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Abstract

Large language models (LLMs) have gained in-
creasing attention in recommender systems, but
their inherent hallucination issues significantly
compromise the accuracy and reliability of rec-
ommendation results. Existing LLM-based rec-
ommender systems predominantly rely on stan-
dard fine-tuning methodologies, often ignoring
hallucination issues during the fine-tuning pro-
cess. To address this challenge, we propose
Logit Space Constraints Fine-Tuning (LCFT),
a novel fine-tuning framework designed to
mitigate hallucination in LLM-based recom-
menders. Specifically, LCFT takes as input
semantically positive and negative instruction
pairs and incorporates Kullback–Leibler (KL)
divergence into the training objective to ex-
plicitly maximise their distributional disparity
in the logit space. By conducting such logit
space-constrained fine-tuning, LCFT encour-
ages more distinguishable and semantically
grounded representations, thereby reducing the
model’s susceptibility to hallucination. Exten-
sive experiments on two recommendation mod-
els with distinct LLM backbones and four real-
world datasets demonstrate that LCFT consis-
tently reduces hallucination and enhances rec-
ommendation performance. Our source code is
available at: https://github.com/djf-web/
LCFT.

1 Introduction

Large language models (LLMs), such as GPT-
3 (Ouyang et al., 2022; Brown et al., 2020) and
LLaMA (Touvron et al., 2023), are pretrained on
massive datasets and demonstrate exceptional ca-
pabilities in contextual understanding, knowledge
reasoning, and compositional generalisation. Their
utility has expanded beyond traditional natural
language processing (NLP) (Liang et al., 2022;
Chowdhery et al., 2022; Wei et al., 2022) to fields
such as robotics (Shah et al., 2022; Xiao et al.,
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2022; Driess et al., 2023) and information re-
trieval (Jeronymo et al., 2023; Wang et al., 2023;
Jin et al., 2023; Li et al., 2025; Liu et al., 2025). By
parsing complex instructions and generating predic-
tive, context-aware outputs, LLMs are redefining
the landscape of machine learning research. In
particular, recommender systems, critical for per-
sonalised content delivery, stand to benefit signifi-
cantly (Chen et al., 2024; Zhang et al.; Deng et al.,
2024). LLMs can mitigate cold-start problems for
users and items by leveraging their extensive pre-
trained knowledge (Sanner et al., 2023), support dy-
namic modelling through contextual reasoning (Dai
et al., 2023a; Gao et al., 2023), and introduce novel
mechanisms to transcend the limitations of tradi-
tional collaborative filtering approaches.

Recommendation methods based on LLMs have
demonstrated strong effectiveness across various
recommendation scenarios. In recent years, a wide
range of LLM-based recommendation algorithms
have been proposed. One line of work directly
employs LLMs as generators for recommender sys-
tems (Gao et al., 2023; Liu et al., 2023; Dai et al.,
2023b; Sanner et al., 2023). For example, (Sanner
et al., 2023) validates the effectiveness of using
pretrained LLMs directly as generators in cold-
start settings; (Gao et al., 2023) constructs prompts
based on users’ historical interactions and inter-
acts with the LLM to generate recommendations;
(Dai et al., 2023b) integrates LLMs with traditional
recommendation models to enhance performance.
However, due to the discrepancy between the pre-
training objectives of LLMs and the specific goals
of recommendation tasks, using LLMs directly as
recommendation generators still faces performance
limitations in practical applications.

To mitigate the discrepancy between the pre-
training objectives of LLMs and the goals of rec-
ommendation tasks, several studies have explored
instruction tuning of LLMs using recommendation
datasets to enhance their performance in recom-
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Figure 1: Hallucinations in LLM-based recommender
systems can seriously affect the accuracy of recommen-
dations. This makes the LLM-based recommender sys-
tem behave like it is guessing, reducing the reliability
and usefulness of its recommendations.

mendation scenarios. Among them, one group of
studies focuses on fine-tuning LLMs using ID in-
formation (Bao et al., 2023; Li et al., 2023; Feng
et al., 2023). For example, (Bao et al., 2023) con-
structs instruction-tuning datasets from recommen-
dation datasets to fine-tune LLMs and improve
their recommendation capabilities; (Li et al., 2023)
combines LLMs with traditional recommendation
models and applies joint fine-tuning to improve
efficiency; and (Feng et al., 2023) adopts reinforce-
ment learning to optimise LLMs, significantly en-
hancing their conversational recommendation abil-
ity. Meanwhile, another line of research incorpo-
rates collaborative information from recommen-
dation datasets into the fine-tuning process to fur-
ther boost performance (Zhang et al., 2023; Zheng
et al., 2024; Liao et al., 2024; Zhu et al., 2024;
Hong et al., 2025; Zhang et al., 2025). For instance,
(Zhang et al., 2023) fine-tunes LLMs to generate
semantically rich item tags, which are then used
to improve ranking accuracy; (Zheng et al., 2024)
integrates both linguistic and collaborative seman-
tics during fine-tuning to enhance performance;
(Liao et al., 2024) proposes a hybrid item repre-
sentation method that combines the strengths of
traditional recommender systems and LLMs; and
(Zhang et al., 2025) incorporates collaborative in-
formation into LLM-based recommenders, signif-
icantly improving recommendation performance.
However, these methods often rely on conventional
fine-tuning techniques such as LoRA (Hu et al.,
2022). Such techniques remain vulnerable to hallu-
cinations generated by LLMs, which may compro-
mise the accuracy and reliability of recommenda-
tion results.

