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Abstract

Considering the importance of detecting hate-
ful content, labeled hate speech data is expen-
sive and time-consuming to collect and anno-
tate, particularly for low-resource languages.
Prior work has demonstrated the effectiveness
of cross-lingual transfer learning and data aug-
mentation in improving performance on tasks
with limited labeled data. To develop an effi-
cient and scalable cross-lingual transfer learn-
ing approach, we leverage nearest-neighbor re-
trieval to augment minimal labeled data in the
target language, thereby enhancing detection
performance. Specifically, we assume access
to a small set of labeled training instances in
the target language and use these to retrieve the
most relevant labeled examples from a large
multilingual hate speech detection pool. We
evaluate our approach on eight languages and
demonstrate that it consistently outperforms
models trained solely on the target language
data. Furthermore, in most cases, our method
surpasses the current state-of-the-art. Notably,
our approach is highly data-efficient, retrieving
as few as 200 instances in some cases while
maintaining superior performance. Moreover,
it is scalable, as the retrieval pool can be eas-
ily expanded, and the method can be readily
adapted to new languages and tasks. We also
apply maximum marginal relevance to miti-
gate redundancy and filter out highly similar
retrieved instances, resulting in improvements
in some languages. !

Content warning: This paper contains examples of
hateful and abusive language.

1 Introduction

Hate speech, abusive language targeting specific

groups (Rottger et al., 2021), is a global issue.

However, most detection advancements focus on
English due to the abundance of labeled datasets
'The official implementation of the method is publicly

available on: https://github.com/FaezeGhorbanpour/
MultilingualDataEfficientDetection/

(Poletto et al., 2021; Yin and Zubiaga, 2021). In
contrast, languages like Spanish, French, and Ital-
ian, though not low-resource for other tasks, lack
annotated hate speech datasets (Poletto et al., 2021),
limiting model effectiveness in detecting and ad-
dressing hate speech.

Collecting and annotating data for low-resource
languages is an effective solution, especially for
capturing linguistic and cultural nuances in hate
speech (Pelicon et al., 2021; Aluru et al., 2020a).
As Rottger et al. (2022) state, having some labeled
data in the target language is crucial for model ef-
fectiveness. However, while obtaining more data
can improve performance, this requires paying high
annotation costs (ElSherief et al., 2021) and expos-
ing annotators to harmful content (AlEmadi and
Zaghouani, 2024).

Transfer learning, especially from high-resource
languages like English, helps mitigate data scarcity
and improve detection performance (Bigoulaeva
et al., 2022; Firmino et al., 2024). However, the
choice of source tasks and languages remains cru-
cial. Some languages are useful for specific target
languages due to cultural similarities (Zhou et al.,
2023), and certain source tasks may be more use-
ful for particular target tasks (Rottger et al., 2022;
Antypas and Camacho-Collados, 2023).

Training on all available hate speech datasets
may seem beneficial, but it is often inefficient, com-
putationally costly, and does not guarantee better
performance (Caselli et al., 2020). It can introduce
redundancy, dataset-specific biases, and annotation
inconsistencies, leading to overfitting (Wiegand
et al., 2019; Fortuna and Nunes, 2018). Moreover,
this approach lacks scalability, requiring frequent
retraining for new datasets (Vidgen et al., 2021a).

To address the mentioned problems, we propose
a novel method based on cross-lingual nearest-
neighbor retrieval. Our approach, pictured in Fig-
ure 1, retrieves a minimal yet relevant set of in-
stances and integrates them with the target lan-
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Figure 1: Overview of the proposed method. Given a small number of examples from a target language, we search
in a large pool of multilingual data for closely related instances. We then combine the retrieved instances with the
target language data and train a multilingual model on them for hate speech detection.

guage training set for fine-tuning. Specifically, we
embed all available instances from fourteen tasks
using a multilingual sentence embedding model to
create a pool of hate speech detection samples. A
retrieval system selects the most relevant instances
from the multilingual pool based on their distance
to the target language training set. These retrieved
instances are then combined with the target training
data to fine-tune a language model (LM).

This solution addresses several challenges. First,
retrieving from a multilingual pool removes the
need to search for the best source task or language.
Second, it improves efficiency by selecting only a
small number of relevant samples and reducing re-
dundancy through distance-based retrieval. Third,
it supports scalability, as the multilingual pool can
be easily extended with new datasets and languages.
Finally, our method enhances cross-lingual trans-
fer learning by leveraging linguistic and semantic
similarities in hate speech across languages.

We evaluate the proposed method on eight lan-
guages, including German, French, Spanish, Italian,
Portuguese, Hindi, Arabic, and Turkish, simulating
a scenario where only a limited number of training
examples (ranging from 10 to 2,000) are available.
Fine-tuning on a combination of retrieved data and
the target language training set significantly outper-
formed fine-tuning solely on the target training set
across all languages. Further, our method outper-
formed the state-of-the-art work in most languages
while fine-tuning with fewer samples. To refine the
retrieved data, we also experiment with applying

maximum marginal relevance (MMR) (Carbonell
and Goldstein, 1998) to remove highly similar in-
stances, leading to improved performance in some
languages. Our contributions are as follows:

* We propose a novel, efficient, and scalable
method for enhancing limited labeled hate
speech datasets by retrieving cross-lingual
samples using a retrieval system.

* We evaluate our method on eight languages,
demonstrating consistently higher perfor-
mance compared to training solely on the tar-
get language training set.

* Our approach is particularly effective in ex-
tremely low-resource settings with fewer than
50 labeled instances, achieving improvements
of up to 10 F1-macro points in some cases.

2 Related Work

Hate Speech Detection with Limited Labeled
Data: Hate speech violates human rights, dis-
rupts social peace, incites violence, and promotes
discrimination in all societies, regardless of lan-
guage. Detecting it is crucial to prevent conflict
and protect mental health and societal safety (Wil-
son, 2019; Narula and Chaudhary, 2024). Most
datasets and research efforts focus on English
(Kennedy et al., 2020b; Toraman et al., 2022; Ghor-
banpour et al., 2025), while languages like Span-
ish, Portuguese, or Ukrainian have very limited
resources. According to the Hate Speech Dataset
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Catalogue, these languages each have only one
available dataset with fewer than 5,000 samples,
which are also restricted in context and domain
(Basile et al., 2019; Fortuna et al., 2019; Demen-
tieva et al., 2024). Due to limited resources, recent
research increasingly leverages other languages to
improve hate speech detection in low-resource set-
tings.

Cross-lingual Transfer Learning for Hate
Speech Detection: Cross-lingual transfer learn-
ing has been widely studied in NLP, showing that
models trained on high-resource languages can
improve performance in low-resource languages
(Parovic et al., 2023; Muraoka et al., 2023; Pham
et al., 2024). This makes it a promising approach
for hate speech detection in low-resource settings.
Early methods used multilingual embeddings for
zero-shot and few-shot transfer from resource-rich
to resource-poor languages (Aluru et al., 2020b;
Pamungkas and Patti, 2019). Also, Bigoulaeva
et al. (2021) and Monnar et al. (2024) utilized
bilingual embeddings to transfer knowledge from
high-resource languages, showing promising re-
sults even without labeled data in target languages,
but mainly benefiting closely related languages.

Data augmentation strategies, including cross-
lingual paraphrasing or translation-based methods,
have also been shown to alleviate data scarcity
(Pamungkas et al., 2021; Beddiar et al., 2021),
but these approaches are often constrained by the
availability and quality of translation resources.
Roychowdhury and Gupta (2023) employed data
augmentation with EasyMixup and reframed the
task as textual entailment, achieving improvements
but still relying on potentially noisy augmented
data. Hashmi et al. (2025), Gharoun et al. (2024),
and Mozafari et al. (2022) use meta-learning ap-
proaches specialized for bilingual contexts. While
effective, these methods require extensive labeled
bilingual data, are complex to implement and train,
and often demand substantial computational re-
sources, making them less scalable.

