Mixture of Languages: Improved Multilingual Encoders
Through Language Grouping

1,2, 1,3,

Joao Maria Janeiro Belen Alastruey Francisco Massa'

Maha Elbayad' Benjamin Piwowarski? Patrick Gallinari>* Loic Barrault!
IFAIR at Meta 2Sorbonne Université, CNRS, ISIR, F-75005 Paris, France
3Université Paris Dauphine - PSL, Paris 4Criteo Al Lab, Paris, France
{joaojaneiro,alastruey}@meta.com

Abstract

We propose Mixture of Languages (MoL), a
new strategy to pretrain largely multilingual en-
coders. Recent work in this field has relied
on training transformer encoders on a large
amount of multilingual data, with all parame-
ters shared across all languages, without study-
ing how to optimally balance language transfer
and interference to achieve better performance.
To address this, MoL proposes to group lan-
guages based on their similarity, and add paral-
lel, sparsely activated layers that process each
group independently. This architecture allows
MoL to boost language transfer while minimiz-
ing interference, without increasing the active
parameter count. We show that MoL largely
outperforms a dense counterpart trained with
the same configuration, as well as MoE mod-
els and public multilingual encoders such as
XLM-R or mBERT on downstream tasks.

1 Introduction

Learning contextualized text representations has
been extensively explored, notably by BERT (De-
vlin et al., 2019), which introduced the idea of train-
ing Transformer encoders using the masked lan-
guage modeling (MLM) objective. Some variants
of this strategy have been proposed, most notably
ELECTRA (Clark et al., 2020) or XLLM (Lample
and Conneau, 2019), however, MLLM has prevailed
as the standard pretraining strategy for encoders.

Recently, monolingual encoders have received
increasing interest, marked by the releases of Mod-
ernBERT (Warner et al., 2024) and NeoBERT (Bre-
ton et al., 2025). However, largely multilingual
encoders have not received the same attention, with
XLM-R (Conneau et al., 2020) and mBERT (De-
vlin et al., 2019) still being the most widely used
encoders in this category.

Significant progress has been made in finetuning
large multilingual encoders, with examples includ-

* Equal contribution.

/ GROUP SPECIFIC
X a
GROUP 1 GROUP 2 GROUP 3 | *** | GROUP N

LANGUAGE AGNOSTIC x b

GROUP SPECIFIC

GROUP 1 GROUP 2 GROUP 3

=/

XcC

/

GROUP N

-~ /e

Figure 1: Architecture of MoL, a multilingual encoder
that combines language agnostic layers with group spe-
cific layers. Each group consists of a set of similar lan-
guages, that are processed together in a parallel layer.

ing MEXMA (Janeiro et al., 2025), mE5 (Wang
et al., 2024), and Jina-Embeddings-V3 (Sturua
et al., 2024). These efforts have explored various
architectures, improved data filtering methods, and
loss variants during the finetuning stage.

In stark contrast, recent research has not ex-
plored different pretraining strategies specifically
designed for large multilingual encoders. Instead,
the predominant approach in previous work has
been to aggregate vast amounts of multilingual
data and train a dense transformer model, often
without explicitly addressing the challenges and
implications of language sharing and interference.

Understanding these language interactions is cru-
cial for effective multilingual representation learn-
ing. Studies investigating multilingual models have
provided valuable insight in this direction. For in-
stance, research on encoder-decoder models for
Machine Translation (MT) (Shaham et al., 2023),
as well as studies on various encoder architec-

29707

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 29707-29722
November 4-9, 2025 ©2025 Association for Computational Linguistics

tures (Conneau et al., 2020; Alastruey et al., 2025),
have consistently shown that while beneficial trans-
fer occurs between similar languages, detrimental
interference between dissimilar ones can hinder
learning, especially in low-resource scenarios.

Previous research has explored the use of mod-
ular and sparse architectures and applied them
to different NLP tasks. This includes the use of
language-specific modules or adapters for mul-
tilingual MT architectures (Bapna et al., 2019;
Purason and Tittar, 2022; Pfeiffer et al., 2023),
the well-established Mixture-of-Experts (MoE) ap-
proach (Shazeer et al., 2017; Lepikhin et al., 2020)
to train MT systems (Elbayad et al., 2023; NLLB
Team, 2024) or decoder-only LLMs (Du et al.,
2022; Jiang et al., 2024), and a hybrid of the two
with language-aware routing (Zhang et al., 2021).
To the best of our knowledge, none of these tech-
niques has been studied in the context of pretrain-
ing encoder-only models.

In this work, we develop a novel modular and
sparse design for pretraining largely multilingual
encoders that aims for a balance between language
interference and language transfer. Instead of a
single multilingual model prone to interference,
or a collection of independent monolingual mod-
els that scale poorly, we propose a middle ground
solution with Mixture of Languages (MoL). As de-
picted in Figure 1, MoL is an encoder featuring a
combination of shared and group-specific layers.
Languages are grouped based on similarity crite-
ria, detailed in Section 3.4. Languages within the
same group are processed together in their dedi-
cated specific layers. This architecture allows MoL
to maintain the same active parameter count as
a standard dense model during inference, while
benefiting from language sharing and minimizing
harmful interference.

Our main contributions include:

* A novel approach to pretrain large multilin-
gual encoders using parallel layers with lan-
guage grouping, proven more effective in
balancing language transfer and interference
(Section 3).

* A comprehensive exploration of language
grouping methods and a systematic frame-
work for architecture selection guided by lan-
guage identification accuracy (Sections 3.4
and 3.5).

* The proposal of MoL, a new architecture lever-

aging parallel group-specific layers. MoL
achieves state-of-the-art performance com-
pared to dense, MoE, and existing public mod-
els trained on similar pretraining tasks, while
maintaining a constant active parameter count
(Section 4).

* Evidence demonstrating that MoEs are un-
suitable for large-scale multilingual encoder
pretraining (Section 5).

2 Related Work

The field of multilingual NLP has seen significant
advancements with the development of large, fully
shared multilingual encoders like mBERT (Devlin
et al., 2019) and XLM-RoBERTa (Conneau et al.,
2020). These models establish a successful recipe
for learning multilingual representations by pre-
training a fully shared encoder on large, mixed-
language corpora using self-supervised objectives.
However, a key challenge in such all-is-shared mul-
tilingual models is the phenomenon known as the
“curse of multilinguality” (Conneau et al., 2020),
where performance starts to degrade as more lan-
guages are added to a fixed-size model due to in-
creased interference.