In natural language processing (NLP), halluci-
nation typically refers to a model generating con-
tent that is not grounded in the input or real-world
facts (Ji et al., 2023). In recommender systems,
hallucination refers to cases where the preference

is fabricated. However, since the ground truth of
preferences is often unknown until interaction oc-
curs, we use contradictions to identify instances of
hallucination in preference reasoning. Specifically,
we propose an interpretable and verifiable defini-
tion of hallucination in the recommendation setting:
if a model produces the same or logically incon-
sistent responses to semantically opposite instruc-
tions (e.g., "Will the user like this item?" vs. "Will
the user dislike this item?"), it can be considered
as hallucinating. From a commonsense reasoning
perspective, a user cannot simultaneously like and
dislike the same item. This contradiction signals a
breakdown in the model’s internal coherence and
motivates our approach to mitigate such inconsis-
tencies through contrastive instruction tuning.

As shown in Figure 1, the hallucination problem
of LLM-based recommender systems can signif-
icantly impact the accuracy of recommender sys-
tems. Ideally, if an LLM-based recommender sys-
tem does not suffer from hallucination and pos-
sesses strong understanding capabilities, it should
generate different recommendation results when
given semantically opposite instructions. How-
ever, LLM-based recommender systems are of-
ten affected by hallucinations and tend to produce
identical recommendations even for contradictory
prompts. In such cases, the model’s behaviour
resembles random guessing, which severely un-
dermines the reliability and practical utility of the
recommendations.

To address the hallucination problem in LLM-
based recommender systems, we propose a novel
fine-tuning framework—Logit Space Constraints
Fine-Tuning (LCFT). Unlike traditional methods
that rely on explicit negative feedback or modifi-
cations to original user behavior data, LCFT lever-
ages contrastive instruction tuning. The LCFT
framework begins by constructing semantically op-
posing instruction pairs, such as “Will the user
click on this item?” (positive) and “Will the user
not click on this item?” (negative). It then fine-
tunes the LLM using LoRA (Hu et al., 2022) by
maximising the Kullback–Leibler (KL) divergence
between the logit distributions of these instruction
pairs. This fine-tuning objective encourages the
model to produce distinguishable logit distributions
in response to semantically contrasting inputs, rein-
forcing its ability to differentiate instruction seman-
tics. As a result, the model becomes more sensitive
to instruction differences, generating appropriately
contrasting responses and reducing the likelihood

29312



of hallucinations. Importantly, LCFT is a general
fine-tuning framework that can be integrated into
existing LLM-based recommender systems. Exten-
sive experiments on two LLM-based recommender
systems (LLama-7B and Vicuna-7B) and four real-
world datasets demonstrate that LCFT consistently
mitigates hallucinations and improves recommen-
dation accuracy across different LLM backbones.

In summary, the main contributions of our work
include:

• We identify the hallucination problem in
current LLM-based recommender systems,
where the model generates identical recom-
mendations even when given semantically op-
posite instructions. This behaviour resembles
"guessing" rather than true "understanding",
severely undermining the accuracy and relia-
bility of the recommendations.

• We propose a novel fine-tuning framework for
LLM, Logit Space Constraints Fine-Tuning
(LCFT), which effectively mitigates the hallu-
cination problem in current LLM-based rec-
ommender systems, thereby improving the
accuracy and reliability of recommendation
results.

• Extensive experiments on LLM-based recom-
mender systems using two distinct LLM back-
bones and four real-world datasets demon-
strate that LCFT consistently mitigates hallu-
cinations and enhances recommendation per-
formance across diverse scenarios.

2 Related Work

In this section, we review several studies related to
our work. Traditional recommender systems pri-
marily rely on collaborative filtering, content-based
methods, or hybrid models (Koren et al., 2009; Guo
et al., 2017; Wang et al., 2017; Zhou et al., 2018;
He et al., 2020; Hidasi et al., 2016; Cui et al., 2020;
Tang and Wang, 2018; Yuan et al., 2019). These
approaches typically make use of users’ historical
interactions to generate recommendations. While
they have achieved widespread success in practice,
they still show limitations in modelling complex
semantic relationships.

In recent years, recommendation methods based
on LLMs have gained increasing attention. These
methods can generally be categorised into two
types: one directly applies pre-trained LLMs to
recommendation tasks, while the other fine-tunes

LLMs on recommendation datasets before deploy-
ment.

2.1 Zero-tuning
With the rapid development of LLMs, there have
been an increasing number of studies to explore
their potential in recommender systems. A repre-
sentative line of work involves directly applying
pre-trained LLMs to recommendation tasks (Gao
et al., 2023; Liu et al., 2023; Dai et al., 2023b; San-
ner et al., 2023). For example, (Liu et al., 2023)
systematically evaluates the recommendation per-
formance of ChatGPT across multiple application
scenarios; (Gao et al., 2023) proposes a method that
incorporates user profiles and historical interactions
into prompts for LLMs, generating recommenda-
tions through interaction with the model; (Dai et al.,
2023b) combines ChatGPT with traditional infor-
mation retrieval techniques to enhance recommen-
dation quality; (Sanner et al., 2023) focuses on
evaluating the performance of LLM-based recom-
mendation methods in cold-start settings. However,
since these LLMs are not specifically designed
or trained for recommendation tasks, their perfor-
mance remains limited.

