Linq-Embed-Mistral 0.3292 0.2147 0.1865 0.1138 0.4152 0.3410 0.2410 0.1994
multilingual-MiniLM-L12-v2 0.3737 0.2479 0.2225 0.1429 0.4497 0.3512 0.2617 0.1980
text-embedding-3-small 0.3899 0.2488 0.2463 0.1434 0.4658 0.3506 0.2855 0.1930
e5-mistral-7b-instruct 0.4751 0.2837 0.2647 0.1513 0.5840 0.4501 0.3354 0.2608
paraphrase-multilingual-mpnet-base-v2 0.5188 0.3547 0.3315 0.2048 0.5779 0.4482 0.4137 0.3002
KaLM-multilingual-mini-instruct-v1 0.5272 0.3365 0.3162 0.1936 0.6178 0.4900 0.3883 0.2903
multilingual-e5-large-instruct 0.5395 0.3318 0.3047 0.1764 0.6332 0.4998 0.4029 0.2962
SFR-Embedding-Mistral 0.5687 0.3744 0.3630 0.2094 0.6562 0.4968 0.4413 0.3177
gte-Qwen2-7B-instruct 0.6301 0.4385 0.4536 0.2720 0.6792 0.5283 0.5081 0.3556
multilingual-e5-large 0.6324 0.4323 0.4597 0.2703 0.7069 0.5442 0.5234 0.3570
bge-m3 0.6754 0.4844 0.5127 0.3104 0.6961 0.5195 0.5403 0.3558
text-embedding-3-large 0.7199 0.5119 0.5487 0.3276 0.7299 0.5418 0.5748 0.3669
snowflake-arctic-embed-l-v2.0 0.7260 0.5108 0.5687 0.3352 0.7337 0.5489 0.5840 0.3714
jina-embeddings-v3 0.7283 0.5048 0.5142 0.3157 0.7360 0.5433 0.5610 0.3688
gte-multilingual-base 0.7360 0.5443 0.5948 0.3634 0.7422 0.5592 0.5979 0.3818
bge-multilingual-gemma2 0.7621 0.5446 0.5787 0.3478 0.7598 0.5608 0.5956 0.3910

Table 6: Performance of retrieval and retrieval+re-ranking (bge-reranker-v2-m3) across models in the test set and
the full set of claims in the crosslingual setting.
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Figure 5: S@10 performance of retrieval and re-ranking across models in the test set in the multilingual setting.
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Figure 6: S@10 performance of retrieval and re-ranking across models in the test set in the crosslingual setting.
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Figure 7: Difference in S@10 test set performance for
re-ranking - retrieval in the multilingual setting, with
bge-reranker-v2-m3. 6,375 pairs, 5,683 posts, and
6,145 claims. Top-n = 30.
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Figure 8: Difference in MRR@10 test set perfor-
mance for re-ranking - retrieval in the multilingual
setting, with bge-reranker-v2-m3. 6,375 pairs, 5,683
posts, and 6,145 claims. Top-n = 30.
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Figure 9: Difference in S@10 full set performance for
re-ranking - retrieval in the multilingual setting, with
bge-reranker-v2-m3. 63,913 pairs, 55,421 posts, and
52,911 claims. Top-n = 30.
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Figure 10: Difference in MRR@10 full set perfor-
mance for re-ranking - retrieval in the multilingual set-
ting, with bge-reranker-v2-m3. 63,913 pairs, 55,421
posts, and 52,911 claims. Top-n = 30.
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Figure 11: Difference in S@10 test set performance
for re-ranking - retrieval in the crosslingual setting, with
bge-reranker-v2-m3. 929 pairs, 850 posts, and 901
claims. Top-n = 30.
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Figure 12: Difference in MRR@10 test set perfor-
mance for re-ranking - retrieval in the crosslingual set-
ting, with bge-reranker-v2-m3. 929 pairs, 850 posts,
and 901 claims. Top-n = 30.
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Figure 13: Difference in S@10 full set performance
for re-ranking - retrieval in the crosslingual setting,
with bge-reranker-v2-m3. 9,066 pairs, 7,975 posts,
and 7,869 claims. Top-n = 30.
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Figure 14: Difference in MRR@10 full set perfor-
mance for re-ranking - retrieval in the crosslingual set-
ting, with bge-reranker-v2-m3. 9,066 pairs, 7,975
posts, and 7,869 claims. Top-n = 30.
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Hyper-parameter Value

