
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 29735–29762
November 4-9, 2025 ©2025 Association for Computational Linguistics

Cardiverse: Harnessing LLMs for Novel Card Game Prototyping

Danrui Li and Sen Zhang and Samuel S. Sohn and Kaidong Hu
Rutgers University

{danrui.li, sen.z, samuel.sohn, kaidong.hu}@rutgers.edu

Muhammad Usman
Ontario Tech University

muhammad.usman8@ontariotechu.ca

Mubbasir Kapadia
Roblox

mkapadia@roblox.com

Abstract

The prototyping of computer games, partic-
ularly card games, requires extensive human
effort in creative ideation and gameplay eval-
uation. Recent advances in Large Language
Models (LLMs) offer opportunities to auto-
mate and streamline these processes. How-
ever, it remains challenging for LLMs to de-
sign novel game mechanics beyond existing
databases, generate consistent gameplay en-
vironments, and develop scalable gameplay
AI for large-scale evaluations. This paper
addresses these challenges by introducing a
comprehensive automated card game proto-
typing framework. The approach highlights
a graph-based indexing method for generat-
ing novel game variations, an LLM-driven
system for consistent game code generation
validated by gameplay records, and a game-
play AI constructing method that uses an en-
semble of LLM-generated heuristic functions
optimized through self-play. These contribu-
tions aim to accelerate card game prototyp-
ing, reduce human labor, and lower barriers
to entry for game developers. Code repo:
https://github.com/danruili/Cardiverse

1 Introduction

Prototyping is a central part of computer game
development, where game designers create a work-
ing model of an initial idea that allows for down-
stream evaluations on gameplay experience (Fuller-
ton, 2014). It does not focus on product-level qual-
ity but fast iterations on core game mechanics and
their implementations. Extensive research has been
conducted to automate or assist these processes
through computational methods (Gallotta et al.,
2024). Recent advances in Large Language Models
(LLMs) have further expanded the possibilities, en-
hancing tasks such as game mechanic design (Char-
ity et al., 2023), programming (Wu et al., 2024;
Qian et al., 2024), and game AI development (Yao
et al., 2023). LLMs show the potential to integrate
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Figure 1: Our work integrates game mechanic design,
code generation, and gameplay AI creation into an LLM-
based framework.

these subtasks into a comprehensive game proto-
typing pipeline, especially for card games that can
be represented purely in text. However, LLMs face
the following significant challenges (Gallotta et al.,
2024).

(1) Novel variations in game mechanic: Game
mechanics, defined as the “actions, behaviors and
control mechanisms afforded to the player” (Hu-
nicke et al., 2004), are iteratively varied during pro-
totyping where novelty is encouraged. Early stud-
ies created novel game variations by recompositing
existing game mechanics that were extracted from
game database (Guzdial and Riedl, 2022; Machado
et al., 2019). To further encourage novelty, recent
work used LLMs to compose game mechanics from
basic elements (Charity et al., 2023). However, it
remains unclear how to encourage a more inten-
tional novelty such that LLM outputs are neither
too similar to existing games nor self-repeating.

(2) Consistent game generation: Translating
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game mechanics into consistent game code is crit-
ical for prototyping. To improve the consistency,
prior work used LLM-generated I/O examples (Liu
et al., 2023) to validate the generated code for
short functions. This approach is not suitable for
long programs with multiple rounds of interactions
(such as card games), where the difficulty of gen-
erating correct I/O examples increases with the
number of interactions.

(3) Scalable evaluation with game AI: Evaluat-
ing and refining game mechanic designs requires
gameplay, which to be automated requires the sup-
port of AI agents with sufficient intelligence to ex-
plore game dynamics (Isaksen et al., 2015). How-
ever, existing methods, ranging from reinforcement
learning to LLM-based agents, come with signifi-
cant drawbacks, including manual data formatting
before training (Zha et al., 2021), long training
times (Shinn et al., 2023) or costly inference (Wang
et al., 2024), which are impractical for rapid proto-
typing of diverse games.

To address these challenges, we propose Car-
diverse, an LLM-based card game prototyping
pipeline that creates interactable card game variants
given a base game description. It integrates game
mechanic design, code generation, and gameplay
AI creation into a cohesive framework, benefiting
downstream playtestings and gameplay evaluations.
The key contributions are:

1. We propose an indexing method to repre-
sent games as game mechanic graphs. By
clustering, summarizing, and designing new
game mechanics as graph nodes, this ap-
proach informs LLM-based game mechanics
design with a global understanding of exist-
ing databases. This enables the generation of
novel game variations distinct from existing
designs.

2. We employ an LLM-based agent system that
generates game code and iteratively reflects
on its consistency by self-generated gameplay
records. We transfer the reflection techniques
on self-reported action trajectories, which are
used in robotic task planning (Huang et al.,
2023), into game code generation. It improves
the consistency between code and game me-
chanics, minimizing human labor in game pro-
totyping.

3. We introduce a scalable method for gener-
ating gameplay AI. Using a pool of action-

value code functions produced by our frame-
work, stepwise inclusion determines which
functions to include based on win rates during
self-play. Without calling LLMs in each game
decision, it still achieves similar performance
as LLM agents in prior work (Yao et al., 2023;
Shinn et al., 2023). Therefore, it can conduct
large-scale evaluations on new games gener-
ated by our pipeline, completing a cycle that
enhances both creativity and efficiency in card
game prototyping.

