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Abstract

Instructing language models with user intent re-
quires large instruction datasets, which are only
available for a limited set of languages. In this
paper, we explore alternatives to conventional
instruction adaptation pipelines in low-resource
scenarios. We assume a realistic scenario for
low-resource languages, where only the fol-
lowing are available: corpora in the target lan-
guage, existing open-weight multilingual base
and instructed backbone LLMs, and syntheti-
cally generated instructions sampled from the
instructed backbone. We present a comprehen-
sive set of experiments for Basque that system-
atically study different combinations of these
components evaluated on benchmarks and hu-
man preferences from 1, 680 participants. Our
conclusions show that target language corpora
are essential, with synthetic instructions yield-
ing robust models, and, most importantly, that
using as backbone an instruction-tuned model
outperforms using a base non-instructed model.
Scaling up to Llama 3.1 Instruct 70B as back-
bone, our model comes near frontier models of
much larger sizes for Basque, without using any
Basque instructions. We release code, models,
instruction datasets, and human preferences to
support full reproducibility in future research
on low-resource language adaptation.1

1 Introduction

Large Language Models (LLMs), particularly open
models, remain predominantly English-centric,
with limited coverage for the vast majority of the
world’s languages. Despite recent efforts to incor-
porate additional languages during the pretraining
of open LLMs, significant performance disparities
still persist. Even the latest instruction-tuned mod-
els demonstrate markedly degraded capabilities
when handling low-resource languages (Grandury
et al., 2025). Critically, the English-focused nature

1github.com/hitz-zentroa/latxa-instruct
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Figure 1: Systematic exploration of instruction-tuning
strategies for low-resource languages. Our framework
consists of: A⃝ three backbone models (an existing base
model, a continued-pretrained base model on the tar-
get language, and an existing instruct model); and B⃝
different training data combinations, including target
language corpora and synthetic instructions sampled
and/or translated with the backbone models. We train
C⃝ experimental models from all possible combinations
of these components, and perform D⃝ comprehensive
evaluation through both static benchmarks and human
preferences to identify optimal adaptation paths.

of post-training processes has widened the perfor-
mance gap between languages when comparing
base and instruction-tuned models.

To overcome these limitations, open models
can be adapted to new languages through contin-
ued training with limited resources (Etxaniz et al.,
2024b). In the case of instruction-tuned models in
particular, various efforts have emerged that typi-
cally follow a sequential approach (Ouyang et al.,
2022): first adapting the base model through contin-
ued pretraining, then performing instruction tuning.
While this multi-step process has become standard
practice, little exploration has investigated alter-
native adaptation strategies. We question whether
instruction-following capabilities could be directly
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transferred to new languages without dedicated in-
struction data, and whether instruction-tuned mod-
els could be adapted through continued pretraining,
similar to base models.

Specifically, this work systematically explores
diverse strategies beyond the conventional pipeline
for developing instruction-tuned models for low-
resource languages, seeking to identify optimal
adaptation paths for Basque as our primary case
study (see Fig. 1). We deliberately constrain our
exploration to resources either readily available or
creatable using open models, avoiding reliance on
distillation from commercial state-of-the-art sys-
tems. While our investigation focuses on a single
language, our findings likely generalize to many
similarly-resourced languages: Basque represents
an ideal test case, ranking approximately 50th in
Common Crawl with a presence approximately
1, 000 times smaller than English,2 and notably
lacking pre-existing instruction datasets. This re-
source profile mirrors challenges faced by numer-
ous other low-resource languages worldwide.

In addressing this research question, we further
confront a key challenge in instruction-following
LLM assessment: automated metrics often miss
capabilities that matter to users (Chiang et al.,
2024). Thus, we developed an evaluation frame-
work combining traditional benchmarks with a
crowdsourced LLM arena, where we mobilized
the Basque-speaking community in a large-scale
evaluation effort that gathered over 12, 000 pref-
erence annotations from 1, 680 participants. This
initiative constitutes the largest human evaluation
effort for a low-resource language to date.

Through this evaluation, our systematic explo-
ration produced three key insights for develop-
ing instruction-tuned models in low-resource lan-
guages: (1) target language corpora is essential for
performance—models lacking exposure to plain
Basque text showed degradation regardless of other
techniques; (2) while both monolingual and bilin-
gual instruction datasets showed benefits, the lat-
ter produced consistent results across benchmark
and human evaluations; and (3) starting from an
instruction-tuned English model outperformed the
approach of a base model learning to follow instruc-
tions, challenging the standard pipeline applied to
low-resource languages.

In addition to these primary findings, our work

2commoncrawl.github.io/cc-crawl-
statistics/plots/languages.html

makes the following contributions to the field: (4)
the first release of an instruction-tuned family of
LLMs specifically for Basque, in sizes of 8B and
70B parameters, the latter of which proved compet-
itive with GPT-4o and Claude Sonnet in the arena;
(5) the release of large-scale, synthetic instruction-
tuning datasets in English and Basque; and (6) the
release of the first preference dataset in Basque,
containing real user prompts, model responses, and
preference annotations that could support future
preference alignment research. Through these con-
tributions, we aim to advance the state of language
technology for Basque while establishing method-
ologies applicable to other low-resource languages.

2 Related Work

Research on developing LLMs for under-resourced
languages has explored various approaches, with
varying degrees of success. Initial attempts to
develop models from scratch for specific low-
resource languages have proven challenging due
to limited training data. Multilingual model de-
velopment has emerged as a more promising strat-
egy, with researchers leveraging cross-lingual trans-
fer learning to improve performance (Scao et al.,
2023; Le Scao et al., 2022; Shliazhko et al., 2024).
The most effective approach to date involves con-
tinued pretraining of existing multilingual mod-
els, which allows for language-specific adaptation
while benefiting from the rich linguistic represen-
tations of larger training corpora (Etxaniz et al.,
2024b; Luukkonen et al., 2023; Tran et al., 2024).
While progress has been made in developing these
base models, optimal methods for instructing and
fine-tuning them for under-resourced languages re-
main largely unexplored (Gonzalez-Agirre et al.,
2025; Martins et al., 2025; Üstün et al., 2024).

Instruction-tuning for under-resourced lan-
guages has explored various approaches to over-
come the scarcity of native instruction data. Dif-
ferent studies leverage either English-centric pre-
trained models or multilingual models as pivot
architectures for cross-lingual transfer (Purason
et al., 2025). Regarding the data, researchers
have explored incorporating multilingual instruc-
tion datasets that include limited coverage of lower-
resourced languages (Shaham et al., 2024); trans-
lating existing English instruction sets into target
languages either automatically or with human ver-
ification (Joshi et al., 2025; Zosa et al., 2025);
and applying data augmentation techniques like
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back-translation, language-specific prompting, and
template-based instruction generation to expand
limited resources (Li et al., 2024). Additionally,
cross-lingual in-context learning has shown inter-
esting results (Cahyawijaya et al., 2024).

Regarding Basque language adaptation, two sig-
nificant studies have been conducted. Etxaniz et al.
(2024b) developed Latxa by adapting Llama 2 mod-
els through continued pretraining. Meanwhile, Cor-
ral et al. (2025) created Llama-eus by adapting
Llama 3.1 and subsequently performing both in-
struction tuning and preference alignment using
machine-translated data, adhering to widely ac-
cepted methodologies. However, the former fo-
cuses solely on foundation models, without con-
sidering instruction-tuned models, while the latter
implements only a single strategy for instructing an
adapted language model. In contrast, this work ex-
plores multiple strategies and combinations system-
atically to effectively instruct (or adapt) a language
model for Basque.

3 Resources

Instructing LLMs typically relies on two compo-
nents: base (or foundational) LLMs and instruction
datasets. For non-hegemonic languages, obtain-
ing instruction datasets can be very challenging,
particularly in low-resource language scenarios.
In the case of Basque in particular, there are no
manually generated, or even good quality automat-
ically generated, large sets of instruction-answer
pairs. Consequently, as shown in Fig. 1, our avail-
able resources are constrained to corpora on the
target language, and base and instruct models for
high-resource languages. From these limited re-
sources, we derive the necessary components to
create Basque instruction-tuned models through
strategic combinations of synthetic data generation
and model adaptation. In the following sections,
we describe these seed resources and derivations.

3.1 Basque corpora

For the pretraining data, we have leveraged the
corpora used to train Latxa, the first family of
LLMs trained specifically for Basque (Etxaniz
et al., 2024b). This corpus comprises 4.3M of
high-quality documents in Basque, roughly 3.5B
Llama 3.1 tokens. Among the sources, it con-
tains high-quality news data extracted using ad-
hoc scrapers (Artetxe et al., 2022), Wikipedia3

3The 20231101 dump corresponding to November 2023.

and sources based on Common Crawl such as
CulturaX (Nguyen et al., 2024), Colossal OS-
CAR (Abadji et al., 2022) and HLPT v1.1 (de Gib-
ert et al., 2024). This corpus comes normalized,
deduplicated and filtered. The data is publicly avail-
able in the HuggingFace hub.4 We will henceforth
refer to this corpus as Corpus EU.

