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Abstract

Pruning is a critical strategy for compressing
trained large language models (LLMs), aiming
at substantial memory conservation and com-
putational acceleration without compromising
performance. However, existing pruning meth-
ods typically necessitate inefficient retraining
for billion-scale LLMs or rely on heuristically
designed metrics to determine pruning masks,
leading to performance degradation. This pa-
per presents, for the first time, a LASSO-like
convex optimization model crafted to induce
sparsity in LLMs. By leveraging FISTA, we
introduce FISTAPruner, a novel method that
includes a cumulative error elimination mech-
anism within decoder layers and supports par-
allel pruning for unstructured pruning. Addi-
tionally, we extend this method to 2:4 semi-
structured pruning. We comprehensively eval-
uate FISTAPruner on models such as OPT,
LLaMA, and Qwen variants with 125M to 70B
parameters under unstructured and 2:4 semi-
structured sparsity, showcasing superior perfor-
mance over existing methods across various
language benchmarks. Notably, it can remove
50% of the model parameters for LLaMA-3-
70B while retaining 98.6% and 95.6% of the
zero-shot task performance under these two
sparsity patterns, respectively.

1 Introduction

In recent years, large language models (LLMs)
have revolutionized the field of natural language
processing, achieving impressive results in tasks
such as machine translation, sentiment analysis,
question answering, and text generation (Lyu et al.,
2023; Yao et al., 2023; Zhang et al., 2023a,b; Wang
et al., 2023; Arefeen et al., 2024; Li et al., 2024).
Advanced LLMs such as OpenAI’s GPT-4 (Ope-
nAI, 2023), Meta’s LLaMA-3 (Meta AI, 2023), and
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Google’s Gemini (Gemini Team et al., 2023) excel
in generating coherent text with extensive parame-
ters. However, the growth in model sizes outpaces
hardware improvements, posing significant deploy-
ment and inference challenges (Steiner et al., 2023).
For example, operating OPT-175B (Zhang et al.,
2022) requires over 320 GB of memory and at least
five 80 GB A100 GPUs for loading its parame-
ters in FP16 precision. This challenge becomes
more pronounced in environments with limited re-
sources, such as mobile devices, edge computing
systems, and real-time applications. Consequently,
there has been considerable interest in compressing
LLMs to enhance their efficiency and practicality
for deployment across various applications.

Pruning is a key method for compressing LLMs,
aiming to eliminate redundant weights to reduce
model size and computational demands while striv-
ing to maintain performance. Methods such as
those in (Huang et al., 2020; Ma et al., 2023;
Zhang et al., 2023c) require a retraining phase post-
pruning, which is inefficient for billion-scale LLMs.
PERP (Zimmer et al., 2023) introduces an efficient
retraining approach after pruning to recover the
performance of the pruned model. Recent devel-
opments, including SparseGPT (Frantar and Alis-
tarh, 2023) and Wanda (Sun et al., 2023), employ
post-training pruning techniques for LLMs with-
out retraining. These methods, however, rely on
the heuristic-based Optimal Brain Surgeon (OBS)
framework (Hassibi and Stork, 1992) or utilize
heuristic-based pruning metrics to determine prun-
ing masks, potentially compromising performance.
DSnoT (Zhang et al., 2023d) introduces a training-
free fine-tuning approach that updates the results
of other pruning methods, such as SparseGPT and
Wanda, which also depend on heuristic-based ad-
justment metrics.

In this work, we first introduce a LASSO-like
convex optimization model for layer-wise post-
training unstructured pruning of LLMs (the nov-
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Figure 1: Overview of the proposed FISTAPruner. Given a weight matrix W and its corresponding input feature
activation X , we employ the proposed convex optimization model, utilizing FISTA, to derive the pruned weights.

elty compared to traditional LASSO-based pruning
methods is detailed in Appendix C). Figure 1 pro-
vides an overview of our method, which is applied
to each linear operator. We employ the Frobenius
norm of the difference between the outputs ob-
tained from the dense and pruned weights to quan-
tify the output error. Additionally, we integrate
an ℓ1-norm regularization term, the optimal con-
vex approximation of the ℓ0-norm (Candès et al.,
2006), into each row of weights to promote spar-
sity. The solutions of the proposed optimization
model demonstrate a balanced trade-off between
output error and sparsity, governed by our proposed
adaptive tuning method that meticulously adjusts
the hyperparameter λ. To solve this optimization
problem efficiently, we utilize the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) (Beck
and Teboulle, 2009), which ensures a convergence
rate of O(1/k2). Following this, we name our pro-
posed method FISTAPruner. We further extend it
to accommodate 2:4 semi-structured pruning by
incorporating a hard thresholding step following
FISTA’s convergence, thus achieving the desired
sparsity structures.

In addition, our approach effectively mitigates
the cumulative error within decoder layers resulting
from pruning by incorporating an intra-layer error
correction mechanism. Due to discrepancies be-
tween the outputs of dense and pruned weights,
errors can accumulate, as the output from one
pruned operator becomes the input for the next.
FISTAPruner addresses this by sequentially prun-
ing the weights of each linear operator within a
decoder layer, using the output from the pruned
weights of one operator as the input for the next,
thus minimizing output discrepancies. Addition-
ally, FISTAPruner treats each decoder layer as an
independent unit for pruning, allowing for the si-
multaneous pruning of multiple decoder layers and
significantly increases efficiency.

We empirically evaluate FISTAPruner on the
widely adopted OPT (Zhang et al., 2022),
LLaMA (Touvron et al., 2023a), LLaMA-2 (Tou-
vron et al., 2023b), LLaMA-3 (Touvron et al.,
2023a), and Qwen2.5 (Qwen Team, 2025) model
families. FISTAPruner’s layer-by-layer pruning
implementation allows for the pruning of these
LLMs ranging from 125M to 70B parameters on
a single NVIDIA A100 GPU with 40 GB of mem-
ory. Our results confirm that FISTAPruner can
efficiently create sparse networks from pretrained
LLMs without retraining. Moreover, our approach
surpasses the performance of baseline methods
such as SparseGPT, Wanda, DSnoT, and PERP
across various language benchmarks. We also per-
form a series of ablation studies to validate our
methods. We believe our work sets a new direction
and baseline for future research in this area and
encourages further exploration into understanding
sparsity in LLMs with the tools of convex optimiza-
tion.

2 Background and Related Work

Pruning of LLMs. Pruning is a widely used strat-
egy to compress LLMs by generating sparse weight
matrices under unstructured, semi-structured, and
structured sparsity based on calibration data. Un-
structured sparsity of rate s%, eliminates s% of
the entries in a weight matrix. Semi-structured
sparsity with proportion n : m maintains a fixed
overall sparsity level n/m, and allows at most n
non-zero entries in every group of m consecutive
entries. Pruning weights into semi-structured spar-
sity, especially with proportion 2:4, can yield up to
2× inference speedup using NVIDIA GPUs with
the Ampere architecture (Mishra et al., 2021) and
hence is of particular interest. Structured sparsity,
which zeroes entire rows or columns, offers signif-
icant computational and memory benefits but can
lead to greater performance losses.
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Pruning with Retraining. Traditional pruning
pipelines often include a retraining step to offset
performance losses (Huang et al., 2020; Ma et al.,
2023; Zhang et al., 2023c). However, the sheer
scale of LLMs makes this additional retraining
costly in both time and computational resources.
(Dinh et al., 2020; Holmes et al., 2021; Xie et al.,
2023) integrate retraining directly into the prun-
ing process by targeting the minimization of the
highly non-convex loss function related to the cal-
ibration dataset, using the alternating direction
method of multipliers (ADMM) to derive pruned
weights. Nonetheless, this approach imposes sig-
nificant computational demands and the use of
ADMM in non-convex optimization often results
in unstable performance (He and Yuan, 2012).
Pruning without Retraining. Pruning without
retraining offers a straightforward alternative, elim-
inating the need for post-pruning retraining. These
methods prune LLMs in a single step, simplifying
implementation and reducing both time and compu-
tational demands. Consequently, various methods
have been developed under different sparsity frame-
works. For structured pruning, SliceGPT (Ashk-
boos et al., 2024) utilizes principal component
analysis to prune rows and columns of weights
to reduce model dimensions. ZipLM (Kurtić et al.,
2024) adopts an OBS-based approach for struc-
tured pruning and updates remaining weights to
maintain performance. Our proposed FISTAPruner
focuses on unstructured and semi-structured prun-
ing, and thus is orthogonal to these structured
pruning methods, enabling further model compres-
sion. For unstructured and semi-structured prun-
ing, SparseGPT (Frantar and Alistarh, 2023) and
ISC (Shao et al., 2024) leverage the OBS frame-
work to calculate saliency for each entry using
the inverse Hessian of the loss metric, based on
which pruning masks are generated and weights are
updated. Wanda (Sun et al., 2023) implements a
heuristic approach, removing weights based on the
product of their magnitudes and activations with-
out compensation. DSnoT (Zhang et al., 2023d)
updates the results of other pruning methods, such
as SparseGPT and Wanda, which also relies on
heuristic-based adjustment metrics. (Boža, 2024)
employs ADMM to optimize weight updates under
iteratively refined pruning masks chosen through
heuristic methods based on Wanda. These methods
adopt a layer-wise pruning strategy, where errors
between the pruned output and the original out-
put of each operator accumulate. Moreover, due