2 Related Work

Large language models (LLMs) have demonstrated
broad applicability across diverse design domains,
with remarkable works ranging from video story
ideation (Xia et al., 2025b; Li et al., 2024) to archi-
tectural design (Li et al., 2025). Within the realm
of game design, prior research has explored their
use in areas such as level creation (Todd et al.,
2023), dialogue systems (Akoury et al., 2023), and
scene development (Hu et al., 2024; Kumaran et al.,
2023). Focusing specifically on card games, this
review narrows its scope to the non-visual com-
ponents of gameplay, which constitute the core
experiences of such games.

2.1 Game Mechanics Design
Assisting human in game mechanics design has
been a long time topic, where the community made
explorations on how to design mechanics that are
both novel and feasible (Cook et al., 2017; To-
gelius and Schmidhuber, 2008). “P-creativity”,
which refers to the novel creation by reflecting on
existing knowledge (Boden, 1998; Guzdial et al.,
2018), is one of the research focus. Early work on
this topic produced new mechanics by searching
a manually-defined parameter space (Togelius and
Schmidhuber, 2008) or varying the combinations
from a manually-defined set of basic types and
rules (Chen and Guy, 2020). Later, the combina-
tional variation method is enhanced by extracting
a set of basic mechanics from video data or struc-
tured texts (Sumner et al., 2024; Guzdial and Riedl,
2022; Machado et al., 2019). Recently, as LLMs
have shown its capabilities in creating content for
interactive experience (Todd et al., 2023; Li et al.,
2024), prior work further enhanced the pipeline by
using LLMs to composite game mechanics from
extracted basic elements (Charity et al., 2023).

Our work enhances the novel generations of
LLM-based methods by retrieving game mechanic

29736



inspirations from a database. Resting on the cluster
summarization techniques in Edge et al. (2024),
we group semantically similar mechanics across all
games into clusters. Within each cluster, novel
game mechanics are created from cluster sum-
maries by LLMs. They are later sampled to enable
a combinational variation on input games.

2.2 Program synthesis in games
Traditionally, many works focus on generating
short code snippets in a specific domain such as ma-
trix operations (Shi et al., 2022) or list processing
(Ellis et al., 2021) . However, it is challenging to ap-
ply similar approach to game code generation, as it
involves much larger search space, which does not
suit iteration-based methods. Recently, large lan-
guage models (LLM) have emerged as strong meth-
ods for program synthesis, where domain-specific
fine-tuning (Wu et al., 2024), in-context learning
(Gao et al., 2023), LLM agent systems (Qian et al.,
2024) , and LLM pipelines (Xia et al., 2025a) are
heavily studied. These methods have greatly im-
proved code generation quality in many aspects,
ranging from code snippets to real-world software
engineering tasks (Jimenez et al., 2024).

However, it remains unclear how to validate the
consistency between user instructions and gener-
ated code for interactive code environments, since
I/O examples (Liu et al., 2023) are hard to generate
in these cases.

2.3 Game Intelligence
Creating AI systems capable of playing games in-
telligently has been a long-standing research focus.
Early approaches relied on optimizing manually
crafted game features (Sturtevant and White, 2007)
and then replaced by neural networks (Schmid
et al., 2023; Zha et al., 2021; Brown and Sandholm,
2019). They show exceptional gameplay intelli-
gence in some game domains. But they require
long training times, hyperparameter tweaking, and
especially manual intervention to adapt game state
representations to new games. Manual interven-
tion hinders the scale with which we can evaluate
the generated game variants, which makes them
impractical for rapid prototyping.

Recent advancements in large language models
(LLMs) offer a solution to this limitation as LLMs
can adapt to diverse game inputs without case-
specific customization. Prior work used LLMs as
gameplay agents, wherein LLMs are invoked at
every game turn (Yao et al., 2023), optionally sup-

ported by external storage for long-term memory
or reflection (Guo et al., 2024; Shinn et al., 2023;
Zhang et al., 2024). Other studies combine LLMs
with other neural networks by using LLMs to de-
sign reward functions (Ma et al., 2024; Baek et al.,
2024), using neural networks to narrown down the
search space for LLMs (Yim et al., 2024), or train-
ing LLMs from scratch to predict game actions
using real gameplay data (Schultz et al., 2024).

To achieve scalable gameplay AI large-scale
evaluations, we explore the following techniques
that minimize the cost and latency in both construc-
tion and application stages: (1) we aims to get a
gameplay policy in code (Liang et al., 2023; Light
et al., 2025) rather than leveraging LLMs in each
game decision. (2) We do not optimize the pol-
icy by LLM-based reflections with gameplay data
(Shinn et al., 2023), as it can hardly be paralleled
and introduce large noises. (3) We directly use
win rate as optimization target rather than any fine-
grained signals (such as reward by naive MCTS
Light et al. 2025), as they may not be effective in
certain games (e.g. deep game state trees).

3 Method

Our work composites an LLM-based card game
prototyping pipeline by three components: In 3.1
we leverage game mechanic graphs to enable novel
game mechanic design, producing new game varia-
tions in text descriptions. In 3.2 we use the text de-
scriptions from the previous step to generate code
for the game. In 3.3, gameplay AI is created using
the generated code, thus enabling game evaluations
for human designers.

3.1 Game Mechanic Design

The design problem is defined as below: given a
card game database, where games are represented
in text descriptions, we aim to create game varia-
tions that avoid high resemblance to the database.
We tackle this by applying a variation instruction to
LLMs, where we propose game mechanic replace-
ments explicitly. Shown in Figure 2, our approach
begins with an indexing process, where we extract
mechanics as graphs from existing card game de-
scriptions. The mechanics are subsequently clus-
tered, and new mechanics are generated within
each cluster using LLMs. During variation process,
for a game to be variated, mechanics that frequently
appear in the database are suggested to be replaced
by newly-designed ones within the same cluster.
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3.1.1 Mechanics extraction

To encourage comprehensive and interconnected
mechanics extraction from the text description, we
propose a game mechanic graph representation. As
illustrated in Figure 2 (middle), game mechanics
represented in short text phrases are stored as nodes,
where all games share the root node “the game
ends”. The control flows between the nodes are
represented as directed edges. The edge direction
denotes the game effect contribution. For instance,
in the game UNO, “empty the hand” is a down-
stream child of the root node because it directly
leads to the game ending.