3.2 Backbone models

As our base LLM (i.e., models that have not been
fine-tuned to follow chat-style instructions) we use
Llama 3.1 (Grattafiori et al., 2024). Llama 3.1 is
a publicly available model widely adopted by the
community due to its strong performance across
English and other high-resource languages. We
refer to this model as BASEEN throughout the paper.
In addition, following Etxaniz et al. (2024b), we
train a new Latxa model based on Llama 3.1, which
we denote as BASEEU. For the instruction-tuned
models, we adopt a similar strategy and use the
instruction-following version of Llama 3.1, which
we refer to as INSTRUCTEN.

3.3 Instruction Sampling and Translation

Existing (English) instruction datasets rely on ei-
ther high-quality, manually crafted instructions
and responses (e.g., No Robots),5 fully automati-
cally generated instructions and responses (Ding
et al., 2023; Ge et al., 2025), or a combination
of both, such as manually written prompts paired
with automatically generated responses (Zhao et al.,
2024). Using any of these datasets would introduce
an additional confounding factor into our analy-
sis (namely, knowledge distilled from a powerful
LLM), which could lead a model trained on such
data to outperform our INSTRUCTEN, thus intro-
ducing noise into our evaluation. This would raise
a separate research question that falls outside the
scope of this paper: what is the best (combination
of) instruction dataset(s) to train a model on? In the
case of Basque, however, there is no publicly avail-
able set of instructions. The following paragraphs
detail the process of generating the instructions for
each language.

English instructions. To avoid external influ-
ences, we instead sample instructions directly from
our INSTRUCTEN model. We generate the English
instructions following (Xu et al., 2025). Using
this technique, we conditioned INSTRUCTEN to

4hf.co/datasets/HiTZ/latxa-corpus-v1.1
5hf.co/datasets/HuggingFaceH4/no_robots

29138

https://hf.co/datasets/HiTZ/latxa-corpus-v1.1
https://hf.co/datasets/HuggingFaceH4/no_robots


generate instructions of different types and tasks:
general-purpose, code, math, arithmetic and trans-
lation. We generated a total of 4M English instruc-
tions. However, after a hyperparameter search, we
found out that using just 1M instructions yielded
better results overall (see Appendix B). We share
more details and examples of the process in Ap-
pendix A.

Basque instructions. We translated instructions
sampled from INSTRUCTEN using few-shot prompt-
ing with BASE EU. Existing machine translation
systems for the English–Basque language pair (e.g.,
NLLB (Costa-jussà et al., 2022)) are primarily
trained on sentence-level textual data and often
struggle with more complex inputs, including se-
lectively translating natural language content em-
bedded within code snippets. By leveraging an
LLM like BASE EU, which has been exposed to di-
verse data types, we obtained higher-quality trans-
lations for this setting. Moreover, using a model
trained within our own experimental framework
allows us to avoid introducing external factors into
our pipeline. More details about the process and
prompts used to translate the instructions are given
in Appendix A.

4 Experimental Setup

We formalize our experimental setup as follows.
Let M = {BASE EN, BASE EU, INSTRUCT EN}
be the set of backbone models and
D = {Corpus EU, Instructions EN, Instructions EU}
be the set of binary variables indicating whether to
use Basque corpora, English instructions, and/or
Basque instructions. The space of possible config-
urations is thus M × P(D), where P(D) is the
power set of D, yielding |M|×2|D| = 3×23 = 24
theoretical combinations. Note that we explore
training strategies that leverage both raw text
and instruction data simultaneously. From the
total of 24 combinations, we exclude redundant
configurations where a model is retrained on data
it was originally trained with. The resulting set of
distinct instruction-tuned model variants therefore
comprises 18 configurations: the original Llama
3.1 Instruct 8B (i.e., INSTRUCT EN) and 17 new
8B-sized models. Table 3 in Appendix B provides
a complete account of all model variants and their
shorthand names. Additionally, we trained a 70B
model following the configuration that performed
best in preliminary benchmark evaluations.

Regarding the baselines, the primary baseline

in our analysis is the INSTRUCT EN model, as it
is the only backbone capable of following instruc-
tions. However, since we examine the effect of each
variable in D individually, the specific points of
comparison used vary across cases. For additional
context, we also evaluate two proprietary models
known for their strong performance in Basque:6

OpenAI’s GPT-4o7 and Anthropic’s Claude 3.5
Sonnet.8

5 Evaluation

We employed two complementary evaluation ap-
proaches to assess the impact of each instruction-
tuning recipe. On the one hand, we used a selection
of static benchmarks that evaluate specific model
capabilities and knowledge through standardized
tests. On the other hand, we conducted human eval-
uations through A/B testing (arena style) to capture
qualitative aspects of model performance. In ad-
dition, we look into the impact of our recipes on
safety and bias.

5.1 Static Benchmarks

We selected benchmarks that are close to real use
cases, from a varied range of categories: reading
comprehension, common sense, linguistic profi-
ciency, knowledge and maths & reasoning.

For each benchmark, where possible, we eval-
uated the Basque, English, and Spanish versions
to facilitate the analysis of language-specific trade-
offs for each fine-tuned model variant. This choice
of evaluation languages reflects the linguistic real-
ity of the Basque-speaking community in northern
Spain, where Basque and Spanish are co-official
and English is the most commonly taught foreign
language. Importantly, these languages come from
distinct families: Basque is a language isolate,
Spanish is Romance, and English is Germanic.
Thus, we examine cross-lingual transfer effects
and assess whether improvements in our language
come at the cost of performance in related com-
munity languages, including one—Spanish—not
directly targeted by our experiments. In total, then,
we evaluated 27 benchmarks, as detailed in Ap-
pendix C.1.

For conducting these evaluations, we relied on
LM Evaluation Harness (Biderman et al., 2024).

6We did not include the instructed Llama-eus (Corral et al.,
2025) in our evaluation, as it was not publicly available at the
time of experimentation.

7gpt-4o-2024-11-20
8claude-3-5-sonnet-20241022
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Figure 2: Distribution of participants and preferences
by education level and language proficiency level.

Most datasets are framed as multiple-choice prob-
lems where models’ answers are determined by
selecting the option with the highest log proba-
bility. For generative tasks, answers are directly
sampled from the model. To provide models with
contextual examples, our evaluations employed a
few-shot setting. All results are measured for ac-
curacy following standard, public implementations.
Refer to Appendix C.1 and our repository for de-
tails.

When evaluating proprietary models, we can-
not directly compute log probabilities because we
have no access to model weights. This limitation
restricts our evaluation to only those benchmarks
implemented as explicit letter-choice questions (A,
B, C, ...) and the free-form generative task MGSM,
excluding benchmarks that require comparing ver-
balized option likelihoods. For the compatible
multiple-choice benchmarks, we prompt models
to output a single letter as their answer, using the
same prompts and few-shot examples as with open
models to maintain comparability.

5.2 Human Evaluation: Arena

Unlike static benchmarks, which rely on fixed
datasets and automatic metrics, arena-style eval-
uations are better suited for assessing open-ended
text generation, where subjective quality judgments
play a central role. In this section, we first describe
our implementation of the arena framework, in-
cluding details on participants and evaluation con-
ditions. For additional details about the human eval-
uation, refer to Appendix C.2, where we describe
our infrastructure and introduce the Bradley–Terry
model (Bradley and Terry, 1952), which we use to
infer a model ranking from the collected pairwise
preferences.

To gather human preferences for our evaluation,
we organized a community-driven initiative. This
collaborative effort ran for 14 days and attracted

approximately 1,680 participants, resulting in a to-
tal of 12,890 preference annotations. The event
was open to any Basque speaker, regardless of
their proficiency level. Participants were required
to register their educational background and lan-
guage proficiency before contributing. Once reg-
istered, users could submit prompts and compare
model responses. Fig. 2 shows that the majority of
the participants—and, therefore, the preferences—
have a bachelor or superior education and a high or
native language proficiency level.

In the annotation process, participants evaluated
pairs of model responses by making a three-way
choice (i.e., prefer model ‘A’, prefer model ‘B’, or
consider them tied) across two dimensions: content
quality and linguistic quality. Linguistic quality
was considered as a separate dimension because not
all models produce fluent and sound Basque—an
uncommon issue among high-resource languages.
In cases where participants’ judgments were con-
tradictory between the dimensions, a third question
about overall quality was presented to determine
the final choice.

It merits mention that we offered prizes based on
user activity to encourage widespread participation
and maximize the number and diversity of collected
preferences. While this strategy succeeded in in-
creasing engagement, it also attracted malicious
or dishonest users who prioritized quantity over
quality to win rewards. We proactively identified
and banned such actors using a combination of
heuristics and manual review.

