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Abstract

Considering the importance of detecting hate-
ful content, labeled hate speech data is expen-
sive and time-consuming to collect and anno-
tate, particularly for low-resource languages.
Prior work has demonstrated the effectiveness
of cross-lingual transfer learning and data aug-
mentation in improving performance on tasks
with limited labeled data. To develop an effi-
cient and scalable cross-lingual transfer learn-
ing approach, we leverage nearest-neighbor re-
trieval to augment minimal labeled data in the
target language, thereby enhancing detection
performance. Specifically, we assume access
to a small set of labeled training instances in
the target language and use these to retrieve the
most relevant labeled examples from a large
multilingual hate speech detection pool. We
evaluate our approach on eight languages and
demonstrate that it consistently outperforms
models trained solely on the target language
data. Furthermore, in most cases, our method
surpasses the current state-of-the-art. Notably,
our approach is highly data-efficient, retrieving
as few as 200 instances in some cases while
maintaining superior performance. Moreover,
it is scalable, as the retrieval pool can be eas-
ily expanded, and the method can be readily
adapted to new languages and tasks. We also
apply maximum marginal relevance to miti-
gate redundancy and filter out highly similar
retrieved instances, resulting in improvements
in some languages. 1

Content warning: This paper contains examples of
hateful and abusive language.

1 Introduction

Hate speech, abusive language targeting specific
groups (Röttger et al., 2021), is a global issue.
However, most detection advancements focus on
English due to the abundance of labeled datasets

1The official implementation of the method is publicly
available on: https://github.com/FaezeGhorbanpour/
MultilingualDataEfficientDetection/

(Poletto et al., 2021; Yin and Zubiaga, 2021). In
contrast, languages like Spanish, French, and Ital-
ian, though not low-resource for other tasks, lack
annotated hate speech datasets (Poletto et al., 2021),
limiting model effectiveness in detecting and ad-
dressing hate speech.

Collecting and annotating data for low-resource
languages is an effective solution, especially for
capturing linguistic and cultural nuances in hate
speech (Pelicon et al., 2021; Aluru et al., 2020a).
As Röttger et al. (2022) state, having some labeled
data in the target language is crucial for model ef-
fectiveness. However, while obtaining more data
can improve performance, this requires paying high
annotation costs (ElSherief et al., 2021) and expos-
ing annotators to harmful content (AlEmadi and
Zaghouani, 2024).

Transfer learning, especially from high-resource
languages like English, helps mitigate data scarcity
and improve detection performance (Bigoulaeva
et al., 2022; Firmino et al., 2024). However, the
choice of source tasks and languages remains cru-
cial. Some languages are useful for specific target
languages due to cultural similarities (Zhou et al.,
2023), and certain source tasks may be more use-
ful for particular target tasks (Röttger et al., 2022;
Antypas and Camacho-Collados, 2023).

Training on all available hate speech datasets
may seem beneficial, but it is often inefficient, com-
putationally costly, and does not guarantee better
performance (Caselli et al., 2020). It can introduce
redundancy, dataset-specific biases, and annotation
inconsistencies, leading to overfitting (Wiegand
et al., 2019; Fortuna and Nunes, 2018). Moreover,
this approach lacks scalability, requiring frequent
retraining for new datasets (Vidgen et al., 2021a).

To address the mentioned problems, we propose
a novel method based on cross-lingual nearest-
neighbor retrieval. Our approach, pictured in Fig-
ure 1, retrieves a minimal yet relevant set of in-
stances and integrates them with the target lan-
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Figure 1: Overview of the proposed method. Given a small number of examples from a target language, we search
in a large pool of multilingual data for closely related instances. We then combine the retrieved instances with the
target language data and train a multilingual model on them for hate speech detection.

guage training set for fine-tuning. Specifically, we
embed all available instances from fourteen tasks
using a multilingual sentence embedding model to
create a pool of hate speech detection samples. A
retrieval system selects the most relevant instances
from the multilingual pool based on their distance
to the target language training set. These retrieved
instances are then combined with the target training
data to fine-tune a language model (LM).

This solution addresses several challenges. First,
retrieving from a multilingual pool removes the
need to search for the best source task or language.
Second, it improves efficiency by selecting only a
small number of relevant samples and reducing re-
dundancy through distance-based retrieval. Third,
it supports scalability, as the multilingual pool can
be easily extended with new datasets and languages.
Finally, our method enhances cross-lingual trans-
fer learning by leveraging linguistic and semantic
similarities in hate speech across languages.

We evaluate the proposed method on eight lan-
guages, including German, French, Spanish, Italian,
Portuguese, Hindi, Arabic, and Turkish, simulating
a scenario where only a limited number of training
examples (ranging from 10 to 2,000) are available.
Fine-tuning on a combination of retrieved data and
the target language training set significantly outper-
formed fine-tuning solely on the target training set
across all languages. Further, our method outper-
formed the state-of-the-art work in most languages
while fine-tuning with fewer samples. To refine the
retrieved data, we also experiment with applying

maximum marginal relevance (MMR) (Carbonell
and Goldstein, 1998) to remove highly similar in-
stances, leading to improved performance in some
languages. Our contributions are as follows:

• We propose a novel, efficient, and scalable
method for enhancing limited labeled hate
speech datasets by retrieving cross-lingual
samples using a retrieval system.

• We evaluate our method on eight languages,
demonstrating consistently higher perfor-
mance compared to training solely on the tar-
get language training set.

• Our approach is particularly effective in ex-
tremely low-resource settings with fewer than
50 labeled instances, achieving improvements
of up to 10 F1-macro points in some cases.

2 Related Work

Hate Speech Detection with Limited Labeled
Data: Hate speech violates human rights, dis-
rupts social peace, incites violence, and promotes
discrimination in all societies, regardless of lan-
guage. Detecting it is crucial to prevent conflict
and protect mental health and societal safety (Wil-
son, 2019; Narula and Chaudhary, 2024). Most
datasets and research efforts focus on English
(Kennedy et al., 2020b; Toraman et al., 2022; Ghor-
banpour et al., 2025), while languages like Span-
ish, Portuguese, or Ukrainian have very limited
resources. According to the Hate Speech Dataset
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Catalogue, these languages each have only one
available dataset with fewer than 5,000 samples,
which are also restricted in context and domain
(Basile et al., 2019; Fortuna et al., 2019; Demen-
tieva et al., 2024). Due to limited resources, recent
research increasingly leverages other languages to
improve hate speech detection in low-resource set-
tings.

Cross-lingual Transfer Learning for Hate
Speech Detection: Cross-lingual transfer learn-
ing has been widely studied in NLP, showing that
models trained on high-resource languages can
improve performance in low-resource languages
(Parovic et al., 2023; Muraoka et al., 2023; Pham
et al., 2024). This makes it a promising approach
for hate speech detection in low-resource settings.
Early methods used multilingual embeddings for
zero-shot and few-shot transfer from resource-rich
to resource-poor languages (Aluru et al., 2020b;
Pamungkas and Patti, 2019). Also, Bigoulaeva
et al. (2021) and Monnar et al. (2024) utilized
bilingual embeddings to transfer knowledge from
high-resource languages, showing promising re-
sults even without labeled data in target languages,
but mainly benefiting closely related languages.

Data augmentation strategies, including cross-
lingual paraphrasing or translation-based methods,
have also been shown to alleviate data scarcity
(Pamungkas et al., 2021; Beddiar et al., 2021),
but these approaches are often constrained by the
availability and quality of translation resources.
Roychowdhury and Gupta (2023) employed data
augmentation with EasyMixup and reframed the
task as textual entailment, achieving improvements
but still relying on potentially noisy augmented
data. Hashmi et al. (2025), Gharoun et al. (2024),
and Mozafari et al. (2022) use meta-learning ap-
proaches specialized for bilingual contexts. While
effective, these methods require extensive labeled
bilingual data, are complex to implement and train,
and often demand substantial computational re-
sources, making them less scalable.

Röttger et al. (2022) showed that minimal target-
language data and initial English fine-tuning im-
prove performance. However, selecting an appro-
priate intermediate English task is challenging and
language-dependent. Building on this, Goldzy-
cher et al. (2023) uses an intermediate natural lan-
guage inference (NLI) task, which adds training
steps and requires more computation. Unlike prior
approaches, our method eliminates the need for

large-scale target-language annotation, intermedi-
ate tasks, or translation resources. Directly lever-
aging semantic similarity at the instance level en-
ables effective transfer with minimal target data
and avoids costly cross-lingual training pipelines.
Retrieval-based and Instance attribution Fine-
tuning methods: Prior work has shown that cross-
task retrieval-based data can improve generaliza-
tion in LMs (Guu et al., 2020; Khandelwal et al.,
2020). Shi et al. (2022) applied retrieval to classifi-
cation tasks via heuristic label mapping, whereas
we fine-tune directly on nearest neighbors. Das and
Khetan (2024) introduces data-efficient fine-tuning
through unsupervised core-set selection, showing
strong results in monolingual text-editing tasks.
However, this method is not designed for cross-
lingual transfer and depends on clustering quality.