Rottger et al. (2022) showed that minimal target-
language data and initial English fine-tuning im-
prove performance. However, selecting an appro-
priate intermediate English task is challenging and
language-dependent. Building on this, Goldzy-
cher et al. (2023) uses an intermediate natural lan-
guage inference (NLI) task, which adds training
steps and requires more computation. Unlike prior
approaches, our method eliminates the need for

large-scale target-language annotation, intermedi-
ate tasks, or translation resources. Directly lever-
aging semantic similarity at the instance level en-
ables effective transfer with minimal target data
and avoids costly cross-lingual training pipelines.
Retrieval-based and Instance attribution Fine-
tuning methods: Prior work has shown that cross-
task retrieval-based data can improve generaliza-
tion in LMs (Guu et al., 2020; Khandelwal et al.,
2020). Shi et al. (2022) applied retrieval to classifi-
cation tasks via heuristic label mapping, whereas
we fine-tune directly on nearest neighbors. Das and
Khetan (2024) introduces data-efficient fine-tuning
through unsupervised core-set selection, showing
strong results in monolingual text-editing tasks.
However, this method is not designed for cross-
lingual transfer and depends on clustering quality.

Our approach is similar to Lin et al. (2022) and
Ivison et al. (2023) in using nearest neighbor re-
trieval and further fine-tuning, but is uniquely ap-
plied to multilingual datasets and leverages labeled
hate speech data. Our method uses instance attri-
bution, identifying relevant training examples for
a data point, unlike prior work (Pruthi et al., 2020;
Han and Tsvetkov, 2022), which used gradient-
based instance attribution to interpret neural net-
work predictions. Our neighbor identification ap-
proach is simpler as it avoids gradient computations
and reliance on labels, and is applied in a multilin-
gual, low-resource setting.

3 Methodology

Building on a large pool of labeled multilingual
hate speech data, our core hypothesis is that cer-
tain instances in this pool are more relevant to a
given target language than others. For each target
language, we assume access to a small amount of la-
beled data. The goal is to identify a relevant subset
of source data that, when used for training, yields
better performance. Initially, we employ an embed-
ding model (Embedder) to encode instances from
multiple source languages. We then use a retrieval
module (Indexer) to index the resulting embedding
vectors and construct a pool of multilingual hate
speech detection instances.

When detecting hate speech in a low-resource
target language, the objective is to fine-tune an LM
for effective and efficient classification, as depicted
in Figure 1. We begin by embedding the target lan-
guage instances using the same embedding model.
The retrieval module (Retriever) then searches the

29676


https://hatespeechdata.com/

pool to find the nearest neighbors of the target in-
stances. We combine the retrieved data with the
target data and use the combined set to fine-tune
(Fine-tuner) an LM to classify them as Hate or
Non-Hate. Each module is described below.

3.1 Embedder and Indexer

Assume a source language”® A with a set of n text in-
stances X ° = {zf{,z35,...,z7} and corresponding
labels Y* € {0, 1}, where 1 indicates hate speech
and 0 indicates non-hate speech. The objective of
this module is to project the input texts into a vector
space V* = {v},v3,...,v5}, where each vector
v; is obtained by applying an embedding function:
v{ = embedding(x?). These embeddings are then
passed to the retrieval module, which indexes the
vectors to enable efficient similarity search. This
indexed embedding space serves as the foundation
for retrieving relevant instances.

3.2 Retriever

Consider a target language B with a limited set of
labeled data X' = {zt, 2%,... 2! }, where m <
n (m and n denote the number of target and source
language instances, respectively.), and a label set
Y! € {0,1}, where 1 denotes hate speech and 0
denotes non-hate speech (the same label set as the
source language). Similar to the source language,
we apply the embedding module to convert the
target language instances into a numerical vector
space V! = {v!, v, ... vl }, where each vector
is computed as v} = embedding(x?).

The retrieval module is then employed to find rel-
evant samples from the pool using a nearest neigh-
bor search. Specifically, we want to retrieve a to-
tal of R instances from the source pool based on
Euclidean distance between the embedded target
vectors V! and the source vectors V. The dis-
tance between an embedded target instance v and
a source instance v; is calculated as:

d

D (Wl —v3,)?

k=1

dist(v;, vj) = ||vj — vjll2 =

Where d is the dimensionality of the embedding
space. We then select the top k nearest neighbors
for each v}, and define the full retrieval set as:

2For clarity, we describe the approach using a single source
language. In practice, however, our methodology incorporates
multiple source languages—eight in total.

R = | J TopK (v}, V*, k)

=1

where TopK(v},V* k) denotes the set of k
source vectors in V'* with the lowest distance to v!.
The set R contains up to m X k total retrieved in-
stances. We then map the vectors in ‘R back to their
corresponding original texts using the retrieval in-
dex (X = {x},, 2}, 7,,...,2;,}). Finally, we
apply deduplication to remove exact textual dupli-
cates. If the final count of unique instances falls
short of R, the retrieval process continues until the

desired number is reached.

3.3 Fine-tuner

In the fine-tuning module, we combine the retrieved
texts (X,7) with the training data from the target lan-
guage (X*). The combined dataset is then used to
fine-tune a pre-trained LM (M) to perform binary
classification. Since the source and target tasks
share the same label space, i.e., Y, Y = {0, 1},
where 0 denotes non-hate and 1 denotes hate, joint
training of the fine-tuned model on the combined
source and target data is well-defined and coherent.
We define the final training set as D = X U X*.
The model is fine-tuned by minimizing the binary
cross-entropy loss:

1
L= —@( Z [ylog/\/l(:v)

z,y)€D

+ (1 —y)log (1 — M(x))

4 Experimental Setup

4.1 Datasets

We use six large-scale English hate speech detec-
tion datasets as well as eight non-English ones.
These datasets were selected based on two crite-
ria: (a) the presence of a label designated as hate
speech, and (b) the use of annotation guidelines that
align with or are closely related to the definition of
hate speech adopted in this study. In our setting,
each dataset corresponds to a binary classification
task (hate vs. non-hate) in a given language, so the
terms dataset and task are used interchangeably.
The English datasets are: Dyn2l_en (Vidgen
et al., 2021b), Foul8_en (Founta et al., 2018),
Ken20_en (Kennedy et al., 2020a), HateXplain
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(Mathew et al., 2021), Implicit_hate® (ElSherief
et al., 2021), and Xdomain_en (Toraman et al.,
2022).

The non-English datasets (each defining a target
task) are: Basl9_es (Basile et al., 2019), Forl9_pt
(Fortuna et al., 2019), Has21_hi (Mandl et al.,
2021), Ourl19_ar and Ourl9_fr (Ousidhoum et al.,
2019), San20_it (Sanguinetti et al., 2020), Xdo-
main_tr (Toraman et al., 2022), and Gahd24_de
(Goldzycher et al., 2024). The two-character suffix
indicates the language of the task. More details are
provided in Appendix A.

Although all datasets are embedded and included
in the shared retrieval pool, we ensure that, for
each non-English target task, instances from the
same language are excluded from retrieval. This
guarantees that the target language data remains
unseen during its own retrieval process. Addition-
ally, we exclude Dyn21_en when the target task is
Gahd?24_de because the latter includes translations
from the former. We also exclude Xdomain_en
when the target task is Xdomain_tr, as both orig-
inate from the same source. After constructing
the multilingual pool, we obtain approximately
265,671 instances, of which 37.15% are labeled as
hateful. The majority of data in the pool is English
(66.99%), Turkish (17.0%), and German (3.84%).

4.2 Models

For embedding the text instances, we utilize the
BAAI/bge-m3 multilingual encoder model (Chen
et al., 2024) using the Sentence Transformers li-
brary (Reimers and Gurevych, 2020). This model
generates 1024-dimensional vector representations
for each input text. We use the FAISS library
(Douze et al., 2024; Johnson et al., 2021) to in-
dex dense vectors and perform a similarity search.
For retrieval, we adopt the Hierarchical Naviga-
ble Small World (HNSW) algorithm (Malkov and
Yashunin, 2020) as an efficient approximation of
the k-nearest neighbor search. Throughout all our
experiments for the classification model, we fine-
tune and evaluate XLM-T (Barbieri et al., 2022)
using the HuggingFace Transformers library (Wolf
et al., 2020). XLM-T is a variant of XLM-R (Con-
neau et al., 2020), further pre-trained on 198 mil-
lion multilingual Twitter posts to better capture
social media language patterns. Further details on
hyperparameters and experimental settings are pro-

3This dataset includes both explicit and implicit hate
speech, which we merge into a single label, hate speech.

vided in Appendix B.