5.3 Safety and Bias

This paper does not address the alignment step
typically required to reduce biases and prevent un-
safe responses in production-ready LLMs. How-
ever, the backbone model INSTRUCT EN is already
aligned, and we expect variants based on this back-
bone to retain safety-related behaviors. To verify
this, we constructed a new Basque-English par-
allel dataset inspired by XSTest (Röttger et al.,
2024), combining clearly unsafe prompts with su-
perficially similar but safe ones. We measure both
Violation rates (VR) and False Refusal rates (FRR),
where the model wrongly declines safe prompts.
For bias, we rely on BBQ (Parrish et al., 2022)
and its adaptation to Basque (Zulaika and Saralegi,
2025), reporting results in terms of accuracy. Fur-
ther details are available in Appendix C.3.
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Figure 3: Performance comparison of instruction-tuned models across different dimensions: backbone model,
Corpus EU usage and instruction data composition. Error bars in Fig. 3a indicate 90% confidence intervals.

6 Results

In the following paragraphs, we disclose the ef-
fect of each component: backbone models, Basque
corpora and bilingual instructions. For both the
benchmark and the human evaluation, main results
are presented in Fig. 3. Complete results for all
tested models, broken down by benchmark and lan-
guage, along with detailed arena evaluation results,
can be consulted in Appendix D.

6.1 The Impact of Basque Corpora

We begin by analyzing the influence of Corpus EU,
as it is intuitively the most critical resource for
teaching a new language to an LLM. Fig. 3 con-
firms that this intuition aligns well with empiri-
cal results. In both human evaluations (Fig. 3a)
and benchmark scores (Fig. 3b), models trained
on Corpus EU achieved significantly better perfor-
mance. The advantage is especially pronounced—
up to 12 points in accuracy and over 300 points in
arena score—when no other Basque signal (i.e.,
Basque instructions) is included. However, for
models that already use BASE EU as their backbone,
additional exposure to Corpus EU offered little ben-
efit and was sometimes even detrimental.

We conclude that using target language cor-
pora is highly beneficial and possibly essential
for training an instruction-tuned LLM in our
low-resource language. Therefore, the follow-
ing analyses will focus exclusively on the variants
trained with Corpus EU.

6.2 The Impact of Instruction Data

We analyze the effect of instruction data by com-
paring variants trained with no instructions (∅),
English-only instructions (I EU), Basque-only in-

structions (I EN), and their combination (I EN+EU).

Starting with the question of whether to use in-
structions at all, we focus on INSTRUCT EN-based
variants. Human evaluation results (Fig. 3a) clearly
show that incorporating instructions, regardless of
language, helps mitigate catastrophic forgetting
and improves arena scores by nearly 100 points.
In contrast, benchmark results (Fig. 3b) show only
marginal gains, particularly when using Basque
instructions. This discrepancy highlights the lim-
itations of static benchmarks and underscores the
value of human or text generation-based evaluation.

When comparing instruction languages, we ob-
serve a general trend: English instructions tend to
yield better results across both evaluation methods.
However, there are exceptions. For example, mod-
els based on INSTRUCT EN perform comparably or
slightly better with Basque instructions in human
evaluations, while BASE EU-based models perform
similarly on benchmarks.

Notably, combining English and Basque instruc-
tions consistently produces the best results across
most scenarios. While this improvement could
be attributed to certain model variants having ac-
cess to more training data, our preliminary results
in Appendix B refute this hypothesis, as using more
monolingual instructions (1M vs 4M) resulted in
similar results.

Although the improvements are not always sig-
nificantly better, we conclude that including in-
structions in both languages results in more
robust models, achieving stronger performance
regardless of the backbone. Consequently, the
remainder of our analysis will focus on models
trained with bilingual instruction data.
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8B 70B Proprietary

INSTRUCT EN + C EU I EN + C EU I EU + C EU I EN+EU INSTRUCT EN + C EU I EN 3.5 Sonnet GPT-4o

Belebele 73.89 80.00 81.44 83.00 89.11 91.00 94.22 92.88
BertaQA Global 67.10 74.62 73.54 72.99 83.53 87.42 93.52 91.01
BertaQA Local 44.97 65.23 66.07 65.57 53.51 77.71 80.45 74.83
EusProficiency 34.13 52.83 52.06 52.35 43.59 68.00 81.60 74.25
EusReading 49.72 59.66 62.78 61.93 72.16 78.98 87.39 84.38
EusTrivia 45.01 61.05 62.33 62.10 62.51 74.17 84.60 80.70
EusExams 46.21 56.00 56.01 56.23 63.28 71.56 82.68 79.17
MGSM 45.60 54.00 46.40 50.80 76.40 80.00 85.20 79.20
MMLU 50.37 57.04 52.96 56.30 68.52 68.89 79.63 76.66
Benchmark Avg 50.78 62.27 61.51 62.36 68.07 77.53 85.48 81.45

Arena Content 766 (-17,+14) 1031 (-12,+15) 1045 (-13,+11) 1047 (-12,+12) - 1127 (-11,+10) 1150 (-17,+12) 1183 (-13,+15)

Arena Language 783 (-12,+12) 1036 (-10,+11) 1034 (-10, +8) 1038 ( -8,+10) - 1083 (-13,+13) 1082 (-11,+11) 1093 (-10,+12)

Arena Global 722 (-17,+19) 1038 (-13,+13) 1050 (-11,+14) 1050 (-14,+13) - 1141 (-11,+15) 1153 (-21,+13) 1188 (-17,+13)

Table 1: Results for the baseline (INSTRUCT EN), the best 3 performing variants, 70B models and proprietary models.
Best results among comparable setups are marked in bold. Arena scores are given with 90% confidence intervals.

6.3 The Impact of Backbone Models and
Curriculum Learning

By analyzing models trained from different back-
bones, we explore various curriculum learning
strategies: (i) teaching the language first and then
instruction following, (ii) teaching instruction fol-
lowing in English first and then the target language,
or (iii) learning everything simultaneously.

Language first vs. simultaneously. When com-
paring models based on BASE EN (i.e., acquiring
Basque and instruction-following capabilities si-
multaneously) with those based on BASE EU (learn-
ing the language first, then instruction following),
we observe no significant difference in perfor-
mance. Interestingly, the BASE EU variant with-
out access to Corpus EU during instruction tun-
ing achieves performance nearly identical to the
BASE EN variant with access to Corpus EU, across
all instruction settings. This suggests that teaching
the language in a separate pretraining step offers
no measurable advantage. From this, we conclude
that there is no compelling reason to separate
language acquisition from instruction tuning.

Instructions first vs. simultaneously. While in-
struction tuning pipelines are often complex and
multi-staged (Lambert et al., 2025), our approach
adopts a simpler structure. Previous work by Xu
et al. (2025) showed that models initialized from
BASE EN and trained with sampled instructions
from INSTRUCT EN perform comparably to IN-
STRUCT EN. However, our findings indicate that
this strategy does not transfer well to low-resource
languages. As shown in Fig. 3, models based on
INSTRUCT EN consistently outperform those based

on BASE EN, both in human evaluations and bench-
marks. These results support the conclusion that
starting from a well-instructed English back-
bone yields better performance than learning
everything from scratch.

6.4 The Impact of the Scale

Based on our previous analyses, we scaled up the
variant that performed best in preliminary bench-
mark evaluations.9 Table 1 shows the results for
some multiple-choice benchmarks and arena scores.
On the one hand, we have the three best-performing
8B variants and the baseline. On the other hand,
we present the results for the 70B best-performing
variant and the baseline. Finally, we also show the
performance of Claude 3.5 Sonnet and GPT-4o.

Scaling to bigger sizes. We analyzed the effect
of our language adaptation process when training
a larger model. Despite the results of the 70B
INSTRUCT EN baseline being significantly better
than the 8B counterpart (even surpassing the IN-
STRUCT EU variants), we observe that our language
adaptation step still had similar improvements to
those obtained with 8B sized models—almost 10
accuracy points gain on average. The biggest gains
are observed in local knowledge and language pro-
ficiency, the only benchmarks where the 70B IN-
STRUCT EN underperforms the best 8B variant.

Comparing to the State of the Art. When
compared to the leading commercial models in
Basque, our best model falls slightly behind in most
benchmarks except for BertaQA Local and MGSM,

9We did this before running the arena as we wanted to
include a 70B model in the human evaluation.
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where our model performs better than GPT-4o—
particularly in local knowledge about the Basque
Country. Regarding the arena score, our best
model is on par with the commercial models
in perceived linguistic quality, but falls behind
the best model in the content quality and global
scores. Interestingly, Claude 3.5 Sonnet outper-
forms GPT-4o in all benchmarks, but the latter gets
a higher score in the arena. Our best model being
worse than SotA despite focusing on Basque might
be related to the weaker backbone model we used,
as INSTRUCT EN is overall a weaker model. Using
a stronger and larger backbone model in the future
could lead to results that match the SotA models in
benchmarks and arena score.