Our approach is similar to Lin et al. (2022) and
Ivison et al. (2023) in using nearest neighbor re-
trieval and further fine-tuning, but is uniquely ap-
plied to multilingual datasets and leverages labeled
hate speech data. Our method uses instance attri-
bution, identifying relevant training examples for
a data point, unlike prior work (Pruthi et al., 2020;
Han and Tsvetkov, 2022), which used gradient-
based instance attribution to interpret neural net-
work predictions. Our neighbor identification ap-
proach is simpler as it avoids gradient computations
and reliance on labels, and is applied in a multilin-
gual, low-resource setting.

3 Methodology

Building on a large pool of labeled multilingual
hate speech data, our core hypothesis is that cer-
tain instances in this pool are more relevant to a
given target language than others. For each target
language, we assume access to a small amount of la-
beled data. The goal is to identify a relevant subset
of source data that, when used for training, yields
better performance. Initially, we employ an embed-
ding model (Embedder) to encode instances from
multiple source languages. We then use a retrieval
module (Indexer) to index the resulting embedding
vectors and construct a pool of multilingual hate
speech detection instances.

When detecting hate speech in a low-resource
target language, the objective is to fine-tune an LM
for effective and efficient classification, as depicted
in Figure 1. We begin by embedding the target lan-
guage instances using the same embedding model.
The retrieval module (Retriever) then searches the
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pool to find the nearest neighbors of the target in-
stances. We combine the retrieved data with the
target data and use the combined set to fine-tune
(Fine-tuner) an LM to classify them as Hate or
Non-Hate. Each module is described below.

3.1 Embedder and Indexer

Assume a source language2 A with a set of n text in-
stances Xs = {xs1, xs2, . . . , xsn} and corresponding
labels Y s ∈ {0, 1}, where 1 indicates hate speech
and 0 indicates non-hate speech. The objective of
this module is to project the input texts into a vector
space V s = {vs1, vs2, . . . , vsn}, where each vector
vsi is obtained by applying an embedding function:
vsi = embedding(xsi ). These embeddings are then
passed to the retrieval module, which indexes the
vectors to enable efficient similarity search. This
indexed embedding space serves as the foundation
for retrieving relevant instances.

3.2 Retriever

Consider a target language B with a limited set of
labeled data Xt = {xt1, xt2, . . . , xtm}, where m ≪
n (m and n denote the number of target and source
language instances, respectively.), and a label set
Y t ∈ {0, 1}, where 1 denotes hate speech and 0
denotes non-hate speech (the same label set as the
source language). Similar to the source language,
we apply the embedding module to convert the
target language instances into a numerical vector
space V t = {vt1, vt2, . . . , vtm}, where each vector
is computed as vti = embedding(xti).

The retrieval module is then employed to find rel-
evant samples from the pool using a nearest neigh-
bor search. Specifically, we want to retrieve a to-
tal of R instances from the source pool based on
Euclidean distance between the embedded target
vectors V t and the source vectors V s. The dis-
tance between an embedded target instance vti and
a source instance vsj is calculated as:

dist(vti , v
s
j ) = ∥vti − vsj∥2 =

√√√√
d∑

k=1

(vti,k − vsj,k)
2

Where d is the dimensionality of the embedding
space. We then select the top k nearest neighbors
for each vti , and define the full retrieval set as:

2For clarity, we describe the approach using a single source
language. In practice, however, our methodology incorporates
multiple source languages—eight in total.

R =

m⋃

i=1

TopK(vti , V
s, k)

where TopK(v′i, V
s, k) denotes the set of k

source vectors in V s with the lowest distance to vti .
The set R contains up to m× k total retrieved in-
stances. We then map the vectors in R back to their
corresponding original texts using the retrieval in-
dex (Xs

r = {xsr1 , xsr2 , xsr3 , . . . , xsrR}). Finally, we
apply deduplication to remove exact textual dupli-
cates. If the final count of unique instances falls
short of R, the retrieval process continues until the
desired number is reached.

3.3 Fine-tuner

In the fine-tuning module, we combine the retrieved
texts (Xs

r ) with the training data from the target lan-
guage (Xt). The combined dataset is then used to
fine-tune a pre-trained LM (M) to perform binary
classification. Since the source and target tasks
share the same label space, i.e., Y s, Y t = {0, 1},
where 0 denotes non-hate and 1 denotes hate, joint
training of the fine-tuned model on the combined
source and target data is well-defined and coherent.
We define the final training set as D = Xs

r ∪Xt.
The model is fine-tuned by minimizing the binary
cross-entropy loss:

L = − 1

|D|
∑

(x,y)∈D

[
y logM(x)

+ (1− y) log (1−M(x))
]

4 Experimental Setup

4.1 Datasets

We use six large-scale English hate speech detec-
tion datasets as well as eight non-English ones.
These datasets were selected based on two crite-
ria: (a) the presence of a label designated as hate
speech, and (b) the use of annotation guidelines that
align with or are closely related to the definition of
hate speech adopted in this study. In our setting,
each dataset corresponds to a binary classification
task (hate vs. non-hate) in a given language, so the
terms dataset and task are used interchangeably.

The English datasets are: Dyn21 en (Vidgen
et al., 2021b), Fou18 en (Founta et al., 2018),
Ken20 en (Kennedy et al., 2020a), HateXplain
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(Mathew et al., 2021), Implicit hate3 (ElSherief
et al., 2021), and Xdomain en (Toraman et al.,
2022).

The non-English datasets (each defining a target
task) are: Bas19 es (Basile et al., 2019), For19 pt
(Fortuna et al., 2019), Has21 hi (Mandl et al.,
2021), Our19 ar and Our19 fr (Ousidhoum et al.,
2019), San20 it (Sanguinetti et al., 2020), Xdo-
main tr (Toraman et al., 2022), and Gahd24 de
(Goldzycher et al., 2024). The two-character suffix
indicates the language of the task. More details are
provided in Appendix A.

Although all datasets are embedded and included
in the shared retrieval pool, we ensure that, for
each non-English target task, instances from the
same language are excluded from retrieval. This
guarantees that the target language data remains
unseen during its own retrieval process. Addition-
ally, we exclude Dyn21 en when the target task is
Gahd24 de because the latter includes translations
from the former. We also exclude Xdomain en
when the target task is Xdomain tr, as both orig-
inate from the same source. After constructing
the multilingual pool, we obtain approximately
265,671 instances, of which 37.15% are labeled as
hateful. The majority of data in the pool is English
(66.99%), Turkish (17.0%), and German (3.84%).

4.2 Models

For embedding the text instances, we utilize the
BAAI/bge-m3 multilingual encoder model (Chen
et al., 2024) using the Sentence Transformers li-
brary (Reimers and Gurevych, 2020). This model
generates 1024-dimensional vector representations
for each input text. We use the FAISS library
(Douze et al., 2024; Johnson et al., 2021) to in-
dex dense vectors and perform a similarity search.
For retrieval, we adopt the Hierarchical Naviga-
ble Small World (HNSW) algorithm (Malkov and
Yashunin, 2020) as an efficient approximation of
the k-nearest neighbor search. Throughout all our
experiments for the classification model, we fine-
tune and evaluate XLM-T (Barbieri et al., 2022)
using the HuggingFace Transformers library (Wolf
et al., 2020). XLM-T is a variant of XLM-R (Con-
neau et al., 2020), further pre-trained on 198 mil-
lion multilingual Twitter posts to better capture
social media language patterns. Further details on
hyperparameters and experimental settings are pro-

3This dataset includes both explicit and implicit hate
speech, which we merge into a single label, hate speech.

vided in Appendix B.

4.3 Evaluation Details

We simulate low-resource conditions by using 12
different training subset sizes for each non-English
language: 10, 20, 30, 40, 50, 100, 200, 300, 400,
500, 1,000, and 2,000 examples. For each sub-
set size, we run experiments with 5 random seeds.
Across all experiments, we use a fixed validation
set of 500 examples and a test set of 2,000 exam-
ples for each target language4. We only use the
training split of the target language for retrieval
and fine-tuning. The test set remains entirely un-
seen throughout the process to ensure evaluation
integrity and is kept fixed across all experiments.

The performance comparison is based on the
F1-macro metric. We compare our method to the
common practice of fine-tuning solely on the target
training set, referred to as Mono. We also compare
against the approach by Röttger et al. (2022), which
performs intermediate fine-tuning on three English
hate speech datasets (20,000 instances each) to
identify the most effective source task and then
fine-tunes on the target language training set. We
report the best result among the three as Röttger.

5 Results

Table 1 reports results for eight target languages.
Each row corresponds to a subset of the target-
language training data (e.g., 20, 50, 200, 500, or
2,000 examples); the full set of twelve subset sizes
is in appendix D. These subset sizes indicate only
the number of target-language examples. Addi-
tional columns (20, 200, 2,000, 20,000) show how
many instances were retrieved from the multilin-
gual pool and added to the target subset. Thus, a
subset of 20 combined with 200 retrieved instances
yields 220 training examples in total. The Mono and
Röttger columns are baselines, and the AVG row
gives the average across all twelve subset sizes.

