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Abstract

Safety fine-tuning algorithms reduce harmful
outputs in language models, yet their mecha-
nisms remain under-explored. Direct Prefer-
ence Optimization (DPO) is a popular choice
of algorithm, but prior explanations, attribut-
ing its effects solely to dampened toxic neu-
rons in the MLP layers, are incomplete. In
this study, we analyse four language mod-
els (Llama-3.1-8B, Gemma-2-2B, Mistral-7B,
GPT-2-Medium) and show that toxic neurons
only account for 2.5% to 24% of DPO’s ef-
fects across models. Instead, DPO balances
distributed activation shifts across a majority
of MLP neurons to create a net toxicity reduc-
tion. We attribute this reduction to four neuron
groups, two aligned with reducing toxicity and
two promoting anti-toxicity, whose combined
effects replicate DPO across models. To further
validate this understanding, we develop an acti-
vation editing method mimicking DPO through
distributed shifts along a toxicity representation
in both probe-based and probe-free settings.
This method outperforms DPO in reducing tox-
icity while preserving perplexity across mod-
els, without requiring any weight updates. Our
work provides a mechanistic understanding of
DPO and introduces an efficient, tuning-free
alternative for safety fine-tuning. Our code is
available on � dpo-toxic-neurons.

1 Introduction

The growing capabilities of large language mod-
els (LLMs) also lead to the encoding of undesir-
able behaviours (Gehman et al., 2020; Gallegos
et al., 2024). To mitigate harmful outputs, re-
searchers have developed fine-tuning algorithms
to prioritise human-preferred responses through re-
ward modelling (Schulman et al., 2017; Shao et al.,
2024). Among these, Direct Preference Optimiza-
tion (DPO) has been a popular algorithm given its

*Correspondence to: yushi.yang@oii.ox.ac.uk
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simplicity to directly optimise the policy model
(Rafailov et al., 2024). While these algorithms ef-
fectively reduce harmful behaviours at the output
level, there is limited mechanistic understanding of
how they achieve this internally. This gap limits our
ability to explain their vulnerability to jailbreaks
and adversarial fine-tuning (Wei et al., 2023; Yang
et al., 2023; Qi et al., 2023).

Recent studies found that fine-tuning algorithms
lead to superficial changes, allowing models to re-
tain the undesirable capabilities (Jain et al., 2024;
Yang et al., 2023). In particular, Lee et al. (2024)
suggested that DPO reduces toxicity by dampening
the activations of a few toxic neurons in the MLP
layers. While this offers an intuitive explanation, it
assumes that toxicity is localised to a small subset
of neurons. However, this is a strong claim that
may oversimplify how safety fine-tuning works.

In this paper, we show that this explanation
is incomplete, and offer a more comprehensive
analysis of DPO’s mechanism across four LLMs:
Llama-3.1-8B, Gemma-2-2B, Mistral-7B and GPT-
2-Medium.

Toxic neurons are not enough to explain DPO.
We use activation patching to isolate the role of
toxic neurons, and observe only a partial drop in
toxicity across models (2.5% to 24%) compared to
DPO. Where, then, does the rest of DPO’s toxicity
reduction come from?

Four neuron groups reduce toxicity. We show
that DPO induces more nuanced, distributed activa-
tion shifts across all MLP neurons than previously
suggested. We identify four mutually exclusive
neuron groups that consistently contribute to the
toxicity reduction across models. We find that their
post-DPO activation changes depend on their orien-
tation relative to the toxicity representation. Using
activation patching, we show that their combined
influence can match or even exceed the toxicity
reduction achieved by DPO.
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Activation editing to replicate DPO. To validate
our understanding, we develop a simple activation
editing method to replicate DPO. Unlike the previ-
ous post-hoc patching analyses, our method does
not rely on access to post-DPO activations, nor
does it require weight updates or pairwise prefer-
ence data. Instead, we leverage our observations
to edit activations based on the orientation of MLP
weights relative to a toxicity representation. This
method consistently outperforms DPO across mod-
els, showing that DPO-like effects can be achieved
with minimal intervention and without fine-tuning.

2 Related Work

Here we review the DPO algorithm, the Trans-
former MLP layers and related work on mecha-
nisms of safety fine-tuning algorithms.

DPO algorithm. DPO is a fine-tuning algorithm
designed to align LLMs with pairwise human pref-
erence data (Rafailov et al., 2024). Given N ∈ Z
preference data triplets

{(
x(i), y

(i)
+ , y

(i)
−
)}N

i=1
,

where x is the input prompt, and y+, y− are pair-
wise preferred and non-preferred continuations,
DPO fine-tunes a policy model πθ(y+ |x) that as-
signs a higher likelihood to y

(i)
+ compared to y

(i)
− .

The DPO loss is defined as

LDPO(θ) = − log σ
(
β
(
rθ(x, y

+)− rθ(x, y
−)

))
,

where σ is the sigmoid function, β is a tempera-
ture hyperparameter and rθ is the derived reward
regularised using the reference model πref, that is

rθ(x, y) = log
πθ(y | x)
πref(y | x) .

MLP layers. MLPs apply two linear transforma-
tions with a non-linearity σ in between:

MLPℓ(xℓ) = σ
(
W ℓ

Kxℓ
)
W ℓ

V ,

where W ℓ
K ,W ℓ

V ∈ Rdmlp×d, dmlp and d are the di-
mensions of MLP hidden layers and the residual
stream. MLPs can be re-expressed as:

MLPℓ(xℓ) =

dmlp∑

i=1

mℓ
iv

ℓ
i , mℓ

i = σ(kℓ
i · xℓ), (1)

where kℓ
i ,v

ℓ
i ∈ Rd are the i-th row of W ℓ

K and W ℓ
V ,

respectively. For each MLP neuron i, we refer to
vℓ
i as its value vector following Geva et al. (2022)

and Lee et al. (2024). The scalar mℓ
i ∈ R is an

activation score controlling the scaling of the value
vector vℓ

i . This means an MLP layer writes to the
residual stream dmlp times, once per neuron, via
the activation-weighted value vector mℓ

iv
ℓ
i .

Recent models (Llama, Gemma, Mistral) replace
MLPs with Gated Linear Units (GLUs) (Shazeer,
2020). GLUs can similarly be expressed as a
weighted sum of value vectors as in (1), where each
weight is determined by some non-linear activation.
See Appendix A for details.

Mechanisms of safety fine-tuning algorithms.
Recent studies have shown that fine-tuning in-
duces superficial weight changes, leaving most pre-
trained capabilities intact. Jain et al. (2023) found
that fine-tuning on synthetic tasks produces ‘wrap-
pers’, i.e. localised weight changes in later layers
optimised for each task. Qi et al. (2024) found that
aligned models primarily adapt their generative dis-
tribution in the first few output tokens. Wei et al.
(2024) showed that pruning just 3% of targeted pa-
rameters can undo safety alignment, highlighting
the brittleness of safety mechanisms. These find-
ings suggest that safety fine-tuning reduces harm-
ful outputs through subtle, targeted weight changes
rather than large-scale rewiring.

Lee et al. (2024) studied the mechanisms of how
DPO reduces toxic outputs, attributing its effects
to dampened activations of a few toxic MLP value
vectors. We revisit this claim and find it to be
incomplete, as shown in Section 4.