Although simply increasing the size of the model
can sometimes mitigate this issue, it leads to higher
computational costs and slower inference. This
limitation motivates the exploration of alternative
architectures that can handle a growing number of
languages more efficiently, often through modular-
ity or sparsity. These alternatives aim to increase
total model capacity while keeping the number of
active parameters for any given input fixed (thus,
inference FLOPs remain the same). Our proposed
Mol falls into this category with the use of explicit
modular and group-specific layers. Below, we dis-
cuss related work that explores different facets of
modularity and sparsity, particularly in the context
of multilinguality.

Implicit Sparsity and Mixture-of-Experts
(MoE). The most common way to keep the
number of active parameters fixed with increased
model capacity is MoE (Shazeer et al., 2017),
typically employing top-k (often k=2 (Lepikhin
et al., 2020) or k=1 (Fedus et al., 2022)) sparsely
activated experts. While superficially similar to our
MoL, MoE relies on learned routing mechanisms
that often require auxiliary losses, such as load
balancing (Lepikhin et al., 2020), to ensure

29708

balanced expert utilization and prevent collapse to
a single expert. Training MoE models effectively
is known to be challenging due to stability issues
and difficulties in enforcing balanced expert
exploration (Zoph et al., 2022; Cai et al., 2025;
Lepikhin et al., 2020). In contrast, our approach
achieves expert exploration naturally through
language grouping.

Moreover, standard MoE routing is typically
done at token-level, directing tokens within a sen-
tence to different experts. Our approach, however,
routes all tokens within a given sentence to the
same expert, responsible for handling the group the
language of the sentence belongs to. This funda-
mental difference, coupled with the load balancing
requirement, which does not easily accommodate
the language resource variability in a multilingual
context, makes standard MoEs less suitable for ex-
plicit language separation.

MOoE have been used extensively for Machine
Translation (Elbayad et al., 2023; Zhao et al., 2024;
Li et al., 2023). However, to the best of our knowl-
edge, MoEs have seen limited success or explo-
ration in the pretraining of text encoder-only mod-
els; Nussbaum and Duderstadt (2025) proposed the
first encoder-only MoE, but MoE was only used
during contrastive finetuning, while Videau et al.
(2024) showed MoE performing poorly for encoder-
only models in vision.

Explicit Language-Specific layers. Another line
of research introduces explicit modular compo-
nents dedicated to specific languages, tasks or ca-
pabilities. Adapters (Houlsby et al., 2019; He et al.,
2021) are a common example in encoder-only mod-
els, that add a small number of parameters typically
on top of an existing, commonly frozen, pretrained
model. Adapters are usually finetuned for spe-
cific downstream tasks or languages. This differs
from MoL, which explores optimizing performance
through better pretraining of the core encoder archi-
tecture itself. Additionally, adapters do increase the
active parameter count, whereas our design keeps
the active parameter count fixed.

In MT, there has been extensive exploration of
parallel language-specific layers (Pfeiffer et al.,
2023; Qu et al., 2025; Purason and Tittar, 2022),
with some exploration on the encoder side (Qu
et al., 2025). These works demonstrate the bene-
fits of language-specific or group-specific param-
eters for improving MT performance. However,
much of this exploration has centered on the de-

coder and on language-specific modules without
grouping, which scales poorly. There has been less
work exploring parameters specific to groups of lan-
guages or focusing specifically on the pretraining
of a general-purpose multilingual encoder.

Our contribution in context. Building on the
insights from prior work on mitigating language
interference and exploring modular and sparse ar-
chitectures, our work investigates the use of explicit
parallel layers dedicated to groups of languages for
the pretraining of a large multilingual encoder-only
model. We address the scalability challenge of
language-specific parameters by focusing on opti-
mized groups and offer a compelling alternative to
the training complexities and routing limitations of
MoEs.

3 Mixture of Languages (MoL)

In Mixture-of-Languages (MoL), languages are par-
titioned into specific groups. Each group has its
own dedicated layers that exclusively process in-
puts from its language group (see Figure 1). This
is similar to language-specific layers, but differs in
that it groups languages for efficiency.

By forming these groups in a guided manner,
MolL is able to promote language sharing by group-
ing together languages that benefit one another,
while simultaneously reducing interference by split-
ting dissimilar languages into different groups. Fur-
thermore, this approach inherently maintains a rea-
sonable memory footprint and a constant number
of active parameters, making it more scalable than
traditional dense methods.

In this section, we first examine how language in-
terference affects the performance of encoder-only
models and how grouping similar languages to-
gether improves results (3.3). We then study differ-
ent criteria for grouping languages (3.4) and finally
explore various architectures with different distri-
butions of shared and group-specific layers (3.5).

3.1 Experimental Configuration

All models in the paper are trained on the NLLB
data (NLLB Team, 2024), on the selected lan-
guages, for 3 epochs. We limit the number of
sentences per language to 25M maximum, 5SM
minimum and every language in between is left
as is. The synthetic data from NLLB is used for
languages with human data below 5M sentences.
We use the XLM-R tokenizer and fix a maximum
sequence length for our input data to 256 tokens.

29709

Swapped Languages

Setting heb_Hebr dan_Latn|deu_Latn spa_Latn|zsm_Latn arb_Arab
Multilingual 37.76 44.67 49.02 53.90 48.25 36.41
Family Groups 39.45 45.86 52.39 5541 49.75 39.18
Family Groups w/Interference =~ 38.25 43.73 50.63 54.28 48.72 37.48

Table 1: Classification results on different groups of languages. Multilingual model has all parameters shared,
Family-based Groups uses linguistic family groups, and Family-based Groups w/Interference has languages swapped
across linguistic groups. The swapped languages are used to evaluate and are specified in the column title. Results
show that grouping in a linguistically-aware way works best.

The training objective is Masked Language Model-
ing (MLM). We apply a masking ratio of 15% to
the input data, as in the original mBERT (Devlin
et al., 2019). The architecture is similar to XLM-R,
with the memory efficient attention from xformers
(Lefaudeux et al., 2022) to remove padding.