We adopt a backtracking approach to extract the
graphs. Starting with the shared root node, we use
LLMs to expand the search frontier like a breadth-
first search. As illustrated in Figure 2 (right), we
input the game description and expansion history
to the LLM (“the game ends” → “empty hand”)
and instruct it to identify all mechanics that directly
lead to the rear of the expansion history (“empty
hand”). In the same way, we recursively expand
all expanded nodes, where expansions are termi-
nated by both the LLM’s judgment and a manually
set depth limit. It should be noted that while the
mechanics are extracted in a tree search (thus the
depths of nodes are recorded), we allow new nodes
to be connected to any existing nodes so the ex-
tracted results may not be a tree.

3.1.2 Mechanics Clustering and Designing

We aggregate all mechanics from the game
database and cluster them by semantic similarities
and tree depth. Semantic similarity is measured us-
ing cosine similarity of text embeddings, with the
text-embedding-3-large model from OpenAI
serving as the embedding generator. A hierarchi-
cal clustering algorithm (UPGMA, see Sokal et al.
1958) is employed, with a manually set similarity
threshold of 0.4.

For clusters containing more than 3 mechanics,
we input LLMs with all mechanic descriptions to
summarize their shared themes and generate new
mechanics adhering to these themes. To enhance
diversity in the results, we vary the system prompts
using techniques outlined in Fernando et al. (2024).
Smaller clusters are excluded from the summariza-
tion pipeline because they lack sufficient informa-
tion for summarization tasks.

3.1.3 Retrieval-augmented Game Variation

The newly generated mechanics can be utilized to
create game variations that differ significantly from
existing database entries. Given a game descrip-
tion, we extract its game mechanic graph and map
the mechanics to existing clusters. Mechanics from
clusters with high occurrences in the database are
identified as candidates for variation. Our frame-
work then proposes replacing these frequently oc-
curring mechanics with newly generated ones from
the same cluster. An LLM applies this proposal to
the game description, using a self-reflection pro-
cess to resolve potential ambiguities or conflicts in
the game mechanics. This approach ensures that
the varied game remains coherent while introduc-
ing novel elements.

3.2 Game Code Generation

Similar to Xia et al. (2025a), we adopt a workflow
where LLM function calls are assembled into a pre-
defined procedure. It receives a game mechanics
description in natural language as input, and out-
puts the corresponding game code. The workflow
first creates a game code without syntax /runtime
error, and a structurized game description (detailed
in § B.2). Then the validation process (Figure 3)
starts as below:

We run the game code in a card game engine
designed by us (detailed in § B.1), sampling five
gameplay records that are generated by the engine.
The record includes the information from the last 6
game rounds and the game ending. In each round,
the information includes the observation and the
action of the current player, which are converted
from the game state dictionary to natural language
by a fixed parser. See § B.3 for gameplay record
examples.

For each record, we send it to LLM with the
structured game description, asking if the game
play record violates any rule in the game descrip-
tion. If so, the violated rule, which is quoted by
the LLM, is used as a query to a code snippet
database. This database retrieves related code snip-
pets rather than entire code scripts. The retrieved
code snippets act as the correct implementation
of the rules that resemble the violated ones. It is
fed to LLM with the previous violation analysis
to refine the existing game code. After the refine-
ment, the game code is sent back to the pipeline.
This refinement loop continues until the maximum
iteration is reached or the game code passes all vali-
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def proceed(state, logger):
... 
state[“deck_size”] -= 1
logger.info(“Deck size decreased 

by 1”)

Player 0 draw 2 cards from the 
deck. Deck size decreased by 1.
Player 0 plays 8-diamond to the 
table...

state[“deck_size”] -= 1
logger.info(“Deck size decreased by 1”)
state[“deck_size”] -= 2
logger.info(“Deck size decreased by 2”)

Gameplay record

Game code Code edits

Validate &
Refine

Simulate

Figure 3: Use gameplay records to validate code.
Gameplay records, generated by game code, are used to
validate and refine the consistency of game code.

dations from the records. See § B.3 for edit process
examples.

3.3 Gameplay AI Generation

Our method constructs a gameplay agent that se-
lects actions based on an ensemble of heuristic
functions, each representing a distinct strategy de-
rived from an LLM. These heuristics are imple-
mented as Python functions that score candidate
actions based on the current game state (similar to
Q-functions in RL). The agent selects the action
with the highest average score across all heuristics.

Formally, given the current game state sT and
a discrete action space A, the gameplay agent
selects the action aT that maximizes the aver-
age score assigned by a set of heuristic functions
{Qπ1 , . . . , Qπn}, each derived from a distinct pol-
icy:

aT = argmaxa∈A
1

n

n∑

i=1

Qπi(sT , a) (1)

Figure 4 illustrates the full pipeline. Starting
from a natural language description of the game,

we prompt an LLM to generate a diverse set of
high-level policies in natural language. These are
translated into Python-based heuristic functions
that score actions. We then construct an ensem-
ble from this set and iteratively optimize it through
gameplay, using win rate evaluation to guide heuris-
tic selection.