3 Experimental Setup

Here we describe the methods used in this study,
including the data and models, linear probes, pro-
jections and activation patching.

3.1 Data and Models

Toxicity-eliciting prompts. We use the ‘challenge’
subset (N=1,199) of RealToxicityPrompts (Gehman
et al., 2020) to elicit toxic outputs from each model.
This subset is designed to trigger extremely toxic
completions, making it a strong testbed for safety
fine-tuning algorithms.

Models. We study four pre-trained LLMs: Llama-
3.1-8B (Grattafiori et al., 2024), Gemma-2-2B (Riv-
iere et al., 2024), Mistral-7B (Jiang et al., 2023)
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and GPT-2 Medium (Radford et al., 2019). GPT-2
Medium is included to compare with claims made
in Lee et al. (2024). We generate toxic outputs from
each LLM using greedy decoding. Appendix B pro-
vides the MLP specification for each model.

Evaluation metrics. We report three metrics: toxi-
city scores using Detoxify (Hanu, 2020), a BERT
model fine-tuned for toxicity classification that as-
signs a likelihood score for a text being toxic; log
perplexity, the average negative log-likelihood of
generated tokens on the Wikitext-2 dataset (Mer-
ity et al., 2016); F1 scores, the harmonic mean
of precision and recall based on token overlap on
2,000 Wikipedia sentences (Lee et al., 2024). The
latter two metrics measure general language qual-
ity, where F1 complements perplexity by capturing
exact token matches.

DPO training. We implement DPO using 24,576
toxicity contrastive pairs generated from Wikitext-
2 prompts (Lee et al., 2024). See Appendix C for
the training hyperparameters.

3.2 Per-Neuron Toxicity Contributions
We measure per-neuron contributions to toxicity by
projecting activations onto linear toxicity probes.
We describe how we extract the probes, validate
their effects and compute per-neuron contributions.

Linear probes. To extract toxicity representations,
we train linear probes WToxic to classify toxic ver-
sus non-toxic inputs for each model. The probe
is trained on the final-layer residual stream x̄L−1,
averaged across all token positions:

P (toxic | x̄L−1) = σ(WToxicx̄
L−1 + b),

where σ is the sigmoid function, WToxic ∈ Rd is the
learned probe vector. We use the Jigsaw Toxic Com-
ment Classification dataset (cjadams et al., 2017),
which contains 561,808 comments labelled as toxic
or non-toxic.

Across the four models, all linear probes achieve
over 91% test accuracy using a 90:10 train/test split
(Appendix Table 11). When projected onto each
model’s vocabulary space via the unembedding ma-
trix, i.e. through LogitLens (nostalgebraist, 2020),
the trained probes predominantly map to toxic to-
kens (Table 1).

Validating linear probes. To further validate these
probes represent toxicity, we apply activation steer-
ing (Zou et al., 2025; Panickssery et al., 2024) by

Table 1: The four toxicity probes predominantly project
to toxic tokens in the vocabulary space. Warning: these
examples are highly offensive.

Model Top tokens projected by probes

GPT-2-355M f*ck, c*nt, a**hole, holes, d*ck, wh*re
Llama-3.1-8B en, kommen, F*CK, iyah, f*ck, dirty
Gemma-2-2B rungsseite, fu*k, Fu*king, SH*T, a**hole
Mistral-7B sh*t, f*ck, assh, bullsh*t, f*cked, a**hole

subtracting a scaled probe WToxic from the final-
layer residual stream xL−1 at each token position:

xL−1
steered = xL−1 − αWToxic,

where α is selected to preserve language quality
(perplexity and F1) of pre-trained models (see Ap-
pendix Table 11). Increasing α further reduces
toxicity scores but raises perplexity (see Appendix
Table 12). Table 2 shows that steering with probe
consistently reduces toxicity scores across models,
validating their effects in eliciting toxic outputs.
We therefore include it as a baseline for toxicity
reduction.

Per-neuron toxicity change via projection. To
compute per-neuron contributions, we track how
the toxic representation changes at each MLP neu-
ron during DPO via its change in projection onto
the probe:

∆Toxic,i= (m
pre
i v

pre
i −m

dpo
i v

dpo
i )· WToxic

∥WToxic∥2
, (2)

where m
pre
i v

pre
i and m

dpo
i v

dpo
i are the activated

components of the i-th value vector before and
after DPO; the activation scores mpre

i and m
dpo
i are

averaged over 20 generated tokens for all prompts
in RealToxicityPrompts. This approach, known
as direct feature attribution (Makelov et al., 2024;
Arditi et al., 2024), measures how much each neu-
ron contributes to the toxicity representation.

3.3 Activation Patching
Throughout our work, we apply activation patch-
ing (Zhang and Nanda, 2024) in a counterfactual
manner to isolate the effect of specific neurons on
toxicity scores. Namely, for a pre-trained model
and a set of MLP value vectors, we set their activa-
tions to match its post-DPO counterpart, based on
the mean activation of 1,199 RealToxicityPrompts
and 20 generated tokens per prompt. We then mea-
sure the resulting change in the toxicity scores.
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Table 2: Toxicity (Toxic), log perplexity (PPL), and F1 scores with activation patching and editing. Across models,
patching toxic neurons—whether those with toxic tokens or the top 256—yields only a limited drop in toxicity
scores than DPO (Section 4). In contrast, patching all four of our identified neuron groups matches or outperforms
DPO (Section 5.2). Our activation editing method can outperform DPO, steering with probe and patching all four
groups (Section 6). Green shows the editing parameters that best compete with DPO while preserving F1 scores.

Type Intervention GPT-2-355M Llama-3.1-8B Gemma-2-2B Mistral-7B
Toxic PPL F1 Toxic PPL F1 Toxic PPL F1 Toxic PPL F1

Baselines
None 0.545 3.08 0.193 0.496 1.94 0.225 0.488 4.61 0.231 0.507 1.76 0.221

Steering with probe 0.310 3.19 0.191 0.335 2.72 0.187 0.260 5.52 0.228 0.350 2.23 0.220

DPO 0.210 3.15 0.195 0.241 2.69 0.221 0.245 5.15 0.228 0.191 2.01 0.223

Activation
patching
(Sec 5.2)

Patch toxic neurons 0.479 3.09 0.193 0.491 1.94 0.225 0.487 4.61 0.231 0.505 1.76 0.232

Patch 256 neurons 0.465 3.07 0.193 0.488 1.94 0.225 0.482 4.61 0.231 0.455 1.76 0.232

Patch TP↓ 0.407 3.07 0.191 0.488 1.94 0.223 0.470 4.87 0.235 0.502 1.80 0.229

Patch TP↓+AN↓ 0.216 3.08 0.183 0.465 1.94 0.221 0.337 4.59 0.224 0.307 1.76 0.227

Patch TP↓+AN↓+TN↓ 0.194 3.08 0.170 0.391 1.94 0.208 0.307 4.59 0.217 0.238 1.81 0.218

Patch four groups 0.139 3.08 0.170 0.278 1.94 0.207 0.260 4.58 0.213 0.138 1.78 0.209
Activation

editing
(Sec 6,

probe-based)

α = 0.01, β = 0.8 0.123 3.08 0.179 0.045 2.19 0.186 0.199 4.54 0.188 0.038 1.77 0.179