In all languages, retrieving as few as 20 in-
stances and adding it to the original train set for
fine-tuning already outperforms the Mono setting,
indicating the effectiveness of our proposed method
and the value of cross-lingual data. This is particu-
larly promising for target tasks with fewer than 50
instances, where the F1-macro score improves by
10 in some languages such as San20 it, Ous19 ar,
and Xdomain tr. While the performance gain de-

4For Arabic and French, smaller dataset sizes limited the
test sets to 1,000 and 1,500 samples, respectively.
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San20 it Ous19 ar Ous19 fr

SIZE Mono 20 200 2,000 20,000 Röttger Mono 20 200 2,000 20,000 Röttger Mono 20 200 2,000 20,000 Röttger

20 54.25 63.20 66.76 67.06 60.06 64.96 51.67 57.63 63.23 61.73 59.47 60.52 47.26 47.21 52.68 53.93 55.05 52.93
50 65.71 67.20 68.42 71.65 69.44 69.10 52.13 59.36 66.65 66.31 64.51 65.76 47.87 48.29 52.19 52.97 55.60 54.15
200 72.81 72.46 72.83 72.41 72.50 71.56 67.97 67.98 69.18 67.35 65.47 66.61 51.93 51.54 54.06 55.80 53.63 53.76
500 74.18 75.39 75.29 74.53 66.09 73.69 66.54 68.95 69.47 69.28 65.54 67.60 51.91 53.30 52.84 55.51 55.31 53.39
2,000 76.40 69.27 78.36 77.57 76.95 77.07 66.91 69.52 69.77 70.15 68.27 67.07 51.84 53.51 53.13 53.30 54.74 52.89

AVG 66.53 67.68 71.00 71.06 68.55 70.47 59.82 63.94 66.82 66.41 65.20 65.41 49.72 50.56 53.12 54.05 54.84 53.88

Bas19 es For19 pt Xdomain tr

20 49.91 54.37 59.72 62.52 63.08 66.52 48.09 49.72 64.92 68.57 68.03 67.68 55.43 66.58 67.08 70.14 75.87 69.80
50 61.85 60.93 64.37 65.59 64.30 70.36 60.25 59.26 67.01 67.06 69.35 66.51 72.24 75.92 77.50 78.85 70.60 75.12
200 72.36 72.22 71.77 71.23 70.67 75.27 66.91 69.69 70.33 70.20 71.07 68.10 81.63 81.61 82.61 83.04 82.61 82.19
500 77.14 78.01 77.09 77.79 67.67 78.76 69.95 69.72 70.84 70.04 71.05 69.22 85.05 84.93 85.09 84.92 83.88 85.34
2,000 81.08 80.62 80.50 80.65 81.02 82.04 72.70 72.39 72.66 71.72 72.22 71.61 88.53 87.39 88.00 87.39 77.48 88.84

AVG 65.52 67.27 69.53 70.53 68.69 72.97 61.66 62.85 68.18 69.55 69.69 68.39 73.58 76.78 78.88 79.66 77.58 80.27

Gahd24 de Has21 hi

20 44.99 50.52 58.15 59.08 57.48 59.82 46.87 47.34 51.03 53.68 55.37 54.92
50 57.85 54.53 60.30 60.47 61.02 62.57 46.87 48.39 53.36 52.26 55.78 54.77
200 65.80 66.95 66.15 66.24 65.97 64.25 52.20 55.83 54.65 56.80 56.02 57.47
500 66.56 69.78 69.68 70.45 61.80 67.02 56.20 56.94 57.66 57.88 59.55 57.96
2,000 73.77 79.19 78.79 77.82 77.90 72.42 57.14 58.19 60.22 60.50 59.65 58.01

AVG 60.06 62.98 64.77 65.36 64.18 64.23 50.96 52.44 55.10 56.25 57.05 56.70

Table 1: Performance (F1-macro) across eight target languages with varying amounts of target-language supervision.
Each block shows results for a single language. Rows indicate the number of target-language examples used,
while columns show the number of retrieved cross-lingual neighbors added during training. Mono and Röttger are
baseline methods. AVG reports the average over twelve training sizes (full results in Appendix D). Best scores are in
bold; retrieved variants that outperform the next-larger Mono size are underlined.

creases as more target language training data be-
comes available, the average results consistently
show that leveraging cross-lingual data outper-
forms relying solely on the target language’s train-
ing set. In most languages—except for Bas19 es
and Xdomain tr—our proposed method outper-
forms the Röttger on average, while using less
training data and without requiring manual selec-
tion of intermediate tasks. Notably, retrieving
around 200 instances often yields comparable or
even superior performance to this work, which uses
20,000 training size for intermediate fine-tuning.

Another insight from Table 1 is how cross-
lingual retrieval can compensate for limited la-
beled data in the target language. For example,
in Hindi, retrieving just 20 instances for a train-
ing size of 20 matches the performance of hav-
ing 50 labeled examples, and retrieving 2,000 in-
stances approaches the performance of having 200
labeled instances. This pattern is consistent across
other underlined values in the table. In languages
where Mono performance with 2,000 training sam-
ples fails to exceed 70—as in Ous19 ar, Ous19 fr,
and Has21 hi—retrieval proves especially valuable,
often matching the next training size.

For languages where Mono’s highest perfor-
mance is less than 75 (Gahd24 de and For19 pt),
retrieval remains helpful, compensating for up to

500 labeled examples. However, in languages
where Mono performance exceeds 75 with 2,000
samples, retrieval is less beneficial—except in the
extreme low-data case: with only 20 labeled data,
retrieval consistently outperforms the Mono model
trained on 50 examples across all languages.

Another observation from Table 1 is that, in
five languages—excluding Ous19 fr, For19 pt, and
Has21 hi—the highest average performance is
achieved by retrieving 2,000 instances, while re-
trieving 20,000 leads to a performance drop. For in-
stance, in Ous19 ar, retrieving 200 instances yields
the best result. This suggests that increasing the
number of retrieved data points for fine-tuning does
not necessarily lead to improved performance.

How Much Retrieved Data Is Sufficient? To
address this question, we conducted an experiment
varying the number of retrieved instances across
21 settings, from 10 to 100,000 (More than a third
of the pool size), for four languages as shown in
Figure 2. The figure includes five different training
sizes, each represented by a distinct color. The
brown line labeled AVG denotes the average perfor-
mance over 12 training sizes.

As shown in the figure, especially in the average
trend line—where the effects of noise are dimin-
ished due to averaging— performance increases
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Figure 2: Effect of the number of retrieved instances (10 to 100,000, log-scaled) on F1-macro performance across
four target languages. Each curve corresponds to a selected amount of target-language training data. Retrieved
instances are added to this target subset during training. Highlighted points mark the best performance for each
training size. The bold brown curve shows the average over 12 target-language subset sizes.

as the number of retrieved instances grows—up to
around 2,000—after which it gradually declines.
This change is more pronounced for smaller train-
ing sizes (e.g., 20), while for larger sizes (e.g.,
2,000), the effect is minimal. These results suggest
that adding more retrieved data is not always ben-
eficial, and peak performance is typically reached
with around 2,000 retrieved instances.

We also tested alternative embedder models, dif-
ferent retriever criteria, as well as label balancing
and weighting the target training set, but observed
no notable differences. Full details are provided in
Appendix E.

5.1 Retrieved Languages Distribution

An interesting analysis is to examine which tasks
or languages the retrieved data come from for each
target language. This is illustrated in Figure 3,
which shows the average retrieval distribution when
retrieving 2,000 instances for a training size of
2,000, averaged over five random subsamples of
the original training set. In the Sankey diagram,
source tasks are shown on the left and target tasks
on the right, with edges representing the four most
frequently retrieved source tasks for each target
task. Due to the dominance of English data in the
pool, a higher proportion of English instances is
expected, with Ken20 en and Fou18 en being the

most commonly retrieved source tasks.
However, we also observe non-negligible re-

trieval from smaller source tasks, such as Arabic,
highlighting semantic and contextual relevance be-
tween hate speech in source and target languages.
We can also see that linguistically or culturally
related languages tend to support each other: Por-
tuguese benefits French, Turkish supports Arabic,
and Italian aids Spanish. This highlights the effec-
tiveness of our approach in identifying culturally
proximate examples. This retrieval pattern can also
be due to shared annotation styles or content over-
lap. Further diagrams are in Appendix F.