4.3 Evaluation Details

We simulate low-resource conditions by using 12
different training subset sizes for each non-English
language: 10, 20, 30, 40, 50, 100, 200, 300, 400,
500, 1,000, and 2,000 examples. For each sub-
set size, we run experiments with 5 random seeds.
Across all experiments, we use a fixed validation
set of 500 examples and a test set of 2,000 exam-
ples for each target language*. We only use the
training split of the target language for retrieval
and fine-tuning. The test set remains entirely un-
seen throughout the process to ensure evaluation
integrity and is kept fixed across all experiments.
The performance comparison is based on the
F1-macro metric. We compare our method to the
common practice of fine-tuning solely on the target
training set, referred to as Mono. We also compare
against the approach by Rottger et al. (2022), which
performs intermediate fine-tuning on three English
hate speech datasets (20,000 instances each) to
identify the most effective source task and then
fine-tunes on the target language training set. We
report the best result among the three as Réttger.

5 Results

Table 1 reports results for eight target languages.
Each row corresponds to a subset of the target-
language training data (e.g., 20, 50, 200, 500, or
2,000 examples); the full set of twelve subset sizes
is in appendix D. These subset sizes indicate only
the number of target-language examples. Addi-
tional columns (20, 200, 2,000, 20,000) show how
many instances were retrieved from the multilin-
gual pool and added to the target subset. Thus, a
subset of 20 combined with 200 retrieved instances
yields 220 training examples in total. The Mono and
Rottger columns are baselines, and the AVG row
gives the average across all twelve subset sizes.

In all languages, retrieving as few as 20 in-
stances and adding it to the original train set for
fine-tuning already outperforms the Mono setting,
indicating the effectiveness of our proposed method
and the value of cross-lingual data. This is particu-
larly promising for target tasks with fewer than 50
instances, where the F1-macro score improves by
10 in some languages such as San20_it, Ous19_ar,
and Xdomain_tr. While the performance gain de-

*For Arabic and French, smaller dataset sizes limited the
test sets to 1,000 and 1,500 samples, respectively.
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San20-it

Ous19.ar Ous19_fr

SIZE Mono 20 200 2,000 20,000 Rottger Mono 20

200 2,000 20,000 Rottger Mono 20 200 2,000 20,000 Rottger

20 5425 6320 66.76 67.06 60.06 64.96 51.67 57.63 63.23 61.73 59.47 60.52 4726 4721 52.68 5393 55.05 52.93
50 6571 67.20 68.42 71.65 69.44 69.10 52.13 5936 66.65 66.31 64.51 65.76 47.87 4829 52.19 5297 55.60 54.15
200 72.81 7246 72.83 7241 7250 71.56 6797 6798 69.18 67.35 6547 66.61 5193 51.54 54.06 55.80 53.63 53.76
500 74.18 7539 75.29 7453 66.09 73.69 66.54 68.95 69.47 69.28 6554 67.60 5191 53.30 52.84 55.51 5531 53.39
2,000 7640 69.27 7836 77.57 7695 77.07 6691 69.52 69.77 7015 6827 67.07 51.84 53.51 53.13 5330 54.74 52.89
AVG 6653 67.68 71.00 71.06 68.55 70.47 59.82 63.94 66.82 66.41 6520 6541 49.72 50.56 53.12 54.05 54.84 53.88
Bas19_es Forl19_pt Xdomain_tr
20 4991 5437 59.72 62.52 63.08 66.52 48.09 49.72 64.92 68.57 68.03 67.68 5543 66.58 67.08 70.14 75.87 69.80
50 61.85 60.93 6437 6559 64.30 70.36 60.25 59.26 67.01 67.06 69.35 66.51 7224 7592 7150 78.85 70.60 75.12
200 7236 7222 71.77 71.23 70.67 75.27 6691 69.69 70.33 70.20 71.07 68.10 81.63 81.61 82.61 83.04 82.61 82.19
500 77.14 78.01 77.09 77.79 67.67 78.76 69.95 69.72 70.84 70.04 71.05 69.22 85.05 84.93 85.09 84.92 83.88 85.34
2,000 81.08 80.62 80.50 80.65 81.02 82.04 7270 7239 7266 71.72 7222 71.61 88.53 87.39 88.00 87.39 77.48 88.84
AVG 6552 6727 69.53 70.53 68.69 72.97 61.66 62.85 68.18 69.55 69.69 68.39 73.58 76.78 78.88 79.66 77.58 80.27
Gahd24_de Has21_hi

20 4499 50.52 58.15 59.08 57.48 59.82 46.87 47.34 51.03 53.68 55.37 54.92

50 57.85 54.53 60.30 6047 61.02 62.57 46.87 4839 53.36 5226 55.78 54.77

200 65.80 66.95 66.15 66.24 6597 64.25 5220 55.83 54.65 56.80 56.02 57.47

500 66.56 69.78 69.68 7045 61.80 67.02 56.20 56.94
2,000 7377 79.19 7879 77.82 7790 7242 57.14 58.19

57.66 57.88 59.55 57.96
60.22 60.50 59.65 58.01

AVG  60.06 6298 64.77 6536 64.18 64.23 50.96 52.44

55.10 56.25 57.05 56.70

Table 1: Performance (F1-macro) across eight target languages with varying amounts of target-language supervision.
Each block shows results for a single language. Rows indicate the number of target-language examples used,
while columns show the number of retrieved cross-lingual neighbors added during training. Mono and Rottger are
baseline methods. AVG reports the average over twelve training sizes (full results in Appendix D). Best scores are in
bold; retrieved variants that outperform the next-larger Mono size are underlined.

creases as more target language training data be-
comes available, the average results consistently
show that leveraging cross-lingual data outper-
forms relying solely on the target language’s train-
ing set. In most languages—except for Basl9_es
and Xdomain_tr—our proposed method outper-
forms the Rottger on average, while using less
training data and without requiring manual selec-
tion of intermediate tasks. Notably, retrieving
around 200 instances often yields comparable or
even superior performance to this work, which uses
20,000 training size for intermediate fine-tuning.

Another insight from Table 1 is how cross-
lingual retrieval can compensate for limited la-
beled data in the target language. For example,
in Hindi, retrieving just 20 instances for a train-
ing size of 20 matches the performance of hav-
ing 50 labeled examples, and retrieving 2,000 in-
stances approaches the performance of having 200
labeled instances. This pattern is consistent across
other underlined values in the table. In languages
where Mono performance with 2,000 training sam-
ples fails to exceed 70—as in Ousi9_ar, Ousl9_fr,
and Has21_hi—retrieval proves especially valuable,
often matching the next training size.

For languages where Mono’s highest perfor-
mance is less than 75 (Gahd24_de and Forl9_pt),
retrieval remains helpful, compensating for up to

500 labeled examples. However, in languages
where Mono performance exceeds 75 with 2,000
samples, retrieval is less beneficial—except in the
extreme low-data case: with only 20 labeled data,
retrieval consistently outperforms the Mono model
trained on 50 examples across all languages.

Another observation from Table 1 is that, in
five languages—excluding Ousi9_fr, For19_pt, and
Has21_hi—the highest average performance is
achieved by retrieving 2,000 instances, while re-
trieving 20,000 leads to a performance drop. For in-
stance, in Ous19_ar, retrieving 200 instances yields
the best result. This suggests that increasing the
number of retrieved data points for fine-tuning does
not necessarily lead to improved performance.

How Much Retrieved Data Is Sufficient? To
address this question, we conducted an experiment
varying the number of retrieved instances across
21 settings, from 10 to 100,000 (More than a third
of the pool size), for four languages as shown in
Figure 2. The figure includes five different training
sizes, each represented by a distinct color. The
brown line labeled AVG denotes the average perfor-
mance over 12 training sizes.