α = 0.01, β = 0.6 0.159 3.08 0.181 0.183 2.11 0.193 0.200 4.56 0.201 0.098 1.77 0.196

α = 0.01, β = 0.55 0.203 3.08 0.183 0.241 1.96 0.196 0.216 4.56 0.210 0.125 1.77 0.202
Activation

editing
(Sec 6,

probe-free)

α = 0.01, β = 0.8 0.139 3.08 0.176 0.116 5.82 0.200 0.218 4.54 0.180 0.057 1.77 0.191

α = 0.01, β = 0.6 0.238 3.08 0.178 0.258 2.28 0.210 0.216 4.57 0.203 0.162 1.77 0.200

α = 0.01, β = 0.55 0.282 3.08 0.180 0.318 2.24 0.204 0.250 4.58 0.198 0.239 1.77 0.201

4 Toxic Neurons Are Not Enough

We start by revisiting the claims in Lee et al. (2024):
(a) DPO reduces toxicity primarily by dampening
the activation of toxic neurons, (b) this arises from
shifts in earlier layer weights. We show here that
(a) only partially explains the drop in toxicity, and
in Section 5, we show that the weight shifts (b) are
more nuanced than simply bypassing toxic neurons.

We measure the effect of dampening toxic neu-
rons. We define toxic neurons by adapting the
method of Lee et al. (2024): we identify the top
N (= 256)1 MLP value vectors with the highest
cosine similarity to the toxic probe WToxic. In a
second variant, we identify a smaller subset of in-
terpretable value vectors. To do so, we unembed
each value vector and consider it as toxic if any
of its top-10 nearest tokens are toxic. We adopt
LLM-as-a-judge (Zheng et al., 2023) using GPT-
4o (OpenAI, 2024) to evaluate whether a token is
considered toxic (e.g. curse words, slurs, sexual
content). See Appendix Table 14 for the tokens
projected by these toxic value vectors.

We then counterfactually isolate their effect

1This number is based on Lee et al. (2024)’s number (128).
We double the number of accommodate larger model sizes,
but see similar results with the original 128 vectors.

on toxicity scores using activation patching (Sec-
tion 3.3). Namely, for each pre-trained model, we
set the activations of toxic value vectors to that of
its post-DPO counterpart.

Table 3 reports the number of toxic neurons
per model and the percentage reduction in toxicity
scores through patching. Toxic neurons comprise
fewer than 0.05% of all MLP neurons, and account
for as little as 2.5% to 24% of the reduction in toxi-
city scores depending on the model. As patching
captures interactions between toxic and non-toxic
neurons, these results suggest that toxic neurons
only account for a small portion of DPO’s effect,
rendering Lee et al. (2024)’s claim that DPO pri-
marily dampens toxic neurons as incomplete.

5 A Deeper Look at DPO Weight Shifts

Here, we show that the weight shifts from DPO are
more nuanced than simply bypassing toxic neurons.

5.1 DPO Balances Opposing Effects
Across all models, DPO makes minimal adjust-
ments to the MLP weights. All MLP value vectors
have a cosine similarity of 0.99 before and after
DPO, likely due to the KL divergence regularisa-
tion (Rafailov et al., 2024). However, these small
weight changes (vpre

i ≈ v
dpo
i ) accumulate and in-
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Figure 1: DPO balances opposing toxicity writing across MLP layers. Blue dots show total projection reduction
per layer, orange dots show the total increase, both after DPO. The shaded blue areas illustrate how these opposing
effects cancel out and lead to a net toxicity reduction. Projection changes grow with layers when measured against
last-layer probe. Net changes in first ≈ 10 layers are negligible and omitted; see Appendix Table 5 for the full graph.

Table 3: The number of toxic neurons per model and
percentage decrease in toxicity scores after patching
them. The first row reports the number of toxic neurons
with toxic tokens. The second row reports the top 256
toxic-aligned neurons. The percentage decrease is the
proportion of toxicity score reduction from patching
toxic neurons, relative to the total reduction of DPO
(see Table 2 for the full scores).

GPT-2
355M

Llama
3.1-8B

Gemma
2-2B

Mistral
7B

59 (19.7%↓) 7 (1.96%↓) 3 (0.41%↓) 14 (0.63%↓)
256 (23.9%↓) 256 (3.14%↓) 256 (2.47%↓) 256 (16.5%↓)

duce distributed activation shifts (mpre
i − m

dpo
i )

across all MLP neurons. The majority of neurons
undergo average shifts ranging from 0.66% (Llama-
3.1-8B) to 16.71% (Mistral-7B), with substantial
variation in the tails (see Appendix Figure 4).

These distributed activation shifts lead approxi-
mately half of all neurons (52%∼58% across mod-
els) reducing their projection onto the toxic direc-
tion (∆Toxic,i > 0) and the other half increasing it
(∆Toxic,i < 0) (see Appendix Table 18). Figure 1

illustrates how the opposing neuron effects accumu-
late and balance out at each MLP layer, resulting
in a net toxicity reduction. This suggests that DPO
does not simply suppress toxic signals, but rather
delicately redistributes them, balancing a trade-off
across all MLP neurons.

5.2 Four Neuron Groups Reduce Toxicity

Based on these results, we study value vectors that
reduce toxic projections (∆Toxic,i > 0), as they
likely contribute to toxicity reduction during DPO.
We categorise them into four mutually exclusive
groups, and study their collective effect.

Table 4 defines the four neuron groups, cat-
egorised by their alignment with the toxicity
probe (Toxic-aligned vs. Anti-toxic-aligned) and
their pre-DPO activations (Positive vs. Negative).
Namely, TP ↓, TN ↓ have positive alignment with
toxicity, while AP ↓, AN ↓ have negative align-
ment. All groups reduce toxicity projection during
DPO (↓). Table 5 shows the proportions of neurons
in each group across models. Note that Lee et al.
(2024) only considers the neurons in TP ↓.

Figure 2c visualises how these four groups re-
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Figure 2: Four neuron groups collectively reduce toxicity during DPO, shown for Llama-3.1-8B. The same four
groups emerge consistently across models, with panels (a) and (b) showing slightly different patterns for the
other three models (see Appendix Figure 6). (a) Proportion of toxicity reduction per group, showing balanced
contributions; (b) Cumulative toxicity reduction for top 40,000 neurons (ranked by reduction in projection), where
groups show similar reduction rates; (c) Per-group activation shifts during DPO for the top 2,000–2,500 neurons,
where each group shifts according to their orientation relative to the toxic representation.

duce toxicity writing via activation shifts for Llama-
3.1-8B, with similar patterns observed in all models
(see Appendix Figure 6). The activations of each
group are shifted in accordance to their orientation
with respect to the toxic probe. Namely, toxic-
aligned weights (TP ↓, TN ↓) drop in activations,
while anti-toxic aligned weights (AN ↓, AP ↓) in-
crease in activations (promotion of “anti-toxicity”).

Table 4: Definitions of four neuron groups reducing tox-
icity projections (∆Toxic, i > 0). Alignment with probe
(T vs. A) indicates whether the neuron’s value vector
v aligns positively or negatively with the toxic probe
WToxic (v ·WToxic > 0 or v ·WToxic < 0).