5.2 Error Analysis

To better understand retrieval behavior, we con-
ducted an error analysis on Spanish (Bas19 es) and
Italian (San20 it) samples. For each language, we
retrieved a total of ten neighbors (not ten per target
instance). Offensive terms are anonymized with
placeholders such as “[slur]” or “[abuse]”. Tables 3
present representative examples, showing both cor-
rect semantic matches and failure cases.
In both languages, retrieval frequently aligned hate-
ful targets with hateful neighbors across languages
(e.g., insults in Spanish matched to abusive English
phrases, religious hate in Italian matched to Turk-
ish discourse condemning homosexuality). Like-
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Bas19 es For19 pt Has21 hi Ous19 fr

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000

E
ng

lis
h

R
et

ri
ev

al

20 55.83 61.15 61.92 63.03 52.00 65.73 68.11 67.55 46.92 52.72 56.01 55.71 47.26 51.17 53.58 55.10
50 61.67 65.19 64.13 62.91 57.58 66.86 67.71 68.52 48.90 52.67 55.62 55.46 48.64 51.56 54.38 53.35
200 71.53 71.08 71.01 68.24 69.13 70.04 68.73 70.19 54.22 56.24 58.62 56.44 50.70 56.15 54.11 53.56
500 77.13 76.28 76.67 74.55 69.60 70.67 70.77 70.02 55.23 57.54 59.83 58.02 51.75 53.22 52.46 53.48
2,000 80.67 80.68 80.68 80.54 72.07 72.32 71.12 64.82 57.40 59.00 60.63 60.74 50.47 53.11 52.31 53.82

AVG 67.27 69.98 69.61 68.62 62.86 68.53 69.02 68.32 52.04 55.22 57.19 56.24 50.00 52.40 53.38 54.07

M
ul

til
in

gu
al

R
et

ri
ev

al

20 54.37 59.72 62.52 63.08 49.72 64.92 68.57 68.03 47.34 51.03 53.68 55.37 47.21 52.68 53.93 55.05
50 60.93 64.37 65.59 64.30 59.26 67.01 67.06 69.35 48.39 53.36 52.26 55.78 48.29 52.19 52.97 55.60
200 72.22 71.77 71.23 70.67 69.69 70.33 70.20 71.07 55.83 54.65 56.80 56.02 51.54 54.06 55.80 53.63
500 78.01 77.09 77.79 67.67 69.72 70.84 70.04 71.05 56.94 57.66 57.88 59.55 53.30 52.84 55.51 55.31
2,000 80.62 80.50 80.65 81.02 72.39 72.66 71.72 72.22 58.19 60.22 60.50 59.65 53.51 53.13 53.30 54.74

AVG 67.27 69.53 70.53 68.69 62.85 68.18 69.55 69.69 52.44 55.10 56.25 57.05 50.56 53.12 54.05 54.84

Table 2: F1-macro scores for two retrieval strategies: English-only and Multilingual. Results are shown for target
training sizes of 20, 50, 200, 500, 2,000, and AVG (the average over 12 training sizes), across retrieved sample sizes
of 20, 200, 2,000, and 20,000.

Target Language Retrieved Data Outcome

B
as

19
es

@user . . . cállate [abuse] . . . (Hate) Shut the [abuse] up . . . (EN, Non) Good match
Ese buey feliz en su paı́s . . . (Non) Annoying ass girlfriend . . . (EN, Hate) Retrieval noise
Después ¿cómo se limpia . . . peazo [abuse] (Hate) Ugly [abuse]!! (EN, Non) Hostility aligned
La portada de depor . . . jeques árabes (Non) Sale arabe??? (FR, Hate) Keyword match
Callate . . . pedazo de [abuse] (Hate) Shut the [abuse] up . . . (EN, Non) Strong match

Sa
n2

0
it

Atei, omosessuali, donne non ubbidienti . . . a morte!
(Hate)

Death penalty for homosexuals . . . [slur] (EN,
Hate)

Strong match

Alle prime due ore . . . xenofobi e razzisti . . . (Non) Discrimination against minorities . . . (TR,
Non)

Related, different
focus

@user . . . categoria di persone ingestibile . . . (Hate) Escoria . . . antifascismo . . . (ES, Hate) Partial overlap
Modena, festa della donna islamica velata . . . (Hate) Eşcinsellik . . . Islam ideolojisine göre yasaktır

. . . (TR, Hate)
Aligned hostility

Ma secondo te un disperato . . . migranti . . . (Non) Su eres nazi . . . te mate . . . (ES, Hate) Retrieval noise

Table 3: Examples of Spanish and Italian target samples with retrieved neighbors from the multilingual pool. The
texts are shortened and anonymized. The table shows cross-lingual matches where hateful targets align with hateful
neighbors, as well as cases of mismatches or retrieval noise.

wise, non-hate examples often retrieved neutral or
supportive content (e.g., Italian pro-migrant texts
retrieved Turkish feminist or minority rights dis-
course). These patterns illustrate why retrieval is
effective: cross-lingual embeddings cluster texts
by semantic stance toward targets (hostility vs.
support), enabling small target datasets to be aug-
mented with meaningful additional training data.
Mismatches occur, especially when retrieval relies
on topical overlap rather than stance, but overall,
the approach successfully amplifies low-resource
data.

5.3 English-only vs Multilingual Retrieval

This experiment examines the effect of multilin-
gual retrieval by comparing it to English-only re-
trieval, where data is retrieved exclusively from
English tasks. Table 2 presents the results: rows
are retrieval settings, and columns represent four
target languages (see Appendix G for other lan-

guages). Comparisons should be made vertically
within each language—for example, comparing
20 training samples with 20 retrieved instances
across the two row blocks. We observe only minor
differences in overall performance across the two
settings in the table, likely due to the high propor-
tion of English data in the pool. However, in spe-
cific cases—such as retrieving 2,000 instances for
Bas19 es and For19 pt, and 20 or 2,000 instances
for Has21 hi and Ous19 fr—multilingual retrieval
yields higher performance. This suggests that in-
corporating even a small amount of multilingual
data can be beneficial.

6 Maximum Marginal Relevance

As an additional deduplication step, we apply
Maximum Marginal Relevance (MMR) in the re-
trieval module—before mapping the retrieved vec-
tors back to their original texts—to ensure both
relevance and diversity. Specifically, we retrieve
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Figure 3: Sankey diagram of the distribution of the top
four retrieved source tasks per target task.

at least 2R candidate vectors and iteratively select
R vectors that balance similarity to the query and
dissimilarity to previously selected vectors. Given
a query vector q, a candidate set D, and a selected
set S, MMR selects the next vector v∗ ∈ D \ S as:

MMR(v∗) = arg max
v∈D\S

[
λ · cos(v, q)

− (1− λ) ·max
s∈S

cos(v, s)
]

Here, λ ∈ [0, 1] controls the trade-off between
relevance to the query and diversity with respect to
the selected set. We set the λ = 0.5. This process
is repeated until exactly R vectors are selected.

Although removing highly similar instances us-
ing MMR increases the diversity of the retrieved
data, incorporating it does not substantially af-
fect performance, with results remaining largely
similar across most languages—except for those
listed in Table 4 (see Appendix H for the remain-
ing languages). As shown in the figure, for these
three languages, applying MMR particularly im-
proves performance when retrieving fewer than
2,000 instances. In contrast, for 20,000 retrieved
instances, the performance without MMR is higher.
This suggests that when only a limited number
of instances is retrieved, MMR helps select fewer
but more diverse examples, which can lead to im-
proved performance. In our default setup, we re-

move exact duplicates but retain near-duplicates,
such as semantically similar content in different
languages. MMR mitigates this by downweight-
ing overly similar examples. Interestingly, for the
Turkish dataset—where our method previously un-
derperformed without MMR—applying it allows
the model to surpass the performance of Röttger.

Without MMR With MMR

SIZE 20 200 2000 20000 20 200 2000 20000

Sa
n2

0
it

20 63.20 66.76 67.06 60.06 60.28 66.89 61.69 62.38
50 67.20 68.42 71.65 69.44 69.71 68.30 70.11 63.30
200 72.46 72.83 72.41 72.50 72.51 72.66 73.07 72.08
500 75.39 75.29 74.53 66.09 74.93 75.41 75.00 75.69
2,000 69.27 78.36 77.57 76.95 77.66 77.06 76.67 68.88

AVG 67.68 71.00 71.06 68.55 69.24 71.64 71.38 68.33

G
ah

d2
4

de 20 50.52 58.15 59.08 57.48 51.47 58.14 58.63 59.14
50 54.53 60.30 60.47 61.02 54.83 60.07 61.13 60.50
200 66.95 66.15 66.24 65.97 68.09 66.20 67.13 65.41
500 69.78 69.68 70.45 61.80 70.36 70.11 70.06 62.77
2,000 79.19 78.79 77.82 77.90 78.55 79.08 77.53 68.84

AVG 62.98 64.78 65.36 64.18 62.71 65.13 65.83 63.62
X

do
m

ai
n

tr 20 66.58 67.08 70.14 75.87 65.19 72.00 77.16 67.48
50 75.92 77.50 78.85 70.60 75.98 76.08 79.84 64.58
200 81.61 82.61 83.04 82.61 81.43 80.92 83.06 82.76
500 84.93 85.09 84.92 83.88 84.77 84.60 84.01 83.41
2,000 87.39 88.00 87.39 77.48 88.14 87.73 86.91 66.70

AVG 76.78 78.88 79.66 77.58 77.59 79.75 80.80 76.01

Table 4: F1-macro scores without and with MMR for
three languages (rows), shown for five selected training
sizes and an average (AVG) computed over 12 training
sizes, across retrieved sample sizes of 20, 200, 2,000,
and 20,000.