7 Analysis and Discussion

In this section, we provide additional analysis and
discussion of our results. First, we focus on the
correlation of our two main evaluation methods.
Then, we measure the trade-off between Basque
and other languages. Finally, we analyze the safety
and biases of our models.

Benchmark–Arena correlation. Fig. 4 shows
Spearman’s rank correlation coefficients, ρ, be-
tween benchmark performance and arena scores,
across different benchmark languages (Basque, En-
glish, Spanish) and arena dimensions (content,
language, and global). We observe that average
Basque benchmark performance and arena rank-
ings correlate strongly, with ρ > 0.80 across all
arena dimensions—which suggests that automated
Basque benchmarks may provide a reliable proxy
for human evaluation in future research. This corre-
lation is particularly pronounced for specific bench-
marks, including EusProficiency, EusTrivia, Eu-
sExams and BertaQA, which are interestingly the
datasets that were natively constructed in Basque,
rather than translated from existing English bench-
marks. The average of English benchmarks dis-
plays overall positive but non-significant correla-
tions. Only BertaQA shows positive correlations,
with the local subset obtaining correlations similar
to the Basque BertaQA, likely reflecting the types
of culturally-specific questions that users posed in
the arena. Spanish benchmarks show, on average,
no correlation with the arena. Some of the En-
glish and Spanish benchmarks show large negative
correlations, reflecting the performance trade-off
between Basque and other languages.
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Figure 4: Spearman’s rank correlation coefficients be-
tween benchmark performance and arena evaluation
dimensions.

Trade-off between Basque and other languages.
Fig. 5 shows performance changes across lan-
guages relative to each backbone model on the mul-
tilingual benchmarks Belebele, MGSM, MMLU,
and XStoryCloze. We observe that INSTRUCT EN-
based models exhibit a clear trade-off: improve-
ments in Basque come at a cost of decreased
performance in English and Spanish, suggesting
a competitive relationship between languages in
the model’s parameter space. In contrast, greater
flexibility for multilingual adaptation is observed
in BASE EN models, which improve across all
three languages (though from a lower absolute
performance baseline). BASE EU models show
moderate changes with gains primarily in Span-
ish and English rather than Basque. As ob-
served previously, Corpus EU consistently yields
the largest performance gains for the target lan-
guage. Among INSTRUCT EN variants, the configu-
ration with Corpus EU and Instructions EN achieves
the most Basque improvement and the least regres-
sion in other languages. Despite these adaptation
strategies, models still perform better in English
and Spanish on equivalent tasks, with the exception
of culturally-specific knowledge as evidenced by
the results on the BertaQA dataset (see complete
results in Appendix D.1).

Safety and bias. We evaluate the model vari-
ant INS EN C EU I EN, comparing it with two crit-
ical counterparts: (1) BAS EN C EU I EN, to an-
alyze the impact of starting from an already
instruction-tuned backbone versus a base model
(8B only); and (2) INSTRUCT EN, to measure po-
tential alignment changes introduced with our
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Figure 5: Accuracy differences for model variants com-
pared to their respective backbones across Belebele,
MGSM, MMLU, and XStoryCloze averages by lan-
guage. Positive values indicate performance improve-
ments; negative values indicate regression.

fine-tuning data mix (8B and 70B). As shown
in Table 2, the BAS EN C EU I EN model demon-
strates low safety and high bias in the Basque lan-
guage compared to English, reflecting a signifi-
cant lack of alignment. In contrast, INSTRUCT EN
and its variant INS EN C EU I EN are better aligned
in both languages. Interestingly, in Basque, the
8B INSTRUCT EN shows a lower VR than both
BAS EN C EU I EN and INS EN C EU I EN models and
even the larger 70B counterpart. This behavior
is due to the model’s limited comprehension of
instructions in the Basque language, leading it
to produce inconsistent yet safe responses. On
the other hand, the 70B models display compara-
ble performance across both languages, with the
INS EN C EU I EN version slightly outperforming oth-
ers and achieving a lower VR in Basque. Notably,
the FRR remains very low across all models, in-
dicating that safety mechanisms do not come at
the cost of excessive conservatism. Bias outcomes
in English are consistently better than in Basque,
and larger models generally perform better than
smaller ones. However, the differences in bias be-
tween the original and language-adapted models
are minimal. Overall, we demonstrate that much of
the safety and bias alignment is transferred from IN-
STRUCT EN, not only in the newly added language,
but also in the predominant language.

EU EN

VR FRR BBQ VR FRR BBQ

↓ ↓ ↑ ↓ ↓ ↑

8B

INS EN C EU I EN 24.00 0.00 70.80 16.00 0.00 87.06

BAS EN C EU I EN 44.00 0.00 51.73 20.00 4.00 72.35

INSTRUCT EN 8.00 0.00 71.03 4.00 0.00 87.65

70B
INS EN C EU I EN 4.00 0.00 85.29 4.00 0.00 94.38

INSTRUCT EN 20.00 0.00 84.90 8.00 0.00 95.32

Table 2: Safety and bias results for Basque and English
datasets. Safety is measured in terms of violation rate
(VR) and false refusal rate (FRR) where ↓ indicates
lower values are better. Bias is measured with BBQ
accuracy, where ↑ indicates higher values are better.

8 Conclusions

This systematic study on instruction-tuning LLMs
for Basque reveals several key strategies for low-
resource language adaptation. We found that tar-
get language corpora are essential for effec-
tive learning. Employing bilingual (English and
Basque) synthetic instructions yielded the most
robust models whereas English-only instructions
remain competitive. Crucially, starting from an
instruction-tuned English model and adapting
it to Basque proved more effective than training
a base model for both language and instruction-
following, or pretraining for language separately
before instruction tuning. Our work contributes
new Basque models, open instruction and human
preference datasets, and methodological insights to
guide future low-resource LLM development.

In the future, we plan to extend the exploration
using instructions created by humans. The prefer-
ence data we release can also be used to align the
models. Scaling to stronger backbones will also
lead to better results that could match the SotA
commercial models in Basque. The strong correla-
tion observed between aggregated Basque bench-
marks and human evaluations also suggests a path
for more efficient proxy evaluations.

Limitations

This study presents a systematic analysis aimed at
identifying the most effective method for develop-
ing an instruction-tuned model for a low-resource
language. However, due to the combinatorial na-
ture of such analyses, we had to constrain certain
dimensions of our exploration, as adding any addi-
tional axis would effectively double the amount of
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work required, including costly human evaluations.
Our first limitation is the choice of language. We

focused on Basque, primarily because it is a low-
resource language with just enough available data
to enable language adaptation of base models (Etx-
aniz et al., 2024b). While some other languages
have significantly fewer resources than Basque, our
conclusions may not fully generalize to those more
extreme low-resource scenarios.

The second limitation is the choice of model
family. We conducted all experiments using the
Llama 3.1 family as the backbone. This decision
was motivated by its widespread adoption and its
existing ability to generate text in Basque, although
often with substantial linguistic errors. Evaluating
more recent or higher-performing models could
slightly influence our findings. However, to the
best of our knowledge, there is currently no open
model family capable of producing linguistically
correct Basque.

Third, this study primarily focuses on the ini-
tial instruction-tuning phase. While we did collect
preference data, we did not extend our analysis to
include preference alignment techniques. Includ-
ing this additional phase would again have doubled
the experimental workload and human evaluation
requirements.

Finally, although we did not perform analyses on
potential data contamination issues, previous work
on which our work is based took measures against
contamination (Etxaniz et al., 2024a,b).
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<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024
<|eot_id|>
<|start_header_id|>user<|end_header_id|>

(a) General

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an AI assistant designed to provide
helpful, step-by-step guidance on solving
math problems. The user will ask you a wide
range of complex mathematical questions.
Your purpose is to assist users in
understanding mathematical concepts, working
through equations, and arriving at the
correct solutions.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>

(b) Maths

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an AI assistant designed to provide
helpful, step-by-step guidance on solving
complex arithmetic operations. The user will
provide you with an arithmetic operation or
a concatenation of multiple arithmetic
operations. Your purpose is to assist users
in computing the results of the arithmetic
operation exlaining the process step by step.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>

(c) Arithmetic

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an AI assistant designed to provide
helpful, step-by-step guidance on coding
problems. The user will ask you a wide range
of coding questions. Your purpose is to assist
users in understanding coding concepts,
working through code, and arriving at the
correct solutions.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>

(d) Code

<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are an AI assistant specifically designed
to provide accurate and contextually
appropriate translations. Users will ask you
to translate a large text between various
languages. Your purpose is to translate the
text, maintaining the original context and
nuances.
<|eot_id|>
<|start_header_id|>user<|end_header_id|>

(e) Translation

Figure 6: Prompts used to generate the synthetic instructions

A Synthetic Instructions generation

A.1 English instructions
To generate the English synthetic instructions, we
followed the Magpie technique (Xu et al., 2025).
Briefly, it consists in letting the model generate text
starting from the user’s prompt instead of the assis-
tant’s response. See, for instance, Fig. 6a, where
the model is asked to continue with the chat tem-
plate immediately after the user header. We defined
5 prompts to generate different kinds of instructions
(Fig. 6), then sampled instructions from the model
using 10 different temperature values ranging 0.8–
1.2. After generating the instructions, we applied
the following filters:

1. Duplicates: keep unique instances.

2. Repetitive prompts or responses: remove

instances with a sequence of tokens repeated
over 100 times.