to their heuristic nature, the performances of the
pruned models are unstable and compromised.
Error Corrections. Error correction techniques
are increasingly used to mitigate error accumula-
tion from layer-wise pruning by minimizing re-
construction errors between the pruned network
and the original one (Park et al., 2024; El Halabi
et al., 2022). However, their implementations and
applications to pruning LLMs vary widely. Promi-
nent methods like SparseGPT (Frantar and Alistarh,
2023) focus on pruning without explicit error cor-
rection, while approaches like K-prune (Park et al.,
2024) minimize global reconstruction error, facing
scalability challenges as globally correcting prun-
ing errors requires global sequential pruning. Our
work introduces intra-layer error corrections for
better accuracy and computational efficiency. By
focusing on intra-layer adjustments, our method
provides a scalable and effective solution for prun-
ing LLMs.

3 Methodology

In this section, we introduce our post-training prun-
ing method, FISTAPruner, which comprises three
main components. First, we address the error accu-
mulation issue in layer-wise pruning with an intra-
layer error correction mechanism and develop a
novel convex optimization model tailored for this
purpose. We then detail the process for unstruc-
tured pruning using FISTA and adapt the frame-
work for n : m semi-structured pruning. Finally,
we present an adaptive method that finely tunes
the hyperparameter λ in our model to minimize
the output discrepancies between dense and pruned
operators while achieving the desired sparsity level.

3.1 Post-Training Pruning Model

Post-training compression is typically achieved by
decomposing the full-model compression problem
into layer-wise subproblems (Frantar and Alistarh,
2023). For instance, a typical Transformer decoder
layer (Vaswani et al., 2017) comprises six crucial
linear operators: WQ, WK , WV , WO, Wfc1 , and
Wfc2 . We leverage an intra-layer error correction
mechanism that sequentially prunes the weights
while explicitly accounting for the cumulative error
introduced at each step. Consider a dense weight
matrix W ∈ Rm×n and the corresponding input
activation X ∈ Rn×p. The output is Z = WX .
Our goal is to find the pruned weights W ∗ that
minimize the discrepancy between the outputs of
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the dense and pruned models:

minW ∗ ∥W ∗X∗ −WX∥2F s.t. W ∗ ∈ S, (1)

where ∥ · ∥F denotes the Frobenius norm, and S
defines the permissible sparsity patterns. The input
activation X∗ is defined based on the position of
the operator within the layer. Specifically, if the op-
erator is at the top of the layer, then X∗ = X . Con-
versely, if the operator follows previously pruned
operators, X∗ is set to Z∗

prev, where Z∗
prev is the

pruned output from the preceding operator.
As illustrated in Figure 2, consider two sequen-

tial operators with weights W1 and W2. When
pruning W1 to obtain its pruned counterpart W ∗

1 ,
Equation 1 quantifies the output error between
W1X and W ∗

1X , where the input X∗ remains
the same as X since this operator is at the top of
the layer. However, for the second operator W ∗

2 ,
the corresponding input becomes W ∗

1X instead of
W1X due to the pruning applied to W1. Conse-
quently, the deviation between the outputs of W2

and W ∗
2 is computed by comparing W2(W1X)

and W ∗
2 (W

∗
1X). This approach ensures that cu-

mulative error is appropriately considered, as each
pruning step accounts for both the changes in the
weights and the modified input activations resulting
from previous pruning. Note that we use intra-layer
error corrections within each decoder layer, en-
abling parallel pruning and improved performance
(see Section F.1 for details).

Unstructured pruning essentially transforms
dense weight matrices into sparse structures. The
ℓ0-norm, which directly counts the number of non-
zero entries in a vector, is the most straightforward
measure of unstructured sparsity. Despite the intu-
itive appeal of the ℓ0-norm, it induces non-convex
and NP-hard optimization challenges. As a result,
we adopt the ℓ1-norm, its tightest convex relaxation
(Candès et al., 2006), to achieve similar sparsity
with tractable computational demands. Specifically,
we apply the ℓ1-norm to each row of W ∗, thereby
promoting sparsity throughout the matrix (see Ap-
pendix A for detailed explanations):

∥∥∥W ∗
i,:

∥∥∥
1
, i = 1, 2, . . . ,m, (2)

where W ∗
i,: represents the i-th row of W ∗. Then,

we construct our optimization model by integrating
Equation 1 and Equation 2:

minW ∗ 1
2∥W ∗X∗ −WX∥2F + λ

∑m
i=1 ∥W ∗

i,:∥1. (3)

This model aims to simultaneously minimize both
the output error and the sum of the ℓ1-norm values
while the hyperparameter λ > 0 balances these
two terms.

Remark 1. The proposed optimization model in
Equation 3 is convex. This is due to the fact that the
square of the Frobenius norm is a convex function,
as is the ℓ1-norm. Thus, the objective function,
being a sum of these two convex functions, is also
convex. Since the problem is an unconstrained
optimization with a convex objective function, the
overall optimization model is convex.

3.2 Optimization based on FISTA
To deal with the non-smooth regularization term
in Equation 3, a straightforward approach is to use
subgradient descent methods (Beck, 2017). How-
ever, its slow convergence rate of O(1/

√
k) is

not desirable. We thus turn to FISTA (Beck and
Teboulle, 2009) with convergence rate O(1/k2) to
solve the proposed model Equation 3 efficiently.
Specifically, starting with t0 = 1 and an initial
W ∗

0 , the k-th iteration of FISTA reads:





W ∗
k+ 1

3

= W ∗
k − 1

L

(
W ∗

kX(X∗)⊤ −WX(X∗)⊤
)
,

W ∗
k+ 2

3

= SoftShrinkage λ
L

(
W ∗

k+ 1
3

)
,

tk+1=
1
2

(
1 +

√
1 + 4t2k

)
,

W ∗
k+1= W ∗

k+ 2
3

+ tk−1
tk+1

(
W ∗

k+ 2
3

−W ∗
k

)
,

(4a)

(4b)

(4c)

(4d)

where L = ∥X∗(X∗)⊤∥2 is the maximum eigen-
value of X∗(X∗)⊤ and the SoftShrinkageρ(·) op-
erator with parameter ρ ≥ 0 on a matrix X =
(xij) ∈ Rm×n performs elementwise transforma-
tions defined by

SoftShrinkageρ(X) = X ′,

where

x′ij =





xij − ρ, if xij > ρ,

xij + ρ, if xij < −ρ,
xij = 0, otherwise.

Equation 4a executes a gradient descent update
on the parameter W ∗

k , aiming to minimize the func-
tion 1/2∥W ∗

kX
∗ −WX∥2F with a step size of

1/L. Equation 4b does a proximal update, which
is defined as:

W ∗
k+ 2

3

= argminW ∗

{
L
2

∥∥∥W ∗−W ∗
k+ 1

3

∥∥∥
2

F
+ λ

∑m
i=1

∥∥∥W ∗
i,:

∥∥∥
1

}
.

Equation 4c and Equation 4d calculate a lin-
ear combination of the previous two points,
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Figure 2: Illustration of the proposed intra-layer error correction mechanism. W1 and W2 represent the weights of
two sequential layers within the network architecture.