Group Alignment
with probe

Pre-DPO
activation

Projection
change

TP ↓ Toxic-aligned Positive Reduced (↓)
TN ↓ Toxic-aligned Negative Reduced (↓)
AP ↓ Anti-toxic-aligned Positive Reduced (↓)
AN ↓ Anti-toxic-aligned Negative Reduced (↓)

Anti-toxic value vectors. What do “anti-toxic”
value vectors encode? Geometrically, some anti-
toxic value vectors essentially lie at the antipode of
toxic semantic clusters. Namely, we take value
vectors with highest cosine similarity scores to
−1 × WToxic (i.e. anti-toxic). We then multiply
these value vectors by −1, unembed them, and in-
spect their nearest tokens. Table 6 shows examples
of toxic tokens they project to (see Appendix Ta-

Table 5: Proportions of four-neuron-group among all
neurons reducing toxicity projection (↓). Proportions are
more balanced across larger LLMs. The Sum column
shows the total number of neurons per model.

Model TP ↓ TN ↓ AP ↓ AN ↓ Sum

GPT-2-355M 6.9% 39.1% 3.2% 50.9% 57,501
Llama-3.1-8B 25.4% 24.4% 24.6% 25.5% 239,460
Gemma-2-2B 28.8% 21.3% 21.3% 28.6% 123,898
Mistral-7B 29.7% 20.3% 20.2% 29.8% 238,236

Table 6: Examples of anti-toxic value vectors (with
reversed signs) that project to toxic tokens via Logit
Lens. Warning: these examples are highly offensive.

Model Vector Top tokens

GPT2 −1×v1307
11 d*mn, darn, kidding, freaking, piss

Llama3 −1×v14671
25 f*ck, f*cked, f*cking, sh*t, F*CK

Gemma2 −1×v7822
14 f*cking, godd*mn, f*ck, sh*t

Mistral −1×v14693
14 sh*t, f*ck, Block, piss, f*cking

ble 15 for more examples). This shows how DPO
promotes anti-toxicity by increasing the activation
of anti-toxic AN ↓, AP ↓ neurons.

Why negative activations? Negatively activated
neurons (including TN ↓, AN ↓) take a large por-
tion of MLP neurons, around 50% in three larger
models and 87% in GPT-2 Medium (see Appendix
Table 13). This results from the modern choices of
activation functions: GeLU (GPT-2), GeLU-Tanh
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(Gemma), and SiLU (Llama, Mistral), which al-
low neurons to retain small negative activations
for negative inputs (Hendrycks and Gimpel, 2023).
This enables plenty of neurons to maintain gradi-
ent flow and contribute marginally to the toxicity
representation through their activation shifts.

Four groups reduce toxicity at different rates.
When ranking neurons by their reduction of toxi-
city projection, the four groups show different re-
duction rates. In Llama-3.1-8B, all groups con-
tribute evenly, maintaining balanced shares of top-
ranked neurons (Figure 2b). In contrast, in the other
three models, TP ↓ dominating the top-ranked neu-
rons, while AN ↓ gradually gains influence in later
ranks—a trend most evident in GPT-2-Medium
(see Appendix Figure 6). As a result, TP ↓ and
AN ↓ dominate their overall toxicity reduction.

Reduction peaks in later layers. We also observe
an overall increasing trend in toxicity reduction
across MLP layers (see Appendix Figure 8). This
shows that the four groups collectively steer each
layer away from toxicity, with later layers giving
the strongest suppression of toxic outputs. This
upward trend may be partly due to the probes being
extracted from the final layer.

Activation patching confirms the collective ef-
fects of four groups. Finally, we confirm the col-
lective effect of the four groups using activation
patching. This post-hoc analysis assumes access to
each group’s activations after DPO and evaluates
their effects counterfactually by patching each neu-
ron group, one at a time, in the pre-trained model
to match their post-DPO activations.

Table 2 shows that sequentially patching each
group further reduces toxicity scores across all
models, confirming each neuron group’s contri-
bution to DPO’s effects. Furthermore, patching
all four groups either surpasses or closely matches
DPO’s toxicity reduction and consistently outper-
forms probe-based steering. It has minimal impact
on perplexity and only slightly reduces F1 scores
across models. This patching outperforms DPO
likely because it excludes neurons that increase
toxicity projection after DPO (Section 5.1). As
a sanity check, patching all neurons that increase
toxicity projection (↑) during DPO leads to higher
toxicity scores across models, consistent with the
projection changes (see Appendix Table 19).

6 Activating Editing to Replicate DPO

Based on our insights, we demonstrate two simple
methods to replicate DPO’s effects by directing
editing activations. These methods only rely on a
toxicity representation (e.g. a probe) and do not re-
quire any weight updates nor a pairwise preference
dataset, which is not always readily available. Un-
like the previous activation patching analyses, here
we do not assume access to post-DPO activations.

6.1 Probe-based Activation Editing
Previously, we focused on neuron groups with re-
duced toxicity projections (i.e., ∆Toxic, i > 0) (Sec-
tion 5.2). However, knowing whether a neuron in-
creases or decreases in toxicity projection requires
access to post-DPO activations (see Equation 2).
To remove this dependency, we re-categorise the
neuron groups based solely on their alignment with
the toxicity probe and their pre-DPO activations,
and do not consider their projection changes (hence
notated as TP as opposed to TP ↓).

Given our new neuron groups (TP, TN, AP,
AN), we leverage two key insights learned from
DPO: activation shifts are distributed across all neu-
rons (Section 5.1), and the direction of activation
shifts for toxicity reduction depends on the orienta-
tion of the value vector (Section 5.2, Figure 2c).

Follow these insights, we sample a fraction β
(%) of neurons from each group and minimally
adjust their activations. For toxicity-aligned groups
(TP, TN), we slightly decrease their activations by
a factor of α (%), while for anti-toxicity-aligned
groups (AP, AN) we slightly increase them. As
TN and AN have negative activations, we flip the
sign of α accordingly:

medit
TPβ

=(1−α)m
pre
TPβ

; medit
TNβ

= (1+α)m
pre
TNβ

medit
APβ

=(1+α)m
pre
APβ

; medit
ANβ

= (1−α)m
pre
ANβ

where TPβ , ANβ , TNβ , and APβ denote the β-
fraction of neurons in each group, and mpre are
their pre-trained activations. Again, here we do not
rely on any post-DPO information (i.e., mDPO).

Table 2 shows the results for selected hyperpa-
rameters α and β. These hyperparameters reflect
our insights: most neurons (high β value) undergo
small shifts (small α value). We find that select-
ing the top-β fraction of neurons ranked by cosine
similarity with the toxicity probe is most effective
in reducing toxicity scores. In particular, selecting
β = 55% provides the best trade-off between toxic-
ity reduction and F1 preservation, consistent of our
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earlier finding that DPO reduces toxicity writing
in roughly half of all neurons (Section 5.1). This
approach outperforms both DPO and probe-based
steering in toxicity reduction while preserving per-
plexity across pre-trained models, with only a slight
F1 score decrease. Further increasing β (e.g., to
0.8) leads to greater toxicity reduction at the cost of
F1 drops. Alternative sampling strategies for select-
ing the top-β neurons (e.g., by ascending absolute
activation values) yield similar toxicity reduction
across models (see Appendix Table 19).