3.3.1 Propose Policies
To bootstrap a diverse set of strategies, we prompt
an LLM with a natural language description of the
game and three distinct prompting methods. First,
we instruct the LLM to generate natural language
descriptions of possible “strategies”. Second, we
ask it to propose “game state metrics that could be
used for a reward function”. These two prompt-
ing methods are performed independently. Third,
we prompt the LLM to revise each initially gen-
erated strategy by reflecting on its relationship to
the previously proposed metrics. This reflection
encourages policies that are grounded in in-game
signals. See § C.5 for examples.

In our experiments, we generate n items for each
prompting method, yielding a total of 3n distinct
policies. We choose n = 4 in our work (see § C.3
for further analysis).

3.3.2 Construct Heuristic Function Ensemble
Each policy above is translated into a Python func-
tion using the LLM. These heuristic functions ac-
cept the current game state and a candidate action
as inputs (both represented as dictionaries) and
return a scalar score representing the desirability
of the action under the corresponding policy (see
§ C.5 for examples). Code generation is automated,
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def q_func(state, action):
...
if ‘ace’ in state[‘hand’]:

score += 1
...
consecutive = []
for card in state[‘hand’]:

...
score += len(consecutive)
...

return score
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def q_func_3(s,a)
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{

“public”:{ “deck_size”: 18 },
“players”: [

{“hand_size”: 5, “meld”:..},
{“hand_size”: 8, “meld”:..},
{“hand_size”: 3, “meld”:..}

],
}

Figure 4: Gameplay AI generation pipeline.

and each function is tested for syntax and runtime
correctness. Functions that fail to execute without
error are discarded.

To further enrich the ensemble, we generate a
negative variant of each valid heuristic function by
multiplying its output by -1. This simple transfor-
mation inverts the preference structure, producing
3n counter-policies that enhance the behavioral di-
versity of the ensemble. All 6n heuristic functions
composite the full ensemble.

3.3.3 Optimize Ensemble by Playing
To select an effective subset from the full ensemble
of heuristic functions, we use a step-wise inclusion
strategy. In the first iteration, each heuristic func-
tion Qπi is evaluated individually by constructing
a gameplay agent that uses only that function for
action selection, as described in Equation 1. The
function with the highest win rate over 400 games
against randomly behaving agents is selected and
added to the current subset.

In each subsequent iteration, we evaluate every
remaining candidate function (except the negative
variations of the added heuristics) in combination
with the current subset. A new agent is constructed
for each candidate addition, and its win rate is again
measured over 400 games against the same random
players. The function that provides the greatest
improvement in win rate is added to the subset.
This process continues until no additional function
improves performance.

The full optimization process consists of two
phases. In the first phase, selection is performed
against only random agents. In the second phase,
optimization is repeated using a more competitive
evaluation pool that includes both random agents
and those selected in the first phase. The final sub-

set from the second phase serves as the gameplay
policy.

4 Results

We manually collected 106 commonly seen card
games from the web (Bicycle Playing Cards, 2025)
as text descriptions, including 25 casino games
(mostly poker), 27 trick-taking games, 11 rummy
games, 10 solitaire-like games, and 33 others.
These games are used to initalize the database
for all three tasks (game design, code generation,
gameplay AI).

Unless otherwise specified, we employed
gpt-4o-2024-08-06 as the LLM backbone and
text-embedding-3-large from OpenAI as the
text embedding model. All experiments were con-
ducted using the default configuration of the Ope-
nAI API. Specifically, we applied temperature sam-
pling with a temperature of 1 and without nucleus
(top-p) restrictions.

4.1 Game Variations by Mechanics Design
Our method starts with extracting game mechanics
from all 106 card games as graphs. Using our
dataset, one game graph contains 13 ± 5 nodes
and 20 ± 10 edges on average, depending on the
complexity of game rules. We show that robust
and meaningful game mechanics are extracted, as
the differences between extracted mechanic graphs
aligns with human judgment. Figure 5 shows the
graphs for two similar games (Boat House Rum
and Rummy Rum), where we observe most of the
nodes are consistent between two graphs except
for the necessary differences. See § A.1 for more
qualitative results.

Based on the mechanic extractions, our method
can produce new mechanics for a cluster of similar
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Figure 5: Extracted game mechanics from two card
games. The differences are colored in green (modifica-
tion) and red (deletion).

mechanics. Here is an example where all mechan-
ics that involve “win by emptying hands” are clus-
tered and new mechanics are designed as below.
See § A.2 for cluster examples and § A.3 for varied
games as final products.

Get rid of all cards in hand
A player wins the round by being the first to get rid of
all their cards.

Newly -breeded instances:
- A player wins by strategically exchanging cards to end
up with a singular , unique card that no other player
holds.
- A player wins by collecting one of every type of card ,
achieving a complete set before others do.
- A player wins by maintaining an exact balance between
cards acquired and cards played throughout the game.
- A player wins by successfully playing and then
reacquiring their entire starting hand of cards ,
completing a full cycle.
- A player wins by discarding cards in a specific
sequence to reveal a hidden pattern before anyone else
does.
- A player wins by passing all their cards in an exact
order to a partner , completing a successful relay of card
exchange.

We demonstrate that our method encourages
novel game variations by measuring how its gener-
ated variations deviate from the original 106 games.
We define Quantiled Max Similarity (QMS) as a
metric. Given a base game g and a variation method
M , QMS(M, g, p) represent the pth percentile of
the closest cosine similarity scores between the
variations of g and every game in database D.