{
W ∗

k+2/3,W
∗
k

}
, to facilitate accelerated conver-

gence. Detailed derivations of these steps are pro-
vided in Appendix B. The FISTA iteration termi-
nates either when the maximum number of itera-
tions, K, is reached or when the following stopping
criterion is satisfied:

∥∥W ∗
k −W ∗

k−1

∥∥
F
< 1× 10−6. (5)

3.3 Extension to Semi-structured Pruning
While our convex optimization framework effec-
tively addresses unstructured pruning, practical
deployment often necessitates structured or semi-
structured sparsity patterns to fully leverage hard-
ware acceleration capabilities. One notable pattern
is the 2:4 semi-structured sparsity, which is sup-
ported by NVIDIA’s Ampere architecture (Mishra
et al., 2021), enabling significant speedups in infer-
ence.

The inclusion of the n : m sparsity constraint
renders the optimization problem non-convex due
to the combinatorial nature of selecting which el-
ements to prune within each group. To tackle this
challenge, we adopt FISTA updates, incorporating
a hard thresholding step as follows:

W ∗
K+1 = H (W ∗

K , n : m), (6)

where W ∗
K denotes the result from the K-th iter-

ation of FISTA satisfying the stopping criterion,
andH(·) is the hard thresholding, which, for each
group of four consecutive elements in every row,
sets the two elements with the smallest absolute
values to zero and retains the other two.

We acknowledge that the non-convex nature of
this extension introduces complexities in theoret-
ical analysis. However, the empirical success ob-
served in our experiments provides confidence in
the practical applicability of our approach.

3.4 Adaptive Hyperparameter Tuning
In Equation 3, the regularization parameter λ plays
a pivotal role in balancing the trade-off between the

output error and the sparsity of the pruned weights
W ∗. A larger λ emphasizes sparsity, potentially
increasing the output error, while a smaller λ fo-
cuses on minimizing the output error, resulting in
less sparsity. To attain a specific desired sparsity
level, it is essential to select an appropriate value
of λ that guides the optimization toward the target
sparsity.

To automate the selection of λ, we propose em-
ploying an adaptive hyperparameter tuning mecha-
nism based on the bisection method. This method
iteratively adjusts λ within a predefined interval
[0,M ], where M is a sufficiently large upper
bound, to find the optimal value that yields the tar-
get sparsity upon solving the optimization problem
using FISTA. We establish theoretical guarantees
for the convergence of this method in the context
of unstructured pruning, as stated in the following
theorem:

Theorem 1. Let s(λ) denote the sparsity level
(the ratio of zero elements) obtained from ℓ1-
regularized optimization. Given a target sparsity
s ∈ (0, 1), tolerance ϵ > 0, and initial bounds
λlow < λhigh satisfying s(λlow) ≤ s ≤ s(λhigh),
the bisection method terminates after finitely many
iterations and returns λ∗ such that |s(λ∗)− s| ≤ ϵ.

The proof is detailed in Appendix D. Although
the adaptive hyperparameter tuning effectively
identifies a λ∗ that yields a sparsity level close
to the desired one, it may not always achieve the
exact target due to the inherent continuous nature
of the optimization process and limitations in nu-
merical precision. To precisely attain the desired
unstructured sparsity, we also implement a final
hard thresholding step similar to Equation 6: af-
ter obtaining the optimized weights, the smallest-
magnitude weights are set to zero until the exact
sparsity level is achieved. To adjust λ considering
this hard thresholding step, we define the total error
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Algorithm 1 FISTAPruner
Inputs: original output WX , input activation X∗, W ∗

0 ,
λ, K, T , ϵ, s% or n : m
t← 0; W ∗

best ←W ∗
0 ; Ebest ← ∥W ∗

0 X
∗ −WX∥F

repeat
W ∗

K ← FISTA (WX,X∗, λ,W ∗
best,K)

W ∗
K+1 ← H (W ∗

K , s% or n : m)
Etotal ← ∥W ∗

K+1X
∗ −WX∥

FEround ← Etotal − ∥W ∗
KX∗ −WX∥F

if Etotal < Ebest then
W ∗

best ←W ∗
K+1

Estop = (Ebest − Etotal)/Ebest
Ebest ← Etotal

else
t← t+ 1

end if
update λ based on Eround/Etotal as in Section 3.4

until t ≥ T or Estop < ϵ
return W ∗

best

Etotal and the rounding error Eround as

Etotal:=
∥∥W ∗

K+1X
∗ −WX

∥∥
F
,

Eround := Etotal − ∥W ∗
KX∗ −WX∥F .

A high Eround/Etotal suggests that the majority of
the error originates from the hard thresholding
step. This suggests that the sparsity level of WK

achieved via FISTA falls short of the desired spar-
sity, implying a need to increase the value of λ
to enhance the emphasis on the ℓ1-norm in Equa-
tion 3. Conversely, a low Eround/Etotal indicates that
the sparsity in W ∗

K is adequate. This observation
implies that a reduction in λ might be beneficial.
Such an adjustment would shift the model’s em-
phasis towards minimizing output errors, thereby
potentially decreasing the total error. Incorporat-
ing the above insights, we apply a threshold ξ for
Eround/Etotal.

3.5 FISTAPruner Pseudocode
While the intra-layer error correction mechanism

requires sequential pruning of the operators within
a decoder layer, we could treat each decoder layer
as an independent pruning unit, enabling parallel
pruning across multiple decoder layers on differ-
ent devices, which significantly enhances the effi-
ciency. Within each decoder layer, the proposed
FISTAPruner sequentially prunes weights to elimi-
nate error accumulations, as detailed in Section 3.1.
Algorithm 1 presents FISTAPruner for the dense
weight matrix W . It leverages FISTA to generate
candidate sparse weights based on the model Equa-
tion 3, as detailed in Section 3.2. It then applies
a hard thresholding step to meet specified sparsity
constraints. Additionally, the parameter λ is adap-

tively tuned, as detailed in Section 3.4, to optimize
the trade-off between output error and sparsity. The
algorithm iteratively updates the weights, preserv-
ing the best solution W ∗

best, based on the lowest
total error Etotal. It terminates when the number of
consecutive iterations without an improvement in
W ∗

best reaches T , or when the improvement ratio
(Ebest − Etotal)/Ebest falls below the threshold ϵ.

4 Experiments

In this section, we detail a comprehensive set of
experiments designed to validate the efficacy of
FISTAPruner. We begin with an in-depth review
of our experimental setup. Following this, we ex-
plore the perplexity and zero-shot capabilities of
the pruned LLMs through rigorous testing and a
series of ablation studies. Due to page length con-
straints, a portion of the results are presented in
Appendix E and F.

4.1 Settings

Models. We utilize models from the OPT (Zhang
et al., 2022), LLaMA (Touvron et al., 2023a),
LLaMA-2 (Touvron et al., 2023b), LLaMA-
3 (Meta AI, 2023), and Qwen2.5 (Qwen Team,
2025) families.
Benchmarks. Our primary assessment focuses
on evaluating the perplexity of pruned LLMs, a
metric renowned for its reliability in assessing
LLM performance. Following methodologies from
previous studies (Frantar and Alistarh, 2023; Sun
et al., 2023), we measure model perplexity using
the WikiText-2-raw (Merity et al., 2016) (here-
after shortened to WikiText), PTB (Marcus et al.,
1994), and C4 (Raffel et al., 2020) datasets. Addi-
tionally, we perform a comprehensive evaluation
of the zero-shot capabilities of pruned LLaMA-3-
70B models using several standard common-sense
benchmark datasets. These include ARC Easy and
ARC Challenge (Clark et al., 2018), WinoGrande
(Sakaguchi et al., 2021), BoolQ (Clark et al., 2019),
RTE (Wang et al., 2018), QNLI (Wang et al., 2018),
and WNLI (Wang et al., 2018) tasks, facilitated by
the LM Harness library (Gao et al., 2021).
Baselines. We compare FISTAPruner against two
widely-used baseline methods: SparseGPT (Fran-
tar and Alistarh, 2023) and Wanda (Sun et al.,
2023). Additionally, we evaluate against the lat-
est training-free approach, DSnoT (Zhang et al.,
2023d), which updates the results of other pruning
methods, and the recent efficient prune-retrain ap-
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Table 1: WikiText perplexity (↓) of pruned OPT models under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner outperforms baseline methods.