6.2 Probe-free Activation Editing

While the previous activation editing method does
not require pairwise preference data, it still relies
on a latent toxicity representation, for which we
use our probe. While a probe does not require
pairwise preference data, it still requires labelled
classification data (Section 3.2).

Here, we demonstrate that activation editing can
be performed even without a probe by leveraging an
alternative toxicity representation. Namely, prior
works have observed a close relationship between
concept representations in the model’s hidden lay-
ers and the token embedding space (Lee et al.,
2025). Similarly, we find that toxic tokens are
nearest neighbors to our probes in the token embed-
ding space (Table 1). Motivated by this, we replace
the probe with a contrastive vector derived directly
from token embeddings.

To construct this vector, we simply select sets
of toxic and non-toxic token embeddings for each
model and compute the difference between their
mean embeddings (Table 7). This bypasses the
need to train a probe model. We then apply the
same activation editing method as described above.

Table 7: Toxic and non-toxic tokens for computing the
contrastive vector. The contrastive vector is obtained
by subtracting the mean embedding of non-toxic tokens
from that of toxic tokens.

Toxic fu*k sh*t cr*p da*n a**hole

Non-toxic hello thanks friend peace welcome

The last rows of Table 2 show that this probe-free
approach achieves results comparable to the probe-
based method. Together, these results validate our
understanding of DPO and offer a proof-of-concept
alternative when weight updates are prohibitively
costly or training data is not readily available.

7 Discussion and Conclusion

Our work provides a mechanistic understanding
of how DPO reduces toxicity across four LLMs.
Using activation patching, we showed that prior
explanations are incomplete (Lee et al., 2024): a
small set of toxic neurons associated with toxic to-
kens cannot fully account for DPO’s effects. This
explanation also relies on a monosemantic view
of neurons, an assumption disputed by prior work
(Elhage et al., 2022). Instead, DPO induces dis-
tributed activation shifts across all MLP neurons,
leading to a net reduction in toxicity.

To characterise these distributed effects, we iden-
tified four neuron groups that play distinct roles in
toxicity reduction and show that their combined
effect replicates that of DPO. Building on these in-
sights, we developed an activation editing method
that mimics DPO by applying distributed activa-
tion shifts along a learned toxicity representation.
We explored two options for this representation: a
probe model and a contrastive vector derived from
token embeddings. This method outperforms DPO
in reducing toxicity while preserving perplexity, all
without any weight updates.

DPO’s tendency to spread activation shifts thinly
across the network suggests that pre-trained harm-
ful capabilities are merely thinly masked. As a
result, small disruptions anywhere in the model,
not just in toxic neurons, can potentially breach
the safety barrier and reactivate harm. This ex-
tends prior findings on the shallowness of safety
fine-tuning from the activation perspective (Jain
et al., 2024; Qi et al., 2024). These distributed
shifts likely arise as a by-product of regularisation
to preserve pre-training performance, hinting at a
deeper trade-off: the shallow safety may be an in-
herent cost of maintaining language quality. This
diluted effect is further compounded by smooth ac-
tivation functions (Section 5.2), which allow many
weakly active neurons to marginally contribute to
toxicity writing. This leaves much of the model’s
toxic capacity untapped. In fact, many MLP neu-
rons increase their toxicity projection during DPO
(Section 5.1). In contrast, our activation editing
method offers a more targeted alternative by explic-
itly steering activations to reduce toxicity. This may
explain why it achieves greater toxicity reduction
than DPO, despite applying smaller average acti-
vation changes. Taken together, our findings point
to the value of exploring more interpretable safety
interventions as a path beyond shallow tuning.
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In summary, our work provides a more complete
understanding of how DPO reduces toxicity and
introduces an efficient, training-free alternative.

8 Limitations

Projection to a toxic subspace. In this work, we
use a linear probe to capture an aggregated tox-
icity representation, following common practice
in the literature (Ferrando et al., 2024; Ravfogel
et al., 2022). However, it may be possible that
toxicity manifest along multiple directions, each
capturing different aspects such as hate speech or
abusive language, and thus better represented as a
subspace (Uppaal et al., 2024). We conduct an ini-
tial analysis on GPT-2-Medium and find that using
a subspace complicates our identification of neuron
groups. We construct a toxic subspace via Singular
Value Decomposition (SVD) on the top 128 toxic-
aligned value vectors, where each of the top three
singular vectors projects to different toxic tokens
(see Appendix G). We find that most value vec-
tors show inconsistent alignment across the three
directions and mixed projection changes to the tox-
icity probe after DPO. A single value vector can
be “toxic-aligned” in one SVD direction and “anti-
toxic-aligned” in another, reducing toxicity along
one axis while increasing it in another. These in-
consistencies make it difficult to assign neurons
to coherent groups as in our approach. We there-
fore leave a more robust analysis of toxic subspace
projections to future work.

Assumptions for projection. We use projections
to estimate each neuron’s contribution to toxicity
(Equation 2), assuming that neurons contribute pro-
portionally along their activated directions. How-
ever, toxicity representations may be distributed
across more complex linear combinations of neu-
rons. Alternative tools, such as sparse autoencoders
(SAEs) (Bricken et al., 2023; Cunningham et al.,
2023), which learn linear feature compositions
through autoencoder reconstruction, may offer a
complementary perspective for tracing toxicity fea-
ture changes back to specific neurons.

Generalise the four neuron groups across tasks
and models. DPO is inherently a binary algorithm,
designed to train on pairwise preference data. The
four neuron groups we identify naturally reflect
this binary structure, where we find that their ac-
tivations shift along the representation of a binary
concept. We therefore expect similar neuron group

structures to emerge in other binary safety-related
tasks trained with DPO beyond toxicity (e.g., bi-
ased vs. unbiased content, factual vs. misinforma-
tion), a direction we leave for future work.

These neuron groups may also persist in gen-
eral instruction-tuned models (e.g., those trained
with supervised fine-tuning or RLHF) on binary
tasks, likely also operating through distributed acti-
vation shifts due to regularisation. We leave this as
another direction for exploration.

Generalise the activation editing method to
more tasks. Our activation editing method requires
only a linear concept representation, which can be
derived from a probe or token embeddings—both
relatively cheap to obtain. Future work could ex-
tend our method to other safety-related tasks (e.g.,
bias or misinformation) where such representations
can be derived from classification data, or to gen-
eral tasks where the target behaviour can be cap-
tured by representative tokens (e.g., sentiment po-
larity, political stance).
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A Gated Linear Units

In this section, we introduce Gated Linear Units
(GLUs), which replace standard MLPs (Section 2)
in recent models such as Llama, Gemma, Mistral
(Shazeer, 2020).

GLUs introduce a gating mechanism that selec-
tively controls information flow by computing the
element-wise product of two linear projections, one
of which is passed through a non-linearity σ:

GLUℓ(xℓ) =
(
σ(W ℓ

1x
ℓ)⊙W ℓ

2x
ℓ
)
W ℓ

V ,

where W ℓ
1 ,W

ℓ
2 ,W

ℓ
V ∈ Rdmlp×d. The term

σ(W ℓ
1x

ℓ) acts as the gates, blocking W ℓ
2x

ℓ from
propagating when the non-linearity (σ) is inactive.