2.2 Fine-tuning
To overcome the limitations of directly using LLMs
in recommendation tasks, recent research has ex-
plored instruction tuning of LLMs based on recom-
mendation datasets to enhance their recommenda-
tion capabilities. Some studies focus on fine-tuning
LLMs using ID information (Bao et al., 2023; Li
et al., 2023; Feng et al., 2023). For instance, (Bao
et al., 2023) fine-tunes LLMs using recommenda-
tion scenario-specific instructions to improve rec-
ommendation performance; (Li et al., 2023) com-
bines LLMs with traditional recommendation mod-
els for fine-tuning to enhance efficiency; and (Feng
et al., 2023) adopts reinforcement learning strate-
gies to improve LLM performance in conversa-
tional recommendation settings.

Another line of works integrates collaborative
information to further improve fine-tuning out-
comes (Zhang et al., 2023; Zheng et al., 2024; Liao
et al., 2024; Zhu et al., 2024; Hong et al., 2025;
Zhang et al., 2025). For example, (Liao et al., 2024)
proposes a hybrid item representation approach that
effectively combines the strengths of traditional
and LLM-based recommendation; (Zhang et al.,
2023) fine-tunes LLMs to generate high-quality
labels for items, enhancing ranking performance;
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(Zheng et al., 2024) incorporates both linguistic
and collaborative semantics during fine-tuning to
boost model performance; and (Zhang et al., 2025)
fuses collaborative information into the fine-tuning
process to significantly improve recommendation
performance. Although the above methods have
improved LLM-based recommendation to some ex-
tent, they often rely on conventional fine-tuning
techniques (e.g., LoRA (Hu et al., 2022)) and are
still affected by the hallucination problem in LLMs,
which reduces recommendation accuracy.

In contrast, we propose a fine-tuning frame-
work designed to mitigate the hallucination issue
in LLMs, which can be seamlessly integrated into
LLM-based recommender systems. This frame-
work significantly enhances both the accuracy and
reliability of recommendations.

3 Preliminary

3.1 Problem Statement
Traditional instruction fine-tuning approaches for
LLM-based recommender systems primarily focus
on maximising the accuracy of user preference pre-
diction. Their objective function can be formulated
as: max

θ

∑
(u,i)∈D

logPθ (Y | X), where X denotes

the instruction generated based on the interaction
history between user u and item i, Y is the output
of the LLM, and θ represents the model param-
eters. However, these methods often neglect the
hallucination problem—when presented with se-
mantically contradictory instructions, LLMs may
produce nearly identical outputs, indicating a lack
of semantic sensitivity and undermining the relia-
bility of the recommendations.

To address this limitation, LCFT introduces a
contrastive fine-tuning strategy with an objective
that maximises the KL divergence between the
logit distributions of positive and negative instruc-
tion pairs. This contrastive training encourages the
model to produce distinguishable outputs for con-
trasting inputs, enhancing its ability to capture fine-
grained instruction semantics. As a result, LCFT
effectively mitigates hallucinations.

3.2 Instruction Tuning
Although LLMs (such as GPT, LLaMA, etc.) pos-
sess powerful language understanding and gen-
eration capabilities, they are often better at han-
dling text than performing specific tasks (such as
recommendation tasks) without specialised train-
ing. To enhance their ability to carry out specific

tasks, these models typically require instruction
tuning. Instruction tuning is a method of retraining
LLMs using a large number of human-annotated
instruction-response pairs. Its core objective is to
improve the model’s ability to understand and fol-
low natural language instructions, thereby enhanc-
ing its generalisation and practicality in specific
situations.

In recommendation tasks, instruction tuning typ-
ically involves the following four steps:
Step 1 (Define the Recommendation Task In-
struction): Clarify the objective of the recommen-
dation task and convert it into a natural language
instruction.
Step 2 (Construct Input-Output Pairs): Build
the task inputs and outputs based on the user’s
historical behaviour.
Step 3 (Form Instruction Tuning Samples):
Combine the task instruction with the task input to
create an instruction input, and use the task output
as the instruction output.
Step 4 (Construct the Instruction Dataset): Or-
ganise the formatted samples into a standard for-
mat (Instruction Input, Instruction Output), which
is then used for instruction tuning of the model.

An example of formatting recommendation data
for instruction tuning is shown below.

Instruction Input
Task Instruction: Given the user’s historical
interactions, please determine whether the user
will like the target new book by answering "Yes"
or "No".
Task Input: User’s liked items: Sula.
User’s disliked items: Pigs in Heaven.
Target new book: The Bean Trees.

Instruction Output
Task Output: No.

4 Methodology

This section provides a detailed description of our
proposed LCFT framework, including the overview
of LCFT and the construction of pairs of semanti-
cally opposite instructions. Further, we introduce
how to incorporate a KL divergence term into the
loss function during the fine-tuning process.

4.1 Overview of the LCFT Method

As shown in Figure 2, our overall approach con-
sists of two parts: prompt construction and the
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Figure 2: The overview of our proposed LCFT method. LCFT fine-tunes the LLM using LoRA by leveraging pairs
of semantically opposite instructions—positive and negative. During fine-tuning, it maximises the KL divergence
between the logit distributions of these paired inputs, encouraging the model to generate clearly distinguishable
responses.