OPT

Method Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 30B
Dense 0% 27.66 22.00 14.63 12.47 10.86 10.13 9.56
SparseGPT 50% 37.01 31.53 17.55 13.46 11.60 11.15 9.77
Wanda 50% 38.96 36.22 18.41 14.22 11.98 11.93 10.03
FISTAPruner 50% 33.54 28.89 17.21 13.22 11.36 10.95 9.71
SparseGPT 2:4 60.02 50.15 23.83 17.20 14.13 12.94 10.92
Wanda 2:4 80.32 113.00 28.25 21.25 15.90 15.56 13.40
FISTAPruner 2:4 45.16 40.41 22.46 15.70 13.16 12.21 10.54

Table 2: WikiText perplexity (↓) of pruned LLaMA, LLaMA-2, LLaMA-3, and Qwen2.5 models under 50%
unstructured and 2:4 semi-structured sparsity. FISTAPruner outperforms baseline methods.

LLaMA LLaMA-2 LLaMA-3 Qwen2.5

Method Sparsity 7B 13B 30B 65B 7B 13B 70B 8B 70B 0.5B 1.5B
Dense 0% 5.68 5.09 4.10 3.53 5.12 4.57 3.12 5.54 2.59 13.07 9.27
SparseGPT 50% 7.24 6.22 5.33 4.60 6.54 5.63 3.99 8.64 5.30 20.36 13.08
Wanda 50% 7.26 6.15 5.25 4.60 6.46 5.58 3.97 9.06 5.33 25.83 14.11
FISTAPruner 50% 6.97 6.06 5.09 4.39 6.35 5.47 3.93 8.00 5.09 19.61 12.51
SparseGPT 2:4 11.32 9.11 7.21 6.24 10.37 8.29 5.38 14.65 8.63 37.42 21.81
Wanda 2:4 11.54 9.61 6.91 6.24 11.34 8.35 5.20 22.56 8.34 81.59 47.20
FISTAPruner 2:4 9.82 8.27 6.70 5.82 9.63 7.69 5.16 14.54 7.55 33.53 20.14

proach, PERP (Zimmer et al., 2023). We evaluate
two types of sparsity configurations: unstructured
and 2:4 semi-structured sparsity.
Setup. We implement FISTAPruner using PyTorch
(Paszke et al., 2019) and leverage the Hugging-
Face Transformers library (Wolf et al., 2019) for
model and dataset management. All pruning ex-
periments are conducted on NVIDIA A100 GPUs,
each equipped with 80 GB of memory. We observe
that FISTAPruner efficiently prunes all LLMs using
a single GPU and no more than 40 GB of memory.
For calibration data, we adhere to the approach out-
lined in previous works (Frantar and Alistarh, 2023;
Sun et al., 2023), utilizing 128 sequences. Each
sequence is composed of tokens sampled from the
first shard of the C4 dataset, with the number of
tokens equal to the maximum embedding length of
the LLMs. For parameters of FISTAPruner, we set
the initial value of λ to 1× 10−5, K to 20, T to 3,
M to 106, and ξ to 0.3. For the OPT model family,
we use the result of SparseGPT as a warm start for
the FISTA iteration and set ϵ to 1× 10−6. For the
LLaMA model family, we use the result of Wanda
as a warm start and set ϵ to 1× 10−3.

4.2 Perplexity Experiment Results

In Tables 1 and 2, we present the perplexity results
for the pruned OPT, LLaMA, LLaMA-2, LLaMA-
3, and Qwen2.5 models of various sizes on Wiki-

Table 3: WikiText perplexity (↓) of pruned LLaMA,
LLaMA-2 and LLaMA-3 models under 50% unstruc-
tured and 2:4 semi-structured sparsity. FISTAPruner
outperforms DSnoT.

Method Sparsity 7B 13B 30B 2-7B 2-13B 3-8B
Wanda + DSnoT 50% 7.12 6.16 5.20 6.49 5.57 9.07
FISTAPruner 50% 6.97 6.06 5.09 6.35 5.47 8.00
Wanda + DSnoT 2:4 11.54 9.49 7.09 11.53 8.52 20.56
FISTAPruner 2:4 9.82 8.27 6.70 9.63 7.69 14.54

Table 4: WikiText perplexity (↓) of pruned OPT mod-
els under 50% sparsity. FISTAPruner outperforms the
prune-retrain approach PERP.

Method Sparsity 2.7B 6.7B 13B 30B
SparseGPT + PERP 50% 13.40 11.47 10.85 9.76
Wanda + PERP 50% 13.88 11.83 11.06 10.04
FISTAPruner 50% 13.22 11.36 10.95 9.71

Text. For results on PTB and C4, please refer to
Appendix E.1 and E.2. We achieved a 50% unstruc-
tured or 2:4 semi-structured sparsity level by prun-
ing all linear operators, excluding embeddings and
the model head. The data in Tables 1 and 2 illus-
trate consistent improvements with FISTAPruner
over SparseGPT and Wanda.

In Tables 3, we detail the comparison between
FISTAPruner and DSnoT on LLaMA, LLaMA-2,
and LLaMA-3 models of various sizes on WikiText.
The data consistently indicate that FISTAPruner
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Table 5: Zero-shot results (accuracy, ↑) of the pruned LLaMA-3-70B model under 50% unstructured and 2:4
semi-structured sparsity. FISTAPruner outperforms baseline methods on most of the tasks and yields much higher
average accuracies especially under 2:4 semi-structured sparsity.

Method Sparsity ARC-c ARC-e WinoGrande RTE BoolQ QNLI WNLI Mean
Dense 0% 0.6024 0.8685 0.8035 0.6859 0.8560 0.5190 0.7183 0.7219
SparseGPT 50% 0.5401 0.8340 0.7979 0.7040 0.8480 0.5035 0.7042 0.7045
Wanda 50% 0.5427 0.8320 0.7814 0.7076 0.8480 0.5045 0.6338 0.6928
FISTAPruner 50% 0.5614 0.8410 0.8035 0.6895 0.8645 0.5055 0.7183 0.7120
SparseGPT 2:4 0.4590 0.7830 0.7609 0.6426 0.8165 0.4985 0.5493 0.6443
Wanda 2:4 0.4829 0.7860 0.7174 0.6354 0.7615 0.5390 0.6056 0.6468
FISTAPruner 2:4 0.4735 0.7985 0.7751 0.7004 0.8540 0.5675 0.6620 0.6901
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(b) Perplexity-vs-Sparsity on LLaMA-3-8B.

Figure 3: Comparative analysis of sparsity versus per-
plexity across different methods for OPT-125M and
LLaMA-3-8B models on WikiText dataset.

achieves lower perplexity scores, thereby surpass-
ing DSnoT in performance.

We also compare FISTAPruner with the prune-
retrain method PERP, with results presented in Ta-
ble 4. These results demonstrate that FISTAPruner,
without any retraining, outperforms the results of
SparGPT/Wanda retrained using PERP. Moreover,
our method is also compatible with retraining meth-
ods and could serve as a superior initialization point
in the retraining process.

To further investigate FISTAPruner’s perfor-
mance under different unstructured sparsity lev-
els, we conducted experiments on the OPT-125M
and LLaMA-3-8B models, with perplexity results

visualized in Figure 3 and measured using Wiki-
Text. The results indicate that FISTAPruner consis-
tently outperforms existing methods across differ-
ent levels of unstructured sparsity. Notably, at 20%
unstructured sparsity on the OPT-125M model,
FISTAPruner’s performance even surpasses that
of the dense network.

4.3 Zero-Shot Task Results
The results of zero-shot tasks on pruned LLaMA-3-
70B models, with 50% unstructured and 2:4 semi-
structured sparsity, are detailed in Table 5. These re-
sults indicate that FISTAPruner surpasses existing
methods on most tasks. Furthermore, when evalu-
ating the average accuracy across the seven tasks
we examined, FISTAPruner consistently shows su-
perior performance compared to existing methods,
particularly with 2:4 semi-structured sparsity.

4.4 Ablation Study
We conduct a series of ablation studies to evaluate
the impact of the intra-layer error correction mech-
anism, calibration data, and warm-start mechanism.
The results are presented in Appendix F.

5 Conclusion

In this paper, we introduce FISTAPruner, a layer-
wise post-training pruning method for LLMs. Ini-
tially, we develop a convex optimization model that
employs the ℓ1-norm to induce unstructured spar-
sity in the weights, complemented by an intra-layer
error correction mechanism to eliminate cumula-
tive errors across operators in the traditional prun-
ing process. Subsequently, we utilize FISTA to
efficiently solve the proposed model. Additionally,
we extend FISTAPruner to accommodate n : m
semi-structured pruning. FISTAPruner supports
parallel pruning, which can reduce the total prun-
ing time by utilizing various devices simultane-
ously. Extensive experiments on the OPT, LLaMA,
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LLaMA-2, and LLaMA-3 model families demon-
strate FISTAPruner’s superior performance com-
pared to existing methods.