We can still express GLUs as (see Equation 1):

MLPℓ(xℓ) =

dmlp∑

i=1

mℓ
iv

ℓ
i ,

where

mℓ
i = σ(kℓ

i · xℓ) · (wℓ
i · xℓ),

kℓ
i ∈ Rd and wℓ

i ∈ Rd are the i-th rows of W ℓ
1

and W ℓ
2 , respectively. For each MLP neuron i, vℓ

i

(rows of W ℓ
V ) is its value vector (Geva et al., 2021),

and the scalar mℓ
i ∈ R is an activation score that

controls the scaling of the value vector vℓ
i .

This shows that, despite despite architectural
differences in GLUs, our formulation in Equation 1
still holds, as it consists of value vectors scaled by
a non-linear activation.

B MLP layer specification

In this section, we provide the MLP layer specifi-
cations for each model (Section 3.1).

Table 8 reports, for each model, the number of
MLP layers, MLP hidden dimensions, activation
function, and whether a gating mechanism is used.

Table 8: MLP specifications for each model. l is the
number of MLP layers, d is the residual stream dimen-
sion, dmlp is the dimension of the MLP hidden layer, σ
is the activation function, and Gated? indicates whether
the model uses gated MLPs.

Model l d dmlp σ Gated?

GPT-2-355M 24 1024 4096 GeLU ×
Llama-3.1-8B 32 4096 14336 SiLU ✓
Gemma-2-2B 26 2304 9216 GeLU+Tanh? ✓
Mistral-7B 32 4096 14336 SiLU ✓

C DPO training hyperparameters

In this section, we provide the hyperparameters for
DPO training (Section 3.1).

Table 9 reports the shared hyperparameters
across models. Table 10 reports the KL regularisa-
tion weight λ tuned in DPO to maintain pre-trained
model’s perplexity and F1 scores for each model.

Table 9: Shared hyperparameters for DPO Training.

Hyperparameter Value / Description

Beta (β) 0.1 (preference strength)
Optimizer RMSprop
Learning rate 1× 10−5

Warmup steps 150
Gradient accumulation steps 4
Batch size 4 (per step)
Evaluation batch size 8
Max input length 256 tokens
Max new tokens 64 tokens
Max prompt length 64 tokens
Epochs 5
Gradient clipping Max norm = 10.0
Patience for early stopping 30 validations
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Table 10: The KL regularisation weight λ for each
model. λ is selected to maintain perplexity and F1 scores
to pre-trained models.

Model KL weight (λ)

GPT-2-355M 0.02
Llama-3.1-8B 0.1
Gemma-2-2B 0.05
Mistral-7B 0.05

D More results on toxic probes

In this section, we provide more results on validat-
ing toxic linear probes (Section 3.2).

Table 11 reports the test accuracies of linear
probes on the Jigsaw Toxic Comment Classifica-
tion dataset (90–10 split) (cjadams et al., 2017),
with all probes achieving over 91% accuracy. It
also reports the selected α values for probe-based
steering that best preserve the pre-trained models’
perplexity and F1 scores.

Table 11: Validation accuracy of toxicity probes and
scaling values α for probe-based steering. α is selected
to preserve the pre-trained perplexity and F1 scores.

Model Validation Accuracy α

GPT-2-355M 95.6% 30
Llama-3.1-8B 92.6% 2
Gemma-2-2B 96.1% 3
Mistral-7B 91.0% 5

Table 12 shows that in probe-based activation
steering, increasing α beyond the selected values
further reduces toxicity, but also increases perplex-
ity and lowers F1 scores. This demonstrates a trade-
off in steering: stronger steering reduces toxicity at
the cost of general language quality.

E Negatively activated value vectors

In this section, we show that a large proportion of
value vectors vi are negatively activated by their
activations mi (Section 5.2).

Table 13 reports the percentage of MLP neurons
that are negatively activated across models, show-
ing that they constitute at least half of all MLP
neurons.

Since GPT-2 Medium has a particularly high pro-
portion of negatively activated neurons (over 87%),
Figure 3 illustrates this by showing the average acti-
vations of the top 100 toxic-aligned neurons. Most
of these value vectors remain negatively activated

Table 12: Toxicity (Toxic), log perplexity (logPPL), and
F1 scores after probe-based steering with different α
values. Larger α reduces toxicity but increases perplex-
ity and lowers F1 scores. Bold highlights the selected α
values.

Model Method Toxic logPPL F1

GPT-2-355M None 0.545 3.08 0.193
Subtract (α=30) 0.310 3.19 0.191
Subtract (α=40) 0.250 3.34 0.180

Llama-3.1-8B None 0.496 1.94 0.225
Subtract (α=2) 0.335 2.72 0.187
Subtract (α=3) 0.267 3.53 0.180

Gemma-2-2B None 0.488 4.61 0.231
Subtract (α=3) 0.260 5.52 0.228
Subtract (α=5) 0.251 5.64 0.226

Mistral-7B None 0.507 1.76 0.231
Subtract (α=5) 0.350 2.23 0.220
Subtract (α=7) 0.319 2.63 0.212

Table 13: Percentages of MLP neurons with negative
pre-trained activations. The three larger LLMs have
approximately 50% of their MLP neurons negatively
activated, whereas GPT-2 Medium has over 87%.

Model
% neurons
negatively
activated

% neurons
positively
activated

GPT-2-355M 87.28% 12.71%
Llama-3.1-8B 49.96% 50.04%
Gemma-2-2B 49.94% 50.06%
Mistral-7B 50.03% 49.97%

both before and after DPO, reflecting the impact of
the GeLU activation function.

F Logit lens tokens for value vectors

In this section, we provides the tokens projected
via Logit Lens for selected value vectors.

Table 14 shows example toxic value vectors that
project to at least one toxic token among their top-
10 nearest tokens (Section 4).

Table 15 shows example anti-toxic value vec-
tors that, when sign-reversed, project to at least
one toxic token among their top-10 nearest tokens
(Section 5.2).

G Projecting value vectors to a toxic
subspace

In this section, we present initial results using a
toxic subspace to capture toxicity representations
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Figure 3: Activations of the top 100 toxic-aligned neu-
rons in GPT-2-Medium. The activation mi for each
value vector is averaged over all prompts and 20 gen-
erated tokens. The majority of value vectors remain
weakly negatively activated both before and after DPO.

in GPT-2-Medium and to perform projections (dis-
cussed in Limitations). We explain why we do
not adopt this approach for neuron analysis, as it
complicates the identification of coherent neuron
groups.

Specifically, on GPT-2-Medium, we apply singu-
lar value decomposition (SVD) to the value vectors
of 128 toxic-aligned MLP neurons, using the top
three components as basis directions to capture dif-
ferent aspects of toxicity. We choose N = 128
because it yields a stable toxic subspace—adding
more value vectors does not significantly expand it.
Table 16 shows that these SVD vectors unembed to
different toxic tokens, including offensive curse
words (SVDToxic[0]), mild insults (SVDToxic[1]),
and sexualised terms (SVDToxic[2]).