As shown in the figure, especially in the average
trend line—where the effects of noise are dimin-
ished due to averaging— performance increases
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Figure 2: Effect of the number of retrieved instances (10 to 100,000, log-scaled) on F1-macro performance across
four target languages. Each curve corresponds to a selected amount of target-language training data. Retrieved
instances are added to this target subset during training. Highlighted points mark the best performance for each
training size. The bold brown curve shows the average over 12 target-language subset sizes.

as the number of retrieved instances grows—up to
around 2,000—after which it gradually declines.
This change is more pronounced for smaller train-
ing sizes (e.g., 20), while for larger sizes (e.g.,
2,000), the effect is minimal. These results suggest
that adding more retrieved data is not always ben-
eficial, and peak performance is typically reached
with around 2,000 retrieved instances.

We also tested alternative embedder models, dif-
ferent retriever criteria, as well as label balancing
and weighting the target training set, but observed
no notable differences. Full details are provided in
Appendix E.

5.1 Retrieved Languages Distribution

An interesting analysis is to examine which tasks
or languages the retrieved data come from for each
target language. This is illustrated in Figure 3,
which shows the average retrieval distribution when
retrieving 2,000 instances for a training size of
2,000, averaged over five random subsamples of
the original training set. In the Sankey diagram,
source tasks are shown on the left and target tasks
on the right, with edges representing the four most
frequently retrieved source tasks for each target
task. Due to the dominance of English data in the
pool, a higher proportion of English instances is
expected, with Ken20_en and Foul8_en being the

most commonly retrieved source tasks.

However, we also observe non-negligible re-
trieval from smaller source tasks, such as Arabic,
highlighting semantic and contextual relevance be-
tween hate speech in source and target languages.
We can also see that linguistically or culturally
related languages tend to support each other: Por-
tuguese benefits French, Turkish supports Arabic,
and Italian aids Spanish. This highlights the effec-
tiveness of our approach in identifying culturally
proximate examples. This retrieval pattern can also
be due to shared annotation styles or content over-
lap. Further diagrams are in Appendix F.

5.2 Error Analysis

To better understand retrieval behavior, we con-
ducted an error analysis on Spanish (Bas/9_es) and
Italian (San20_it) samples. For each language, we
retrieved a total of ten neighbors (not ten per target
instance). Offensive terms are anonymized with
placeholders such as “[slur]” or “[abuse]”. Tables 3
present representative examples, showing both cor-
rect semantic matches and failure cases.

In both languages, retrieval frequently aligned hate-
ful targets with hateful neighbors across languages
(e.g., insults in Spanish matched to abusive English
phrases, religious hate in Italian matched to Turk-
ish discourse condemning homosexuality). Like-
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Bas19_es For19_pt Has21_hi Ous19_fr

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000
20 5583 61.15 61.92 63.03 52.00 6573 68.11 67.55 46.92 5272 56.01 55.71 4726 51.17 53.58 55.10

Z g 50 61.67 6519 64.13 6291 57.58 66.86 67.71 68.52 48.90 52.67 55.62 55.46 48.64 51.56 5438 5335
Eu ‘E 200 71.53 71.08 71.01 68.24 69.13 70.04 68.73 70.19 5422 5624 58.62 56.44 50.70 56.15 54.11 53.56
g & 500 77.13 7628 76.67 74.55 69.60 70.67 70.77 70.02 5523 57.54 59.83 58.02 S51.75 5322 5246 5348
2,000 80.67 80.68 80.68 80.54 7207 7232 71.12 64.82 5740 59.00 60.63 60.74 5047 53.11 5231 53.82

AVG 6727 6998 69.61 68.62 62.86 68.53 69.02 68.32 52.04 5522 57.19 56.24 50.00 52.40 53.38 54.07

. 20 5437 59.72 62.52 63.08 49.72 6492 68.57 68.03 4734 51.03 53.68 5537 4721 52.68 5393 55.05
& g 50 60.93 64.37 6559 64.30 59.26  67.01 67.06 69.35 48.39 5336 5226 5578 4829 52.19 5297 55.60
= 5 200 7222 7177 7123 70.67 69.69 7033 70.20 71.07 55.83 54.65 56.80 56.02 51.54 54.06 55.80 53.63
= & 500 7801 77.09 7779 67.67 69.72 70.84 70.04 71.05 56.94 57.66 57.88 59.55 53.30 52.84 5551 55.31
= 2,000 80.62 80.50 80.65 81.02 72.39 7266 7172 7222 58.19 60.22 60.50 59.65 53.51 53.13 5330 54.74
AVG 6727 69.53 70.53 68.69 62.85 68.18 69.55 69.69 5244 5510 5625 57.05 50.56 53.12 54.05 54.84

Table 2: F1-macro scores for two retrieval strategies: English-only and Multilingual. Results are shown for target
training sizes of 20, 50, 200, 500, 2,000, and AVG (the average over 12 training sizes), across retrieved sample sizes

of 20, 200, 2,000, and 20,000.

Target Language Retrieved Data Outcome
., @user ...cdllate [abuse] ... (Hate) Shut the [abuse] up ... (EN, Non) Good match
g Ese buey feliz en su pais ... (Non) Annoying ass girlfriend . .. (EN, Hate) Retrieval noise
— Después ;cémo se limpia . .. peazo [abuse] (Hate) Ugly [abuse]!! (EN, Non) Hostility aligned
& La portada de depor ... jeques drabes (Non) Sale arabe??? (FR, Hate) Keyword match
Callate . .. pedazo de [abuse] (Hate) Shut the [abuse] up ... (EN, Non) Strong match
_ Atei, omosessuali, donne non ubbidienti ...a morte!  Death penalty for homosexuals ... [slur] (EN,  Strong match
g (Hate) Hate)
< Alle prime due ore ... xenofobi e razzisti . .. (Non) Discrimination against minorities ...(TR, Related, different
] Non) focus
@user . .. categoria di persone ingestibile ... (Hate)  Escoria ...antifascismo ... (ES, Hate) Partial overlap
Modena, festa della donna islamica velata ...(Hate)  Escinsellik ... Islam ideolojisine gore yasaktir ~ Aligned hostility

...(TR, Hate)

Ma secondo te un disperato ... migranti ... (Non)

Su eres nazi ...te mate ... (ES, Hate)

Retrieval noise

Table 3: Examples of Spanish and Italian target samples with retrieved neighbors from the multilingual pool. The
texts are shortened and anonymized. The table shows cross-lingual matches where hateful targets align with hateful
neighbors, as well as cases of mismatches or retrieval noise.

wise, non-hate examples often retrieved neutral or
supportive content (e.g., Italian pro-migrant texts
retrieved Turkish feminist or minority rights dis-
course). These patterns illustrate why retrieval is
effective: cross-lingual embeddings cluster texts
by semantic stance toward targets (hostility vs.
support), enabling small target datasets to be aug-
mented with meaningful additional training data.
Mismatches occur, especially when retrieval relies
on topical overlap rather than stance, but overall,
the approach successfully amplifies low-resource
data.

5.3 English-only vs Multilingual Retrieval

This experiment examines the effect of multilin-
gual retrieval by comparing it to English-only re-
trieval, where data is retrieved exclusively from
English tasks. Table 2 presents the results: rows
are retrieval settings, and columns represent four
target languages (see Appendix G for other lan-

guages). Comparisons should be made vertically
within each language—for example, comparing
20 training samples with 20 retrieved instances
across the two row blocks. We observe only minor
differences in overall performance across the two
settings in the table, likely due to the high propor-
tion of English data in the pool. However, in spe-
cific cases—such as retrieving 2,000 instances for
Bas19_es and Forl9_pt, and 20 or 2,000 instances
for Has21_hi and Ous19_fr—multilingual retrieval
yields higher performance. This suggests that in-
corporating even a small amount of multilingual
data can be beneficial.