Limitations

Despite the rigorous theoretical foundation and
impressive pruning performance of FISTAPruner,
the time required for pruning remains a limita-
tion of our method compared to SparseGPT and
Wanda. This is primarily due to the iterative nature
of FISTA and the process of tuning λ. Pruning
time varies with model size; for instance, it takes
about 10 minutes for OPT-125M, while LLaMA-
3-70B requires approximately 12 hours on a sin-
gle NVIDIA A100 GPU with 40 GB of mem-
ory. However, the parallel-pruning capability of
FISTAPruner, which allows for simultaneous prun-
ing of multiple decoder layers across various de-
vices, can mitigate this issue to some extent. Fur-
thermore, as post-training pruning is typically an
offline process, time sensitivity may not be a crit-
ical factor in real-world applications. In addition,
FISTAPruner represents an attempt to integrate con-
vex optimization theory and algorithms into LLM
applications, potentially inspiring further advance-
ments in this area.

Beyond computation time, GPU memory con-
sumption is a crucial factor, making FISTAPruner
more practical than frameworks like “post-training
pruning + fine-tuning” (e.g., “Wanda + LoRA”).
For example, loading LLaMA-3-70B in FP16 pre-
cision alone requires approximately 140 GB of
GPU memory (70 billion parameters × 2 bytes),
necessitating at least four NVIDIA A100 GPUs
with 40 GB each. In contrast, FISTAPruner is a
layer-wise pruning method that treats each decoder
layer independently. This design significantly re-
duces memory overhead by allowing each decoder
layer to be loaded and pruned sequentially on the
GPU, then offloaded back to the CPU after pruning.
Additionally, it also enables parallel pruning across
decoder layers. As a result, for LLaMA-3-70B,
using a minimal hardware budget (4 × A100 40
GB GPUs) for fine-tuning, the total pruning time
can be reduced from 12 hours to approximately 3
hours.

Additionally, we would like to note that applying
LoRA to fine-tune a pruned model presents several
challenges. For weights pruned with unstructured
or semi-structured sparsity, directly adding LoRA
adapters would break the sparsity pattern. To pre-

serve the sparse structure, a separate LoRA path
must be introduced, which increases both the num-
ber of parameters and the computational complex-
ity of the model.
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Eldar Kurtić, Elias Frantar, and Dan Alistarh. 2024. Zi-
plm: Inference-aware structured pruning of language
models. Advances in Neural Information Processing
Systems, 36.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie,
and Ji-Rong Wen. 2024. Pre-trained language mod-
els for text generation: A survey. ACM Computing
Surveys, 56(9):1–39.

Chenyang Lyu, Jitao Xu, and Longyue Wang. 2023.
New trends in machine translation using large lan-
guage models: Case examples with chatgpt. arXiv
preprint arXiv:2305.01181.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. arXiv preprint arXiv:2305.11627.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The penn tree-
bank: Annotating predicate argument structure. In
Human Language Technology: Proceedings of a
Workshop held at Plainsboro, New Jersey, March
8-11, 1994.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Meta AI. 2023. Llama-3: Meta ai’s latest
language model. https://ai.meta.com/blog/
meta-llama-3/.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong
Yu, and Paulius Micikevicius. 2021. Accelerat-
ing sparse deep neural networks. arXiv preprint
arXiv:2104.08378.

OpenAI. 2023. Gpt-4 technical report. arXiv, pages
2303–08774.

Seungcheol Park, Hojun Choi, and U Kang. 2024. Ac-
curate retraining-free pruning for pretrained encoder-
based language models. In The Twelfth International
Conference on Learning Representations.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Qwen Team. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

29478

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2412.15115


Hang Shao, Bei Liu, and Yanmin Qian. 2024. One-shot
sensitivity-aware mixed sparsity pruning for large
language models. In ICASSP 2024-2024 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 11296–11300. IEEE.

Benoit Steiner, Mostafa Elhoushi, Jacob Kahn, and
James Hegarty. 2023. Model: memory optimiza-
tions for deep learning. In International Conference
on Machine Learning, pages 32618–32632. PMLR.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–
288.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Yubo Wang, Xueguang Ma, and Wenhu Chen. 2023.
Augmenting black-box llms with medical textbooks
for clinical question answering. arXiv preprint
arXiv:2309.02233.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li. 2016. Learning structured sparsity in
deep neural networks. Advances in neural informa-
tion processing systems, 29.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Xiufeng Xie, Riccardo Gherardi, Zhihong Pan, and
Stephen Huang. 2023. Hollownerf: Pruning
hashgrid-based nerfs with trainable collision mitiga-
tion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3480–3490.

Binwei Yao, Ming Jiang, Diyi Yang, and Junjie
Hu. 2023. Empowering llm-based machine trans-
lation with cultural awareness. arXiv preprint
arXiv:2305.14328.

Biao Zhang, Barry Haddow, and Alexandra Birch.
2023a. Prompting large language model for ma-
chine translation: A case study. In International Con-
ference on Machine Learning, pages 41092–41110.
PMLR.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan,
and Lidong Bing. 2023b. Sentiment analysis in the
era of large language models: A reality check. arXiv
preprint arXiv:2305.15005.

Yuxin Zhang, Mingbao Lin, Yunshan Zhong, Fei Chao,
and Rongrong Ji. 2023c. Lottery jackpots exist in
pre-trained models. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun,
Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu,
and Rongrong Ji. 2023d. Dynamic sparse no train-
ing: Training-free fine-tuning for sparse llms. arXiv
preprint arXiv:2310.08915.

Max Zimmer, Megi Andoni, Christoph Spiegel, and
Sebastian Pokutta. 2023. Perp: Rethinking the prune-
retrain paradigm in the era of llms. arXiv preprint
arXiv:2312.15230.

29479



A Derivations of the Proposed
Optimization Model

We present detailed derivations of Equation 3 in the
following. Given X∗ ∈ Rn×p and WX ∈ Rm×p,
we want to find a sparse solution W ∗ ∈ Rm×n that
minimizes the pruning metric

∥W ∗X∗ −WX∥F . (7)

We observe its similarities to the well-known
least absolute shrinkage and selection operator
(LASSO) (Tibshirani, 1996) problem and thus
transform it into a standard LASSO model, which
could be efficiently solved by operator-splitting
algorithms such as FISTA. To achieve such a trans-
formation, first, we leverage the following equality
to write the decision variable W ∗ in its vector form:

∥W ∗X∗ −WX∥2F
=

∥∥(X∗)⊤(W ∗)⊤ − (WX)⊤
∥∥2
F

=
∑m

i=1

∥∥∥(X∗)⊤(W ∗
i,:)

⊤ − (WX)⊤i,:

∥∥∥
2

2

=

∥∥∥∥∥∥∥∥∥



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. . .
(X∗)⊤


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


(W ∗
1,:)

⊤

(W ∗
2,:)

⊤
...

(W ∗
m,:)

⊤


−




(WX)⊤1,:
(WX)⊤2,:

...
(WX)⊤m,:




∥∥∥∥∥∥∥∥∥

2

2

.

Then we can rewrite the square of the pruning met-
ric in its vector form,

∥Ax− b∥22, (8)

where

A =



(X∗)⊤

. . .
(X∗)⊤


 ∈ Rpm×nm,

x =


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(W ∗
1,:)

⊤

(W ∗
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⊤
...

(W ∗
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
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
 ∈ Rpm.

Note that finding a sparse W ∗ to minimize Equa-
tion 7 is equivalent to finding a sparse x to mini-
mize Equation 8, which could be modeled by the
LASSO formulation

minx
1
2 ∥Ax− b∥22 + λ∥x∥1.

Now, we have

1
2 ∥Ax− b∥22 + λ∥x∥1

= 1
2∥W ∗X∗ −WX∥2F + λ
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,

and hence, we obtain the proposed optimization
model in Equation 3.

B Derivations of the FISTA Iterations

We derive here the FISTA Iterations for the op-
timization problem Equation 3 in which one full
iteration includes a gradient descent step of the
quadratic term 1

2∥W ∗X∗ −WX∥2F , a proximal

step of the regularization term λ
∑m

i=1

∥∥∥(W ∗
i,:)

⊤
∥∥∥
1
,

and a Nesterov acceleration term that yields an im-
proved convergence rate of O(1/k2) (Beck and
Teboulle, 2009).