For the group specific layers, we parallelize the
full transformer block, with all linear layers and
layer norms now specific per group. To do so, we
change all language-specific linear layers to a 3D
tensor instead of a 2D tensor, of shape (#groups,
input_dimension, output_dimension), and all
1D parameters (e.g. bias) from 1D to 2D tensors
(#groups, dimension). All tokens in the same sen-
tence are routed to the same group-specific layer.

We utilize the AdamW optimizer (Loshchilov
and Hutter, 2017) and the learning rate is set to
4 - 1075, with linear warmup for 2.5k steps and
cosine decay. The batch size per GPU is set to
1200 sentences, and the models were trained on 4
or 16 nodes, of 8 A100 GPUs each, for 26k and 17k
steps, in the experiments with 30 and 90 languages
respectively.

Due to the large size of our linear layers, doing
the full communication of FSDP becomes very
costly. To solve this, we train the model with
Hybrid Sharding Data Parallel (HSDP) from Py-
Torch’s (Paszke et al., 2019) FSDP2, where we
only split the model per node instead of across all
GPUs, with the forward pass done in bf16 and the
reduction in fp32. To perform efficient multiplica-
tion of the tokens for each expert and the expert
weight, we develop custom CUDA kernels.

3.2 Evaluation Methodology

All models are evaluated on the MTEB (Muen-
nighoff et al., 2023) tasks and datasets detailed in
Table 11 of the appendix, divided in three tasks.

Single Sentence Classification. This task con-
sists of standard classification of the output embed-
dings into different classes. The reported metric is
classification accuracy.

Pairwise Sentence Classification. This task con-
sists in classifying two sentences, e.g. determining
if a pair of sentences are duplicates or not. The
reported metric, from MTEB, is the Average Preci-
sion (AP) based on the distance between sentence
representations.

Semantic Textual Similarity (STS). The STS
task evaluates the model’s ability to replicate hu-
man judgments on sentence similarity. The re-
ported metric, from MTEB, is the Spearman corre-
lation based on distances.

The sentence representations to use for evalu-
ation are obtained by average pooling the output
token embeddings from the last layer.

Unless otherwise specified, we report the aver-
aged results per language across datasets of each
task. We then average across languages, and then
across the three tasks.

3.3 Language Interference and Transfer

We posit that grouping similar languages in an
encoder-only model enhances transfer, whereas
combining dissimilar ones causes interference. To
test this hypothesis, we design an experiment using
the stacked architecture described in Section 3.5,
with 30 languages, initially divided into five groups
of six based on their linguistic family (see Table 8
of the appendix). We then swap two languages
between groups and measure the resulting perfor-
mance change.

To investigate how specific language characteris-
tics influence performance when swapped between
groups, we perform targeted swaps according to
criteria designed to isolate the effect of: (1) Lan-
guage subgroup. Swapping languages differing

29710

Distance
o

Figure 2: Dendrogram of embedding similarity between
the 30 analysed languages. We build 5 groups of lan-
guages based on their distances.

only in linguistic subgroup (within same family, re-
source level and script), e.g., spa_Latn / deu_Latn.
(2) Script. Swapping with a language of the same
resource level (both high-resourced) but with a
different script, e.g., heb_Hebr | dan_Latn, and
(3) Resource-level. Swapping with a language us-
ing a different script and with a different resource
level, e.g., zsm_Latn | arb_Ara.

The results in Table 1 show that language inter-
ference does occur in encoder-only models when
languages are not grouped by similarity. Notably,
even groups with targeted interference (family-
based groups w/ interference) perform slightly bet-
ter on average than the fully multilingual model.
This suggests that the multilingual model suffers
greater interference due to its exposure to a larger
number of dissimilar languages, confirming that
interference scales with the number of languages.
Conversely, the best performing setup is the one
that places languages in groups with similar lan-
guages (family-based groups), confirming our ini-
tial hypothesis. Additional results in other language
pairs are provided in Table 14.

3.4 Language Grouping

Building on our finding that language grouping
matters for downstream performance (Section 3.3),
this section explores different criteria for creating
these language groups.

We use the same 30 languages and stacked archi-
tecture as in the previous experiments and investi-
gate groups based on the following criteria:

Linguistic Knowledge. Groups are defined ac-
cording to language families, as done in the experi-

Strategy Average
Dense Multilingual Baseline 52.65
Language-Specific Layers (topline) 53.86
Linguistic Knowledge 53.32
Token Overlap 52.84
Token Overlap - Dendrogram 53.01
Embedding Similarity 52.85
Embedding Similarity - Dendrogram 53.58
Embedding Similarity - OP 53.49
Balanced Data 53.08
Random 52.80

Table 2: Averaged results for all grouping strategies.
We see that linguistic knowledge and balanced embed-
ding similarity achieve almost the same performance
as a model with language-specific layers (with 5x the
parameters).

ments in Section 3.3, and are detailed in Table 8.

Embedding Similarity. We embed FLORES-
200, an n-way parallel translation dataset (NLLB
Team, 2024), with MEXMA (Janeiro et al., 2025).
The distance between two languages is calculated
by averaging the cosine similarities of the embed-
ded translation pairs. Languages are then clustered
based on these pairwise distances using an agglom-
erative hierarchical clustering algorithm (UPGMA).
However, this clustering does not inherently force
balanced clusters in terms of number of languages.
To correct the disparity between groups, we employ
two rebalancing strategies: (1) manual adjustment
after inspecting the dendrogram (Figure 2), and (2)
solving an optimization problem to create equally
sized groups while minimizing the average pair-
wise distance within each cluster.

Token Overlap. This grouping method is based
on the lexical similarities of the languages. For
this, we encode all tokens in FLORES-200 with the
XLM-R tokenizer, and cluster the languages (again
using UPGMA) based on the number of overlap-
ping tokens. Similarly to the embedding strategy,
the resulting groups are initially unbalanced, so we
use the dendrogram approach to create balanced
groups.

Balanced Data. We build language groups such
that each group-specific layer is trained on an equal
amount of data.

Random. As a baseline, we build random lan-
guage groups, each consisting of 6 languages.