3. Poor quality prompts or responses: re-
move instances regarded as poor-quality by
the model itself.

4. Unfinished instructions: we noticed that
some instructions ended with “:”, meaning
that the instructions was incomplete. We re-
moved those as well.

As we experimented with models of two sizes
and did not want to have any external influence
in our experiments, we generated the instructions
twice, once per model size. We later used the in-
structions generated from the 8B model to train the
8B models, and those from 70B to train the 70B
model. The total size in tokens of the English in-
structions used for training is 350M tokens. We are
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You are a helpful AI assistant that specializes in English to Basque translations.
Your task is to translate instruction datasets from English to Basque.

Here are some important guidelines:
1. Maintain the original meaning and intent of the instructions.
2. Use standard Basque language (batua).
3. Keep the technical terms that don't have widely accepted Basque translations.
4. Preserve any code snippets, variables, or special characters exactly as they appear.
5. Translate only the text content, not the JSON structure.

The input will be a JSON object with English text. Please provide accurate Basque translations
for all text fields.

{% for example in fs_examples %}
English:
{{ example['english'] }}

Basque:
{{ example['basque'] }}
{% endfor %}

English:
{{ conversation }}

Basque:

Figure 7: Prompt used to translate the English instructions to Basque instructions.

releasing10 the generated instructions (filtered and
unfiltered) for replicability purposes.

A.2 Basque (translated) instructions

As discussed in Section 3.3, we generated Basque
instructions by translating the English instructions
using BASE EU. The prompt we used to perform
the translation is shown in Fig. 7. As for the few-
shot examples, we included 2 conversations of gen-
eral instructions and 1 conversation for each math,
arithmetic, code and translation instruction types.
These examples were sampled from the English
instructions and post-edited manually. The exact
examples are released in the GitHub repository.

Using a base LLM introduces several challenges
when generating structured data. To mitigate is-
sues with malformed outputs, we constrained the
LLM’s generation to adhere to a conversational
JSON schema. Additionally, a non-negligible por-
tion of the outputs (approximately 1%) exhibited
repetition, either in the question or the response.
To prevent these repetitive examples from being
incorporated into the instruction-tuned model, we
applied simple heuristics based on span frequency
to identify and filter them out. The total size in
tokens of the Basque instructions used for training

10hf.co/collections/HiTZ/latxa-instruct-
682f356091452b0028380804

is 503M tokens. We are releasing the translated
instructions for replicability purposes.

A.3 Examples
Figs. 8 and 9 show a instruction and response pair
generated and translated by our models in English
and Basque respectively.

A.4 Manual evaluation
We conducted a manual analysis on a small sample
of instructions to validate the translation pipeline.
Two key insights emerged from this analysis:

• The quality of the original English instruc-
tions is not always optimal, particularly for
translation-related tasks.

• The translated instructions are generally of
high quality, often significantly better than
NLLB translations for document-level, code-
related, and math-related tasks. However,
translations sometimes modify the intent
slightly. For instance, the English instruc-
tion “Translate this sentence to English: [...]”
was translated into Basque as “Itzuli esaldi
hau euskarara: [...]”, which literally means
“Translate this sentence to Basque: [...]”. Nev-
ertheless, the instruction remains well-adapted
to the task as a whole and does not degrade
overall quality.
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User:
What's the difference between primary vs secondary market research?

Assistant:
Primary market research involves collecting original data directly from the source, such as
through surveys, focus groups, or experiments. This type of research is typically more expensive
and time-consuming but provides unique and specific insights.

Secondary market research, on the other hand, involves analyzing existing data that has already
been collected by someone else, such as academic studies, industry reports, or government
statistics. This type of research is often less expensive and faster to conduct but may not
provide the same level of specificity or relevance as primary research.

Here are some key differences between primary and secondary market research:

**Primary Market Research**

* Collects original data directly from the source
* Can be tailored to specific research questions or objectives
* Provides unique and specific insights
* Typically more expensive and time-consuming
* Examples: surveys, focus groups, experiments, customer interviews

**Secondary Market Research**

* Analyzes existing data collected by someone else
* Often less expensive and faster to conduct
* May not provide the same level of specificity or relevance
* Examples: academic studies, industry reports, government statistics, online reviews,
social media analytics

When deciding between primary and secondary market research, consider the following factors:

1. **Research objectives**: If you need specific, detailed information about your target market,
primary research may be the better choice. For general information or background research,
secondary research may suffice.
2. **Budget**: Primary research can be costly, while secondary research is often less expensive.
3. **Time constraints**: Secondary research is generally faster to conduct than primary research.
4. **Data quality**: Primary research provides original data, while secondary research relies on
existing data that may be outdated or biased.

Ultimately, a combination of both primary and secondary market research can provide a
comprehensive understanding of your target market.

Figure 8: English instruction generated by the 70B INSTRUCT EN model

In general terms, however, we concluded that re-
liably estimating instruction quality is non-trivial.
While we are actively exploring this direction, it
remains outside the current scope of the paper.

B Training details

Hardware and carbon footprint. Table 4 sum-
marizes the training costs of our experiments (see
Table 3 for the variants nomenclature). In total,
we trained 19 models: one BASE EU, seventeen IN-
STRUCT EU variants, and one 70B INSTRUCT EU.
Due to unforeseen circumstances, the BASE EU and
INSTRUCT EU models were trained using differ-
ent frameworks and infrastructure. The BASE EU

model was trained with NeMo (Harper et al., 2024)
on 64GB H100 GPUs provided by MareNostrum 5.
In contrast, all INSTRUCT EU variants were trained
using Fully Sharded Data-Parallel (Zhao et al.,
2023) on 64GB A100 GPUs provided by CINECA
Leonardo. The total compute time across all exper-
iments amounted to 39, 879.1 GPU hours, which
corresponds to 4, 729.11 kg CO2eq, based on car-
bon intensity estimates from ElectricityMaps.11

Hyperparameters. Table 5 outlines the key hy-
perparameters used during training. Both 8B and

11At the time of the experiments: 0.297 kg/kWh for Italy
and 0.157 kg/kWh otherwise, according to https://www.
electricitymaps.com/.
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Training Data
Backbone model

BASE EN BASE EU INSTRUCT EN

Instructions EN INSTRUCT EN BAS EU I EN INSTRUCT EN

Instructions EU BAS EN I EU BAS EU I EU INS EN I EU

Instructions EN+EU BAS EN I EN+EU BAS EU I EN+EU INS EN I EN+EU

Corpus EU BASE EU BASE EU INS EN C EU

Corpus EU + Instructions EN BAS EN C EU I EN BAS EU C EU I EN INS EN C EU I EN

Corpus EU + Instructions EU BAS EN C EU I EU BAS EU C EU I EU INS EN C EU I EU

Corpus EU + Instructions EN+EU BAS EN C EU I EN+EU BAS EU C EU I EN+EU INS EN C EU I EN+EU

Table 3: Summary of model variants based on different backbone LLMs and training data combinations. Each cell
contains the shorthand identifier for that model variant, reflecting its configuration. Gray entries indicate redundant
configurations where the backbone model has already seen the corresponding data.

Model Hardware # GPU GPU hours CO2eq
BASE EU 64Gb H100 32 960.0h×1 105.51Kg

Any backbone + I EN 64Gb A100 128 192.0h ×1 22.81Kg

Any backbone + I EU 64Gb A100 128 264.5h ×3 94.26Kg

Any backbone + I EN+EU 64Gb A100 128 456.5h ×3 162.69Kg

Any backbone + C EU 64Gb A100 128 1,730.1h ×1 205.54Kg

Any backbone + C EU I EN 64Gb A100 128 1,932.8h ×3 688.86Kg

Any backbone + C EU I EU 64Gb A100 128 2,016.0h ×3 718.50Kg

Any backbone + C EU I EN+EU 64Gb A100 128 2,327.5h ×3 829.53Kg

INST EN,70B C EU I EN 64Gb A100 256 16,005.1h ×1 1,901.41Kg

Total - - 39,879.1h 4,729.11Kg

Table 4: Summary of training costs in GPU hours and carbon footprint (see naming conventions in Table 3)

70B model variants were trained with consistent
configurations in terms of sequence length, batch
size, optimizer settings, and learning rate schedules.
The main differences lie in the number of GPUs and
the FSDP sharding strategy, which was adjusted
to better accommodate the increased memory and
compute demands of the larger model. These hy-
perparameters were optimized using 8B model vari-
ant of BASE EU, and the initial iteration on the in-
structed variants. We found this configuration to
robustly perform across all the configurations.