6 Maximum Marginal Relevance

As an additional deduplication step, we apply
Maximum Marginal Relevance (MMR) in the re-
trieval module—before mapping the retrieved vec-
tors back to their original texts—to ensure both
relevance and diversity. Specifically, we retrieve
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Figure 3: Sankey diagram of the distribution of the top
four retrieved source tasks per target task.

at least 2R candidate vectors and iteratively select
R vectors that balance similarity to the query and
dissimilarity to previously selected vectors. Given
a query vector ¢, a candidate set D, and a selected
set S, MMR selects the next vector v* € D \ S as:

MMR (v*) = arg max

I [)\ - cos(v, q)

(11— ).
( ) Igleag(cos(v,s)

Here, A € [0,1] controls the trade-off between
relevance to the query and diversity with respect to
the selected set. We set the A = 0.5. This process
is repeated until exactly R vectors are selected.
Although removing highly similar instances us-
ing MMR increases the diversity of the retrieved
data, incorporating it does not substantially af-
fect performance, with results remaining largely
similar across most languages—except for those
listed in Table 4 (see Appendix H for the remain-
ing languages). As shown in the figure, for these
three languages, applying MMR particularly im-
proves performance when retrieving fewer than
2,000 instances. In contrast, for 20,000 retrieved
instances, the performance without MMR is higher.
This suggests that when only a limited number
of instances is retrieved, MMR helps select fewer
but more diverse examples, which can lead to im-
proved performance. In our default setup, we re-

move exact duplicates but retain near-duplicates,
such as semantically similar content in different
languages. MMR mitigates this by downweight-
ing overly similar examples. Interestingly, for the
Turkish dataset—where our method previously un-
derperformed without MMR—applying it allows
the model to surpass the performance of Rottger.

Without MMR
SIZE 20 200 2000

With MMR
20000 20 200 2000

20000

20 63.20 66.76 67.06 60.06 60.28 66.89 61.69 62.38
50 67.20 68.42 71.65 69.44 69.71 6830 70.11 63.30
72.41 7250 7251 72.66 73.07 72.08
500 7539 7529 74.53 66.09 7493 7541 75.00 75.69
2,000 69.27 7836 771.57 76.95 77.66 77.06 76.67 68.88

AVG 67.68 71.00 71.06 68.55 69.24 71.64 71.38 068.33

San20._it
o
[=3
[=}
~]
N
~
f=))
3
N
o
w

20 50.52 58.15 59.08 57.48 51.47 58.14 58.63 59.14
50 54.53 6030 60.47 61.02 54.83 60.07 61.13 60.50
. . A 68.09 6620 67.13 65.41
500  69.78 69.68 70.45 61.80 70.36 70.11 70.06 62.77
2,000 79.19 7879 71.82 77.90 78.55 79.08 77.53 68.84

AVG 6298 64.78 6536 64.18 62.71 65.13 65.83 63.62

Gahd24_de
N
S
IS)
o
A
o
W
o
>
%)
N
N
o
B~
EN
n
)
N

20 66.58 67.08 70.14 75.87 65.19 72.00 77.16 67.48
50 7592 77.50 78.85 70.60 7598 76.08 79.84 64.58
81.43 80.92 83.06 82.76
500 84.93 85.09 84.92 83.88 84.77 84.60 84.01 83.41
2,000 87.39 88.00 87.39 77.48 88.14 87.73 86.91 66.70

AVG 76.78 78.88 79.66 77.58 7759 79.75 80.80 76.01

Xdomain_tr
o
S
S
oo
o
oL
S
N
L
oo
W
=
e
®
[
=
"

Table 4: Fl1-macro scores without and with MMR for
three languages (rows), shown for five selected training
sizes and an average (AVG) computed over 12 training
sizes, across retrieved sample sizes of 20, 200, 2,000,
and 20,000.

7 Conclusion

This paper presents a cross-lingual nearest neighbor
retrieval approach to improve hate speech detection
in target languages with limited labeled data. Our
method retrieves the nearest neighbors from a mul-
tilingual pool of source tasks to augment the target
language data, consistently outperforming mod-
els trained solely on the target language. Notably,
with as few as 20 labeled instances in the target
language, our approach can yield performance im-
provements of up to 10 F1-macro points in some
cases. Further, we show that retrieving approxi-
mately 2,000 instances yields the highest average
performance, while retrieving more can lead to a
performance drop. Furthermore, the use of MMR
to eliminate redundant data can yield additional per-
formance gains in certain languages. Our method is
scalable and adaptable to new languages and tasks,
allowing new source tasks to be added to the pool
with minimal effort.
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Limitations

Despite the effectiveness of our approach, several
limitations remain. First, we assume access to a
small number of labeled hate speech instances in
the target language. While this assumption reduces
annotation cost, it may not hold in extremely low-
resource settings where even minimal labeled data
is unavailable or difficult to obtain due to linguistic,
political, or ethical constraints.

Second, the retrieval pool used in our experi-
ments is heavily imbalanced, with English account-
ing for the majority of instances. This dominance
can bias retrieval and limit performance improve-
ments for target languages that are typologically
distant or culturally distinct from English. Expand-
ing the set of target labels and tasks, especially
in non-Western languages and underrepresented
communities, would help assess the robustness and
generalizability of the proposed method. Our eval-
uation focuses on a subset of hate speech detection
tasks and languages and does not encompass the
full variety of online abuse domains or contexts in
which hate speech occurs.

Finally, while we reviewed the definitions of
hate speech used in the datasets for our experi-
ments (see Table 5 in Appendix), cultural differ-
ences and annotation inconsistencies may still be
present. Although hate speech is undoubtedly influ-
enced by cultural context, many hateful expressions
are universal across languages and cultures. Our ex-
periments demonstrate that leveraging such cross-
lingual data can effectively improve hate speech
detection in low-resource settings.
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A Datasets Details

We used fourteen datasets in our study. Detailed
information—including language, number of in-
stances, license type—is provided in Table 5. In
total, we had 265,671 instances, of which 62.85%
were Non-Hate and 37.15% were Hate Speech.

The column Size reports the total number of
instances in each dataset. Pool Share indicates
the proportion of the final pool contributed by the
dataset. All datasets are binary, containing the
classes hate and non-hate. The column Hate (%)
specifies the relative size of the hate-speech class
with respect to the dataset size. The column Hate
Speech Definition provides the exact definition of
hate speech as stated in the original paper or annota-
tion guidelines. A review of these definitions shows
that all datasets adopt a consistent, unified defini-
tion of hate speech. The License column specifies
the usage terms, with all datasets being permitted
for research purposes.

B Model and Training Details

B.1 Embedder

For the embedding model, we used
BAAI/bge-m3,°'% accessed via the Sentence
Transformers library.” This model supports over
100 languages, is effective for both short and long
text retrieval, and produces 1024-dimensional
embeddings. It is released under the MIT license,
and the Sentence Transformers library is licensed
under Apache 2.0—both allowing use in academic
research. We used the model in inference mode
without any fine-tuning, applying it to our text data
to generate embedding vectors.

B.2 Retriever

For indexing and searching the embedding vectors
in the retrieval pool, we used the Faiss library®,
which is licensed under MIT. We employed the
HNSW (Hierarchical Navigable Small World) in-
dex with Euclidean distance as the similarity metric,
where smaller values indicate greater similarity to
the query. Since the size of the retrieval pool was
moderate, we used the CPU version of the library.
The index was configured with 128 neighbors, a