Follow Section 5.2, we attempt to identify neu-
ron groups based on their projection changes onto
the toxicity subspace. One approach is to compute
a weighted sum of the SVD vectors (scaled by their
singular values) to form a single combined direc-
tion, then measure projections onto it. However,
this provides little advantage over using a standard
toxicity probe. Instead, we project each value vec-
tor onto each SVD vectors individually.

Since the SVD vectors are orthonormal, the total
projection onto the toxic subspace is equivalent to
summing the projections onto each SVD direction.
Thus to identify neurons reducing toxicity, we com-
pute each value vector’s cosine similarity with the
SVD vectors, along with their projections before
and after DPO.

We find that 74.7% of value vectors have con-
flicting signs of alignment across the SVD direc-

Table 14: Examples of toxic value vectors that project
to toxic tokens via LogitLens. Value vectors are ranked
by their cosine similarity with the toxicity probe WToxic.
Table 3 provides the number of such toxic value vectors.
Warning: these examples are highly offensive.

GPT-2 medium

Vector Rank Top tokens

WToxic - c*nt, f*ck, a**hole, d*ck, wh*re, holes
v770
19 1 sh*t, a**, cr*p, f*ck, c*nt, garbage

v253
13 18 c*m, d*ck, icles, icle, bo*bs, naughty

v3358
7 29 cr*p, whine, sh*t, uphem, shri, bullsh*t

v3972
6 50 f*cking, d*mn, sinful, hell, immoral

Llama-3.1-8B

Vector Rank Top tokens

WToxic - en, kommen, F*CK, iyah, f*ck, dirty
v14065
25 1 sh*t, cr*p, rubbish, garbage, bullsh*t

v3863
27 7 waste, trash, garbage, junk, wastes

v13797
18 10 Shoot, oh, sh*t, cr*p, swore, allocator

v6041
19 18 d*mn, sh*t, DAM, dam, fig, D*mn

Gemma-2-2B

Vector Rank Top tokens

WToxic - rungsseite, fu*k, Fu*king, SH*T
v2288
4 1 idiot, bastard, a*hole, fu*ks, moron

v2597
18 10 yes, ridiculous, absurd, ludicrous

v4727
3 22 sh*t, Sh*t, cr*p, sh*ts, sh*te, sh*tty

Mistral-7B

Vector Rank Top tokens

WToxic - sh*t, f*ck, assh, bullsh*t, a**hole
v1061
22 1 fu*k, sh*t, bullsh*t, a**hole, sh*tty

v2454
15 4 fuck*ng, bullsh*t, stupid, sh*t, cr*p

v11281
14 34 sexual, sex, girls, women, dating, porn

v4689
19 45 cr*p, sh*t, d*mn, hell, b*tch, piss

tions—that is, they align positively with at least one
vector and negatively with another. This compli-
cates defining whether a neuron is “toxic-aligned”.
Similarly, 74.3% of neurons show inconsistent pro-
jection change after DPO, reducing toxicity along
one direction while increasing it along another.

These inconsistencies make it impossible to iden-
tify coherent neuron groups that reduce toxicity
across all SVD directions, i.e. across the toxic sub-
space. This also means that each SVD direction
induces its own set of contradictory neuron groups.
More importantly, this prevents us from linking
toxicity scores to specific neuron groups via acti-
vation patching (Section 5.2), as a single neuron
can simultaneously increase and decrease toxicity
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Table 15: Examples of anti-toxic value vectors that,
when sign-reversed, project to toxic tokens via Logit
Lens. Rank gives the cosine similarity rank with −1×
WToxic, reflecting how “anti-toxic” a neuron is. Warning:
these examples are highly offensive.

GPT-2 medium

Vector Rank Top tokens

−1×v1882
10 1 maniac, ueless, thug, arrog, f*cking

−1×v1307
11 3 d*mn, darn, kidding, freaking, piss

−1×v301
15 4 harmful, worse, unfavorable, disturbing

Llama-3.1-8B

Vector Rank Top tokens

−1×v14671
25 2 f*ck, f*cked, f*cking, sh*t, F*CK

−1×v4997
14 19 s*cks, s*ck, adla, BackPressed, teri

Gemma-2-2B

Vector Rank Top tokens

−1×v7822
14 1 f*cking, godd*mn, f*ck, sh*t, d*mn

−1×v7099
6 2 f*cking, f*ck, f*cker, p*ss, F*ck

−1×v8418
17 13 idiot, idiots, stupid, moron, dumbass

Mistral-7B

Vector Rank Top tokens

−1×v14693
14 1 sh*t, f*ck, Block, piss, f*cking, bitch

−1×v8200
14 16 cr*p, nonsense, stupid, d*mn, ridiculous

−1×v14302
17 25 hell, d*mn, d*mned, f*ck, cr*p, sh*t

−1×v8139
12 36 f*cked, sh*t, bitch, sex, sexual, rape

depending on the direction.
For these reasons, we choose not to proceed with

subspace projection for neuron analysis and instead
focus on the single-probe approach.

H More results on activation shifts

In this section, we provide more results on DPO-
induced activation shifts by presenting their distri-
butions and analyse whether they occur systemati-
cally with neuron properties. These results comple-
ment Section 5.1.

Figure 4 shows the distribution of activation
shifts across models. Most neurons have small
activation shifts around the mean but substantial
variation in the tails.

Table 17 presents the results of a Pearson cor-
relation analysis (Schober et al., 2018) between
DPO-induced activation shifts and neuron proper-
ties. The analysis reveals no correlation between
activation shifts and the “toxicity level” of a neu-
ron—measured by its cosine similarity with the
toxic probe—and only a weak positive correlation

Table 16: Logit Lens tokens for the top three SVD vec-
tors extracted from 128 toxic-aligned neurons in GPT-2
Medium. Each SVD direction captures a different as-
pect of toxicity. Warning: these examples are highly
offensive.

Model Top Tokens

SVDToxic[0] f*ck, assh*le, f*cking, d*ck, sh*t, sl*t
SVDToxic[1] d*mned, cr*p, stupid, darn, Godd, idiots
SVDToxic[2] sex, boobs, chicks, sexy, vagina, breasts

with pre-trained activations. While this may sug-
gest a slight tendency for DPO to push activations
toward zero, the pattern is likely due to a regression-
to-the-mean effect, thus more of a statistical artifact
than an intentional toxicity-reduction mechanism.
These findings indicate that DPO-induced activa-
tion shifts are largely random.

I More results on opposing neuron effects

In this section, we provide more statistics and vi-
sualisations on the opposing neuron effects (Sec-
tion 5.1).

Table 18 shows the percentage of neurons reduc-
ing toxicity projection (∆Toxic,i < 0, denoted as ↓),
ranging from 52% in Gemma-2-2B to 58% in GPT-
2-Medium. This shows that DPO’s activation shifts
cause roughly half of the MLP neurons to reduce
toxicity projection, while the other half increase it,
revealing a trade-off in toxicity reduction.

Figure 5 visualises the opposing effects across all
MLP layers, complementing Figure 1 by including
the first 10 layers that were omitted.

J More results on four neuron groups

In this section, we provide more visualisations on
the four neuron groups (Section 5.2).

Figure 6 shows the four-group distributions for
GPT-2-Medium, Gemma-2-2B, and Mistral-7B, re-
peating the analysis from Figure 2 for Llama-3.1-
8B. In these three models, overall toxicity reduc-
tion is primarily driven by TP ↓ and AN ↓, which
dominate the stacked bars in Figure 6a.