Let f : Rm×n → R+ be a function defined by

f(Y ) := 1
2 ∥Y X∗ −WX∥2F .

The gradient of f at Y = W ∗
k is computed as

∇f(W ∗
k ) = (W ∗

kX
∗ −WX)(X∗)⊤

= W ∗
kX

∗(X∗)⊤ −WX(X∗)⊤.

Thus, given optimal step size 1/L where L is
the maximum eigenvalue of X∗(X∗)⊤ (Beck and
Teboulle, 2009), the gradient descent step Equa-
tion 4a of FISTA reads as

W ∗
k+ 1

3

= W ∗
k − 1

L

(
W ∗

kX(X∗)⊤ −WX(X∗)⊤
)
.

In the second step Equation 4b, we do a proximal
update with respect to the regularization term by
solving

minW ∗ L
2

∥∥∥W ∗ −W ∗
k+ 1

3

∥∥∥
2

F
+ λ

∑m
i=1 ∥W ∗

i,:∥1. (9)

Let h : R→ R+ be a function defined by

h(y|z) := 1
2(y − z)2 + λ

L |y|.

Observe that

L
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ij
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k+ 1

3
,ij

)
.

Hence problem Equation 9 can be split into m× n
independent subproblems of dimension 1 and we
only need to focus on solving each one of them.
Note that h is convex but not smooth. It suffices to
find a point W ∗

k+ 2
3
,ij

such that

0 ∈ ∂h
(
W ∗

k+ 2
3
,ij

∣∣∣W ∗
k+ 1

3
,ij

)
,
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where ∂ denotes the sub-differential operator. Ob-
serve that

∂h(y|z) =





y − z + λ
L , if y > 0,

y − z − λ
L , if y < 0,

{y − z + u λ
L | u ∈ [−1, 1]}, if y = 0.

We now solve for 0 ∈ ∂h(y|z) by considering the
following cases:

• If y > 0, then we set y − z + λ
L = 0. This

gives y = z − λ
L and requires z > λ

L .

• If y < 0, then we set y − z − λ
L = 0. This

gives y = z + λ
L and requires z < − λ

L .

• If y = 0, then we want 0 ∈ {y−z+u λ
L | u ∈

[−1, 1]}. This requires − λ
L < z < λ

L .

Hence, 0 ∈ ∂h
(
W ∗

k+ 2
3
,ij

∣∣∣W ∗
k+ 1

3
,ij

)
yields

W ∗
k+ 2

3
,ij
=





W ∗
k+ 1

3
,ij
− λ

L , if W ∗
k+ 1

3
,ij

> λ
L ,

W ∗
k+ 1

3
,ij

+ λ
L , if W ∗

k+ 1
3
,ij

< − λ
L ,

0, otherwise,

which is given by SoftShrinkageλ/L

(
W ∗

k+ 1
3
,ij

)
.

Finally, according to (Beck and Teboulle, 2009),
we add a Nesterov acceleration step by setting t0 =
1 and computing

tk+1 = 1
2

(
1 +

√
1 + 4t2k

)
, (10)

W ∗
k+1 = W ∗

k+ 2
3

+ tk−1
tk+1

(
W ∗

k+ 2
3

−W ∗
k

)
, (11)

which gives steps Equation 4c and Equation 4d.
The above illustrates the details of the FISTA

iterations.

C Novelty Compared to Traditional
LASSO-based Pruning

Compared to traditional LASSO-based or ℓ1-
regularization pruning, our work introduces several
key innovations that advance the state-of-the-art in
post-training pruning for LLMs.

We develop a LASSO-based, layer-wise prun-
ing approach where each linear layer is optimized
independently through a convex formulation (equa-
tion 3). This contrasts with (Wen et al., 2016),
which incorporates group LASSO regularization
into the training loss, resulting in a non-convex ob-
jective that may converge to suboptimal solutions.

Our convex formulation guarantees stable conver-
gence while maintaining computational tractability.

While (He et al., 2017) adapts LASSO for chan-
nel pruning in CNNs using heuristic alternating
optimization, we employ FISTA with provable
O(1/k2) convergence. Our implementation lever-
ages closed-form solutions involving only matrix-
matrix multiplications and element-wise opera-
tions, enabling efficient GPU acceleration, which
is a critical advantage when scaling to billion-
parameter LLMs where previous methods become
computationally prohibitive.

We introduce a bisection-based method to
automatically determine the optimal sparsity-
controlling parameter λ for any target sparsity level.
This represents a significant improvement over (He
et al., 2017)’s linear incremental strategy, offering
both faster convergence and more reliable results
through principled interval halving.

The framework natively supports both unstruc-
tured sparsity and hardware-friendly 2:4 semi-
structured patterns, enabling practical deployment
on modern accelerators like NVIDIA Ampere
GPUs (Bai and Li, 2023). This hardware com-
patibility was not addressed in prior LASSO-based
pruning methods.

A novel error correction mechanism specifically
designed for transformer architectures compen-
sates for pruning-induced perturbations within each
layer. Comprehensive ablation studies demonstrate
its effectiveness in maintaining model accuracy
compared to baseline approaches.

While previous works have explored individual
components of LASSO-based pruning, our method
represents the first unified framework that simul-
taneously addresses all these aspects for modern
LLMs.

D Proof of Theorem 1

Assume the weight matrix has p parameters.
The sparsity function s(λ) is non-decreasing and
piecewise-constant with at most p+ 1 plateaus, as
established by the piecewise-linear structure of ℓ1-
regularized solution paths. Assume the smallest
plateau has length L. The bisection algorithm it-
eratively maintains an interval [λ(k)

l , λ
(k)
r ] at step

k, where λ
(k)
l and λ

(k)
r denote the lower and up-

per bounds respectively, preserving the invariant
s(λ

(k)
l ) ≤ s ≤ s(λ

(k)
r ). At each iteration, the mid-

point λm = (λ
(k)
l + λ

(k)
r )/2 is computed. The

interval is updated by setting λ
(k+1)
l ← λm if
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s(λm) < s, or λ
(k+1)
r ← λm otherwise. This

procedure preserves the invariant while halving the
interval width δk = λ

(k)
r − λ

(k)
l at every step.

As the iterations proceed, within k = O(log δ0
L )

steps, we must have δk ≤ L. By the definition
of L, for all λ ∈ [λ

(k)
l , λ

(k)
r ], there are at most

two possible values of s(λ). Therefore, one of
the endpoints, λ(k)

l or λ(k)
r must be the desired λ

such that s(λ) = s, and the algorithm should have
already terminated.

E Additional Results

E.1 Perplexity Results on PTB

We present the PTB perplexity results of pruned
OPT, LLaMA, LLaMA-2, LLaMA-3, and Qwen2.5
models under 50% unstructured and 2:4 semi-
structured sparsity in Tables 6 and 7. FISTAPruner
outperforms baseline methods on all OPT, LLaMA
and LLaMA-3 models, as well as on most LLaMA-
2 models on the PTB dataset. The sole exception
is the pruning of the LLaMA-2-70B model under
50% unstructured sparsity, where FISTAPruner sur-
passes Wanda but falls short of SparseGPT. This
underperformance may be due to the generally
poorer performance of LLaMA-2 models com-
pared to similarly sized models from other fam-
ilies. For instance, the dense LLaMA-2-13B model
exhibits a PTB perplexity of 56.52, even higher
than the smaller LLaMA-2-7B model, which has
a perplexity of 50.19. Moreover, we observe that
the PTB perplexity results for all dense LLaMA
and LLaMA-2 models are consistently higher than
those for similarly sized OPT models; for exam-
ple, the LLaMA-2-13B’s perplexity of 56.52 far
exceeds the smallest OPT-125M model’s 38.99.
In contrast, LLaMA-3 models show significantly
better performance on the PTB dataset. Besides,
FISTAPruner performs consistently better than
baselines on Qwen models.

E.2 Perplexity Results on C4

The C4 perplexity results of pruned OPT, LLaMA,
LLaMA-2, LLaMA-3, and Qwen2.5 models under
50% unstructured and 2:4 semi-structured sparsity
are shown in Tables 6 and 7. FISTAPruner per-
forms consistently better than the baselines.
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Figure 4: Studies of FISTAPruner on the WikiText
dataset on OPT-2 125M, showcasing the effects of intra-
layer error correction and varying calibration sample
sizes.
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Figure 5: Studies of FISTAPruner on the PTB dataset on
OPT-125M, showcasing the effects of intra-layer error
correction and varying calibration sample sizes.
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Table 6: PTB perplexity of pruned OPT models under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner outperforms baseline methods.