LCFT fine-tuning method. (1) Prompt Construc-
tion: We first construct semantically opposite in-
struction pairs—positive instruction Xpos and nega-
tive instruction Xneg—to form contrastive prompts
for training. (2) LCFT (Logit Constrained Fine-
Tuning): Based on these constructed prompts, the
LLM is fine-tuned via LoRA to maximise the KL
divergence between their output logit distributions,
encouraging the model to distinguish between pos-
itive and negative instruction, thereby guiding it
to generate differentiated responses when given
positive versus negative instructions.

4.2 Prompt Construction
Our fine-tuning framework relies on a pair of posi-
tive and negative instruction inputs, where the neg-
ative instruction is generated by semantically in-
verting the positive instruction.

Existing LLM-based recommender systems typ-
ically use fixed prompt templates for positive in-
structions. For example, TALLRec adopts the fol-
lowing fixed prompt template structure:

• Positive instruction prompt template. #
Task Instruction: Given the user’s historical in-
teractions, please determine whether the user
will likes the target new movie by answering
"Yes" or "No".
Task Input: User’s liked items: GodFather.
User’s disliked items: Star Wars. Target new
movie: Iron Man
Task Output: No.

Based on the existing positive prompt templates
used in LLM-based recommender systems, we con-

struct corresponding negative prompt templates.
For example, given the fixed prompt structure used
by TALLRec, we generate the following corre-
sponding negative prompt template:

• Negative instruction prompt template. #
Task Instruction: Given the user’s historical in-
teractions, please determine whether the user
will dislikes the target new movie by answering
"Yes" or "No".
Task Input: User’s liked items: GodFather.
User’s disliked items: Star Wars. Target new
movie: Iron Man
Task Output: Yes.

We construct negative instruction prompts via
semantic inversion to enhance fine-tuning. This
creates a clear contrast between positive and neg-
ative outputs, promoting better separation in the
model’s response distributions and improving KL
divergence optimisation. By altering only the in-
struction while keeping the input fixed, the model
learns to focus more precisely on task intent, reduc-
ing hallucinations.

4.3 Logit Constrained Fine-Tuning
LLMs have a vast number of parameters, making
full-parameter fine-tuning computationally expen-
sive. Since most of the knowledge in LLMs lies
in a low-dimensional subspace (Hu et al., 2022),
LCFT adopts the efficient LoRA approach (Hu
et al., 2022), which improves performance by up-
dating only a small subset of parameters (Li and
Liang, 2021; Houlsby et al., 2019; Lester et al.,
2021). Specifically, LCFT keeps all pretrained
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LLM parameters frozen and trains only additional
low-rank matrices to efficiently incorporate task-
specific information. The original LoRA training
objective in LCFT is:

LLoRA = min
Θ

−
∑

(X,Y )∈Z

|Y |∑

t=1

logPΦ+Θ(Yt|X,Y<t) (1)

where Φ denotes the original parameters of the
LLM M, which are kept frozen during training.
Θ represents the LoRA parameters, which are up-
dated during training (accounting for only about
0.1% of the original LLM parameters (Hu et al.,
2022)). X denotes the instruction input of an arbi-
trary single sample, including the positive instruc-
tion and the negative instruction, and Y is the in-
struction output. Yt denotes the t-th token of Y ,
and Y<t refers to the tokens preceding Yt. Z repre-
sents the training dataset.

In addition, LCFT takes both positive and nega-
tive instruction samples as input, constructs differ-
ent logit distributions, and maximises the KL diver-
gence between the logit distributions of the positive
and negative instruction samples, thereby guiding
the model to generate clearly distinguishable in-
struction responses. The KL divergence objective
in LCFT is formulated as:

LKL = min
Θ

−
∑

(Xpos,Xneg,Y )∈Z

|Y |∑

t=1

[
DKL (PΦ+Θ(Yt|Xpos, Y<t) ∥ PΦ+Θ(Yt|Xneg, Y<t))

]

(2)

where Xpos denotes the positive instruction in-
put, and Xneg denotes the negative instruction in-
put. DKL(·∥·) represents the Kullback-Leibler
divergence, which measures the discrepancy be-
tween the logit representations distribution gener-
ated from the positive instruction input and that
generated from the negative instruction input.

In summary, the final learning objective of LCFT
can be described as:

LLCFT = LLoRA + λ · LKL (3)

where LLoRA denotes the original LoRA fine-
tuning objective, and LKL represents the training
objective for KL divergence optimisation.

5 Experiments

In this section, we conduct experiments to answer
the following research questions:

RQ1: Compared to the fine-tuning strategies
used by existing LLM-based recommender sys-
tems, does the LCFT perform better under few-shot
training and full-shot training conditions?

RQ2: When integrated into LLM-based recom-
mender systems with different LLM backbones,
how does the performance of the fine-tuning frame-
work we propose compare?

RQ3: How does the performance of LCFT
change when the KL divergence term is removed
during fine-tuning, no longer constraining the logit
space of the LLM?

RQ4: How do hyperparameters influence the
performance of the LCFT framework?

5.1 Experimental Settings
We first introduce the datasets and few-shot train-
ing setting, then describe the baseline methods and
evaluation metrics, and finally present the parame-
ter settings for the LCFT model.