7 Conclusion

This paper presents a cross-lingual nearest neighbor
retrieval approach to improve hate speech detection
in target languages with limited labeled data. Our
method retrieves the nearest neighbors from a mul-
tilingual pool of source tasks to augment the target
language data, consistently outperforming mod-
els trained solely on the target language. Notably,
with as few as 20 labeled instances in the target
language, our approach can yield performance im-
provements of up to 10 F1-macro points in some
cases. Further, we show that retrieving approxi-
mately 2,000 instances yields the highest average
performance, while retrieving more can lead to a
performance drop. Furthermore, the use of MMR
to eliminate redundant data can yield additional per-
formance gains in certain languages. Our method is
scalable and adaptable to new languages and tasks,
allowing new source tasks to be added to the pool
with minimal effort.

29682



Limitations

Despite the effectiveness of our approach, several
limitations remain. First, we assume access to a
small number of labeled hate speech instances in
the target language. While this assumption reduces
annotation cost, it may not hold in extremely low-
resource settings where even minimal labeled data
is unavailable or difficult to obtain due to linguistic,
political, or ethical constraints.

Second, the retrieval pool used in our experi-
ments is heavily imbalanced, with English account-
ing for the majority of instances. This dominance
can bias retrieval and limit performance improve-
ments for target languages that are typologically
distant or culturally distinct from English. Expand-
ing the set of target labels and tasks, especially
in non-Western languages and underrepresented
communities, would help assess the robustness and
generalizability of the proposed method. Our eval-
uation focuses on a subset of hate speech detection
tasks and languages and does not encompass the
full variety of online abuse domains or contexts in
which hate speech occurs.

Finally, while we reviewed the definitions of
hate speech used in the datasets for our experi-
ments (see Table 5 in Appendix), cultural differ-
ences and annotation inconsistencies may still be
present. Although hate speech is undoubtedly influ-
enced by cultural context, many hateful expressions
are universal across languages and cultures. Our ex-
periments demonstrate that leveraging such cross-
lingual data can effectively improve hate speech
detection in low-resource settings.
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bara Poblete. 2024. Cross-lingual hate speech detec-
tion using domain-specific word embeddings. PLOS
ONE, 19(7):e0306521.

Marzieh Mozafari, Reza Farahbakhsh, and Noel Crespi.
2022. Cross-lingual few-shot hate speech and offen-
sive language detection using meta learning. IEEE
Access, 10:14880–14896.

Masayasu Muraoka, Bishwaranjan Bhattacharjee,
Michele Merler, Graeme Blackwood, Yulong Li, and
Yang Zhao. 2023. Cross-lingual transfer of large lan-
guage model by visually-derived supervision toward
low-resource languages. In Proceedings of the 31st
ACM International Conference on Multimedia, MM
’23, page 3637–3646. ACM.

Rachna Narula and Poonam Chaudhary. 2024. A com-
prehensive review on detection of hate speech for
multi-lingual data. Social Network Analysis and Min-
ing, 14(244).

Nedjma Ousidhoum, Zizheng Lin, Hongming Zhang,
Yangqiu Song, and Dit-Yan Yeung. 2019. Multi-
lingual and multi-aspect hate speech analysis. In

Proceedings of the 2019 Conference on EMNLP and
the 9th IJCNLP, pages 4675–4684. ACL.

Endang Wahyu Pamungkas, Valerio Basile, and Viviana
Patti. 2021. A joint learning approach with knowl-
edge injection for zero-shot cross-lingual hate speech
detection. Information Processing and Management,
58(4).

Endang Wahyu Pamungkas and Viviana Patti. 2019.
Cross-domain and cross-lingual abusive language de-
tection: A hybrid approach with deep learning and
a multilingual lexicon. In Proceedings of the 57th
ACL: Student Research Workshop, pages 363–370.
ACL.

Marinela Parovic, Alan Ansell, Ivan Vulić, and Anna
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Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehumbert.
2021. HateCheck: Functional tests for hate speech
detection models. In Proceedings of the 59th ACL
and the 11th IJCNLP (Volume 1: Long Papers), pages
41–58. ACL.

Sumegh Roychowdhury and Vikram Gupta. 2023. Data-
efficient methods for improving hate speech detec-
tion. In Findings of EACL 2023, pages 125–132.
ACL.

29685

https://arxiv.org/abs/2009.10277
https://arxiv.org/abs/2009.10277
https://openreview.net/forum?id=HgxsSjxZt7
https://openreview.net/forum?id=HgxsSjxZt7
https://openreview.net/forum?id=HgxsSjxZt7
https://proceedings.neurips.cc/paper_files/paper/2022/file/8a0d3ae989a382ce6e50312bc35bf7e1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8a0d3ae989a382ce6e50312bc35bf7e1-Paper-Conference.pdf
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://ceur-ws.org/Vol-3159/T1-1.pdf
https://ceur-ws.org/Vol-3159/T1-1.pdf
https://ceur-ws.org/Vol-3159/T1-1.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17745
https://ojs.aaai.org/index.php/AAAI/article/view/17745
https://doi.org/10.1371/journal.pone.0306521
https://doi.org/10.1371/journal.pone.0306521
https://doi.org/10.1109/ACCESS.2022.3147588
https://doi.org/10.1109/ACCESS.2022.3147588
https://doi.org/10.1145/3581783.3611992
https://doi.org/10.1145/3581783.3611992
https://doi.org/10.1145/3581783.3611992
https://doi.org/10.1007/s13278-024-01401-y
https://doi.org/10.1007/s13278-024-01401-y
https://doi.org/10.1007/s13278-024-01401-y
https://doi.org/10.18653/v1/D19-1474
https://doi.org/10.18653/v1/D19-1474
https://doi.org/10.1016/j.ipm.2021.102544
https://doi.org/10.1016/j.ipm.2021.102544
https://doi.org/10.1016/j.ipm.2021.102544
https://doi.org/10.18653/v1/P19-2051
https://doi.org/10.18653/v1/P19-2051
https://doi.org/10.18653/v1/P19-2051
https://doi.org/10.18653/v1/2023.findings-acl.13
https://doi.org/10.18653/v1/2023.findings-acl.13
https://doi.org/10.7717/peerj-cs.559
https://doi.org/10.7717/peerj-cs.559
https://doi.org/10.18653/v1/2024.acl-long.174
https://doi.org/10.18653/v1/2024.acl-long.174
https://doi.org/10.18653/v1/2024.acl-long.174
https://doi.org/10.1007/s10579-020-09502-8
https://doi.org/10.1007/s10579-020-09502-8
https://doi.org/10.1007/s10579-020-09502-8
https://proceedings.neurips.cc/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e6385d39ec9394f2f3a354d9d2b88eec-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2022.emnlp-main.383
https://doi.org/10.18653/v1/2022.emnlp-main.383
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/2023.findings-eacl.9
https://doi.org/10.18653/v1/2023.findings-eacl.9
https://doi.org/10.18653/v1/2023.findings-eacl.9


Manuela Sanguinetti, Gloria Comandini, Elisa Di
Nuovo, Simona Frenda, Marco Stranisci, Cristina
Bosco, Tommaso Caselli, Viviana Patti, and Irene
Russo. 2020. Haspeede 2 @ evalita2020: Overview
of the evalita 2020 hate speech detection task. In Pro-
ceedings of the EVALITA 2020 Workshop, volume
2765. CEUR Workshop Proceedings.

Weijia Shi, Julian Michael, Suchin Gururangan, and
Luke Zettlemoyer. 2022. Nearest neighbor zero-shot
inference. In Proceedings of the 2022 Conference on
EMNLP, pages 3254–3265. ACL.

Cagri Toraman, Furkan Şahinuç, and Eyup Yilmaz.
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A Datasets Details

We used fourteen datasets in our study. Detailed
information—including language, number of in-
stances, license type—is provided in Table 5. In
total, we had 265,671 instances, of which 62.85%
were Non-Hate and 37.15% were Hate Speech.

The column Size reports the total number of
instances in each dataset. Pool Share indicates
the proportion of the final pool contributed by the
dataset. All datasets are binary, containing the
classes hate and non-hate. The column Hate (%)
specifies the relative size of the hate-speech class
with respect to the dataset size. The column Hate
Speech Definition provides the exact definition of
hate speech as stated in the original paper or annota-
tion guidelines. A review of these definitions shows
that all datasets adopt a consistent, unified defini-
tion of hate speech. The License column specifies
the usage terms, with all datasets being permitted
for research purposes.

B Model and Training Details

B.1 Embedder

For the embedding model, we used
BAAI/bge-m3,5,6 accessed via the Sentence
Transformers library.7 This model supports over
100 languages, is effective for both short and long
text retrieval, and produces 1024-dimensional
embeddings. It is released under the MIT license,
and the Sentence Transformers library is licensed
under Apache 2.0—both allowing use in academic
research. We used the model in inference mode
without any fine-tuning, applying it to our text data
to generate embedding vectors.