5https: //huggingface.co/BAAI/bge-m3

6ht’cps: //github.com/FlagOpen/FlagEmbedding

"https://github.com/UKPLab/
sentence-transformers

8https: //github.com/facebookresearch/faiss
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Dataset Hate Speech Definition Language Lang  Size Pool Num  Hate License
Code Share Classes (%)
Basl9.es (Basile  Any communication that disparages a person  Spanish es 6,600 2.48 2 4150 CCBY4.0
etal., 2019) or a group on the basis of some characteristic
such as race, color, ethnicity, gender, sexual
orientation, nationality, religion, or other char-
acteristics.
For19_pt (Fortuna  Language that attacks or diminishes and in-  Portuguese  pt 5,670 2.13 2 31,53 CCBY 4.0
etal., 2019) cites violence or hate against groups, based
on specific characteristics such as physical ap-
pearance, religion, descent, national or ethnic,
sexual orientation, gender identity or other.
Has21_hi (Mandl  Ascribing negative attributes or deficiencies to  Hindi hi 4,594 1.73 2 1232 CCBY 4.0 (Only for
etal., 2021) groups of individuals because they are mem- research purposes.)
bers of a group (e.g. “all poor people are
stupid”).
Ousl19.ar  (Ousid- Hate speech may not represent the general  Arabic ar 3,353 1.26 2 22.52  MIT
houm et al., 2019) opinion, yet it promotes the dehumanization of
people who are typically from minority groups
and can incite hate crimes.
Ousl9.fr  (Ousid-  Same as above French fr 4,014 1.51 2 0.94 MIT
houm et al., 2019)
San20_it (San-  Hateful content in the text towards a given tar-  Italian it 8,100 3.05 2 41.83 CCBY-NC-SA 4.0
guinetti et al., 2020) get (among immigrants, Muslims, and Roma).
Gahd24_de (Goldzy-  Abusive, discriminatory, derogatory, or dehu- ~ German de 10,996 3.84 2 4237 CCBY4.0
cher et al., 2024) manizing speech targeting a protected group or
a person for being a member of such a group.
Xdomain-tr (Tora-  Tweets contain hate speech if they target, incite ~ Turkish tr 37,933 17.0 2 42.67 CCBY-NC-SA 4.0
man et al., 2022) violence against, threaten, or call for physical
damage to an individual or a group of people
because of some identifying trait or character-
istic.
Xdomain_en (Tora-  Same as above English en 47124 21.12 2 19.41 CCBY-NC-SA 4.0
man et al., 2022)
Ken20_en (Kennedy  Posts that either contain human degradation or ~ English en 23,192 8.73 2 50.00 MIT
et al., 2020a) calls for violence toward some target group,
which is often a protected group or a human
group identified by some characteristic (e.g.,
race, gender, religion, etc.), or “group identi-
fier” terms.
Foul8_en (Founta  Content that is derogatory, humiliating, orin-  English en 22,565  8.49 2 2200 CCBY4.0
etal., 2018) sulting towards a target.
Xplain_en (Mathew  Language that explicitly attacks or demeans a ~ English en 13,749 5.08 2 43.22  MIT
etal., 2021) group of people based on race, religion, gender,
sexual orientation, or other protected charac-
teristics.
Impliciten (EISh-  Language that targets protected groups or in-  English en 21,480 8.09 2 38.12  MIT
erief et al., 2021) dividuals (e.g. based on race, gender, religion,
sexual orientation, cultural identity) with dis-
paragement or harm, and can be explicit (with
direct keywords) or implicit, where implicit
hate uses coded/indirect language (sarcasm,
metaphor, etc.) to convey prejudiced or harm-
ful views.
Dyn2l_en (Vidgen  Abusive speech targeting specific group charac-  English en 41,144 15.49 2 46.10 CCBY 4.0

etal., 2021b)

teristics, such as ethnic origin, religion, gender,
or sexual orientation.

Table 5: Detailed information about the datasets used in this study.
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construction parameter of 200, and a search param-
eter of 128.

B.3 Fine-tuner

We used twitter-x1m-roberta-base’ (XLM-T),
a multilingual transformer-based model pre-trained
on Twitter data, as our base model for fine-tuning
on hate speech detection tasks. The model is li-
censed under Apache 2.0, which permits use in
academic research. Training and evaluation were
performed using the Hugging Face transformers
library.'?

To select the classification model, we also
evaluated x1lm-roberta-base!' (XLM-R) and
mdeberta-v3-base'? (He et al., 2021). XLM-T
outperformed XLM-R, likely because hate speech
datasets are primarily sourced from social media,
where XLM-T has been pre-trained. Although
XLM-T and mDeBERTa achieved similar perfor-
mance, we chose to use XLM-T in our experiments,
as it supports a broader range of languages and
aligns with our baseline setting.

Throughout all our experiments, for training
sizes with fewer than 9,999 training instances, we
trained for 10 epochs; for larger training sizes, we
used 5 epochs to reduce training time and avoid
overfitting. We set the batch size to 16 and used
a learning rate of 5e-5. Inputs were truncated or
padded to a maximum sequence length of 128 to-
kens. We used binary cross-entropy loss, as our
datasets involved binary classification (Hate vs.
Non-Hate). All other training hyperparameters
were left at their default values provided by the
transformers.Trainer module.

C Hardware and Tools

The experiments were conducted on NVIDIA
GeForce GTX 1080 Ti servers. The embedding
model was used in inference mode without updat-
ing its parameters, while the classification model
was fully fine-tuned. As the classifier was based
on x1m-roberta-base, it included approximately
279 million parameters. We also acknowledge the
use of an Al assistant during the writing process.
ChatGPT'? was used for paraphrasing and improv-
°https://huggingface.co/cardiffnlp/
twitter-xlm-roberta-base
10https://github.com/huggingface/transformers
llhttps://huggingface.co/FacebookAI/
x1lm-roberta-base
12https://huggingface.co/microsoft/

mdeberta-v3-base
13https://chatgpt.com/

ing clarity throughout the formulation of the paper.
All models and datasets used in this study are li-
censed for academic research purposes and align
with the intended use of advancing NLP applica-
tions for social good.

D Full Main Results

Table 6 presents the full results of cross-lingual
nearest neighbor retrieval fine-tuning, covering
training sizes from 10 to 2,000. These results con-
firm the trend shown in the main table (Table 1):
retrieving as few as 20 instances already outper-
forms the Mono baseline in all languages. These
performance improvements are most notable when
the target language has fewer than 50 training exam-
ples, with F1-macro gains exceeding 10 compared
to training solely on the target language data. In
such low-resource settings, retrieving cross-lingual
nearest neighbors and using them for fine-tuning
enables the model to match the performance of
much larger training sizes. In most cases, our
method also outperforms the Rottger approach,
while using less data and without requiring manual
selection of a source task.

Additionally, the underlined values—indicating
the smallest amount of retrieved data that outper-
forms the next larger training size—demonstrate
that, in most cases and languages, retrieving cross-
lingual data can effectively compensate for having
less labeled data. While in two tasks, Bas9_es and
Xdomain _tr, training data appears to be of higher
quality and retrieval cannot fully offset its absence,
in all other tasks, retrieval proves effective, espe-
cially valuable when labeled data is scarce, less
than 50-highlighting the method’s strength in very
low-resource hate speech detection settings.

E Additional Experiments

To evaluate the robustness of our approach, we
conducted several additional experiments beyond
the main setup. These were carried out on only
two languages and with fewer training epochs than
the default, with the goal of identifying the most
effective configuration before running the full set
of experiments.