29711

We compare our proposed group architectures,
with 1B total parameters, to a 560M-parameter
dense multilingual baseline, and to a SB-parameter
model with 30 language-specific layers. Our
group architectures and the language-specific lay-
ers model both have 560M active parameters match-
ing the dense backbone. Table 2 presents the re-
sults of each strategy. It is possible to see that the
model with 30 language-specific layers performs
the best. However, using only five parallel lay-
ers with groups formed by linguistic knowledge or
embedding similarity (after balancing) yields com-
parable results, with a performance decrease of less
than 0.2%. These configurations are significantly
more memory efficient (one-fifth the total size) and
offer greater scalability to more languages.

3.5 Model Architecture

Finally, we explore different distributions of
shared (language-agnostic) and group-specific lay-
ers across the encoder, maintaining a constant depth
of 24 layers as in the baseline model. We study
three different architectures:

Stacked. Previous studies on MT have estab-
lished that the first and last layers typically con-
tain more language information (Kudugunta et al.,
2019). Drawing on this finding, we design an archi-
tecture with six language-group specific layers at
the beginning and end of the encoder, sandwiching
12 shared language-agnostic layers. This results in
a 6-12-6 configuration.

Interleaved. Inspired by the common pattern
in MoE models that alternate dense and sparse
layers, we configure an architecture where
language-agnostic and group-specific layers alter-
nate throughout the encoder’s depth, starting with
a group-specific layer.

LID-Based. For this approach, we train a lan-
guage identification (LID) model on top of the
frozen dense multilingual baseline. We hypothesize
that layers where the accuracy of the LID model is
high will benefit more from having language-group
specific layers. We evaluate on FLORES200 and
show the results in Figure 3. Based on the observed
U-shaped pattern, we set the decision threshold at
92.3%. This results in layers O to 5 and 15 to
23 being language-group specific sandwiching 9
language-agnostic layers (i.e., a 6-9-9 configura-
tion). While the previous two architectures feature
a 12-12 split, this method has more parameters with

925 --- Threshold

©
N
IS

LID Accuracy (%)
©
N
w

©
N
N

92.1

012 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23
Layer Index

Figure 3: Accuracy on FLORES200 of the LID model
trained on the output embeddings of each layer of the
dense multilingual baseline.

Architecture Average
Stacked 53.32
Interleaved 53.31
LID-Based 53.49

Table 3: Averaged results for different architectures.

only 9 shared layers, which can be a deciding factor
for improved performance.

In Table 3, we see that the stacked and inter-
leaved architectures have similar performances.
Additionally, we see that the LID based architecture
outperforms the remaining architectures. This indi-
cates that the decision of which layers to make lan-
guage specific is well informed by the LID model,
yielding the best performing architecture.

4 Scaling Mixture-of-Languages

After performing different analyses to better under-
stand how to group languages effectively and how
to build an optimal architecture, we scale our exper-
iments to 90 languages. We select the LID-based
architecture detailed in Section 3.5, with a=9, =9,
c=6 in Figure 1 as our optimal design. For lan-
guage grouping, we utilize linguistic groups. This
strategy was chosen due to its strong performance
(Section 3.4) and its better interpretability com-
pared to embedding similarity-based grouping. We
create 10 groups out of 90 languages, obtaining the
groups detailed in Table 9 of the appendix. Our
final Mo model has 2B total parameters, with
560M active parameters, matching XLM-R.

4.1 Results

The evaluation results for our scaled MoL model
are presented in Table 4. Our model significantly

29712

Model Average | Classification Pair Classification STS
XLM-R 45.61 43.40 54.81 38.63
mBERT 53.39 45.40 56.25 58.54
Multilingual | 51.05 39.96 56.83 56.36
MoL 56.91 48.54 59.11 63.08

Table 4: Results for MoL and the baselines on MTEB.

Model Low Resource High Resource
XLM-R 43.27 174 47.84 112
mBERT 43.49 1703 51.19 9
Multilingual | 44.70 J6.02 44.86 1726
MoL 50.72 52.12

Table 5: Results of the model in high vs low resource
scenarios. MoL outperforms all baselines in both set-
tings.

outperforms a fully dense multilingual model
trained on the exact same training setup. Fur-
thermore, it surpasses publicly available models
trained on different datasets, as XLM-R (trained
on the same languages with the same tokenizer and
with the same number of active parameters), and
mBERT (trained on the same pretrainig task but
with a different tokenizer).

Additionally, revisiting the experiments with 30
languages (Table 2), we note that the gap between
the dense multilingual baseline and MoL with lin-
guistic groups is only 0.7%. However, when scal-
ing to 90 languages, this gap widens to 5.9%, high-
lighting the significantly better scalability of MoL.

Overall, MoL establishes a new SOTA for
largely multilingual pretrained encoder-only mod-
els trained with the MLM objective. This is
achieved through parallelization of layers and
grouping languages in a way that boosts transfer
and reduces interference.

4.2 Performance in Low vs High Resource
Languages

To assess performance across different resource
settings, we compile average results per language
in Table 12. The low and high resource classifi-
cation in the table is based on the classifications
made in NLLB (NLLB Team, 2024). The aver-
age results per resource level are shown in Table 5.
MoL substantially outperforms other models in low
resource scenarios, with up to 7.5% performance
improvements, while still being the best in high re-

source scenarios. Interestingly, when compared to
the multilingual baseline (a fairer comparison with
the same training setup), MoL shows significant ad-
vantage in both settings. However, the difference is
more pronounced in high resource languages. This
is likely attributable to (1) the lower quality of data
in low-resource languages which has a more detri-
mental effect on high-resource languages, and (2)
the high-resource languages being able to benefit
more from the additional model capacity.

S Mixture-of-Languages vs.
Mixture-of-Experts

In this section we directly compare MoL against
MOoE architectures. Both designs increase model
capacity while maintaining the number of active
parameters. For a direct comparison, we train an
MoE model using the setup of Section 3 with a
comparable stacked design (6 sparse layers, 12
shared layers, then 6 sparse layers). Typical MoE
only uses sparse feedforward networks, but for
a direct comparison with MoL we sparsify the
whole Transformer block including self-attention
and layer norms. Routing occurs once at the begin-
ning of each Transformer block, directing tokens
to their chosen expert. A linear layer performs
the gating based on the normalized output embed-
ding of the preceding Transformer block. During
training, Gaussian noise is added the gate’s output
before softmax normalization to promote expert
exploration.