B.2 Retriever

For indexing and searching the embedding vectors
in the retrieval pool, we used the Faiss library8,
which is licensed under MIT. We employed the
HNSW (Hierarchical Navigable Small World) in-
dex with Euclidean distance as the similarity metric,
where smaller values indicate greater similarity to
the query. Since the size of the retrieval pool was
moderate, we used the CPU version of the library.
The index was configured with 128 neighbors, a

5https://huggingface.co/BAAI/bge-m3
6https://github.com/FlagOpen/FlagEmbedding
7https://github.com/UKPLab/

sentence-transformers
8https://github.com/facebookresearch/faiss
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Dataset Hate Speech Definition Language Lang
Code

Size Pool
Share

Num
Classes

Hate
(%)

License

Bas19 es (Basile
et al., 2019)

Any communication that disparages a person
or a group on the basis of some characteristic
such as race, color, ethnicity, gender, sexual
orientation, nationality, religion, or other char-
acteristics.

Spanish es 6,600 2.48 2 41.50 CC BY 4.0

For19 pt (Fortuna
et al., 2019)

Language that attacks or diminishes and in-
cites violence or hate against groups, based
on specific characteristics such as physical ap-
pearance, religion, descent, national or ethnic,
sexual orientation, gender identity or other.

Portuguese pt 5,670 2.13 2 31.53 CC BY 4.0

Has21 hi (Mandl
et al., 2021)

Ascribing negative attributes or deficiencies to
groups of individuals because they are mem-
bers of a group (e.g. “all poor people are
stupid”).

Hindi hi 4,594 1.73 2 12.32 CC BY 4.0 (Only for
research purposes.)

Ous19 ar (Ousid-
houm et al., 2019)

Hate speech may not represent the general
opinion, yet it promotes the dehumanization of
people who are typically from minority groups
and can incite hate crimes.

Arabic ar 3,353 1.26 2 22.52 MIT

Ous19 fr (Ousid-
houm et al., 2019)

Same as above French fr 4,014 1.51 2 0.94 MIT

San20 it (San-
guinetti et al., 2020)

Hateful content in the text towards a given tar-
get (among immigrants, Muslims, and Roma).

Italian it 8,100 3.05 2 41.83 CC BY-NC-SA 4.0

Gahd24 de (Goldzy-
cher et al., 2024)

Abusive, discriminatory, derogatory, or dehu-
manizing speech targeting a protected group or
a person for being a member of such a group.

German de 10,996 3.84 2 42.37 CC BY 4.0

Xdomain tr (Tora-
man et al., 2022)

Tweets contain hate speech if they target, incite
violence against, threaten, or call for physical
damage to an individual or a group of people
because of some identifying trait or character-
istic.

Turkish tr 37,933 17.0 2 42.67 CC BY-NC-SA 4.0

Xdomain en (Tora-
man et al., 2022)

Same as above English en 47124 21.12 2 19.41 CC BY-NC-SA 4.0

Ken20 en (Kennedy
et al., 2020a)

Posts that either contain human degradation or
calls for violence toward some target group,
which is often a protected group or a human
group identified by some characteristic (e.g.,
race, gender, religion, etc.), or “group identi-
fier” terms.

English en 23,192 8.73 2 50.00 MIT

Fou18 en (Founta
et al., 2018)

Content that is derogatory, humiliating, or in-
sulting towards a target.

English en 22,565 8.49 2 22.00 CC BY 4.0

Xplain en (Mathew
et al., 2021)

Language that explicitly attacks or demeans a
group of people based on race, religion, gender,
sexual orientation, or other protected charac-
teristics.

English en 13,749 5.08 2 43.22 MIT

Implicit en (ElSh-
erief et al., 2021)

Language that targets protected groups or in-
dividuals (e.g. based on race, gender, religion,
sexual orientation, cultural identity) with dis-
paragement or harm, and can be explicit (with
direct keywords) or implicit, where implicit
hate uses coded/indirect language (sarcasm,
metaphor, etc.) to convey prejudiced or harm-
ful views.

English en 21,480 8.09 2 38.12 MIT

Dyn21 en (Vidgen
et al., 2021b)

Abusive speech targeting specific group charac-
teristics, such as ethnic origin, religion, gender,
or sexual orientation.

English en 41,144 15.49 2 46.10 CC BY 4.0

Table 5: Detailed information about the datasets used in this study.
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construction parameter of 200, and a search param-
eter of 128.

B.3 Fine-tuner
We used twitter-xlm-roberta-base9 (XLM-T),
a multilingual transformer-based model pre-trained
on Twitter data, as our base model for fine-tuning
on hate speech detection tasks. The model is li-
censed under Apache 2.0, which permits use in
academic research. Training and evaluation were
performed using the Hugging Face transformers
library.10

To select the classification model, we also
evaluated xlm-roberta-base11 (XLM-R) and
mdeberta-v3-base12 (He et al., 2021). XLM-T
outperformed XLM-R, likely because hate speech
datasets are primarily sourced from social media,
where XLM-T has been pre-trained. Although
XLM-T and mDeBERTa achieved similar perfor-
mance, we chose to use XLM-T in our experiments,
as it supports a broader range of languages and
aligns with our baseline setting.

Throughout all our experiments, for training
sizes with fewer than 9,999 training instances, we
trained for 10 epochs; for larger training sizes, we
used 5 epochs to reduce training time and avoid
overfitting. We set the batch size to 16 and used
a learning rate of 5e-5. Inputs were truncated or
padded to a maximum sequence length of 128 to-
kens. We used binary cross-entropy loss, as our
datasets involved binary classification (Hate vs.
Non-Hate). All other training hyperparameters
were left at their default values provided by the
transformers.Trainer module.

C Hardware and Tools

The experiments were conducted on NVIDIA
GeForce GTX 1080 Ti servers. The embedding
model was used in inference mode without updat-
ing its parameters, while the classification model
was fully fine-tuned. As the classifier was based
on xlm-roberta-base, it included approximately
279 million parameters. We also acknowledge the
use of an AI assistant during the writing process.
ChatGPT13 was used for paraphrasing and improv-

9https://huggingface.co/cardiffnlp/
twitter-xlm-roberta-base

10https://github.com/huggingface/transformers
11https://huggingface.co/FacebookAI/

xlm-roberta-base
12https://huggingface.co/microsoft/

mdeberta-v3-base
13https://chatgpt.com/

ing clarity throughout the formulation of the paper.
All models and datasets used in this study are li-
censed for academic research purposes and align
with the intended use of advancing NLP applica-
tions for social good.

D Full Main Results

Table 6 presents the full results of cross-lingual
nearest neighbor retrieval fine-tuning, covering
training sizes from 10 to 2,000. These results con-
firm the trend shown in the main table (Table 1):
retrieving as few as 20 instances already outper-
forms the Mono baseline in all languages. These
performance improvements are most notable when
the target language has fewer than 50 training exam-
ples, with F1-macro gains exceeding 10 compared
to training solely on the target language data. In
such low-resource settings, retrieving cross-lingual
nearest neighbors and using them for fine-tuning
enables the model to match the performance of
much larger training sizes. In most cases, our
method also outperforms the Röttger approach,
while using less data and without requiring manual
selection of a source task.

Additionally, the underlined values—indicating
the smallest amount of retrieved data that outper-
forms the next larger training size—demonstrate
that, in most cases and languages, retrieving cross-
lingual data can effectively compensate for having
less labeled data. While in two tasks, Bas19 es and
Xdomain tr, training data appears to be of higher
quality and retrieval cannot fully offset its absence,
in all other tasks, retrieval proves effective, espe-
cially valuable when labeled data is scarce, less
than 50-highlighting the method’s strength in very
low-resource hate speech detection settings.

E Additional Experiments

To evaluate the robustness of our approach, we
conducted several additional experiments beyond
the main setup. These were carried out on only
two languages and with fewer training epochs than
the default, with the goal of identifying the most
effective configuration before running the full set
of experiments.