Alternative Embedders and Retrievers Table 7
reports results using different embedder—retriever
settings (M3 (Chen et al., 2024) with Euclidean
distance, M3 with cosine similarity, and LaBSE
(Feng et al., 2022) with Euclidean distance). The
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San20_it Ous19_ar Ous19_fr
SIZE  Mono 20 200 2000 20000 Rottger Mono 20 200 2000 20000 Rottger Mono 20 200 2000 20000 Rottger
10 46.23 47.04 64.96 6526 69.60 63.34 51.98 54.60 56.36 62.86 61.54 59.00 4726 48.34 5246 5190 54.60 53.49
20 5425 63.20 66.76 67.06 60.06 64.96 51.67 57.63 6323 61.73 59.47 60.52 4726 4721 52.68 5393 55.05 5293
30 56.29 6424 6847 68.90 70.08 64.95 4442 5795 66.23 6231 62.70 65.48 47.26 47.60 52.82 53.86 54.97 5391
40 59.14 59.60 6791 69.16 70.58 67.41 49.67 5745 65.70 64.52 64.82 64.29 4724 4836 5240 54.63 5630 56.62
50 6571 6720 6842 71.65 69.44 69.10 52.13 5936 66.65 66.31 64.51 65.76 47.87 4829 52.19 5297 55.60 54.15
100 70.96 70.01 71.17 71.46 67.73 71.89 65.29 6622 68.50 66.77 66.07 66.44 47.67 49.35 51.54 53.12 56.04 55.83
200 72.81 7246 72.83 72.41 7250 71.56 67.97 67.98 69.18 67.35 6547 66.61 51.93 51.54 5406 55.80 53.63 53.76
300 7343 7356 7412 72.03 6456 72.21 66.95 68.94 68.52 69.00 66.71 68.07 51.10 53.49 5329 54.58 56.15 53.61
400 72.44 7349 74.84 66.23 66.80 73.32 67.04 69.75 70.20 68.88 68.20 66.79 52.17 5322 5457 53.81 5513 53.34
500 7418 7539 75.29 74.53 66.09 73.69 66.54 68.95 6947 69.28 65.54 67.60 5191 53.30 52.84 55.51 5531 53.39
1000  76.56 76.65 68.84 76.41 68.21 76.14 67.29 6898 68.08 67.77 69.07 67.26 53.14 52.49 5548 55.15 50.51 52.59
2000 7640 69.27 78.36 77.57 7695 77.07 6691 69.52 69.77 7015 6827 67.07 51.84 53.51 53.13 5330 54.74 52.89
AVG 6653 67.68 71.00 71.06 68.55 70.47 59.82 6394 66.82 66.41 6520 6541 49.72 50.56 53.12 54.05 54.84 53.88
Bas19_es For19_pt Xdomain_tr
10 36.51 46.06 58.18 62.23 6197 59.71 43.18 48.03 61.67 67.53 67.79 66.38 46.92 56.19 7320 7711 7250 72.50
20 4991 5437 59.72 62.52 63.08 66.52 48.09 49.72 64.92 68.57 68.03 67.68 5543 66.58 67.08 70.14 75.87 69.80
30 5438 60.75 62.56 64.62 63.52 69.02 51.73 5434 6461 69.70 67.80 67.78 5890 73.13 73.64 78.37 7558 7558
40 57.63 57.69 62.77 63.10 61.87 66.98 53.83 52.63 65.59 69.68 67.57 67.04 69.97 7420 7543 61.71 78.70 75.98
50 61.85 6093 64.37 65.59 6430 70.36 60.25 59.26 67.01 67.06 69.35 66.51 7224 7592 77.50 78.85 70.60 75.12
100 65.03 6536 66.04 67.71 6593 71.94 64.38 67.81 6826 69.41 68.99 68.95 7143 79.84 78.77 80.79 80.48 81.41
200 7236 7222 71.77 71.23 70.67 75.27 6691 69.69 70.33 70.20 71.07 68.10 81.63 81.61 82.61 83.04 82.61 82.19
300 7440 76.04 76.18 7531 7192 76.43 68.86 69.37 69.97 69.86 70.14 68.63 81.34 81.80 83.74 83.27 83.39 84.36
400 76.58 7577 76.06 7630 73.84 77.57 69.10 69.74 70.19 69.96 70.80 67.92 84.54 83.08 8453 84.27 63.18 85.24
500 77.14 78.01 77.09 77.79 67.67 78.76 69.95 69.72 70.84 70.04 71.05 69.22 85.05 84.93 85.09 84.92 83.88 85.34
1000 79.35 79.42 79.16 79.27 78.53 81.06 7097 71.48 72.07 70.81 71.44 70.92 87.01 76.68 77.00 86.03 86.67 86.86
2000  81.08 80.62 80.50 80.65 81.02 82.04 72770 7239 72.66 71.72 7222 71.61 88.53 87.39 88.00 87.39 77.48 88.84
AVG 6552 6727 69.53 70.53 68.69 72.97 61.66 62.85 68.18 69.55 69.69 68.39 73.58 76.78 78.88 79.66 77.58 80.27
Gahd24_de Has21_hi

10 38.03 51.17 5450 59.85 57.59 58.88 46.87 49.00 51.76 53.06 56.24 54.46

20 4499 50.52 58.15 59.08 57.48 59.82 46.87 4734 51.03 53.68 55.37 54.92

30 50.20 53.14 59.37 60.57 59.08 59.78 46.87 46.87 52.31 5421 5546 5747

40 5747 55.18 58.25 60.86 57.79 60.75 46.87 47.67 53.86 5558 56.33 54.08

50 57.85 54.53 6030 6047 61.02 62.57 46.87 48.39 5336 52.26 55.78 54.77

100 62.23 6427 6329 6293 62.58 64.50 48.94 5138 54.90 5553 5691 57.88

200 65.80 66.95 66.15 6624 6597 64.25 5220 55.83 54.65 56.80 56.02 57.47

300 67.17 67.81 67.33 64.70 6697 64.58 51.75 55.80 5543 57.24 58.05 57.51

400 66.82 09.04 6847 68.43 69.52 66.74 5477 54.50 5598 58.50 57.06 58.12

500 66.56 69.78 69.68 70.45 61.80 67.02 56.20 56.94 57.66 57.88 59.55 57.96

1000  69.81 74.17 73.02 7292 7250 69.45 56.18 57.40 60.06 59.76 58.14 57.74

2000  73.77 7919 78.79 77.82 7190 7242 57.14 58.19 60.22 60.50 59.65 58.01

AVG  60.06 6298 64.77 6536 64.18 064.23 50.96 52.44 55.10 56.25 57.05 56.70

Table 6: Fl-macro scores across eight languages, comparing our method with the Mono and Rottger baselines.
Results are reported for all target training sizes from 10 to 2,000. Columns represent the number of retrieved
instances. AVG denotes the mean over 12 training sizes. The best result for each language and training size is in
bold. Retrieved results that outperform the next larger Mono training size are underlined.
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overall performance trends remain stable, confirm-
ing that our method is not sensitive to the particular
embedder or similarity metric.

Label Balancing and Target-Set Weighting Ta-
ble 8 shows experiments with balancing labels in
the retrieved pool and with upweighting the target
training set by repeating it three times. Label bal-
ancing did not lead to systematic gains. In contrast,
repeating the target training set three times gave
small but consistent improvements over the default
when we retrieve less than 200 data from the pool.
This suggests that the target-language training set
provides more informative learning signals than the
retrieved data, and that upweighting it can be bene-
ficial. Since repeating once is already effective and
computationally simpler across eight languages, we
adopted that setup as the main contribution. These
results indicate that stronger upweighting can be
beneficial and may be explored in future work.

F Further Analysis

To further analyze what is retrieved and used for
fine-tuning under a controlled setting (retrieving
2,000 instances for a training size of 2,000), see
Figure 4. This figure shows the distribution of re-
trieved source tasks, languages, and labels. As
illustrated, English is retrieved the most, followed
by Turkish and Spanish in nearly equal amounts,
then Italian and Portuguese. Excluding English,
this pattern roughly reflects the overall language
distribution in the pool (see the ”Pool Share” col-
umn in Table 5). The second to fifth most repre-
sented languages in the pool are Turkish, German,
Italian, and Spanish. However, the low retrieval
of German—despite its high presence—and the
higher retrieval of Spanish over Italian are unex-
pected and may be attributed to task generality
or cross-lingual similarity. The distribution of re-
trieved labels also mirrors their proportions in the
pool: approximately 40% of instances are labeled
as hate, and a similar pattern is observed in the
retrieved hate instances across target tasks.

G More about English-only vs.
Multilingual Retrieval

Additional results comparing English-only retrieval
and multilingual retrieval are presented in Table 9.
Comparisons in this table should be made verti-
cally: for each language, the values for a specific
training size and number of retrieved instances

should be compared between the upper (English-
only) and lower (multilingual) blocks. Similar
to the datasets discussed in the main text, mul-
tilingual retrieval—with even a small number of
non-English source tasks—proves beneficial for
three languages in this table: Ous19_ar, San20_it,
and Gahd24_de, in most cases. However, for Xdo-
main_tr, the results differ slightly; English-only
retrieval performs marginally better, likely due to
the generality of English tasks and their semantic
similarity to the Turkish dataset.