QMS(M, g, p) = Qp
v∼M(g) max

d∈D\g
ζ(v)·ζ(d) (2)

where Qp(·) selects the quantile value at percentile
p. ζ(·) refers to the text embedding process. Due
to limited computational resources, we choose 28

games from D as the evaluation set G. For each
g ∈ G we sample 33 variations. In this way, we
can compare variation methods by examining their
QMS distributions (through the interquartile range
p ∈ {0.25, 0.5, 0.75}) across all games in G.

We compare our method against two alterna-
tives: (1) Vanilla: the game variation is created by
a fixed system prompt. Multiple variations are sam-
pled by repeatedly querying the LLM. (2) Prompt-
Breeder (Fernando et al., 2024): This work uses
a predefined set of meta-prompts (e.g., “Rewrite
the following instruction to be more creative”) to
automatically generate variations of a base system
prompt. In our experiment, we applied this set of
meta-prompts to our own system prompt to gener-
ate a diverse pool of variants, followed by manual
filtering. Then we randomly pick the varied system
prompts to generate game variations.

Table 1 shows our method successfully penalizes
game variations that are highly similar to database
items. For variations that are in top 25% or top 50%
on the similarity to database, our method outper-
forms PromptBreeder (abbreviated as “Prpt.Bdr.”)
by achieving a lower similarity score. Prompt-
Breeder on the other hand, shows no significant
difference to the Vanilla method. For the rest of
the variations (p=0.25), our method shows similar
performance as PromptBreeder.

We also argue that the penalization does not
make the variations to collapse to a limited num-
ber modes that leads to the loss of diversity. It is
demonstrated by evaluating QMS within the gen-
erated variations, where a good method shall pro-
duces variations that differ from each other. To
apply QMS within the variations, we replace the
D \ g in Equation 2 with M(g) \ v.

As shown in the bottom section of Table 1,
our method prevents high similarities than other
methods (p=0.75). Our method offers fewer low-
similarity variations (p=0.25) than PromptBreeder,
since it offers more controllable process, where the
variations are strictly directed by game mechanics
replacements.

4.2 Consistent Code Generation
We evaluate the pipeline on two sets of game de-
scriptions: (1) 29 commonly-seen card games sam-
pled from our collection of 106, and (2) 28 varied
games generated using the method in 3.1, where
each game in (1) is expanded into 33 variants and
the variant with the lowest cosine similarity to the
database is chosen. One game is not variated since
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p=0.75 p=0.50 p=0.25
To database
Vanilla 88.7±5.8 † 87.2±6.3 83.8±8.2

Prpt.Bdr. 88.3±4.9 † 85.8±4.5 81.1±3.9 †

Ours 87.4±4.5 84.8±4.3 80.6±3.7 †

Within
Vanilla 95.4±0.8 92.0±4.0 86.7±5.9

Prpt.Bdr. 91.0±2.1 85.5±2.1 † 79.5±2.5

Ours 89.6±2.4 85.4±2.8 † 81.3±2.8

Table 1: Novelty performance between methods.
Means and standard deviations of Quantile Maximum
Similarity (×10−2) are reported in two scopes and three
percentiles p. The first scope denotes the similarity be-
tween the variations and database. The second denotes
the similarity within the variations. Pairs with † denote
the data entries from the same column are NOT signifi-
cantly different (p-value of paired t-test ≥ 0.05)

its mechanics did not belong to a sufficiently large
cluster for generating new mechanics.

The following metrics are used in our evaluation,
where the second and third metric originate from
Qian et al. (2024):

Generation Success (Succ) This is a @pass3
metric using 10 tests per generated code. Given a
game description, we generate code 3 times. Each
script is executed 10 times with different random
seeds for the card deck, using agents with random
policies to maximize state coverage. If any script
runs error-free in all 10 trials, the task is marked
as successful. Table 2 shows results as “successful
tasks/total tasks.”

Executability (Exec) Similar to Succ, we run
each game code 100 times with random seeds. A
run is successful if it completes without syntax or
runtime errors. We report the average success rate
across all codes that passed Succ.

Embedding Consistency (ECon) Semantic em-
bedding similarity between the code and the de-
scription of the game. Here we used structurized
description detailed in Section 3.2. While this met-
ric may lack task-specific precision, we include it
for consistency with prior work (e.g., Qian et al.
2024) to facilitate cross-study comparison.

Play Record Consistency (PCon) We sample
10 game play records using randomized decks
and policies to maximize state diversity. Each
record is evaluated by an LLM to score the con-
sistency (scaled 1 to 10) between actual game

play record and game description, which ap-
plies a similar implementation as 3.2. We use
claude-3-5-sonnet-20241022 here to avoid the
blind spots of one single LLM source. See Ap-
pendix B.4 for the details of game play record. We
also test the effectiveness of PCon in Appendix B.4.

Our method is compared against its ablated ver-
sion, where LLM-based validation is skipped after
the repeated debugging (abbreviated as “-val”). We
add the second ablated version, where validation is
skipped and the LLM backbone is replaced by Ope-
nAI o1-preview in code initialization (“-val⊕”).

Table 2 demonstrates a robust code generation
using our method, as the mean executability is over
90%. Also, our method improves the code align-
ment to the game description, as play record consis-
tency metrics in both game groups (common and
varied) are higher than its ablated version. While a
stronger model results in higher generation success
rate, for successfully-created games, our method
lifts the consistency of a weaker model to a strong
one, indicating its potential to substitute stronger
backbone models when they are not available.