Datasets. We validate the effectiveness of the
proposed model on four publicly available bench-
mark datasets: movie (F.Maxwell and Konstan,
2015), book (Ziegler et al., 2005), ML-1M (Harper
and Konstan, 2015) and Amazon-Book (He and
McAuley, 2016). Details of the datasets can be
found in Appendix A.

Few-shot training setting. In real-world appli-
cations, data from specific domains is often sparse.
Therefore, few-shot training is of great importance
under data-limited scenarios. In the few-shot set-
ting, the model is fine-tuned using only a small
number of samples from the training set, where
“shot” refers to the number of training samples used.
By setting the shot value to a small number (e.g.,
16), we can evaluate whether the method can still
effectively leverage LLMs to acquire recommenda-
tion capabilities under extremely limited training
data. To assess the effectiveness of our proposed
fine-tuning framework under the few-shot scenario,
we conduct few-shot training experiments on the
movie and book datasets. The goal is to evaluate
whether the framework can still effectively mitigate
hallucination phenomena in recommendation tasks
under sample-scarce conditions.

Baselines. To verify the effectiveness of our pro-
posed fine-tuning framework, we integrate it into
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Table 1: Under the few-shot training setting, the AUC performance of all methods on the two datasets is shown
below. We use bold to indicate the best result and underline to indicate the second-best result. "Rel. Imp." denotes
the average relative improvement of LCFT-TALLRec over baseline methods across the three different shot settings.

Dataset movie book

Methods

Few-shot
16 64 256 Rel. Imp. 16 64 256 Rel. Imp.

GRU4Rec 0.4907 0.4987 0.5289 42.3% 0.4895 0.4964 0.4986 26.3%
Caser 0.4968 0.5106 0.5420 39.4% 0.4984 0.4972 0.4957 25.7%

SASRec 0.5043 0.5048 0.5225 41.1% 0.4948 0.5006 0.5020 25.2%
DROS 0.5076 0.5154 0.5407 38.2% 0.4928 0.4913 0.4913 27.1%

GRU-BERT 0.5085 0.5165 0.5344 38.6% 0.5007 0.4964 0.4979 25.4%
DROS-BERT 0.5021 0.5171 0.5394 38.5% 0.5007 0.4898 0.5020 25.6%

TALLRec 0.6724 0.6748 0.7198 4.5% 0.5636 0.6039 0.6438 3.5%
LCFT-TALLRec 0.7013 0.7157 0.7436 - 0.6021 0.6195 0.6531 -

two existing LLM-based recommender systems
and compare it with the following baseline meth-
ods: (1) GRU4Rec (Hidasi et al., 2016): GRU4Rec
applies recurrent neural networks (RNNs) to
session-based recommendation by modelling the
complete user interaction sequence to enhance
recommendation performance. (2) Caser (Tang
and Wang, 2018): Caser employs convolutional
neural networks (CNNs) to capture users’ short-
term interests and sequential patterns, achieving
a unified modelling of both long-term and short-
term user preferences. (3) SASRec (Kang and
McAuley, 2018): SASRec is based on a self-
attention mechanism that dynamically selects items
from user history most relevant to the current rec-
ommendation, integrating short-term interest with
long-term semantic information to improve per-
formance. (4) DROS (Yang et al., 2023): DROS
introduces a distributional adaptation mechanism
within the empirical risk minimisation (ERM)
framework to simulate potential distribution shifts
between training and testing phases, thereby en-
hancing model robustness and generalisation on
unseen data. (5) GRU-BERT: GRU-BERT en-
hances GRU4Rec by incorporating the pretrained
language model BERT (Devlin et al., 2019), com-
bining item ID embeddings with textual seman-
tic embeddings to improve item representation
and recommendation quality. (6) DROS-BERT:
DROS-BERT integrates BERT’s text modelling
capabilities into the DROS framework, combin-
ing distributional adaptation with semantic infor-
mation to further improve performance under dis-
tribution mismatch scenarios. (7) MF (Koren
et al., 2009): MF decomposes the rating matrix
into two low-dimensional matrices representing

users and items, modelling the latent preference
between users and items via inner product. (8)
LightGCN (He et al., 2020): LightGCN uses a
lightweight graph convolutional network to capture
high-order connections in the user-item interaction
graph, thereby improving user interest modelling.
(9) ICL (Dai et al., 2023a): ICL leverages the con-
textual learning capabilities of LLMs to align rec-
ommendation strategies with prompts by interact-
ing with ChatGPT through natural language instruc-
tions. (10) Prompt4NR (Zhang and Wang, 2023):
Prompt4NR designs various prompt templates (in-
cluding fixed and soft prompts) and enhances rec-
ommendation performance by integrating predic-
tions from multiple templates. Prompt4NR-V uses
Vicuna-7B as the backbone LLM. (11) TALL-
Rec (Bao et al., 2023): TALLRec reformulates
the recommendation task as an instruction input for
LLMs, using instruction tuning to enhance perfor-
mance, especially in few-shot settings. Following
the few-shot training setup of TALLRec (using
LLaMA-7B as the backbone LLM), we integrate
our fine-tuning framework into it and name the
variant LCFT-TALLRec. (12) CoLLM (Zhang
et al., 2025): To improve the performance of LLM-
based recommender systems, CoLLM integrates
collaborative information into the input of LLMs.
CoLLM-MF uses MF as the collaborative mod-
elling module. Following its setup (using Vicuna-
7B as the backbone LLM), we integrate our fine-
tuning framework into CoLLM-MF and name the
variant LCFT-CoLMF.