We train two MoE models, one with the typical
token-level routing, and a second with sentence-
level routing. Sentence-level routing makes MoE
closer to MoL with its language-based group-
specific layers where all the tokens of a given sen-
tence are handled by the same expert. Our MoE
models use top-1 routing and are trained with the
Gshard load balancing loss (Lepikhin et al., 2020).

Table 6 shows results comparing the two MoE
models to MoL (optimal linguistic knowledge and
random grouping) and the dense multilingual base-

29713

Strategy Average
Dense Multilingual 52.65
MoL- Random 52.80
MoL- Linguistic Knowledge 53.32
MoE - Token-level Routing 49.53
MoE - Sentence-level Routing ~ 47.94

Table 6: Averaged results across 30 languages for all
grouping strategies, comparing MoE, MoL and its dense
counterpart.

line (all shared). We observe that MoE underper-
forms compared to both the dense model and MoL,
despite all models having the same number of ac-
tive parameters, with MoE and MoL also having
the same total number of parameters. Interestingly,
even random grouping of languages with MoL out-
performs MoE. This suggests MoE’s failure to cap-
ture the inherent language prior that MoL benefits
from through its predefined grouping.

This underperformance of MoE models in
encoder-only architectures has also been noted by
Videau et al. (2024), where dense vision models
outperform their MoE counterparts, with a much
smaller total number of parameters.

Although MoEs have shown great performance
in generative tasks with LLMs (Cai et al., 2025), the
linguistic prior of MoL proves to be a much more
effective method for increasing the total model
capacity at fixed inference FLOPs in multingual
encoder-only models.

5.1 Analysis of MoE Architecture

To further understand the behavior of our MoE
models, we perform an additional analysis on ex-
perts utilization.

A common issue in MoEs is routing collapse
(Shazeer et al., 2017; Lepikhin et al., 2020), where
only one expert dominates the routing gate and
is used to process all tokens, falling back to the
capacity of a dense model. To check for a similar
collapse, we analyze the router distribution in our
trained MoE models.

During training, Gaussian noise is added to the
router’s gate to systematically push the gate to-
wards uniform allocation of tokens. At inference
time, no noise is added, and we use the top-1 pre-
diction of the router. We thus check the router’s
decisions at test-time averaged over 500 random
batches during the evaluation on the Massivelntent-

eng Latn fra_Latn khm_Khmr

#Tokens

Expérté Expzerts!

IlExpzerts!

Figure 4: Histogram of expert routing in testing, av-
eraged over 500 batches in English (highest resource),
French (high resource) and Khmer (low resource).

Classification MTEB dataset in French, English
and Khmer. These three languages have different
levels of resource, with English being the highest
resource language of all, French a high resource
and Khmer a low resource language.

We plot the histogram of expert routing in Fig-
ure 4. We observe that all experts are used in all
languages, and there is no token collapse. As a
final check, we also analyze the effectiveness of
the learned routing, by comparing our learned rout-
ing with random routing. This analysis shows that
our learned routing is effective and performance
degrades without it. Full details on this additional
analysis can be found in Appendix A. Additional
train and test loss curves are provided in Figure 5.

6 Conclusion

In this paper, we introduce MoL, a new multilin-
gual encoder that uses language group-specific lay-
ers to enhance language transfer and reduce inter-
ference, keeping the active parameters constant.

Through a set of experiments on 30 languages,
we analyze different language grouping strategies
and architectural configurations, to identify an op-
timal setup. Subsequently, we scale our best ap-
proach to 90 languages.

Our scaled MoL largely outperforms a dense
counterpart trained with the same active parameters
and training setup, as well as public multilingual en-
coders such as XLM-R or mBERT on downstream
tasks. MoL particularly boosts the performance
in low resource languages while still being best in
high resource. MoL also exhibits better scalability
when increasing the number of languages.

Finally, we perform a comparison against MoE
models, and establish that MoL is more effective
in the context of multilingual encoder-only models,
thus positioning MoL as a prime candidate for scal-
ing model capacity at a constant number of active
parameters (inference FLOPs).

29714

Limitations

In this work, we show that our model with group
specific parameters and language based routing is
able to outperform a dense equivalent model, an
MOoE model, and public SOTA models as XLM-
R and mBERT. The hyperparameters in this work
were optimized for the dense model and also used
for both our MoL and the MoE model. More care-
ful tuning of the parameters could have been done
for both to achieve higher performance.

We perform the comparison against publicly
available models, however those models are trained
on different data, so the direct comparison is hard
to make. It would be ideal to compare to both
XLM-R and mBERT trained on the same data. The
comparison to mBERT is also harder, since the to-
kenizer and active number of parameters are also
different.

We train our models on the Masked Language
Modeling (MLM) task only, it would also be inter-
esting to use different pretraining tasks proposed
since the release of mBERT.

We train our models on both 30 and 90 lan-
guages, and show that the gap at 90 languages is
larger compared to the dense model, which sug-
gests a better scalability of our approach. It would
be interesting to scale even further to more lan-
guages, such as the 200 languages in NLLB (NLLB
Team, 2024), however that would require more
compute, new language groups, and a different tok-
enizer, which makes the comparisons and training
harder.

For linguistic groups we use language families,
it would be interesting to explore other properties,
and other groups inside language families.

References

Belen Alastruey, Jodo Maria Janeiro, Alexandre Al-
lauzen, Maha Elbayad, Loic Barrault, and Marta R.
Costa-jussa. 2025. Interference matrix: Quantifying
cross-lingual interference in transformer encoders.
Preprint, arXiv:2508.02256.

Ankur Bapna, Naveen Arivazhagan, and Orhan Firat.
2019. Simple, scalable adaptation for neural machine
translation. arXiv preprint arXiv:1909.08478.

Lola Le Breton, Quentin Fournier, Mariam El Mezouar,
and Sarath Chandar. 2025. Neobert: A next-
generation bert. Preprint, arXiv:2502.19587.

Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang,
Sunghun Kim, and Jiayi Huang. 2025. A survey on
mixture of experts in large language models. /IEEE

Transactions on Knowledge and Data Engineering,

page 1-20.