Optimizer AdamW
Epochs 3
Batch size 8
Learning rate 1e-8
Warm-up steps 1,600
Label smoothing 0.1
Similarity function cosine
Similarity scale 20
Weight decay 8e-5
Decay factor 0.38
Cut fraction 0.3
Clip value 1

# negatives (k) 10
Sampling strategy similarity, topic, random

Table 7: Final hyper-parameter values used for the
supervised models in all our experiments.

1 2 3 4 5 10
0.59
0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67

without fine-tuning

k (# negative examples)

S@
10

random similarity topic

Figure 15: Multilingual S@10 performance
across negative sampling strategies and num-
ber of negative examples k for the fine-tuned
paraphrase-multilingual-mpnet-base-v2 model
on the development set. Reported results are averages
over three runs using different seeds. The dashed line
indicates results when no fine-tuning is conducted.

1 2 3 4 5 10

0.65

0.7

without fine-tuning

k (# negative examples)

S@
10

random similarity topic

Figure 16: Crosslingual S@10 performance across neg-
ative sampling strategies and number of negative ex-
amples k for the fine-tuned multilingual-e5-large
model on the test set. Reported results are averages
over three runs using different seeds. The dashed line
indicates results when no fine-tuning is conducted.

(A) Multilingual - Retrieval
test full

r p-value r p-value

Emb. dimension 0.306 0.286 0.327 0.252
Model size (params) 0.330 0.249 0.348 0.222

(B) Multilingual - Re-rank
test full

r p-value r p-value

Emb. dimension 0.374 0.188 0.376 0.185
Model size (params) 0.372 0.191 0.370 0.193

(C) Crosslingual - Retrieval
test full

r p-value r p-value

Emb. dimension -0.244 0.401 -0.270 0.352
Model size (params) -0.120 0.684 -0.145 0.620

(D) Crosslingual - Re-rank
test full

r p-value r p-value

Emb. dimension -0.197 0.500 -0.185 0.525
Model size (params) -0.100 0.735 -0.073 0.803

Table 8: Correlation analysis between embedding di-
mension / model size (in terms of number of parameters)
and performance (MRR@10) in the unsupervised set-
ting. We report Pearson r and the respective p-value.
The scores have been computed on the 16 embedding
models described in Section 5.1.
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Model Strategy Multilingual Crosslingual Crosslingual (no eng)

multilingual-
e5-large

retrieve 0.7971 0.6324 0.6622
re-rank 0.8075 0.7069 0.7780
random 0.8134±0.0002 0.6580±0.0012 0.6853±0.0000

topic 0.8203±0.0002 0.7038±0.0000 0.7224±0.0000

similarity 0.8228±0.0001 0.7076±0.0000 0.7270±0.0000

llm re-rank 0.8324 0.7283 0.7409

paraphrase-
multilingual-
mpnet-base-v2

random 0.5955±0.0002 0.4758±0.0008 0.5788±0.0000

topic 0.6206±0.0003 0.5014±0.0012 0.5819±0.0027

similarity 0.6320±0.0002 0.5157±0.0000 0.5880±0.0000

retrieve 0.6416 0.5188 0.5834
re-rank 0.6796 0.5779 0.6900

Table 9: Multilingual, crosslingual, and crosslingual (no eng) S@10 performance across negative sampling
strategies (random, topic, similarity) for fine-tuned models on the test set compared to unsupervised strategies
(retrieve, cross-encoder re-rank, llm re-rank). Results are ordered by increasing multilingual score; for the
supervised setup, we report averages with standard deviation over three runs using different seeds.
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