Evaluation metrics. We employ AUC and
UAUC (Liu et al., 2021) as evaluation metrics to as-
sess the performance of recommendation methods.
To ensure the stability of the results, each method
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Table 2: Under the full-shot training setting, the performance results of all methods on the two datasets are presented
below. Similarly, we use bold to indicate the best result and underline to indicate the second-best result. "Rel. Imp."
denotes the average relative improvement of LCFT-CoLMF over the baseline methods on the two evaluation metrics.

Dataset ML-1M Amazon-Book
Methods AUC UAUC Rel. Imp. AUC UAUC Rel. Imp.

MF 0.6482 0.6361 12.7% 0.7134 0.5565 14.5%
LightGCN 0.5959 0.6499 16.2% 0.7103 0.5639 14.1%
SASRec 0.7078 0.6884 3.6% 0.6887 0.5714 15.4%

ICL 0.5320 0.5268 36.7% 0.4820 0.4856 50.3%
Prompt4NR-V 0.7071 0.6739 4.8% 0.7224 0.5881 11.0%
CoLLM-MF 0.7295 0.6875 2.1% 0.8109 0.6225 1.5%

LCFT-CoLMF 0.7451 0.7019 - 0.8221 0.6323 -

is run five times with different random seeds, and
the average performance is reported.

Implementation and Parameter Settings. We
implement LCFT using PyTorch and optimise the
LLM with the AdamW optimiser (Kingma and Ba,
2015). Details of the parameter settings can be
found in Appendix B.

5.2 Performance Comparison

5.2.1 Few-shot training setting (RQ1)

To evaluate the effectiveness of our proposed fine-
tuning framework in mitigating hallucination un-
der limited training data conditions, we conducted
an analysis of its performance in a few-shot set-
ting. The table 1 presents a comparison between
our method and approaches without hallucination
mitigation strategies. Based on the experimental
results, we have the following observations: (1)
Compared with various baseline models, our fine-
tuning framework significantly improves the per-
formance of LLM-based recommender systems
under a few-shot training setting, indicating that
the framework remains effective in mitigating hal-
lucinations and enhancing recommendation qual-
ity even in data-scarce scenarios. (2) Traditional
recommendation models do poorly with few-shot
training because they struggle to learn from lim-
ited data and can’t match LLM-based systems in
semantic understanding and generalisation. (3)
LLM-based recommender systems trained using
conventional fine-tuning methods achieve subop-
timal performance. This can be attributed to the
inability of traditional fine-tuning to effectively ad-
dress the inherent hallucination problem of LLMs,
which negatively impacts the accuracy and stability
of the recommendations.

5.2.2 Full-shot training setting (RQ1)

To further validate the effectiveness of our fine-
tuning framework under sufficient training data
conditions (full-shot), we evaluated its performance
on the ML-1M and Amazon-Book datasets. The
corresponding results are shown in the table 2, lead-
ing to the following key findings: (1) Our method
achieves the best performance among all baselines,
indicating that by constraining the logit representa-
tion space of LLMs, our framework effectively sup-
presses hallucination, thereby enhancing the rec-
ommendation performance of LLM-based systems.
(2) Overall, LLM-based recommender systems per-
form better than traditional models because they
can capture complex semantic relationships. In con-
trast, traditional models struggle to represent rich
semantic information. (3) Although LLM-based
recommender systems trained with traditional fine-
tuning strategies perform relatively well, they still
fall short of our method. This suggests that con-
ventional fine-tuning fails to effectively mitigate
hallucination in LLMs, thus limiting the potential
improvement in recommendation quality.

5.2.3 Overall Performance Analysis (RQ2)

Across different LLM backbones (LLaMA-7B
and Vicuna-7B), our hallucination-mitigation fine-
tuning framework integrated into two LLM-based
recommender systems (TALLRec and CoLLM)
consistently outperforms traditional fine-tuning
strategies. Moreover, under both few-shot and full-
shot training settings, LCFT demonstrates stable
and strong performance. These results collectively
indicate that our proposed hallucination-mitigation
fine-tuning framework is highly generalisable and
can be broadly integrated into existing LLM-based
recommender systems to improve recommendation
accuracy and reduce hallucination interference.
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Table 3: Two user cases of LCFT method.

User Historical records Traditional fine-tune
methods

LCFT

User1
User Preference:
"GoodFellas (1990)",
"Dead Poets Society
(1989)", "Die Hard (1988)".
User Unpreference:
"Mulholland Falls (1996)",
"First Wives Club, The
(1996)", "Stargate (1994)".

User likes movie “The
Good, The Bad and The
Ugly (1966)”?: No.
User dislikes movie “The
Good, The Bad and The
Ugly (1966)”?: No.

User likes movie “The
Good, The Bad and The
Ugly (1966)”?: No.
User dislikes movie “The
Good, The Bad and The
Ugly (1966)”?: Yes.

User2
User Preference: "Reality
Bites (1994)", "Billy
Madison (1995)". User
Unpreference: "Young
Guns II (1990)", "Son in
Law (1993)", "An
Unforgettable Summer
(1994)".