Daniel Cer, Mona Diab, Eneko Agirre, I

nigo Lopez-Gazpio, and Lucia Specia. 2017.
SemEval-2017 task 1: Semantic textual similarity
multilingual and crosslingual focused evaluation. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 1-14,
Vancouver, Canada. Association for Computational
Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
Preprint, arXiv:2003.10555.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsuper-
vised cross-lingual representation learning at scale.
Preprint, arXiv:1911.02116.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel R. Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yangi Zhou, Adams Wei Yu, Orhan Firat, et al. 2022.
Glam: Efficient scaling of language models with
mixture-of-experts. In International conference on
machine learning, pages 5547-5569. PMLR.

Mabha Elbayad, Anna Sun, and Shruti Bhosale. 2023.
Fixing MoE over-fitting on low-resource languages
in multilingual machine translation. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 14237-14253, Toronto, Canada. Associ-
ation for Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

Jack FitzGerald, Christopher Hench, Charith Peris,
Scott Mackie, Kay Rottmann, Ana Sanchez, Aaron
Nash, Liam Urbach, Vishesh Kakarala, Richa
Singh, Swetha Ranganath, Laurie Crist, Misha
Britan, Wouter Leeuwis, Gokhan Tur, and Prem

29715

https://arxiv.org/abs/2508.02256
https://arxiv.org/abs/2508.02256
https://arxiv.org/abs/2502.19587
https://arxiv.org/abs/2502.19587
https://doi.org/10.1109/tkde.2025.3554028
https://doi.org/10.1109/tkde.2025.3554028
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.findings-acl.897
https://doi.org/10.18653/v1/2023.findings-acl.897

Natarajan. 2022. Massive: A lm-example mul-
tilingual natural language understanding dataset
with 51 typologically-diverse languages. Preprint,
arXiv:2204.08582.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790-2799. PMLR.

Jodo Maria Janeiro, Benjamin Piwowarski, Patrick Gal-
linari, and Loic Barrault. 2025. MEXMA: Token-
level objectives improve sentence representations. In
Proceedings of the 63rd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 23960-23995, Vienna, Austria.
Association for Computational Linguistics.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Sneha Reddy Kudugunta, Ankur Bapna, Isaac Caswell,
Naveen Arivazhagan, and Orhan Firat. 2019. In-
vestigating multilingual nmt representations at scale.
arXiv preprint arXiv:1909.02197.

Guillaume Lample and Alexis Conneau. 2019. Cross-

lingual language model pretraining. Preprint,
arXiv:1901.07291.
Benjamin Lefaudeux, Francisco Massa, Diana

Liskovich, Wenhan Xiong, Vittorio Caggiano,
Sean Naren, Min Xu, Jieru Hu, Marta Tintore,
Susan Zhang, Patrick Labatut, Daniel Haziza,
Luca Wehrstedt, Jeremy Reizenstein, and Grig-
ory Sizov. 2022. xformers: A modular and
hackable transformer modelling library. https:
//github.com/facebookresearch/xformers.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950-2962, Online. Association for Computa-
tional Linguistics.

Shangjie Li, Xiangpeng Wei, Shaolin Zhu, Jun Xie,
Baosong Yang, and Deyi Xiong. 2023. MMNMT:
Modularizing multilingual neural machine transla-
tion with flexibly assembled MoE and dense blocks.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4978-4990, Singapore. Association for Computa-
tional Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014-2037, Dubrovnik,
Croatia. Association for Computational Linguistics.

NLLB Team. 2024. Scaling neural machine translation
to 200 languages. Nature, 630(8018):841-846.

Zach Nussbaum and Brandon Duderstadt. 2025. Train-
ing sparse mixture of experts text embedding models.
Preprint, arXiv:2502.07972.

James O’Neill, Polina Rozenshtein, Ryuichi Kiryo, Mo-
toko Kubota, and Danushka Bollegala. 2021. I wish
I would have loved this one, but I didn’t — a multilin-
gual dataset for counterfactual detection in product
review. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 70927108, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
Neural Information Processing Systems, 32.

Jonas Pfeiffer, Francesco Piccinno, Massimo Nicosia,
Xinyi Wang, Machel Reid, and Sebastian Ruder.
2023. mmt5: Modular multilingual pre-training
solves source language hallucinations. Preprint,
arXiv:2305.14224.

Taido Purason and Andre Téttar. 2022. Multilingual
neural machine translation with the right amount of
sharing. In Proceedings of the 23rd Annual Con-
ference of the European Association for Machine
Translation, pages 91-100, Ghent, Belgium. Euro-
pean Association for Machine Translation.

Zhi Qu, Chenchen Ding, and Taro Watanabe. 2025. Lan-
guages transferred within the encoder: On represen-
tation transfer in zero-shot multilingual translation.
Preprint, arXiv:2406.08092.

Uri Shaham, Maha Elbayad, Vedanuj Goswami, Omer
Levy, and Shruti Bhosale. 2023. Causes and cures for
interference in multilingual translation. In Proceed-
ings of the 61st Annual Meeting of the Association for

29716

https://arxiv.org/abs/2204.08582
https://arxiv.org/abs/2204.08582
https://arxiv.org/abs/2204.08582
https://doi.org/10.18653/v1/2025.acl-long.1168
https://doi.org/10.18653/v1/2025.acl-long.1168
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1901.07291
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2023.emnlp-main.303
https://doi.org/10.18653/v1/2023.emnlp-main.303
https://doi.org/10.18653/v1/2023.emnlp-main.303
https://api.semanticscholar.org/CorpusID:53592270
https://api.semanticscholar.org/CorpusID:53592270
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://arxiv.org/abs/2502.07972
https://arxiv.org/abs/2502.07972
https://doi.org/10.18653/v1/2021.emnlp-main.568
https://doi.org/10.18653/v1/2021.emnlp-main.568
https://doi.org/10.18653/v1/2021.emnlp-main.568
https://doi.org/10.18653/v1/2021.emnlp-main.568
https://arxiv.org/abs/2305.14224
https://arxiv.org/abs/2305.14224
https://aclanthology.org/2022.eamt-1.12/
https://aclanthology.org/2022.eamt-1.12/
https://aclanthology.org/2022.eamt-1.12/
https://arxiv.org/abs/2406.08092
https://arxiv.org/abs/2406.08092
https://arxiv.org/abs/2406.08092
https://doi.org/10.18653/v1/2023.acl-long.883
https://doi.org/10.18653/v1/2023.acl-long.883

Computational Linguistics (Volume 1: Long Papers),
pages 15849-15863, Toronto, Canada. Association
for Computational Linguistics.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:
The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram,
Michael Giinther, Bo Wang, Markus Krimmel, Feng
Wang, Georgios Mastrapas, Andreas Koukounas,
Nan Wang, and Han Xiao. 2024. jina-embeddings-
v3: Multilingual embeddings with task lora. Preprint,
arXiv:2409.10173.