Succ↑ Exec↑ ECon↑ PCon↑
Ours 27/29 100.0±0 0.55±0.04 8.99±1.56

-val 27/29 99.9±3.9 0.56±0.03 † 7.69±1.96∗

-val⊕ 29/29 96.3±9.4 0.56±0.04 8.90±1.74 †

(a) Common Games

Succ↑ Exec↑ ECon↑ PCon↑
Ours 25/28 100.0±0 0.52±0.05 9.20±1.08

-val 25/28 98.3±4.6 0.52±0.04 8.66±1.60

-val⊕ 28/28 99.3±2.0 0.54±0.05 9.08±1.29 †

(b) Varied Games

Table 2: Code generation performance between meth-
ods. Mean values of the metrics across all game in-
stances are reported. The standard deviation is shown
after ±. ∗ represents the metric are significantly differ-
ent (p-value ≤ 0.05 in paired t-test) from our method,
while † denotes the metric are unlikely to be different
(p-value ≥ 0.7) from our method.

4.3 Gameplay AI Generation

After a manual verification on all generated games
(both common and varied) in the previous task,
some games are excluded from the test set for game-
play AI, as they are either purely luck-oriented
games with no strategies involved, or they are not
completely consistent with the corresponding game
description. Ultimately, we selected 13 common
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games and 6 varied games (listed in § C) for game-
play AI evaluation.

We benchmarked our method against Chain-of-
Thought (Wei et al., 2024), ReAct (Yao et al., 2023),
Reflexion (Shinn et al., 2023), and Agent-Pro noted
as BeliefAgent (Zhang et al., 2024) (detailed in
§ C.4). Non-LLM methods are not included since
they are not suitable for the game prototyping con-
text (see § 1 and § 2.3).

The win rate performance of a method is as-
sessed by its advantage over competing policies.
Specifically, we measure how effectively policy p2
outperforms policy p1 under identical contexts. In
games with n players, the first n − 1 players act
as defense, and the last player as the attacker. The
win rate of an attacker using p1 against defenders
using p2 is denoted as ω(p2, p1). The advantage of
p1 over p2 is defined as:

A(p1, p2) = ω(p2, p1)− ω(p2, p2) (3)

Table 3 shows that our agent achieves the high-
est win rate advantage (p2 = random agent), with
significant differences over all the opponent agents
in common games. For varied games, our agent
not only achieves the highest average win rate
but also is the only agent that can beat the ran-
dom agents. We also show its performance against
human-designed heuristics in § C.1 and ablation
experiments in § C.2.

Common Varied All
CoT 1.4 ±15.8 -4.8 ±13.4 -0.5 ±15.0

ReAct 2.4 ±16.4 -4.5 ±9.9 0.2 ±14.7

Reflexion 1.4 ±18.4 -3.2 ±11.7 0.0 ±16.4

Belief 4.2 ±18.2 -1.8 ±18.0 2.3 ±17.9

Ours 14.6 ±19.3 ∗ 19.7 ±30.5 16.3 ±22.6 ∗

Table 3: Game AI win rate advantage between meth-
ods. Means and standard deviations (shown after ±) of
win rate advantages (×102) over random agents across
all game instances. ∗ represents our metrics are sig-
nificantly different from those of prior work (p-value
≤ 0.05 in paired t-test).

In the cost analysis, we used OpenAI’s API to-
ken pricing as a reference. We take the average per-
game token cost across all 19 games as the metric
here. As our agent only requires one-time usage of
tokens during the generation phase, our total cost
becomes lower than prior work in just 50 game
runs (see Figure 6), which suits better for large-
scale evaluations in game prototyping. Refelxion

and Belief agent have a significantly higher cost
during training phase.
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Figure 6: Gameplay AI Token Cost. Total LLM cost
as a function of number of game runs, averaged across
19 games. The cost after 50th run is estimated by linear
extrapolations.

5 Conclusion

This work introduces an LLM-based pipeline for
card game prototyping. It integrates three key com-
ponents: (1) a graph-based representation of game
mechanics that facilitates the extraction, cluster-
ing, and generation of novel game mechanics; (2) a
game code generation system that aligns code with
text description through iterative gameplay valida-
tion; and (3) a scalable gameplay AI that gener-
ates ensembles of action-value functions optimized
through self-play. It provides designers with inter-
actable game variants at minimum implementation
cost, enabling faster card game prototyping cycles
for human designers. Future work may consider
versatile game variation methodologies, broader
game genres, or more powerful code generation
and game AI.

Use of Scientific Artifacts

Our use of card game data from Bicycle Playing
Cards (2025) falls within the scope of fair use as
defined under 17 U.S.C. §107.

Disclosure of AI Assistance

The language of this manuscript was improved with
the assistance of ChatGPT (OpenAI).
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Limitations

We outline the limitations and potential future work
in the following parts:

Game variations Our work proposes a method
to create new game mechanics from existing game
descriptions, and further showcases how the new
mechanics help creating game variations by replac-
ing one mechanic in the game input. Our decision
to focus on relatively simple variation methods was
deliberate. We argue that a foundational challenge,
one that has been underexplored in prior work, is
how to systematically measure and account for nov-
elty in game variations. We believe that this issue
must be addressed before more complex structural
changes can be meaningfully pursued.

To this end, we adopt a strategy of making small,
controlled modifications to existing games. This
allows us to rigorously investigate how leveraging
a structured representation (in our case, a graph
database) can support the generation of novel yet
coherent variations.

However, new mechanics can also be integrated
in other combinational methods (shown in Guzdial
and Riedl 2022), which can be solved in future
work.

Also, while our framework supports creating
variations from human input, our current imple-
mentation expects human inputs to match the de-
tail level of our dataset examples. Handling more
colloquial or incomplete human inputs remains a
promising direction for future research.