User likes movie “Willy
Wonka and the Chocolate
Factory (1971)”?: No.
User dislikes movie “Willy
Wonka and the Chocolate
Factory (1971)”?: No.

User likes movie “Willy
Wonka and the Chocolate
Factory (1971)”?: No.
User dislikes movie “Willy
Wonka and the Chocolate
Factory (1971)”?: Yes.

Additionally, we conducted an ablation study
(RQ3) and hyperparameter analyses (RQ4), with
detailed analysis provided in Appendices C and D,
respectively.

5.3 Case Studies of LCFT

We present case studies from the MovieLens-100K
dataset (a movie watching scenario) in Table 3.
These examples demonstrate that traditional fine-
tuning methods can yield logically inconsistent or
contradictory outputs. For example, in the case
of user1, a baseline model simultaneously infers
that the user both likes and dislikes the movie "The
Good, The Bad and The Ugly (1966)", which is
clearly inconsistent with the facts. In contrast,
LCFT employs a contrastive objective that max-
imises the KL divergence between logit distribu-
tions of semantically opposite instructions, explic-
itly encouraging the model to produce consistent
and distinguishable outputs.

This approach helps the model learn a more co-
herent representation of user preferences, thereby
reducing the risk of contradiction and factual fab-
rication. These qualitative examples provide com-
pelling evidence that LCFT enhances coherence
and effectively mitigates hallucinations.

6 Conclusion

In this work, we introduced LCFT, a novel fine-
tuning framework designed to mitigate hallucina-
tion in LLM-based recommender systems. LCFT
mitigates hallucination by taking semantically op-
posite instruction pairs as input and incorporates a
KL divergence term into the training objective to
enlarge their distributional differences in the logit
space. Extensive experiments conducted on two
LLM-based recommender systems built on differ-
ent LLM backbones and across four real-world
datasets demonstrate that LCFT effectively reduces
hallucinations and improves recommendation per-
formance. In the future, we plan to integrate causal
inference methods (Cheng et al., 2024; Huang et al.,
2025) with the LCFT framework to further alleviate
the impact of hallucinations on recommendation
performance.
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Limitations
LCFT relies on a contrast between positive and
negative instructions. In some cases, such a clear
contrast may not exist. Users should be cautious
when using LCFT for recommendations in these
situations. Maximising the KL divergence between
positive and negative instructions carries the risk
of overconfidence or unstable outputs for certain
inputs. Although this risk does not affect the over-
all performance of LCFT compared to other SOTA
methods, users should be aware of it and interpret
LCFT’s output confidence with caution. Our cur-
rent evaluation is restricted to English-language
datasets. The generalizability of LCFT to other lan-
guages, domains, or underrepresented user groups
remains an open question and a valuable direction
for future work.
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A Datasets Details.

The construction and usage details for each dataset
are introduced as follows:

movie. To conduct experiments under the
few-shot training setting, we follow the prepro-
cessing approach used in TALLREC (Bao et al.,
2023) and adopt the processed MovieLens-100K
dataset (F.Maxwell and Konstan, 2015). We select
the latest 10,000 user interaction records from the
original dataset and split them into training, vali-
dation, and test sets in a ratio of 8:1:1. For each
sample, the 10 interactions prior to the target item
are retained as the user’s historical behaviour. Fol-
lowing the TALLREC setting, interactions with
ratings higher than 3 are regarded as “liked”.

book. We adopt the preprocessed BookCrossing
dataset (Ziegler et al., 2005) used in TALLREC.
For each user, one interacted item is randomly se-
lected as the prediction target, and 10 others are ran-
domly chosen from the remaining items as histor-
ical interactions. The dataset is split into training,
validation, and test sets in an 8:1:1 ratio, consistent
with TALLREC. In this dataset, which contains
ratings from 1 to 10, those above 5 are considered
as “liked”.

ML-1M. MovieLens-1M (Harper and Konstan,
2015) is a standard dataset widely used in recom-
mendation system research, consisting of user rat-
ings on movies ranging from 1 to 5. We preprocess
the data according to the settings in CoLLM (Zhang
et al., 2025), treating ratings above 3 as “liked” in-
teractions. The training, validation, and test sets
are split based on CoLLM’s temporal segmentation:
the most recent 20 months of interaction records
are used, where the first 10 months serve as the
training set, the next 5 months as the validation set,
and the remaining 5 months as the test set. ML-1M
dataset contains 33,891 training, 10,401 validation,
and 7,331 test interactions, involving 839 users and
3,256 items.
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Amazon-Book. Amazon-Book (He and
McAuley, 2016) is a book subset of the Amazon
Product Review dataset, which is widely used in the
recommendation field. It contains user ratings on
books ranging from 1 to 5. Following the CoLLM
setting, interactions with ratings greater than or
equal to 4 are considered as “liked”. The data split
also follows CoLLM: interactions from the year
2017 are used, with the first 11 months allocated to
the training set and the last month evenly divided
between the validation and test sets. Amazon-Book
dataset includes 727,468 training, 25,747 valida-
tion, and 25,747 test interactions, covering 22,967
users and 34,154 items.

B Parameter Settings.