We also explored the balance between the
amount of English instructions and Basque mono-
lingual data during joint training. We evaluated
each setting on a subset of the development bench-
marks, obtaining the results in Table 6, which show
that the number of training epochs had a more sig-
nificant impact on performance than the number of
instructions. However, to better assess instruction
quality, we also conducted a small-scale internal
arena evaluation. We observed that models trained
with 4M instructions tended to produce worse re-
sponses. Based on these findings, we selected the

1M instructions + 4 epochs configuration as the
most balanced setup. We have several hypotheses
which would explain the results above:

1. All examples are generated using the same
method—Magpie—from the backbone model,
and they tend to be quite homogeneous within
their respective clusters general, translation,
code, math, and arithmetic.

2. Prior work by Etxaniz et al. (2024b) sug-
gests that only a limited amount of English is
needed during continual pretraining to main-
tain cross-lingual capabilities and avoid catas-
trophic forgetting. That is, 1M English instruc-
tions could be enough to avoid catastrophic
forgetting when doing continual pretraining
with Basque data.

C Evaluation details

C.1 Static Benchmarks

Our evaluation framework comprises a total of 27
benchmarks across three languages: 14 in Basque,
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Hyperparameter 8B Models 70B Models
GPUs 128 256

Sequence Length 8192

Gradient Accumulation 1

Micro Batch Size 2

Total Batch Tokens 2M 4M

Epochs 4

Optimizer AdamW

β1, β2 0.9, 0.95

Scheduler Cosine

Cosine min LR ratio 0.33

Learning rate 1e−5

Warm-Up ratio 0.1

Weight Decay 0.1

Precision BFloat16

FSDP Sharding Strategy HYBRID FULL

Table 5: Hyperparameters used to train the models

# Instructions Epochs Accuracy
1M 1 59.91

1M 4 61.37

4M 1 59.82

4M 4 61.97

Table 6: Average benchmark results in the preliminary
hyperparameter search for number of instructions and
training epochs.

9 in English, and 4 in Spanish. These benchmarks
span six categories designed to test different as-
pects of model capabilities:

• Reading comprehension: Belebele (Ban-
darkar et al., 2024), a multilingual dataset
spanning 122 languages; and EusRead-
ing (Etxaniz et al., 2024b), containing 352
complex reading comprehension exercises
from official C1-level Basque examinations.

• Common sense: XStoryCloze (Lin et al.,
2022), a multilingual version of the origi-
nal StoryCloze (Mostafazadeh et al., 2017)
dataset testing narrative understanding; and
PIQA (Bisk et al., 2020), which assesses phys-
ical common sense through everyday tasks.
PIQA’s translation to Basque is available
through IberoBench (Baucells et al., 2025).

• Linguistic proficiency: EusProficiency (Etx-
aniz et al., 2024b), with +5,000 questions
from official Basque examinations; and
BL2MP (Urbizu et al., 2024), designed to

evaluate grammatical knowledge in Basque,
inspired by the BLiMP benchmark methodol-
ogy (Warstadt et al., 2020).

• Miscellaneous knowledge: BertaQA (Etx-
aniz et al., 2024a), which tests knowledge
of local Basque culture versus global top-
ics; EusTrivia and EusExams from the Latxa
suite (Etxaniz et al., 2024b); and a subset of
MMLU (Hendrycks et al., 2021), manually
translated to Basque (Corral et al., 2025) and
Spanish.12

• Maths & Reasoning: MGSM (Shi et al.,
2023), a multilingual grade school maths
benchmark; and ARC (Clark et al., 2018), for
scientific reasoning. We use Basque versions
of both from IberoBench.

Except MGSM, the datasets are framed as multiple-
choice problems where models’ answers are de-
termined by selecting the option with the highest
log probability. MGSM is implemented as a gen-
erative task where an answer is directly sampled
from the evaluated model and matched against a
reference answer. We specifically chose the native
chain-of-thought scenario. To provide models with
contextual examples, our evaluations employed a
5-shot setting.

C.2 Arena Details

Guidelines for arena participants. Fig. 11 con-
tains the information and instructions that were
given to the human annotators who participated
in the community-driven arena initiative. All the
data collected through this initiative was properly
anonymized prior to publication. Note that the ac-
tual information was provided in Basque, while
here we show a translation to English.

Arena infrastructure. On the infrastructure side,
we used vLLM (Kwon et al., 2023) to serve all
model pairs and the baseline. We deployed a total
of 18 endpoints for 8B models and one endpoint for
a 70B model, running on nine and two A100 80GB
GPUs, respectively. For the frontend, we developed
a lightweight Gradio (Abid et al., 2019) interface
that allowed users to enter prompts, view model
responses, and indicate their preferences based on
content quality, language quality, or, in cases where
no clear winner emerged, overall quality. To ensure

12hf.co/datasets/openai/MMMLU
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a fair comparison across models, all models were
given the same system prompt (shown in Fig. 10)
and the same hyperparameters: 0.9 temperature
and 0.95 top-p.

Bradley–Terry model. The Bradley–Terry
model (Bradley and Terry, 1952) provides a
principled probabilistic framework for aggregating
pairwise preferences into a global ranking over
models. Let M = {M1,M2, . . . ,Mn} denote the
set of models under evaluation. The model assigns
a latent preference strength θi to each model Mi.
The probability that model Mi is preferred over
Mj in a pairwise comparison is given by:

P (Mi > Mj) =
eθi

eθi + eθj

Given a dataset D of observed pairwise out-
comes the parameters {θi} are estimated using
Maximum Likelihood Estimation (MLE). To facili-
tate interpretation, we apply zero-mean centering,
treating the scores as deviations from the average
model. The final scores for each model are then
computed as:

Score(Mi) = 400 · θi + 1000

By using a scaling factor of 400, we ensure that
the scores are interpretable in a manner consis-
tent with the online ELO rating system. Thanks
to its score stability and the assumption that
model performance remains constant over time, the
Bradley–Terry scoring system has become a widely
adopted method for ranking LLMs—particularly
since its introduction in the Chatbot Arena.13

C.3 Safety and Bias

We assess the extent to which our instruction-
tuning strategy preserves the safety and bias
alignment properties of the backbone models.
Specifically, we evaluate the model variant
INS EN C EU I EN in both 8B and 70B parameter
sizes, comparing it with two critical counterparts:
(1) BAS EN C EU I EN, to analyze the impact of start-
ing from an already instruction-tune backbone ver-
sus a base model (8B only); and (2) INSTRUCT EN,
to measure potential alignment changes introduced
with our fine-tuning data mix. This evaluation
aims to ensure that models maintain appropriate
safety guardrails and fairness characteristics in both
Basque and English.

13lmarena.ai

Safety. To test safety, we construct a Basque-
language dataset inspired by XSTest (Röttger et al.,
2024), combining clearly unsafe prompts with su-
perficially similar but safe ones. We measure
both Violation rates (VR) and False Refusal rates
(FRR) where the model wrongly declines safe
prompts. The dataset includes a total of 50 in-
stances, comprising both unsafe and safe prompts
across five sensitive categories (self-harm, drugs,
child-exploitation, terrorism, and explicit-content),
adapted to the Basque context and translated into
English for cross-language comparison. The out-
puts of the models were manually annotated by
three members performing red teaming. Anno-
tation agreement for unsafe prompt outputs was
high (average agreement percentage: 0.973; Fleiss’
Kappa: 0.786; Krippendorff’s Alpha: 0.789). For
safe prompt outputs, the annotators unanimously
agreed on every item.

Bias. For bias evaluation, we use BasqBBQ (Zu-
laika and Saralegi, 2025) for Basque and BBQ (Par-
rish et al., 2022) for English to analyze disparities
across languages. The evaluation is conducted in
the same way as described in Section 5.1, using
LM Evaluation Harness framework with 4 few-
shot examples. We use the accuracy metric to eval-
uate the bias of the model, measuring its ability to
choose the correct answer even when biased traps
are added to mislead it (Parrish et al., 2022).

D Detailed Results

D.1 Benchmark Results
Tables 7 and 8 present the accuracy scores for all
model variants across our benchmark suite.