Furthermore, our work relies on LLM reflections
to enhance the coherence between newly-added me-
chanics and existing ones. This approach reduces
the human labor in solving the potential conflicts,
as prior work requires human-computer coopera-
tion (Machado et al., 2019). However, future work
could explore whether the extracted mechanics
graph can help the advanced reasoning on potential
game mechanics conflicts.

Scale mechanics design to other game genres
Our work can be applied to the logical depen-
dencies in other game genres. For example, by
changing the node content from game mechanics to
atomic story beats, we could apply it to the nonlin-
ear/branching narratives in story-rich games. Sim-
ilarly, we can also adapt to the dependencies of
puzzles/tasks in adventure puzzle games. But in
broader scenarios, we expect a larger number of
game mechanics for some cases. While our current

clustering method can be controlled by semantic
similarity, its trivial implementation requires O(n3)
time complexity. Switching to Gaussian Mixture
Models (O(n) time) may be a better scalable solu-
tion, though it lacks intuitive clustering control.

Game code generation In game code genera-
tion, the current validation process is not efficient
enough, making its token cost close to that of ada-
vanced model (such as o1). Future work may aim
to lower the token use by other agent pipeline de-
signs.

Also, code generation is sensitive to the
instruction-following ability of the LLM. We found
that weaker models struggle to produce code
aligned with game descriptions. In contrast, other
tasks in our framework (e.g. graph extraction and
mechanic summarization) are less affected by the
LLM choice.

Gameplay AI Currently, our game AI does not
explicitly consider other players’ intention, which
is a commonly-used component in prior work
(Zhang et al., 2024; Guo et al., 2024). Besides,
it could also be promising to explore whether the
reasoning results from LLM agents (such as Re-
flexion Shinn et al. 2023) can be distilled to our
policy-code-based results.
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A Game Mechanics

A.1 Extracted Game Mechanics

Figure 7 shows a more macroscopic comparison
among multiple games, where the mechanic graphs
of two poker games (Bull Poker and Holdem) are
closer to each other than a card game from a differ-
ent genre (Go Boom).

Also, our method reveals the dependency be-
tween game mechanics. In Figure 8, the mechanics
“Highest-ranking poker hand", which frequently ap-
pears in poker games, is associated with relevant
mechanics such as “showdown" and “poker hand
rankings".

See Figure 9 for more qualitative results of ex-
tracted game mechanics.

A.2 Mechanics Cluster

We present two examples of mechanic clusters. The
first is drawn from clusters whose mechanics lie
one level away from the root node in the game

Figure 7: Extracted mechanics in an embedding
space. Mechanics are distributed in a 2D UMAP projec-
tion of their text embedding space, colored by its game
ID. Selected card games shown as mechanic graphs,
where the shared root node is displayed in black star
mark.

Figure 8: Extracted mechanic dependencies. Mechan-
ics are distributed in a 2D UMAP projection of a text
embedding space, colored by its cluster ID. Starting
from selected mechanic clusters (in bold text), their de-
pendencies on supporting mechanics (in normal text)
are drawn in lines.
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Figure 9: More extracted game mechanics from game
descriptions.

mechanic graph, representing more fundamental
mechanics. The second is drawn from clusters two
levels away from the root, corresponding to more
atomic mechanics. Each example is described with
the following components:

• Abstraction: The overarching theme that uni-
fies all mechanic instances within the clus-
ter, as summarized by the LLM agent in our
pipeline.

• Variation: The design principles for gener-
ating new mechanics within the cluster, also
proposed by our LLM agent.

• Instances: The complete set of mechanic in-
stances, drawn either from an existing game
database or generated by our method (with
newly designed instances marked by “New”
in curly brackets).

Mechanic Cluster Example 1

Concept 100: Scoring Mechanics Game

Abstraction
The game 's objective revolves around achieving or
maintaining specific point thresholds or targets to
determine a winner.

Variation
The instances vary in the target winning conditions and
mechanics , such as reaching a specific positive point

threshold (e.g., 10, 30, 51, 100, 121) to win versus
strategies focused on having the lowest score to win at
the game 's end when another threshold (e.g., 100 points)
is hit. Some instances award bonus points for certain
achievements , while others penalize players with high
scores or require low penalty scores to win.

Instances
### Instance 0: Receive Bonus Points for Winning
An additional 10 points are awarded to the player who has
the highest cumulative score at the end of the game.

### Instance 1: Reach a score of 30 or more points
A team wins the game by reaching a score of 30 or more
points.

### Instance 2: Score lowest at the end of the game
The game ends when a player reaches 100 cumulative points
. The player with the lowest score is declared the
overall winner.

### Instance 3: Accumulate 100 points
The first player to reach 100 points across multiple
hands wins the game.

### Instance 4: Lowest score upon end of game
When the game ends by a player reaching 100 points , the
player with the lowest score wins the game.

### Instance 5: Score 10 or more points
The game ends when a player scores 10 or more points.

...( remaining instances are not shown here)...

### Balanced Trade -Off Scoring (New)
Players navigate the game by accumulating points , with
the goal of ending exactly between 50 and 70 points.
Crossing this range results in starting the next round
with a penalty of 10 points. The first to finish a round
within this range for three consecutive rounds declared
the winner.

### Pivot Point Strategy (New)
Players must reach precisely 50 points to trigger a
special round where they can choose to either lock their
score or risk doubling it with a final challenge. The
first player to successfully double their score beyond
100 points without exceeding 120 points wins the game.

### Score Flip Challenge (New)
Players aim to score exactly 60 points. Upon reaching
this exact score , their points flip , causing the player
to adopt a defensive strategy to end the game. The player
wins by maintaining the least fluctuation in score after
the flip until the game ends.