Ankit Kumar Upadhyay and Harsit Kumar Upadhya.
2023. Xnli 2.0: Improving xnli dataset and perfor-
mance on cross lingual understanding (xlu). In 2023
IEEE 8th International Conference for Convergence
in Technology (I2CT), pages 1-6. IEEE.

Mathurin Videau, Alessandro Leite, Marc Schoenauer,
and Olivier Teytaud. 2024. Mixture of experts in
image classification: What’s the sweet spot? arXiv
preprint arXiv:2411.18322.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Multilingual
e5 text embeddings: A technical report. Preprint,
arXiv:2402.05672.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallstrom, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. 2024. Smarter, better,
faster, longer: A modern bidirectional encoder for
fast, memory efficient, and long context finetuning
and inference. Preprint, arXiv:2412.13663.

Biao Zhang, Ankur Bapna, Rico Sennrich, and Orhan
Firat. 2021. Share or not? learning to schedule
language-specific capacity for multilingual transla-
tion. In International Conference on Learning Rep-
resentations.

Xinyu Zhao, Xuxi Chen, Yu Cheng, and Tianlong Chen.
2024. Sparse moe with language guided routing for
multilingual machine translation. In The Twelfth In-
ternational Conference on Learning Representations.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du,
Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable
and transferable sparse expert models. Preprint,
arXiv:2202.08906.

29717

https://arxiv.org/abs/2409.10173
https://arxiv.org/abs/2409.10173
https://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://openreview.net/forum?id=Wj4ODo0uyCF
https://openreview.net/forum?id=Wj4ODo0uyCF
https://openreview.net/forum?id=Wj4ODo0uyCF
https://openreview.net/forum?id=ySS7hH1smL
https://openreview.net/forum?id=ySS7hH1smL
https://arxiv.org/abs/2202.08906
https://arxiv.org/abs/2202.08906

A Analysis of Routing in Mixture of
Experts

As an additional analysis, we assess the effective-
ness of the learned routing by we comparing it to
random routing. To do so, we load the trained MoE
model and evaluate it using both approaches. Ini-
tially, we test the model on the pretraining task,
MLM, using the FLORES200 dataset across all
languages the model was trained on. The results,
presented in Table 7, show that the learned rout-
ing significantly reduces the loss, suggesting its
effectiveness. To determine if the learned routing
is only beneficial for the pretraining task or if it
generalizes well, we also evaluate the model on
the MassivelntentClassification task from MTEB
in English. The results indicate that accuracy is
nearly halved with random routing, demonstrating
that the learned routing is both effective and well
learned.

Routing ‘ Val Loss Accuracy

Learned 2.823 41.42
Random 6.130 22.22

Table 7: Comparison of learned routing vs random rout-
ing. Evaluated on FLORES in all languages covered by
the model for val loss, and MassivelntentClassification
in English for the accuracy column.

B Additional Tables and Plots

In this Appendix we collect additional tables and
plots, in particular:

» Table 8: Contains the language family based
groups created with 30 languages.

» Table 9: Contains the language family based
groups created with 90 languages. The groups
are designed to group similar languages to-
gether while keeping a balanced amount of
languages in each group.

» Table 10: List of all languages covered in the
90 languages models.

e Table 11: MTEB datasets and tasks used for
evaluation.

e Table 12: Results by language (averaged
across datasets and tasks) for MoL and all
baselines, categorized by amount of resources
of the languages.

29718

—— MOL Training Loss
MOE Training Loss

nnnnnnnnnnnnnnnnnnnn

(a) Train curves.

—— MOL Test Loss
MOE Test Loss

Test Loss

step
(b) Test curves.

Figure 5: Loss curves for MoL and MoE.

» Table 14: Additional results performing the
same analysis thar Table 1 but in other lan-
guages.

* Figure 5: Train and test loss curves for both
MoL and MoE.

e Table 13: Execution time of MoL, MoE and
dense models at inference time.

arb_Arab hau_Latn
1 | heb_Hebr ary_Arab
mlt_Latn kab_Latn

swh_Latn lin_Latn
2 | xho_Latn bem_Latn
zul_Latn fon_Latn

ind_Latn fij_Latn
3 | bug_Latn zsm_Latn
ceb_Latn tgl Latn

fra_Latn spa_Latn
4 | ita_Latn glg_Latn
por_Latn scn_Latn

eng_Latn afr_Latn
5 | deu_Latn nob_Latn
dan_Latn tpi_Latn

Table 8: Groups based on language family for 30 languages.

als_Latn gle_Latn pbt_Arab
hye_Armn ell_Grek est_Latn
cym_Latn kmr_Latn fin_Latn
gla_Latn prs_Arab hun_Latn

bel_Cyrl hrv_Latn pol_Latn
bos_Latn lvs_Latn rus_Cyrl
2 | bul_Cyrl lit_Latn slk_Latn
ces_Latn mkd_Cyrl slv_Latn
srp_Cyrl ukr_Cyrl

afr_Latn eng_Latn nno_Latn
3 | dan_Latn isl_Latn swe_Latn
deu_Latn nld_Latn ydd_Hebr

asm_Beng mar_Deva san_Deva
ben_Beng npi_Deva sin_Sinh

4 guj_Gujr ory_Orya snd_Arab
hin_Deva pan_Guru urd_Arab
cat_Latn ita_Latn spa_Latn

5 | fra_Latn por_Latn
glg Latn ron_Latn

amh_Ethi heb_Hebr
6 arb_Arab gaz_latn

hau_Latn som_Latn
ind_Latn zsm_Latn
7 | jav_Latn sun_Latn
plt_Latn
kan_Knda tel_Telu
8 | mal_Mlym
tam_Taml
azj_Latn tur_Latn
9 kaz_Cyrl uig_Arab
kir_Cyrl uzn_Latn
lao_Laoo zho_Hant vie_Latn
tha_Thai swh_Latn eus_Latn

10 | mya Mymr xho_Latn epo_Latn
zho_Hans khm_Khmr jpn_Jpan
kat_Geor kor_Hang khk_Cyrl

Table 9: Linguistic groups of the 90 languages.