Figure 6b shows that the four groups reduce
toxicity projection at different rates when neurons
are ranked by their contribution. TP ↓ dominates
among the top-ranked neurons, while AN ↓ be-
comes more prominent later, especially in GPT-2-
Medium. Figure 7 further decodes this trend in
GPT-2-Medium, where activation shifts become
more evenly distributed in lower-ranked neurons.
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Figure 4: Probability density of activation shifts (mpre
i −mdpo

i ) during DPO. Most neurons have small activation
shifts around the mean, with more substantial variation in the tails. Gemma-2-2B and Mistral-7B show larger
average shifts and standard deviations (SD) compared to the other two models.

Table 17: Pearson correlation between activation shifts and neuron properties. Activation shifts (mpre
i −mdpo

i )
show no correlation with a neuron’s "toxicity level" (measured by cosine similarity with the toxic probe), and only a
weak positive correlation with pre-trained activations, which is likely a regression-to-the-mean effect.

Variables Metric GPT-2-355M Llama-3.1-8B Gemma-2-2B Mistral-7B

Activation shift
& probe alignment

Correlation 0.004 0.001 0.004 0.003
p-value 0.252 0.487 0.071 0.045

Activation shift
& pre-trained activation

Correlation 0.263 0.033 0.098 0.347
p-value <0.0001 <0.0001 <0.0001 <0.0001

Table 18: Percentages of neurons reducing toxicity pro-
jection after DPO. Across models, 52% to 58% of MLP
neurons reduce their projection (∆Toxic,i < 0) onto the
toxicity probe, while the remaining neurons increase it
(∆Toxic,i > 0).

Model % neurons
reduce projection (↓)

% neurons
increase projection (↑)

GPT-2-355M 58.49% 41.51%
Llama-3.1-8B 53.01% 46.99%
Gemma-2-2B 51.75% 48.25%
Mistral-7B 51.98% 48.02%

Figure 6c demonstrates that each group shifts
activations according to their orientation relative
to the toxic probe, consistent with the pattern ob-

served in Figure 2c.
Figure 8 shows toxicity reduction across layers

for all four groups. The reduction generally in-
creases through successive MLP layers, reflecting
the cumulative effect of activation shifts, though
this trend is less pronounced in Gemma-2-2B.
These results suggest that layers progressively steer
the residual stream away from toxicity, with later
layers showing the strongest suppression of toxic
outputs. The upward trend may be partly due to
our use of final-layer probes for extraction.

K More results on activation editing

In this section, we present more results on activa-
tion editing (Section 6).
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Figure 5: DPO balances opposing toxicity writing across all MLP layers. Blue dots show the total projection
reduction per layer, while orange dots show the total increase, both after DPO. The shaded blue areas illustrate how
the opposing effects cancel out and lead to a net toxicity reduction. Projection changes tend to grow in later layers
when measured against the last-layer probe.

Table 19 extends our probe-based editing results,
comparing two selection methods for the top-β
neurons: descending cosine similarity with probe
(main results also in Table 2) and by ascending
absolute activations. While both approaches work,
the latter is slightly less effective and fails to sur-
pass DPO for Gemma-2-2B.

As a sanity check, we also patching neurons with
increased toxicity projection (↑) during DPO and
find that they raise toxicity scores across models
(Section 5.2).
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Table 19: Toxicity (Toxic), log perplexity (PPL), and F1 scores with activation patching and editing. As a sanity
check, patching neurons with increased toxicity projection (↑) raises toxicity scores. In probe-based editing, we
compare two samping strategies for the top-β neurons: descending cosine similarity with the probe and ascending
absolute activation values. For both approaches, Green shows the editing parameters that best compete with DPO
while preserving F1 scores.

Type Intervention GPT-2-355M Llama-3.1-8B Gemma-2-2B Mistral-7B
Toxic PPL F1 Toxic PPL F1 Toxic PPL F1 Toxic PPL F1

Baseline
None 0.545 3.08 0.193 0.496 1.94 0.225 0.488 4.61 0.231 0.507 1.76 0.231

Steering with probe 0.310 3.19 0.191 0.335 2.72 0.187 0.260 5.52 0.228 0.350 2.23 0.220

DPO 0.210 3.15 0.195 0.241 2.69 0.221 0.245 5.15 0.228 0.221 2.01 0.233

Activation
patching

Patch all four groups 0.139 3.08 0.169 0.278 1.94 0.207 0.260 4.58 0.213 0.138 1.78 0.209

Patch all ↑ neurons 0.853 6.05 0.154 0.536 2.64 0.184 0.686 4.58 0.199 0.611 1.78 0.199

Activation
editing

(probe-based,
descending

cossim)

α = 0.01, β = 0.8 0.123 3.08 0.179 0.045 2.19 0.186 0.199 4.54 0.188 0.038 1.77 0.179

α = 0.01, β = 0.6 0.159 3.08 0.181 0.183 2.11 0.193 0.200 4.56 0.201 0.098 1.77 0.196

α = 0.01, β = 0.55 0.203 3.08 0.183 0.241 1.96 0.196 0.216 4.56 0.210 0.125 1.77 0.202

α = 0.05, β = 0.5 0.211 3.08 0.184 0.299 1.96 0.200 0.260 4.56 0.204 0.264 1.77 0.197

Activation
editing

(probe-based,
ascending
activation)

α = 0.01, β = 0.8 0.025 3.08 0.158 0.097 2.39 0.188 0.271 4.56 0.183 0.154 1.77 0.196

α = 0.01, β = 0.6 0.075 3.07 0.178 0.204 2.26 0.198 0.295 4.57 0.202 0.218 1.77 0.201

α = 0.01, β = 0.55 0.111 3.08 0.175 0.258 2.25 0.203 0.330 4.57 0.199 0.229 1.77 0.202

α = 0.05, β = 0.5 0.109 3.08 0.178 0.310 1.96 0.204 0.331 4.58 0.204 0.251 1.77 0.193
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Figure 6: Four neuron groups collectively reduce toxicity during DPO, shown for GPT-2-Medium, Gemma-2-2B,
and Mistral-7B. The same four groups consistently emerge as in Llama-3.1-8B. (a) Proportion of toxicity reduction
per group, where TP ↓ and AN ↓ dominate; (b) Cumulative toxicity reduction for the top 40,000 neurons (ranked
by reduction in projection), where TP ↓ dominates the early ranks and AN ↓ gradually catches up; (c) Per-group
activation shifts during DPO for the top 2,000–2,500 neurons, where each group shifts according to its orientation
relative to the toxic representation.
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Figure 7: Activation shifts of top-contributing neurons to toxicity projection reduction in GPT-2-Medium. (a)
Activation shifts of top 500 neurons, where TP ↓ drives the reduction. (b) Activation shifts of neurons ranked
5000–5500, showing increased AN ↓ influence and more balanced contributions across all four groups.

Figure 8: Layer-wise toxicity projection reduction by neuron group. Toxicity reduction generally increases across
MLP layers under the cumulative group effects, though the upward trend is less evident for Gemma-2-2B. The
upward trend shows that each layer progressively shifts away from toxicity, with the largest toxicity reduction
occurring in later layers.
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