D.2 Arena Results
Complete human evaluation results in terms of
Bradley–Terry scores and final rankings for each
arena dimension (content, language, and global
quality) can be consulted in Table 9. Additionally,
the detailed global win-rates and battle counts for
each model pair are shown in Fig. 12. Note that
the reported win-rates incorporate ties in the calcu-
lation, resulting in win and loss percentages that
do not necessarily sum to 100% for each model
pair. Note also that base models (i.e., BASE EN and
BASE EU) were not included in the arena evaluation,
as they are not capable of following instructions.
However, their performance on benchmarks can be
consulted in Appendix D.1.
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ARC C ARC E Bele BQA G BQA L BLMP EusEx EusPro EusRe EusTri MGSM MMLU PIQA XSC Avg

BASE EN 28.84 49.75 61.56 63.29 43.65 74.06 45.63 32.69 47.44 43.79 26.40 47.41 56.92 56.72 48.44

+ I EU 36.35 61.95 69.44 67.39 42.98 84.06 48.39 35.42 44.89 45.42 30.80 50.37 61.44 62.14 52.93

+ I EN+EU 38.28 63.50 72.00 68.76 42.77 84.25 48.41 36.19 45.17 46.27 37.20 52.04 62.09 62.84 54.27

+ C EU I EN 39.42 64.81 73.00 70.99 63.49 91.28 51.92 48.66 56.82 56.33 47.20 51.85 67.32 69.36 60.89

+ C EU I EU 38.14 67.00 71.78 71.24 62.65 92.39 49.88 47.20 46.02 57.78 39.20 50.00 65.63 66.71 58.97

+ C EU I EN+EU 40.10 68.60 74.89 72.74 63.79 92.50 52.78 47.65 53.12 59.59 48.40 51.48 64.87 66.84 61.24

BASE EU 38.65 67.38 75.22 72.45 65.65 92.50 55.03 53.57 58.24 60.52 36.00 51.11 65.09 68.50 61.42

+ I EN 40.36 63.93 72.22 70.94 63.20 90.11 52.21 48.31 59.09 57.78 45.60 52.22 65.85 70.55 60.88

+ I EU 39.25 67.09 73.56 71.78 61.59 92.11 52.38 47.78 49.43 57.14 35.60 53.70 64.92 67.31 59.55

+ I EN+EU 38.31 66.92 74.56 72.58 62.23 91.22 53.04 48.96 53.98 58.95 44.80 56.30 64.27 67.70 60.99

+ C EU I EN 40.96 66.12 61.22 71.49 63.83 91.72 50.67 47.19 47.16 57.49 43.60 52.59 66.83 70.35 59.37

+ C EU I EU 37.97 67.42 71.33 71.24 62.52 91.83 51.76 46.31 52.84 57.32 37.60 52.22 65.90 67.31 59.54

+ C EU I EN+EU 39.16 68.43 71.67 71.70 64.13 92.06 52.61 48.09 53.69 58.43 40.80 54.44 66.23 68.63 60.72

INSTRUCT EN 29.10 50.88 73.89 67.10 44.97 69.61 46.21 34.13 49.72 45.01 45.60 50.37 57.63 61.22 51.82

+ I EU 38.65 63.85 78.00 69.57 42.98 83.67 51.80 38.36 50.57 45.20 27.20 55.56 62.64 64.73 56.76

+ I EN+EU 39.59 64.65 79.22 70.40 43.10 84.00 51.43 38.69 52.56 52.80 35.20 54.81 62.85 64.13 57.51

+ C EU 37.97 65.70 77.33 73.87 66.33 92.67 55.05 52.12 58.24 61.40 48.40 51.85 66.99 70.28 62.73

+ C EU I EN 41.38 66.79 80.00 74.62 65.23 91.39 56.00 52.83 59.66 61.05 54.00 57.04 67.32 71.34 64.19

+ C EU I EU 40.44 69.15 81.44 73.54 66.07 91.83 56.01 52.06 62.78 62.33 46.40 52.96 66.01 71.01 63.72

+ C EU I EN+EU 39.85 70.16 83.00 72.99 65.57 92.28 56.23 52.35 61.93 62.10 50.80 56.30 65.69 69.56 64.20

INSTRUCT EN,70B 44.97 72.18 89.11 83.53 53.51 80.83 63.28 43.59 72.16 62.51 76.40 68.52 66.34 69.69 67.61

+ C EU I EN 55.12 77.57 91.00 87.42 77.71 92.11 71.56 68.00 78.98 74.17 80.00 68.89 70.75 77.83 76.51

3.5 Sonnet - - 94.22 93.52 80.46 - 82.68 81.60 87.39 84.61 85.20 79.63 - - -

GPT-4o - - 92.89 91.01 74.83 - 79.17 74.25 84.38 80.70 79.20 76.67 - - -

Table 7: Accuracy scores in Basque benchmarks. Best results in each compute class are in bold. Best overall results
are underlined.
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English Spanish

ARC C ARC E Bele BQA G BQA L MGSM MMLU PIQA XSC Avg Bele MGSM MMLU XSC Avg

BASE EN 54.61 84.30 87.78 75.59 49.11 55.20 67.78 80.79 81.34 69.81 81.67 50.40 57.41 74.06 65.88

+ I EU 54.95 83.63 86.78 73.95 47.38 67.60 63.70 80.63 82.46 70.73 80.67 58.40 57.78 74.12 67.74

+ I EN+EU 54.82 81.42 87.61 74.46 47.91 78.00 61.30 80.25 82.40 72.52 82.00 67.60 58.89 75.28 70.94

+ C EU I EN 53.84 80.72 85.89 75.75 60.41 79.20 60.00 79.71 82.40 73.03 81.33 63.60 60.00 73.53 69.62

+ C EU I EU 54.44 82.20 80.33 75.08 59.56 62.00 55.19 80.69 80.21 69.12 75.22 58.00 53.70 72.01 64.73

+ C EU I EN+EU 53.92 81.65 85.78 75.63 60.79 74.40 63.33 80.85 82.06 73.06 80.33 62.80 61.11 73.40 69.41

BASE EU 52.39 82.83 84.33 76.05 61.72 55.20 63.70 80.30 80.08 68.87 79.11 46.80 58.52 72.20 64.16

+ I EN 53.33 80.68 86.44 74.50 59.22 73.60 61.11 80.09 81.54 72.21 78.11 64.40 58.15 72.73 68.35

+ I EU 54.44 82.41 84.11 74.87 58.63 64.00 62.22 80.09 81.27 70.65 77.22 56.40 54.81 74.19 65.66

+ I EN+EU 53.75 80.89 85.89 74.41 59.14 73.20 63.70 79.22 81.14 72.44 80.44 64.40 56.67 74.39 68.97

+ C EU I EN 54.18 81.94 84.11 74.50 59.48 74.40 59.63 80.14 81.27 71.65 76.33 56.80 57.41 73.33 65.97

+ C EU I EU 53.92 82.53 81.78 74.50 59.09 58.00 62.96 80.09 80.21 69.09 74.89 47.60 55.56 72.60 62.66

+ C EU I EN+EU 54.78 82.24 84.56 74.58 60.62 73.20 61.48 80.63 81.01 71.65 76.78 60.40 59.26 73.20 67.41

INSTRUCT EN 57.76 85.48 92.67 77.47 50.51 87.20 66.67 81.28 83.52 77.02 87.89 78.80 62.96 77.50 76.79

+ I EU 54.18 82.07 90.89 75.38 47.88 80.00 64.81 79.60 80.54 74.09 86.44 70.00 60.37 74.85 72.92

+ I EN+EU 50.85 77.99 91.56 75.59 49.11 81.60 65.19 72.25 69.49 72.10 85.89 73.20 62.96 74.85 74.23

+ C EU 53.84 81.86 90.22 77.05 63.16 68.40 64.81 80.20 83.26 73.74 82.67 61.20 59.63 73.20 69.17

+ C EU I EN 51.96 79.42 91.00 77.38 62.01 81.20 62.59 74.59 76.31 74.35 85.67 73.20 59.26 72.47 72.65

+ C EU I EU 53.58 81.65 90.67 76.55 61.63 72.00 64.07 79.60 80.28 74.65 84.22 70.00 58.52 75.18 71.98

+ C EU I EN+EU 51.62 79.46 90.89 77.13 61.17 84.80 65.93 74.86 74.12 74.65 85.11 72.80 60.00 74.06 72.99

INSTRUCT EN,70B 63.78 90.61 95.44 85.49 56.98 94.80 78.15 85.04 85.37 81.74 94.22 86.40 77.04 83.92 85.39

+ C EU I EN 66.89 87.58 96.33 88.46 74.70 94.80 77.04 81.66 79.02 84.09 93.33 86.00 84.40 81.14 86.82

Table 8: Accuracy scores in English and Spanish benchmarks. Best results in each compute class are in bold. Best
overall results are underlined.
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Arena Global Arena Content Arena Language

Rank Bradley–Terry Rank Bradley–Terry Rank Bradley–Terry
GPT-4o 1 1188 (+13/-17) 1 = 1183 (+15/-13) 1 = 1093 (+12/-10)

3.5 Sonnet 2 1153 (+13/-21) 2 = 1150 (+12/-17) 3 ▼1 1082 (+11/-11)

INS EN,70B C EU I EN 3 1141 (+15/-11) 3 = 1127 (+10/-11) 2 ▲1 1083 (+13/-13)

INS EN C EU I EN+EU 5 1050 (+13/-14) 4 ▲1 1047 (+12/-12) 4 ▲1 1038 (+10/-8)

INS EN C EU I EU 5 1050 (+14/-11) 5 = 1045 (+11/-13) 6 ▼1 1034 (+8/-10)