OPT

Method Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 30B
Dense 0% 38.99 31.07 20.29 17.97 15.77 14.52 14.04
SparseGPT 50% 55.38 43.58 25.64 20.52 17.38 15.98 14.97
Wanda 50% 57.60 55.47 27.98 21.85 17.92 17.45 15.47
FISTAPruner 50% 49.79 41.26 25.08 20.15 17.08 15.87 14.92
SparseGPT 2:4 94.21 72.82 37.30 26.87 21.65 18.69 16.56
Wanda 2:4 111.55 135.98 43.85 34.64 25.07 22.16 21.65
FISTAPruner 2:4 67.80 59.51 36.26 24.43 20.04 18.08 16.18

Table 7: PTB perplexity (↓) of pruned LLaMA, LLaMA-2, LLaMA-3, and Qwen2.5 models under 50% unstructured
and 2:4 semi-structured sparsity.

LLaMA LLaMA-2 LLaMA-3 Qwen2.5

Method Sparsity 7B 13B 30B 65B 7B 13B 70B 8B 70B 0.5B 1.5B
Dense 0% 41.15 28.10 23.51 25.07 50.19 56.52 22.68 10.17 7.87 26.03 17.85
SparseGPT 50% 79.67 37.49 26.14 27.64 1020.01 95.41 24.87 14.00 9.24 38.41 24.89
Wanda 50% 80.48 36.43 26.64 25.77 97.58 86.79 26.07 15.54 9.44 46.83 27.15
FISTAPruner 50% 58.67 35.30 25.63 25.15 96.72 78.23 25.36 12.93 8.88 41.62 23.15
SparseGPT 2:4 154.62 71.68 32.44 32.91 1163.57 154.15 31.51 23.42 13.01 75.98 41.45
Wanda 2:4 211.40 74.29 35.56 33.39 587.54 224.55 33.97 48.96 14.17 142.19 103.61
FISTAPruner 2:4 91.84 64.04 30.86 30.78 361.16 136.84 31.49 22.60 11.11 57.34 35.20
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Figure 6: Studies of FISTAPruner on the C4 dataset on
OPT-125M, showcasing the effects of intra-layer error
correction and varying calibration sample sizes.

F Ablation Studies

F.1 Intra-layer Error Corrections

We perform ablation studies on the OPT-125M
model with 50% unstructured sparsity to evalu-
ate the intra-layer error correction mechanism. We
compare the performance of FISTAPruner with and
without the intra-layer error correction mechanism,
with perplexity results on the WikiText, PTB and
C4 datasets displayed in Figures 4(a), 5(a), and 6(a).
We observe that the perplexity of the pruned model
incorporating this mechanism consistently outper-
forms the version without it, thereby confirming its
effectiveness. Moreover, FISTAPruner, even with-
out the intra-layer error correction mechanism, out-
performs existing methods such as SparseGPT and
Wanda. This underscores the effectiveness of ap-
plying convex optimization theory and algorithms
to pruning problems. Additionally, we treat each
decoder layer as an independent pruning unit with
intra-layer error correction, rather than using both
intra- and inter-layer error correction for a global
mechanism, for the following reasons: (1) Intra-
layer error correction allows independent pruning
of each decoder layer, enabling distribution of the
task across multiple devices and improving overall
efficiency. (2) While combining intra- and inter-
layer error correction can reduce error accumu-
lation, it is effective only at low sparsity levels.
At higher sparsity, global error correction domi-
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Table 8: C4 perplexity (↓) of pruned OPT models under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner outperforms baseline methods.

OPT

Method Sparsity 125M 350M 1.3B 2.7B 6.7B 13B 30B
Dense 0% 26.56 22.59 16.07 14.34 12.71 12.06 11.45
SparseGPT 50% 33.52 29.14 19.23 15.77 13.73 12.98 11.96
Wanda 50% 34.89 34.46 20.63 16.44 14.25 13.57 12.32
FISTAPruner 50% 30.93 27.36 18.56 15.58 13.61 12.94 11.92
SparseGPT 2:4 52.11 46.36 25.77 19.35 16.44 14.85 13.18
Wanda 2:4 64.73 88.62 28.59 22.88 19.00 16.19 16.18
FISTAPruner 2:4 38.08 36.45 24.29 17.82 15.35 14.19 12.78

Table 9: C4 perplexity (↓) of pruned LLaMA, LLaMA-2, LLaMA-3, and Qwen2.5 models under 50% unstructured
and 2:4 semi-structured sparsity. FISTAPruner outperforms baseline methods.

LLaMA LLaMA-2 LLaMA-3 Qwen2.5

Method Sparsity 7B 13B 30B 65B 7B 13B 70B 8B 70B 0.5B 1.5B
Dense 0% 7.34 6.80 6.13 5.81 7.04 6.52 5.53 9.01 6.82 20.39 15.13
SparseGPT 50% 9.33 8.14 7.34 6.66 9.00 7.96 6.25 13.93 9.34 28.60 19.83
Wanda 50% 9.34 8.15 7.29 6.71 8.94 8.04 6.30 14.97 9.80 35.36 21.69
FISTAPruner 50% 8.90 7.96 7.05 6.49 8.62 7.73 6.22 13.12 8.94 27.29 18.89
SparseGPT 2:4 13.65 11.38 9.50 8.41 13.58 11.39 7.99 24.16 14.81 49.72 31.85
Wanda 2:4 14.47 12.11 9.46 8.78 15.07 12.13 7.89 36.70 14.47 131.21 66.58
FISTAPruner 2:4 11.95 10.27 8.81 7.82 12.41 10.34 7.59 23.15 12.18 40.66 27.00

nates layer-specific pruning, leading to worse per-
formance. A detailed analysis of this is provided
in Appendix G.

F.2 Calibration Data and Warm Start

We conduct studies to evaluate the impact of the
number of calibration samples and warm start.
Amount of Calibration Data. We investigate the
performance of FISTAPruner and existing methods,
SparseGPT and Wanda, in relation to the number of
calibration data samples, which we vary in powers
of two. The results for the WikiText dataset with
the OPT-125M model at 50% sparsity are shown
in Figure 4(b). We observe that using more calibra-
tion samples significantly enhances performance,
but only up to a certain point as the improvement
curve quickly flattens. This finding aligns with ob-
servations in (Frantar and Alistarh, 2023; Sun et al.,
2023). Given that using more samples increases
computational and memory costs, we consistently
use 128 calibration samples in all our experiments.
The results of pruning performance in relation to
the number of calibration data samples on PTB and
C4 datasets are displayed in Figures 5(b) and 6(b).
The same curve pattern as shown in Figure 4(b) is
observed.
Choice of Calibration Dataset. We evaluate
perplexity across different calibration datasets on

OPT-125M. The C4 calibration dataset consistently
achieved the lowest total perplexity scores (113.59
at 50% sparsity, 155.47 at 2:4 sparsity), outper-
forming both WikiText and PTB. This aligns with
findings from recent work (Ji et al., 2024), demon-
strating that web-scale, diverse datasets like C4
tend to produce more robust pruning results com-
pared to domain-specific calibration data. Three
factors likely contribute to C4’s superior perfor-
mance: (1) Its broad domain coverage better repre-
sents the model’s pretraining distribution, (2) The
dataset’s size and diversity provide more stable
importance score estimation during pruning, and
(3) Reduced domain mismatch between calibration
and test conditions. The performance gap becomes
more pronounced with stricter sparsity constraints
(2:4 vs 50%), underscoring how calibration data
quality grows increasingly critical with aggressive
pruning.

Warm Start. Warm-starting is a widely recognized
technique in optimization that leverages starting at
a point near the optimal solution to significantly re-
duce the total convergence time. In our framework,
we evaluate the efficiency of warm start mechanism
as follows: Dense Weights < Magnitude Pruning
≈ Wanda < SparseGPT. Dense weights, though
readily obtainable, slow down the convergence due
to their significant deviation from the target spar-
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Table 10: Perplexity across calibration datasets and
sparsity levels of pruned OPT-125M.