29719

Languages

afr_Latn fra_Latn kir_Cyrl por_Latn tur_Latn
amh_Ethi gla_Latn kmr_Latn prs_Arab uig_Arab
arb_Arab gle_Latn kor_Hang pbt_Arab ukr_Cyrl

asm_Beng glg Latn lao_Laoo ron_Latn san_Deva
azj_Latn guj_Gujr Ivs_Latn rus_Cyrl sin_Sinh
bel_Cyrl hau_Latn lit_Latn slk_Latn vie_Latn

ben_Beng heb_Hebr mal_Mlym slv_Latn xho_Latn
bos_Latn hin_Deva mar_Deva snd_Arab ydd_Hebr
bul_Cyrl hrv_Latn mkd_Cyrl som_Latn zho_Hans
cat_Latn hun_Latn plt_Latn spa_Latn zho_Hant
ces_Latn hye_Armn khk_Cyrl als_Latn
cym_Latn ind_Latn zsm_Latn srp_Cyrl

dan_Latn isl_Latn mya_Mymr urd_Arab
deu_Latn ita_Latn nld_Latn uzn_Latn
ell_Grek jav_Latn nno_Latn sun_Latn
eng_Latn jpn_Jpan npi_Deva swe_Latn

epo_Latn kan_Knda gaz_Latn swh_Latn
est_Latn kat_Geor ory_Orya tam_Taml
eus_Latn kaz_Cyrl pan_Guru tel_Telu
fin_Latn khm_Khmr pol_Latn tha_Thai

Table 10: List of languages covered by our model.

Task Type Task Name

MassivelntentClassification (FitzGerald et al., 2022)
MassiveScenarioClassification (FitzGerald et al., 2022)
Classification MTOPDomainClassification (Li et al., 2021)
MTOPIntentClassification (Li et al., 2021)
AmazonCounterfactualClassification (O’Neill et al., 2021)

STS

STS17 (Cer et al., 2017)

XNLI (Conneau et al., 2018)

Pair Classification | 1 15 (Upadhyay and Upadhya, 2023)

Table 11: Full list of MTEB (Muennighoff et al., 2023) tasks used for evaluation.

29720

Language | Resource | XLM-R mBERT Multilingual MoL

afr_Latn High 34.49 46.29 40.43 48.59
amh_Ethi Low 28.86 5.26 33.42 40.04
ara_Arab High 36.77 48.32 47.08 55.13
asm_Beng Low 55.19 55.07 57.46 59.65
ben_Beng High 53.27 55.48 56.81 53.42
bul_Cyrl High 45.72 49.87 47.42 58.70
cym_Latn Low 30.85 40.58 38.05 43.83
dan_Latn High 48.45 50.69 39.19 48.40
deu_Latn High 54.39 58.65 53.01 58.20
ell_Grek High 47.50 51.98 46.37 50.75
eng_Latn High 51.78 62.23 57.14 63.40
fin_Latn High 46.44 48.40 36.85 43.76
fra_Latn High 50.69 57.19 50.79 56.50
guj_Gujr Low 55.54 58.93 57.51 60.12
heb_Hebr High 43.05 44.92 33.21 41.58
hin_Deva High 51.14 54.92 49.99 56.47
hun_Latn High 44.93 47.35 37.09 45.67
hye_Armn Low 38.96 47.50 37.67 44.66
ind_Latn High 53.08 50.47 44.11 54.20
isl_Latn High 38.28 41.15 36.13 44.85
ita_Latn High 44.40 53.20 41.02 49.37
jav_Latn Low 35.97 40.10 38.80 46.77
jpn_Jpan High 56.74 53.80 46.20 53.87
kan_Knda Low 46.88 49.30 46.40 52.79
kat_Geor Low 32.66 40.01 33.58 41.61
khm_Khmr Low 32.58 07.01 39.28 44.14
mal_Mlym Low 42.74 43.92 37.20 47.35
mar_Deva Low 54.26 56.60 55.21 61.11
mya_Mymr Low 34.73 36.86 40.81 48.34
nld_Latn High 43.69 51.34 38.54 50.03
ory_Orya Low 54.91 50.29 57.43 59.18
pan_Guru Low 55.45 57.46 58.03 60.41
pol_Latn High 47.48 50.52 37.83 46.97
por_Latn High 44.77 51.50 40.60 48.37
ron_Latn High 44.18 46.51 35.88 44.80
rus_Cyrl High 51.03 54.71 47.21 53.66
san_Deva Low 54.19 55.65 55.35 56.08
slv_Latn High 44.46 50.31 39.75 47.55
spa_Latn High 47.15 60.84 56.58 61.40
swe_Latn High 51.33 48.33 41.52 51.34
tam_Taml Low 47.98 52.18 45.75 52.58
tel_Telu Low 40.40 42.13 34.99 47.49
tha_Thai High 51.37 34.50 52.78 56.75
tur_Latn High 51.83 51.12 46.16 54.76
urd_Arab Low 36.77 43.90 37.67 46.78
vie_Latn High 53.11 53.16 50.64 55.19
zho_Hant High 55.92 56.90 50.51 57.75

Table 12: Results per language averaged over all tasks.

Model | Latency (seconds)

Dense 1.2
MoE 34
MoL 1.6

Table 13: Execution time of MoL, MoE and dense model processing 1k sentences from FLORES200 in English,
averaged over 10 executions.

29721

Swapped Languages

Script Subgroup Resource
Setting ara_Arab por_Latn|deu_Latn por_Latn|nob_Latn ara_Arab
Multilingual 36.41 46.04 49.02 46.04 43.54 36.41
Family Groups 39.18 47.30 52.39 47.30 45.51 39.18
Family Groups w/Interference ~ 36.68 45.05 52.39 46.36 42.58 35.82

Table 14: Classification results on different groups of languages. Multilingual model has all parameters shared,
Family-based Groups uses linguistic family groups, and Family-based Groups w/Interference has languages swapped
across linguistic groups. The swapped languages are used to evaluate and are specified in the column title. Results
show that grouping in a linguistically-aware way works best.

29722