INS EN C EU I EN 6 1038 (+13/-13) 6 = 1031 (+15/-12) 5 ▲1 1036 (+11/-10)

BAS EN C EU I EN+EU 7 1025 (+13/-11) 7 = 1026 (+13/-13) 10 ▼3 1019 (+7/-12)

BAS EU C EU I EN+EU 8 1022 (+13/-8) 8 = 1019 (+12/-11) 9 ▼1 1021 (+10/-10)

BAS EN C EU I EN 9 1017 (+12/-11) 10 ▼1 1004 (+11/-14) 7 ▲2 1027 (+10/-9)

BAS EU I EN+EU 10 1008 (+13/-13) 9 ▲1 1008 (+10/-13) 12 ▼2 1008 (+9/-9)

BAS EU C EU I EN 12 1005 (+17/-14) 13 ▼1 989 (+16/-13) 8 ▲4 1026 (+10/-13)

BAS EU I EN 12 1005 (+12/-14) 11 ▲1 1000 (+13/-13) 11 ▲1 1014 (+10/-10)

BAS EU I EU 13 991 (+13/-16) 12 ▲1 990 (+13/-17) 15 ▲2 991 (+11/-10)

BAS EN C EU I EU 14 985 (+12/-16) 14 = 985 (+13/-15) 13 ▲1 1002 (+10/-10)

BAS EU C EU I EU 15 982 (+12/-17) 15 = 984 (+10/-14) 14 ▲1 994 (+10/-11)

INS EN C EU 16 942 (+9/-12) 17 ▼1 935 (+8/-12) 16 = 974 (+9/-8)

INS EN I EN+EU 17 936 (+14/-11) 16 ▲1 943 (+10/-13) 18 ▼1 944 (+11/-10)

INS EN I EU 18 918 (+14/-14) 18 = 924 (+11/-12) 19 ▼1 943 (+12/-11)

BAS EN I EN+EU 19 915 (+16/-14) 19 = 922 (+15/-17) 17 ▲2 955 (+12/-10)

BAS EN I EU 20 896 (+14/-16) 20 = 909 (+12/-16) 20 = 925 (+10/-13)

INSTRUCT EN 21 722 (+19/-17) 21 = 766 (+17/-14) 21 = 783 (+12/-12)

Table 9: Full results of human evaluation in the arena, across the three evaluation dimensions: content quality,
linguistic quality and global preference. For convenience, 8B parameter-sized models are highlighted by backbone
family ( BASE EN , BASE EU , and INSTRUCT EN ). Rankings for content and language include differences (▲/▼)
relative to the global ranking. Values in parenthesis indicate 90% confidence intervals for Bradley–Terry scores.
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User:
Zein da merkatu ikerketa primarioaren eta bigarren mailakoaren arteko aldea?

Assistant:
Merkatu ikerketa primarioak jatorrizko datuak zuzenean iturritik biltzea dakar, hala nola
inkestak, foku taldeak edo esperimentuak. Ikerketa mota hori normalean garestiagoa eta denbora
gehiago behar izaten du, baina ikuspegi bakarrak eta espezifikoak eskaintzen ditu.

Merkatu ikerketa bigarren mailakoak, berriz, beste norbaitek bildutako datu existenteak
aztertzea dakar, hala nola azterketa akademikoak, industria-txostenak edo gobernu-estatistikak.
Ikerketa mota hori normalean merkeagoa eta azkarragoa da egiteko, baina ez du ziur aski lehen
mailako ikerketaren zehaztasun edo garrantzi bera eskaintzen.

Hona hemen merkatu ikerketa primarioaren eta bigarren mailakoaren arteko alde nagusiak:

**Merkatu Ikerketa Primarioa**

* Jatorrizko datuak zuzenean iturritik biltzen ditu
* Zehatzagoa da eta helburu espezifikoetara bideratuta dago
* Ikuspegi bakarrak eta espezifikoak eskaintzen ditu
* Normalean garestiagoa eta denbora gehiago behar izaten du
* Adibidez: inkestak, foku taldeak, esperimentuak, bezeroen elkarrizketak

**Merkatu Ikerketa Bigarren Mailakoa**

* Beste norbaitek bildutako datu existenteak aztertzen ditu
* Orokorragoa da eta ez da hain zehatza edo espezifikoa
* Ez du ziur aski lehen mailako ikerketaren zehaztasun edo garrantzi bera eskaintzen
* Adibidez: azterketa akademikoak, industria-txostenak, gobernu-estatistikak, lineako
berrikuspenak, sare sozialen analitika

Merkatu ikerketa primarioaren eta bigarren mailakoaren artean erabaki behar duzunean, kontuan
hartu faktore hauek:

1. **Ikerketa helburuak**: Zure xede-publikoari buruzko informazio zehatz eta xehetasunezkoa
behar baduzu, ikerketa primarioa aukera hobea izan daiteke. Orokorreko informazioa edo atzeko
planoko ikerketa behar baduzu, ikerketa bigarren mailakoarekin nahikoa izan daiteke.
2. **Aurrekontua**: Ikerketa primarioa garestia izan daiteke, bigarren mailako ikerketarekin
alderatuta.
3. **Denbora mugak**: Oro har, ikerketa bigarren mailako bat egitea errazagoa eta azkarragoa
da ikerketa primario bat egitea baino.
4. **Datuaren kalitatea**: Ikerketa primarioek jatorrizko datuak eskaintzen dituzte, bigarren
mailako ikerketek dagoeneko bildutako datuetan oinarritzen direnbitartean.

Azken finean, lehen mailako eta bigarren mailako merkatu-ikerketekin konbinazio bat emaitza
osoago bat lortzeko modurik onena izan daiteke.

Figure 9: The same as above (Fig. 8) but translated to Basque by 8B BASE EU.

You are a helpful Artificial Intelligence assistant called [ANONYMIZED], created and developed by
[ANONYMIZED].

The user will engage in a multi-round conversation with you, asking initial questions and
following up with additional related questions. Your goal is to provide thorough, relevant and
insightful responses to help the user with their queries. Every conversation will be conducted in
standard Basque, this is, the first question from the user will be in Basque, and you should
respond in formal Basque as well. Conversations will cover a wide range of topics, including but
not limited to general knowledge, science, technology, entertainment, coding, mathematics, and
more. Today is {date}.

Figure 10: System prompt given to the models in the arena evaluation
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Information on Data Usage

To participate in this Arena, you must provide a username and email address. This information is
necessary for entry into the final raffle. All collected information will be deleted once the
Arena concludes.

ATTENTION! Your username will be publicly visible throughout the Arena.

ATTENTION! Since we collect personal data and prompts/responses in this Arena, participation is
restricted to individuals 14 years of age and older.

No additional personal data will be collected. However, we do collect other information, including:

• User prompts and responses.
• User preferences.

This data will be used for the following purposes:

• Evaluation of models participating in the Arena.
• Research for new models.

This data will be published openly in the future under a CC0 license. By participating in the
Arena, you grant permission for this use.

Instructions for Participation

The Arena is a research initiative we’ve prepared at [ANONYMIZED] to help develop public chatbots
for Basque. All participants will have the chance to get numbers for an amazing raffle.

Here’s what you’ll need to do:

• You must write and send a question or command
• Two different chatbots will respond. Your job is to analyze and compare the answers to decide
which one is better. We want to measure both content quality and Basque language quality.

• In some cases, you’ll be asked a third question if your content and language quality
assessments are contradictory.

• After answering all questions, you’ll have the option to send your assessment via the "Send
evaluation" button.

• To write a new question or command, you’ll need to click the "New chat" button.

To summarize, what you need to do is:

1. Write a question or command for the chatbots. For example:

• "How do you make a potato omelet?"
• "Summarize the following text: [...]"

2. Read both answers and compare the quality of content and quality of Basque language.
3. Decide which response you prefer in terms of content and language. For each:

• If A is better, choose A
• If B is better, choose B
• If both are at the same level (good or bad), choose TIE

4. If you wish, you can continue with the conversation, ask for more explanations, or try
another question. You can change your answer from step 3, taking into account the quality
of the entire conversation.

5. To restart the process, click the "New chat" button.

We want your OPINION. But play fair! We will occasionally conduct an analysis of the results
received and verify control answers. If they’re not correct, you won’t participate in the raffle.

About the chatbots

In total, we’ve put 21 chatbots in competition. Among them are private models like GPT-4o or
Claude, open models like Llama 3.1, and some we’ve developed ourselves. Overall, there’s a variety
of chatbots: good ones, very good ones, and also bad ones. In this examination, our goal is to
systematically evaluate these chatbots.

Figure 11: Information panel and instructions for human participants in the arena
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(a) Win-rates matrix showing the percentage of wins for Model A (row) against Model B (column)
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(b) Battle counts matrix showing the number of direct comparisons performed between each model pair

Figure 12: Detailed human evaluation results from the arena study (Arena Global)
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