Alternative Embedders and Retrievers Table 7
reports results using different embedder–retriever
settings (M3 (Chen et al., 2024) with Euclidean
distance, M3 with cosine similarity, and LaBSE
(Feng et al., 2022) with Euclidean distance). The
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San20 it Ous19 ar Ous19 fr

SIZE Mono 20 200 2000 20000 Röttger Mono 20 200 2000 20000 Röttger Mono 20 200 2000 20000 Röttger

10 46.23 47.04 64.96 65.26 69.60 63.34 51.98 54.60 56.36 62.86 61.54 59.00 47.26 48.34 52.46 51.90 54.60 53.49
20 54.25 63.20 66.76 67.06 60.06 64.96 51.67 57.63 63.23 61.73 59.47 60.52 47.26 47.21 52.68 53.93 55.05 52.93
30 56.29 64.24 68.47 68.90 70.08 64.95 44.42 57.95 66.23 62.31 62.70 65.48 47.26 47.60 52.82 53.86 54.97 53.91
40 59.14 59.60 67.91 69.16 70.58 67.41 49.67 57.45 65.70 64.52 64.82 64.29 47.24 48.36 52.40 54.63 56.30 56.62
50 65.71 67.20 68.42 71.65 69.44 69.10 52.13 59.36 66.65 66.31 64.51 65.76 47.87 48.29 52.19 52.97 55.60 54.15
100 70.96 70.01 71.17 71.46 67.73 71.89 65.29 66.22 68.50 66.77 66.07 66.44 47.67 49.35 51.54 53.12 56.04 55.83
200 72.81 72.46 72.83 72.41 72.50 71.56 67.97 67.98 69.18 67.35 65.47 66.61 51.93 51.54 54.06 55.80 53.63 53.76
300 73.43 73.56 74.12 72.03 64.56 72.21 66.95 68.94 68.52 69.00 66.71 68.07 51.10 53.49 53.29 54.58 56.15 53.61
400 72.44 73.49 74.84 66.23 66.80 73.32 67.04 69.75 70.20 68.88 68.20 66.79 52.17 53.22 54.57 53.81 55.13 53.34
500 74.18 75.39 75.29 74.53 66.09 73.69 66.54 68.95 69.47 69.28 65.54 67.60 51.91 53.30 52.84 55.51 55.31 53.39
1000 76.56 76.65 68.84 76.41 68.21 76.14 67.29 68.98 68.08 67.77 69.07 67.26 53.14 52.49 55.48 55.15 50.51 52.59
2000 76.40 69.27 78.36 77.57 76.95 77.07 66.91 69.52 69.77 70.15 68.27 67.07 51.84 53.51 53.13 53.30 54.74 52.89

AVG 66.53 67.68 71.00 71.06 68.55 70.47 59.82 63.94 66.82 66.41 65.20 65.41 49.72 50.56 53.12 54.05 54.84 53.88

Bas19 es For19 pt Xdomain tr

10 36.51 46.06 58.18 62.23 61.97 59.71 43.18 48.03 61.67 67.53 67.79 66.38 46.92 56.19 73.20 77.11 72.50 72.50
20 49.91 54.37 59.72 62.52 63.08 66.52 48.09 49.72 64.92 68.57 68.03 67.68 55.43 66.58 67.08 70.14 75.87 69.80
30 54.38 60.75 62.56 64.62 63.52 69.02 51.73 54.34 64.61 69.70 67.80 67.78 58.90 73.13 73.64 78.37 75.58 75.58
40 57.63 57.69 62.77 63.10 61.87 66.98 53.83 52.63 65.59 69.68 67.57 67.04 69.97 74.20 75.43 61.71 78.70 75.98
50 61.85 60.93 64.37 65.59 64.30 70.36 60.25 59.26 67.01 67.06 69.35 66.51 72.24 75.92 77.50 78.85 70.60 75.12
100 65.03 65.36 66.04 67.71 65.93 71.94 64.38 67.81 68.26 69.41 68.99 68.95 71.43 79.84 78.77 80.79 80.48 81.41
200 72.36 72.22 71.77 71.23 70.67 75.27 66.91 69.69 70.33 70.20 71.07 68.10 81.63 81.61 82.61 83.04 82.61 82.19
300 74.40 76.04 76.18 75.31 71.92 76.43 68.86 69.37 69.97 69.86 70.14 68.63 81.34 81.80 83.74 83.27 83.39 84.36
400 76.58 75.77 76.06 76.30 73.84 77.57 69.10 69.74 70.19 69.96 70.80 67.92 84.54 83.08 84.53 84.27 63.18 85.24
500 77.14 78.01 77.09 77.79 67.67 78.76 69.95 69.72 70.84 70.04 71.05 69.22 85.05 84.93 85.09 84.92 83.88 85.34
1000 79.35 79.42 79.16 79.27 78.53 81.06 70.97 71.48 72.07 70.81 71.44 70.92 87.01 76.68 77.00 86.03 86.67 86.86
2000 81.08 80.62 80.50 80.65 81.02 82.04 72.70 72.39 72.66 71.72 72.22 71.61 88.53 87.39 88.00 87.39 77.48 88.84

AVG 65.52 67.27 69.53 70.53 68.69 72.97 61.66 62.85 68.18 69.55 69.69 68.39 73.58 76.78 78.88 79.66 77.58 80.27

Gahd24 de Has21 hi

10 38.03 51.17 54.50 59.85 57.59 58.88 46.87 49.00 51.76 53.06 56.24 54.46
20 44.99 50.52 58.15 59.08 57.48 59.82 46.87 47.34 51.03 53.68 55.37 54.92
30 50.20 53.14 59.37 60.57 59.08 59.78 46.87 46.87 52.31 54.21 55.46 57.47
40 57.47 55.18 58.25 60.86 57.79 60.75 46.87 47.67 53.86 55.58 56.33 54.08
50 57.85 54.53 60.30 60.47 61.02 62.57 46.87 48.39 53.36 52.26 55.78 54.77
100 62.23 64.27 63.29 62.93 62.58 64.50 48.94 51.38 54.90 55.53 56.91 57.88
200 65.80 66.95 66.15 66.24 65.97 64.25 52.20 55.83 54.65 56.80 56.02 57.47
300 67.17 67.81 67.33 64.70 66.97 64.58 51.75 55.80 55.43 57.24 58.05 57.51
400 66.82 69.04 68.47 68.43 69.52 66.74 54.77 54.50 55.98 58.50 57.06 58.12
500 66.56 69.78 69.68 70.45 61.80 67.02 56.20 56.94 57.66 57.88 59.55 57.96
1000 69.81 74.17 73.02 72.92 72.50 69.45 56.18 57.40 60.06 59.76 58.14 57.74
2000 73.77 79.19 78.79 77.82 77.90 72.42 57.14 58.19 60.22 60.50 59.65 58.01

AVG 60.06 62.98 64.77 65.36 64.18 64.23 50.96 52.44 55.10 56.25 57.05 56.70

Table 6: F1-macro scores across eight languages, comparing our method with the Mono and Röttger baselines.
Results are reported for all target training sizes from 10 to 2,000. Columns represent the number of retrieved
instances. AVG denotes the mean over 12 training sizes. The best result for each language and training size is in
bold. Retrieved results that outperform the next larger Mono training size are underlined.
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overall performance trends remain stable, confirm-
ing that our method is not sensitive to the particular
embedder or similarity metric.

Label Balancing and Target-Set Weighting Ta-
ble 8 shows experiments with balancing labels in
the retrieved pool and with upweighting the target
training set by repeating it three times. Label bal-
ancing did not lead to systematic gains. In contrast,
repeating the target training set three times gave
small but consistent improvements over the default
when we retrieve less than 200 data from the pool.
This suggests that the target-language training set
provides more informative learning signals than the
retrieved data, and that upweighting it can be bene-
ficial. Since repeating once is already effective and
computationally simpler across eight languages, we
adopted that setup as the main contribution. These
results indicate that stronger upweighting can be
beneficial and may be explored in future work.

F Further Analysis

To further analyze what is retrieved and used for
fine-tuning under a controlled setting (retrieving
2,000 instances for a training size of 2,000), see
Figure 4. This figure shows the distribution of re-
trieved source tasks, languages, and labels. As
illustrated, English is retrieved the most, followed
by Turkish and Spanish in nearly equal amounts,
then Italian and Portuguese. Excluding English,
this pattern roughly reflects the overall language
distribution in the pool (see the ”Pool Share” col-
umn in Table 5). The second to fifth most repre-
sented languages in the pool are Turkish, German,
Italian, and Spanish. However, the low retrieval
of German—despite its high presence—and the
higher retrieval of Spanish over Italian are unex-
pected and may be attributed to task generality
or cross-lingual similarity. The distribution of re-
trieved labels also mirrors their proportions in the
pool: approximately 40% of instances are labeled
as hate, and a similar pattern is observed in the
retrieved hate instances across target tasks.

G More about English-only vs.
Multilingual Retrieval

Additional results comparing English-only retrieval
and multilingual retrieval are presented in Table 9.
Comparisons in this table should be made verti-
cally: for each language, the values for a specific
training size and number of retrieved instances

should be compared between the upper (English-
only) and lower (multilingual) blocks. Similar
to the datasets discussed in the main text, mul-
tilingual retrieval—with even a small number of
non-English source tasks—proves beneficial for
three languages in this table: Ous19 ar, San20 it,
and Gahd24 de, in most cases. However, for Xdo-
main tr, the results differ slightly; English-only
retrieval performs marginally better, likely due to
the generality of English tasks and their semantic
similarity to the Turkish dataset.