The LLama-7B and Vicuna-7B we use contain ap-
proximately 7 billion parameters. The training pro-
cess was conducted on a single NVIDIA RTX 4090
GPU (24GB VRAM) running the Ubuntu 22.04 op-
erating system. Parameter-efficient fine-tuning was
performed using LoRA, with a total training time
of approximately 16 GPU hours. The learning rate
is selected from [1e-2, 1e-3, 1e-4], and the weight
decay is set to 1e-3. For LCFT-TALLRec, we fol-
low the design of TALLRec and use the LLaMA-
7B. The LoRA module is configured with the fol-
lowing hyperparameters: r = 8, alpha = 16,
dropout = 0.005, and target_modules is set to
“[q_proj, v_proj]". For LCFT-CoLMF, we follow
the design of CoLLM and adopt the Vicuna-7B.
The MLP hidden layer dimension in the CIE mod-
ule is set to 10 times the input dimension. The
LoRA module uses the same configuration as in
LCFT-TALLRec. For the parameter λ in Eq.(3), we
set it to 0.0001 for movie and ML-1M and 0.00001
for book and Amazon-Book.

C Ablation Study.

To verify the effectiveness of our proposed LCFT
fine-tuning framework, we conducted ablation stud-
ies under the k-shot training setting. Specifically,
we compared the performance of the full LCFT-
TALLRec model with its variant (w/o LCFT),
where "w/o LCFT" refers to the removal of the
logit space constraint imposed by the negative in-
struction. In this case, the model degenerates into
a traditional fine-tuning approach. As shown in the
table 4, the experimental results demonstrate that:

(1) The performance of the model without the
logit space constraint (w/o LCFT) is inferior to that

Table 4: The ablation study of our LCFT method on two
real-world datasets. The best results are in boldface.

dataset few-shot method AUC

movie

16 w/o LCFT 0.6701
LCFT-TALLRec 0.7013

64 w/o LCFT 0.6713
LCFT-TALLRec 0.7157

256 w/o LCFT 0.7142
LCFT-TALLRec 0.7436

book

16 w/o LCFT 0.5598
LCFT-TALLRec 0.6021

64 w/o LCFT 0.5996
LCFT-TALLRec 0.6195

256 w/o LCFT 0.6401
LCFT-TALLRec 0.6531

Figure 3: Effect of the λ selection. We show the results
of AUC on the movie datasets.

of the complete LCFT-TALLRec model. This indi-
cates that without this constraint, the large language
model struggles to effectively mitigate hallucina-
tion during fine-tuning, thereby impairing recom-
mendation performance. This result validates the
effectiveness of our proposed fine-tuning frame-
work in reducing hallucination and enhancing the
performance of LLM-based recommender systems.

(2) Across two datasets and three different k-
shot training settings, LCFT-TALLRec consistently
outperforms the “w/o LCFT” variant. This demon-
strates that the LCFT framework possesses strong
generalisation capabilities and can be applied to
real-world scenarios with varying degrees of data
scarcity. It effectively alleviates the hallucination
issue in LLM-based recommender systems and en-
hances their recommendation performance even
with only a small number of training samples.

D Hyper-parameter Analysis.

To evaluate the impact of the hyperparameter on
the performance of the LCFT framework, we per-
formed a sensitivity analysis on the movie and book
datasets under a few-shot setting (with 16 samples).
In this experiment, we fixed all other parameters
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Figure 4: Effect of the λ selection. We show the results
of AUC on the book datasets.

and varied the hyperparameter λ in Eq. (3) within
the range [0, 0.01] for testing.

As shown in the figure 3 and figure 4, the experi-
mental results indicate the following:

(1) On the movie dataset, as λ increases, the
AUC first rises and then falls, reaching its peak at
λ = 0.0001 (0.01%). This suggests that a moderate
logit space constraint helps mitigate hallucination
issues in LLM-based recommender systems and im-
proves recommendation performance. When λ is
too small, the influence of the KL divergence term
is weak, and the training process is dominated by
the log-likelihood term—i.e., the traditional objec-
tive of large language models—potentially failing
to leverage negative instruction samples to adjust
logit representations effectively. This may lead to
insufficient separation in logit space between posi-
tive and negative instruction samples. Conversely,
when λ is too large, the KL term dominates the
optimisation objective, causing the model to overly
emphasise the separation of positive and negative
instruction sample distributions, at the expense of
output accuracy, thereby resulting in performance
degradation.

(2) On the book dataset, the AUC also exhibits a
similar trend of first increasing and then decreasing,
with the best performance achieved at λ = 0.00001
(0.01%). This may be due to factors such as differ-
ences in dataset noise; the optimal hyperparameter
value may vary slightly across datasets.

E Societal Impact

(1) Positive impacts: Given the predictive nature of
recommendation tasks, it is inherently difficult to
directly determine whether a model’s response con-
stitutes factual fabrication. To address this, LCFT
is the first to propose an interpretable and verifi-
able definition of hallucination in the recommen-

dation setting: if a model produces the same or
logically inconsistent responses to semantically op-
posite instructions, it can be considered as halluci-
nating. LCFT effectively mitigates hallucination in
LLM-based recommender systems, providing more
reliable responses and thereby improving overall
model performance.

(2) Negative impacts: As with most machine
learning methods, LCFT may be affected by biases
present in the training data. We have not yet ex-
amined whether LCFT introduces or amplifies bias
with respect to sensitive attributes such as gender
or race. Investigating the fairness implications of
LCFT in comparison with existing SOTA methods
is an important direction we leave for future work.
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