Dataset Sparsity WikiText C4 PTB Total

WikiText 50% 30.74 35.03 50.48 116.26
C4 50% 32.82 30.90 49.87 113.59
PTB 50% 40.07 40.81 41.71 122.59

WikiText 2:4 37.22 47.85 72.39 157.45
C4 2:4 45.69 39.21 70.57 155.47
PTB 2:4 61.18 63.59 46.96 171.74

sity level. Magnitude pruning, involving absolute
value computations and comparisons, meets spar-
sity requirements but generally yields lower-quality
solutions. Wanda, requiring absolute value compu-
tations, ℓ2-norm calculations of activation columns,
and element-wise multiplication, is nearly as ef-
ficient as magnitude pruning. This near parity in
efficiency is due to our model’s reliance on activa-
tion data from calibration, allowing ℓ2-norm com-
putations to occur incidentally during the process.
Despite their similar efficiencies, Wanda’s solu-
tions markedly outperform those from magnitude
pruning. SparseGPT is less efficient compared with
magnitude pruning and Wanda but may provide a
stronger initial point.

To further illustrate the impact of warm start on
FISTAPruner, we conduct additional tests using
both dense weights and magnitude pruning results
as starting points. The results are presented in
Table 11, which indicates that FISTAPruner still
can achieve comparable results.

G Why Intra-Layer Error Correction Is
Preferred Over Intra- and Inter-Layer
Error Correction

We apply only the intra-layer error correction mech-
anism for two reasons:

1. Parallelization: Intra-layer error correction
enables independent pruning of each decoder
layer, allowing us to distribute the pruning
task across multiple devices by assigning dif-
ferent decoder layers to different devices. This
increases the overall pruning efficiency.

2. Sparsity Sensitivity: While combining intra-
and inter-layer error correction could intu-
itively reduce error accumulation across the
network, we found that this approach is effec-
tive only at low sparsity levels. When the prun-
ing task becomes harder (i.e., higher sparsity),
global error correction tends to overshadow

the pruning process of individual layers, ulti-
mately leading to worse performance.

The first reason is straightforward; we will ex-
plain the second reason in more detail below.

We conducted a series of comparison experi-
ments on OPT-125M at sparsity levels of 5%, 10%,
20%, and 50%. The experiments included three
conditions: intra-layer error correction only, both
intra- and inter-layer error correction, and no error
correction. The results are presented in the follow-
ing tables.

As shown in the results above, we summarize
the perplexity comparison across different sparsity
levels as follows:

• 5% and 10%: intra- and inter-layer error
correction < intra-layer error correction only
< no error correction.

• 20%: intra-layer error correction only < intra-
and inter-layer error correction < no error cor-
rection.

• 50%: intra-layer error correction only < no
error correction < intra- and inter-layer error
correction.

First, the results confirm the effectiveness of our
intra-layer error correction mechanism, as it con-
sistently outperforms the no-error-correction ap-
proach.

Second, the results confirm the effectiveness of
using both intra- and inter-layer error correction at
low sparsity levels, as it consistently outperforms
the intra-layer error correction alone at 5% and
10% sparsity.

Third, the results show that using both intra- and
inter-layer error correction is sensitive to sparsity
levels and tends to perform worse at higher spar-
sity. Specifically, at 20% sparsity, it underperforms
compared to intra-layer error correction alone, and
at 50% sparsity, it even performs worse than the
no-error-correction approach.

To explain why the use of both intra- and inter-
layer error correction is sensitive to sparsity levels,
we believe this occurs because higher sparsity lev-
els make the pruning task more difficult, leading
to greater error accumulation across layers. When
both intra- and inter-layer error correction are ap-
plied, mitigating the accumulated error from previ-
ous layers may dominate the optimization objective
in deeper layers, causing the pruning performance
of the current layer to suffer.
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Table 11: Perplexity (↓) results for WikiText, PTB and C4 under 50% unstructured and 2:4 semi-structured sparsity.
FISTAPruner is initialized with magnitude pruning and dense weights.

Method Sparsity WikiText PTB C4
Magnitude 25% 31.38 38.99 26.56
FISTAPruner (initialized with magnitude pruning) 25% 28.67 40.29 27.07
FISTAPruner (initialized with dense weights) 25% 28.66 40.27 27.07
Magnitude 50% 193.35 276.17 141.00
FISTAPruner (initialized with magnitude pruning) 50% 38.62 52.26 32.87
FISTAPruner (initialized with dense weights) 50% 38.62 52.43 32.89
Magnitude 2:4 343.91 810.42 223.98
FISTAPruner (initialized with magnitude pruning) 2:4 57.43 78.37 45.20
FISTAPruner (initialized with dense weights) 2:4 58.55 80.72 45.51

Table 12: OPT-125M under 5% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 27.64 26.57 38.99
Intra-layer and Inter-layer Error Correction 27.63 26.56 38.98
No Error Correction 27.69 26.60 38.98

Table 13: OPT-125M under 10% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 27.47 26.59 39.00
Intra-layer and Inter-layer Error Correction 27.43 26.58 39.04
No Error Correction 27.52 26.69 39.07

Table 14: OPT-125M under 20% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 27.36 26.71 39.39
Intra-layer and Inter-layer Error Correction 27.37 26.72 39.53
No Error Correction 27.61 26.91 39.85

Table 15: OPT-125M under 50% Sparsity

WikiText C4 PTB

Intra-layer Error Correction Only 33.54 30.93 49.79
Intra-layer and Inter-layer Error Correction 35.90 32.93 55.24
No Error Correction 34.48 32.24 54.11

Mathematically, let Wk and Xk represent the
weight matrix and the activation of the k-th layer
in the original network, respectively. Similarly, let
W ∗

k and X∗
k denote the pruned weight matrix and

the corresponding activation in the pruned network.
In a layer-wise pruning scheme with both intra-
and inter-layer error correction mechanisms, we
minimize the loss for each layer individually:

∥W ∗
kX

∗
k −WkXk∥2F . (12)

Xk depends on the activation from the previous

layer:
Xk = fk(Wk−1Xk−1), (13)

where fk represents some operations (e.g., activa-
tion function or normalization). Therefore, we can
express the pruned activations recursively as:

X∗
k = fk(W

∗
k−1X

∗
k−1). (14)

The error at layer k is defined as:

∆Xk = fk(W
∗
k−1X

∗
k−1)− fk(Wk−1Xk−1). (15)
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Under high sparsity levels, this amplification
often results in the accumulated error ∆Xk becom-
ing dominant at deeper layers. Thus, for large k,
considering both intra- and inter-layer error correc-
tion mechanisms, we have:

∥W ∗
k (Xk +∆Xk)−WkXk∥2F (16)

≈ ∥W ∗
k∆Xk −WkXk∥2F . (17)

As a result, the optimization process shifts focus
towards correcting this accumulated error rather
than pruning the current weight matrix Wk.

In other words, minimizing the term in Equa-
tion 16 primarily addresses the error correction
from previous layers rather than properly pruning
the weight matrix Wk, which negatively impacts
the pruning performance in deeper layers.

H Inference Efficiency of Pruned Models

FISTAPruner supports both unstructured and 2:4
semi-structured sparsity patterns while maintaining
model accuracy and compatibility with standard
inference kernels. Although our primary focus is
on optimizing post-pruning accuracy rather than
inference acceleration, the sparsity patterns gener-
ated by FISTAPruner align with those evaluated in
prior work, enabling direct comparisons of infer-
ence efficiency.

For unstructured sparsity, prior studies have
demonstrated practical speedups on CPU platforms.
For instance, DeepSparse achieves a 1.82× end-to-
end speedup for OPT-2.7B at 50% sparsity (Frantar
and Alistarh, 2023). However, unstructured spar-
sity currently offers limited acceleration on GPUs
due to hardware constraints. In contrast, 2:4 semi-
structured sparsity is natively supported on mod-
ern NVIDIA Ampere GPUs (Bai and Li, 2023).
Empirical results show that this format yields up
to 1.5× speedup for LLaMA-2-7B and LLaMA-
2-13B models during inference (Ashkboos et al.,
2024).

Since FISTAPruner produces models with iden-
tical sparsity formats to those studied in (Frantar
and Alistarh, 2023; Ashkboos et al., 2024), we ex-
pect similar inference speedups in practice. This
compatibility ensures that our pruning framework
remains practical for deployment while achieving
its primary goal of high-accuracy sparse models.

I Usage of LLMs

LLMs have been utilized during the preparation
of this work to assist with proofreading, grammar
correction, and enhancing the clarity and fluency
of the paper.
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