H More about MMR

To compare the effect of using MMR versus not
using it, refer to Table 10. In this table, since each
language is presented as a row block, comparisons
should be made horizontally within the two sub-
tables. Specifically, for each language, values for
the same training and retrieval size (e.g., 20 train,
20 retrieved) should be compared between the set-
tings without and with MMR. As shown, for the
remaining languages in this table, applying MMR
does not lead to significant overall performance
differences. This is likely because, even without
MMR, the retrieved cross-lingual data is already
sufficiently diverse, so applying MMR has minimal
additional impact.
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M3 - Euclidean Distance M3 - Cosine Similarity LaBSE - Euclidean Distance

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000

B
as

19
es

20 47.72 54.48 62.50 62.76 45.66 56.86 59.81 61.85 47.57 52.36 62.63 63.56
50 44.73 60.80 66.04 63.41 45.38 59.95 63.13 62.54 48.30 55.20 64.28 64.36
200 69.46 72.14 71.00 69.23 70.72 71.59 71.74 68.86 67.55 70.98 70.90 68.52
500 77.02 77.86 77.86 75.55 78.71 77.88 77.00 68.97 76.67 77.45 77.69 76.03
2000 81.55 81.04 81.21 81.16 80.74 81.47 81.73 72.16 81.40 80.54 80.78 80.86

AVG 61.04 67.45 70.32 69.23 61.47 68.26 69.02 67.40 61.59 65.59 69.94 69.51

O
us

19
ar

20 43.55 58.10 61.16 59.14 50.27 56.34 57.41 59.41 44.98 50.56 60.05 60.46
50 47.13 59.23 62.77 63.79 43.68 61.87 63.71 62.61 45.59 57.47 64.62 64.76
200 64.52 69.06 67.01 64.85 63.35 66.76 66.80 66.72 68.72 67.73 66.66 65.11
500 69.16 69.61 68.51 67.79 68.12 67.50 68.04 69.05 69.44 69.41 68.61 67.69
2000 68.41 68.90 67.68 70.31 69.45 69.26 67.45 68.63 69.79 70.58 68.85 69.91

AVG 58.02 63.34 64.97 64.36 57.55 63.07 64.18 63.99 57.84 62.14 65.41 65.15

Table 7: Comparison of different embedder–retriever configurations (M3 with Euclidean distance, M3 with
cosine similarity, and LaBSE with Euclidean distance). Results across Bas19-es and Out19-ar show no consistent
improvements over the default setup, indicating robustness to the choice of backbone and similarity metric.

Default Balanced Labels Repeated Target Training (3×)

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000

B
as

19
es

20 47.72 54.48 62.50 62.76 42.07 56.32 60.20 62.76 54.29 59.55 62.45 61.82
50 44.73 60.80 66.04 63.41 46.83 62.00 66.00 63.81 62.69 63.30 65.64 61.78
200 69.46 72.14 71.00 69.23 69.20 72.18 72.41 70.89 72.79 72.59 74.09 71.97
500 77.02 77.86 77.86 75.55 77.08 77.59 77.64 76.67 78.19 76.76 77.34 76.88
2000 81.55 81.04 81.21 81.16 81.06 81.50 81.02 81.67 80.70 80.61 80.77 81.68

AVG 61.04 67.45 70.32 69.23 61.94 68.62 69.99 69.36 67.11 68.29 70.61 69.51

O
us

19
ar

20 43.55 58.10 61.16 59.14 51.47 58.77 58.31 58.13 47.61 58.63 58.73 58.14
50 47.13 59.23 62.77 63.79 49.32 63.86 64.78 63.43 60.10 65.24 64.50 64.38
200 64.52 69.06 67.01 64.85 68.56 69.33 66.93 65.83 66.30 64.93 65.96 65.87
500 69.16 69.61 68.51 67.79 69.43 68.99 67.35 67.61 66.81 67.55 67.09 67.17
2000 68.41 68.90 67.68 70.31 68.91 69.81 68.64 68.44 67.87 67.63 66.75 66.79

AVG 58.02 63.34 64.97 64.36 58.94 65.34 64.28 63.57 61.25 63.41 64.31 64.50

Table 8: Impact of label balancing in the retrieved pool and re-weighting the target training set (by repeating it
three times). The average results for label balancing remain close to the default setup, whereas repeating the target
training data yields slight average improvements.
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Figure 4: Sankey diagrams of the distribution of the top four languages (left), and labels (right) for each target task.
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Ous19 ar San20 it Gahd24 de Xdomain tr

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000

E
ng

lis
h

R
et

ri
ev

al

20 55.75 60.46 62.22 62.22 58.37 66.30 67.01 62.23 50.30 55.72 59.79 54.79 62.39 71.47 76.53 74.01
50 64.05 65.86 66.34 55.91 68.34 68.53 62.49 56.88 56.96 60.02 58.73 56.62 76.95 77.91 73.85 57.79
200 67.67 68.11 66.86 67.22 71.48 73.41 71.48 69.73 66.88 66.37 65.66 63.72 81.84 82.17 83.61 83.44
500 69.38 68.88 67.96 66.81 75.19 74.92 67.32 73.54 70.06 69.81 63.28 62.12 85.91 85.47 84.50 75.03
2000 70.95 71.32 69.26 70.21 77.05 77.75 68.58 77.69 78.93 78.74 77.93 77.58 87.81 87.67 87.55 87.26

AVG 64.27 66.46 66.15 65.06 67.74 71.14 67.91 66.37 62.81 64.45 64.79 62.93 77.46 80.27 80.90 76.36

M
ul

til
in

gu
al

R
et

ri
ev

al

20 57.63 63.23 61.73 59.47 63.20 66.76 67.06 60.06 50.52 58.15 59.08 57.48 66.58 67.08 70.14 75.87
50 59.36 66.65 66.31 64.51 67.20 68.42 71.65 69.44 54.53 60.30 60.47 61.02 75.92 77.50 78.85 70.60
200 67.98 69.18 67.35 65.47 72.46 72.83 72.41 72.50 66.95 66.15 66.24 65.97 81.61 82.61 83.04 82.61
500 68.95 69.47 69.28 65.54 75.39 75.29 74.53 66.09 69.78 69.68 70.45 61.80 84.93 85.09 84.92 83.88
2000 69.52 69.77 70.15 68.27 69.27 78.36 77.57 76.95 79.19 78.79 77.82 77.90 87.39 88.00 87.39 77.48

AVG 63.94 66.82 66.41 65.20 67.68 71.00 71.06 68.55 62.98 64.77 65.36 64.18 76.78 78.88 79.66 77.58

Table 9: F1-macro scores across two strategies: English-only retrieval, and Multilingual retrieval. Results are shown
for target training sizes of 20, 50, 200, 500, 2,000, and AVG (the average over 12 training sizes). Columns represent
target languages, and sub-columns are the number of retrieved instances.

Without MMR With MMR Without MMR With MMR

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000

B
as

19
es

20 54.37 59.72 62.52 63.08 54.20 60.15 62.73 63.18

O
us

19
fr

47.21 52.68 53.93 55.05 47.25 52.58 54.31 55.13
50 60.93 64.37 65.59 64.30 59.84 64.85 64.67 62.53 48.29 52.19 52.97 55.60 48.67 52.15 54.99 54.82
200 72.22 71.77 71.23 70.67 71.84 72.29 71.28 68.80 51.54 54.06 55.80 53.63 53.70 53.79 55.06 54.43
500 78.01 77.09 77.79 67.67 77.97 75.72 76.64 74.06 53.30 52.84 55.51 55.31 51.84 53.13 54.15 53.01
2000 80.62 80.50 80.65 81.02 80.31 81.23 81.12 80.58 53.51 53.13 53.30 54.74 52.07 51.44 52.79 53.19

AVG 67.27 69.53 70.53 68.69 67.26 69.70 70.01 68.28 50.56 53.12 54.05 54.84 50.43 52.99 54.22 54.54

O
us

19
ar

20 57.63 63.23 61.73 59.47 57.75 59.96 60.50 62.33

Fo
r1

9
pt

49.72 64.92 68.57 68.03 54.31 65.48 68.95 67.63
50 59.36 66.65 66.31 64.51 59.66 66.19 64.98 64.46 59.26 67.01 67.06 69.35 61.81 67.52 67.81 67.38
200 67.98 69.18 67.35 65.47 67.61 69.52 66.35 64.55 69.69 70.33 70.20 71.07 68.29 69.83 69.48 69.74
500 68.95 69.47 69.28 65.54 68.70 70.39 69.59 67.17 69.72 70.84 70.04 71.05 69.46 70.21 69.91 71.83
2000 69.52 69.77 70.15 68.27 70.20 70.12 69.93 68.19 72.39 72.66 71.72 72.22 72.24 70.85 71.93 72.48

AVG 63.94 66.82 66.41 65.20 64.16 66.96 65.81 64.94 62.85 68.18 69.55 69.69 63.60 68.28 69.28 69.75

H
as

21
hi

20 47.34 51.03 53.68 55.37 47.42 52.96 53.17 56.03
50 48.39 53.36 52.26 55.78 47.34 54.19 53.55 56.29
200 55.83 54.65 56.80 56.02 55.57 56.11 56.67 57.67
500 56.94 57.66 57.88 59.55 56.78 58.43 59.28 57.55
2000 58.19 60.22 60.50 59.65 57.37 60.02 60.05 61.10

AVG 52.44 55.10 56.25 57.05 52.38 55.22 56.08 57.37

Table 10: F1-macro scores without/with MMR for five languages (rows), across five selected training sizes and an
average (AVG) computed over 12 training sizes.
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