H More about MMR

To compare the effect of using MMR versus not
using it, refer to Table 10. In this table, since each
language is presented as a row block, comparisons
should be made horizontally within the two sub-
tables. Specifically, for each language, values for
the same training and retrieval size (e.g., 20 train,
20 retrieved) should be compared between the set-
tings without and with MMR. As shown, for the
remaining languages in this table, applying MMR
does not lead to significant overall performance
differences. This is likely because, even without
MMR, the retrieved cross-lingual data is already
sufficiently diverse, so applying MMR has minimal
additional impact.
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M3 - Euclidean Distance M3 - Cosine Similarity LaBSE - Euclidean Distance

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000
20 47.72 5448 62.50 62.76 45.66 56.86 59.81 61.85 47.57 5236 62.63 63.56
. 50 4473 60.80 66.04 63.41 4538 5995 63.13 62.54 4830 5520 64.28 64.36
;% 200 69.46 72.14 71.00 69.23 70.72 71.59 71.74 68.86 67.55 7098 70.90 68.52
- 500 77.02 7786 77.86 75.55 78.71 77.88 77.00 68.97 76.67 7745 71.69 76.03
& 2000 81.55 81.04 8121 81.16 80.74 81.47 81.73 72.16 81.40 80.54 80.78 80.86
AVG  61.04 6745 7032 69.23 61.47 6826 69.02 67.40 61.59 6559 69.94 69.51
20 43.55 58.10 61.16 59.14 50.27 56.34 5741 5941 4498 50.56 60.05 60.46
. 50 47.13 59.23 62.77 63.79 43.68 61.87 63.71 62.61 4559 5747 64.62 64.76
g 200 64.52 69.06 67.01 64.85 63.35 66.76 66.80 66.72 68.72 67.73 66.66 65.11
— 500 69.16 69.61 68.51 67.79 68.12 67.50 68.04 69.05 69.44 69.41 68.61 67.69
& 2000 6841 68.90 67.68 70.31 69.45 69.26 6745 68.63 69.79 70.58 68.85 69.91
AVG  58.02 63.34 6497 64.36 57.55 63.07 64.18 63.99 57.84 62.14 6541 65.15

Table 7: Comparison of different embedder—retriever configurations (M3 with Euclidean distance, M3 with
cosine similarity, and LaBSE with Euclidean distance). Results across Bas19-es and Out19-ar show no consistent
improvements over the default setup, indicating robustness to the choice of backbone and similarity metric.

Default Balanced Labels Repeated Target Training (3x)

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000
20 4772 5448 62.50 62.76 42.07 56.32 60.20 62.76 5429 59.55 6245 61.82

. S0 4473 60.80 66.04 63.41 46.83 62.00 66.00 63.81 62.69 6330 65.64 61.78
g 200 69.46 72.14 71.00 69.23 69.20 72.18 7241 70.89 7279 7259 74.09 71.97
- 500 77.02 7186 77.86 75.55 77.08 77.59 71.64 76.67 78.19 76.76 77.34 76.88
& 2000 8155 81.04 8121 8l1.16 81.06 81.50 81.02 81.67 80.70 80.61 80.77 81.68
AVG  61.04 6745 7032 69.23 61.94 68.62 69.99 69.36 67.11 6829 70.61 69.51

20 43.55 58.10 61.16 59.14 51.47 5877 58.31 58.13 47.61 58.63 58.73 58.14
50 47.13 59.23 62.77 63.79 49.32 6386 64.78 63.43 60.10 6524 64.50 64.38
5 200 64.52 69.06 67.01 64.85 68.56 69.33 66.93 65.83 66.30 64.93 6596 65.87
— 500 69.16 69.61 68.51 67.79 69.43 68.99 6735 67.61 66.81 67.55 67.09 67.17
& 2000 6841 6890 67.68 70.31 68.91 69.81 68.64 68.44 67.87 67.63 66.75 66.79
AVG  58.02 63.34 6497 64.36 58.94 6534 6428 63.57 61.25 6341 6431 64.50

Table 8: Impact of label balancing in the retrieved pool and re-weighting the target training set (by repeating it
three times). The average results for label balancing remain close to the default setup, whereas repeating the target

training data yields slight average improvements.
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Ous19.ar San20-it Gahd24_de Xdomain_tr

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000

20 5575 6046 6222 62.22 5837 6630 67.01 62.23 50.30 5572 59.79 54.79 62.39 7147 76.53 74.01

= = 5 64.05 6586 66.34 5591 68.34 68.53 6249 56.88 56.96 60.02 58.73 56.62 7695 7791 73.85 57.79
éo 3 200 67.67 68.11 66.86 67.22 7148 7341 7148 69.73 66.88 6637 65.66 63.72 81.84 82.17 83.61 83.44
S £ 500 69.38 68.88 67.96 66.81 75.19 7492 67.32 73.54 70.06 69.81 6328 62.12 8591 8547 84.50 75.03
2000 7095 7132 6926 70.21 77.05 77775 68.58 77.69 78.93 7874 7193 77.58 87.81 87.67 87.55 87.26
AVG 6427 6646 66.15 65.06 67.74 71.14 6791 66.37 62.81 6445 6479 6293 77.46 80.27 80.90 76.36

. 20 57.63 63.23 61.73 59.47 63.20 66.76 67.06 60.06 50.52 58.15 59.08 57.48 66.58 67.08 70.14 75.87
%’o = 50 59.36  66.65 66.31 64.51 67.20 68.42 71.65 69.44 5453 60.30 60.47 61.02 7592 77.50 78.85 70.60
g 3 200 6798 69.18 67.35 6547 72.46 72.83 7241 7250 66.95 66.15 66.24 65.97 81.61 82.61 83.04 82.61
T 5§ 500 68.95 6947 69.28 65.54 7539 7529 74.53 66.09 69.78 69.68 7045 61.80 8493 85.09 8492 83.88
§ 2000 69.52 69.77 7015 68.27 69.27 7836 77.57 7695 79.19 7879 77.82 77.90 87.39 88.00 87.39 77.48
AVG 6394 66.82 6641 65.20 67.68 71.00 71.06 68.55 6298 64.77 65.36 64.18 76.78 78.88 79.66 77.58

Table 9: F1-macro scores across two strategies: English-only retrieval, and Multilingual retrieval. Results are shown
for target training sizes of 20, 50, 200, 500, 2,000, and AVG (the average over 12 training sizes). Columns represent
target languages, and sub-columns are the number of retrieved instances.

Without MMR With MMR Without MMR With MMR

SIZE 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000 20 200 2000 20000
. 20 54.37 59.72 6252 63.08 5420 60.15 62.73 63.18 . 4721 52.68 53.93 55.05 4725 5258 5431 55.13
g 50 60.93 6437 65.59 64.30 59.84 6485 64.67 62.53 ;w 4829 52.19 5297 55.60 48.67 52.15 54.99 54.82
— 200 7222 7177 71.23 70.67 71.84 7229 71.28 68.80 2 51.54 54.06 5580 53.63 53.70 5379 55.06 54.43
& 500 78.01 77.09 771.79 67.67 7797 75772 76.64 74.06 & 5330 52.84 5551 55.31 51.84 53.13 54.15 53.01

2000 80.62 80.50 80.65 81.02 80.31 81.23 81.12 80.58 53.51 53.13 53.30 54.74 52.07 51.44 5279 53.19

AVG 6727 69.53 70.53 68.69 67.26  69.70 70.01 68.28 50.56 53.12 54.05 54.84 5043 5299 5422 54.54
. 20 57.63 63.23 61.73 59.47 57.75 59.96 60.50 62.33 _ 4972 6492 68.57 68.03 54.31 6548 6895 67.63
g 50 59.36  66.65 66.31 64.51 59.66 66.19 6498 64.46 S 59.26 67.01 67.06 69.35 61.81 67.52 67.81 67.38
- 200 6798 69.18 67.35 65.47 67.61 69.52 66.35 64.55 % 69.69 70.33 70.20 71.07 68.29 69.83 69.48 69.74
3 500 6895 69.47 69.28 6554 68.70 70.39 69.59 67.17 £ 69.72 70.84 70.04 71.05 69.46 7021 6991 71.83

2000 69.52 69.77 70.15 68.27 7020 70.12 69.93 68.19 7239 72.66 71.72 72.22 7224 70.85 7193 7248

AVG 6394 66.82 66.41 6520 64.16 66.96 65.81 64.94 62.85 68.18 69.55 69.69 63.60 6828 69.28 69.75
20 47.34 51.03 53.68 55.37 47.42 5296 53.17 56.03
S 50 48.39 5336 5226 55.78 4734 54.19 53.55 56.29
! 200 55.83 54.65 56.80 56.02 55.57 56.11 56.67 57.67
£ 500 5694 57.66 57.88 59.55 56.78 58.43 59.28 57.55

2000 58.19 60.22 60.50 59.65 57.37 60.02 60.05 61.10

AVG 5244 5510 56.25 57.05 5238 5522 56.08 57.37

Table 10: F1-macro scores without/with MMR for five languages (rows), across five selected training sizes and an
average (AVG) computed over 12 training sizes.
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