### Controlled Climb (New)
Players race to reach exactly 75 points. Upon reaching 75
points , they must complete one additional round trying

not to exceed their score from any previous rounds. The
winner is the player who reaches 75 points first and
maintains the lowest maximum score in the additional
round.

### Dynamic Range Mastery (New)
Players aim to end with scores between evolving target
ranges that shift every round (e.g., 20-40 in Round 1,
50-70 in Round 2, etc.). The player who consistently
lands within each target range without going over wins
the game after five rounds.

### Threshold Tempo (New)
Players strategize to reach multiple designated scoring
targets (e.g., 30, 60, 90) within a set number of rounds.
Achieving a target grants a strategic advantage , whereas
missing it induces a point freeze. The winner is the

first player to hit all targets exactly and complete the
final round with no point freeze active.

Mechanic Cluster Example 2

Concept 145: Follow Suit Card Game

Abstraction
The core concept revolves around players trying to follow
the suit of the lead card if possible. If they cannot

follow the suit , they are often required to draw from the
stock or play any card depending on additional rules.

Variation
While the central theme requires players to follow the
lead suit , variations include drawing from the stock when
unable to follow , having options to play any card

initially or using a trump card , and various specific
rule -based outcomes like collecting tricks or adding
cards to hand if unable to follow the suit.
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Instances
### Instance 0: Follow Suit
Players must play a card of the same suit as the lead
card if possible; they may play a trump card or any card
if unable to follow suit.

### Instance 1: Have a Card of the Led Suit
Players must have a card of the same suit as the lead
card to follow the suit.

### Instance 2: Following the suit led
Players must follow the suit of the initially led card if
they have any in hand.

### Instance 3: Having a legal card to play
A player can play a card if they have one that matches
the suit or rank of the lead card.

### Instance 4: Unable to play leads to drawing from
stock
If a player does not have a card matching the suit or
rank , they must draw from the stock pile.

### Instance 5: No card in hand matches the lead suit or
rank
A player is unable to play a card from their hand if none
of their cards match the suit or rank of the lead card.

...( remaining instances are not shown here)...

### Cascade Suit Challenge (New)
Players must follow the suit of the lead card or play a
card of the same rank. If neither is possible , they draw
from the stock and must try to create a new sequence that
either matches the original lead suit or creates a new

lead suit for the next player to follow.

### Strategic Trump Swap (New)
Players aim to follow the suit of the lead card , but can
exchange a card from their hand for a trump card from a
common pool if they cannot follow suit. The new trump
becomes the suit to follow in subsequent turns if chosen.

### Sequential Suit Shift (New)
Players must follow the suit of the lead card in a
cascading manner , where each turn shifts the suit
requirement clockwise among the players ' hands. If unable
to comply , they must contribute to a central pot , which

is won by the first player to successfully follow suit
again.

### Suit Cycle Bluff (New)
Players strive to follow the suit of the lead card but
can declare an alternate suit , bluffing to force others
into drawing from the stock. If challenged and caught
bluffing , they must draw additional cards , but if
successful , the bluffed suit becomes the new lead for the
next round.

### Adaptive Suit Sequence (New)
Players follow the suit of the lead card until someone
cannot and draws from the stock , initiating a temporary '
joker ' round. During this round , any suit can be played
but does not change the lead , adding strategic depth to
maintain or regain control.

### Revolving Suit Mastery (New)
Players follow the suit of the lead card with a twist: if
they exhaust all cards of a particular suit , they gain a
bonus action to swap it with a card from the stock ,

changing the active lead suit for the next player ,
introducing layers of strategy in conserving suits.

A.3 More Generated Varied Games

Our generated variant, Hearts of Time, differs from
classical Hearts mainly by introducing the Tempo-
ral Suit Shift, a once-per-game ability that lets a
player declare a temporary trump suit for a trick,
adding a new layer of strategic timing.

Variant of Heart from our work

# Hearts of Time Game System Ruleset (Refined)

### 1. Game State

#### Common Information:

- Trick History: Sequence of played cards in each trick ,
visible to all players.
- Current Leader: Player who won the last trick , visible
to all players.
- Turn Information: Current player and actions taken
during the turn.
- Player Order: Logical order of play , visible to all
players.

#### Player -Specific Information:
- Public:

- Scores: Current interference (disturbance scores)
known at all times.
- Trick Wins: Number of tricks each player has won.

- Private:
- Player Hand: Cards held by the player.
- Temporal Suit Shift Status: Whether the player has
used their shift ability.

---

### 2. Card

#### Attributes:
- Rank: From 2 to Ace.
- Suit: One of {Hearts , Diamonds , Clubs , Spades }.
- Special Cards:

- Queen of Spades: 13 points of disturbance.
- Hearts: Each incurs 1 point of disturbance.

---

### 3. Deck and Initial Dealing

#### Deck Composition:
- A standard 52-card deck divided into four suits.

#### Initial Dealing:
- 4 Players: Each player receives 13 cards.
- Other player counts require deck adjustment by removing
low -ranking cards , maintaining suit balance.

---

### 4. Legal Action Space

#### On a Turn , a Player May:
1. Lead a Trick:

- Play any card from their hand.
- Pre -requisite: Must follow suit , unless void in that
suit.

2. Follow a Trick:
- Play a card matching the led suit , if possible.
- Else , play any card.

3. Declare Temporal Suit Shift:
- Announce the shift of rule for a trick to establish
a temporary trump suit. This can be declared before
playing any card during a player 's turn.
- Pre -requisite: Can only be used once per game per
player.

---

### 5. Round

#### Sequence of Play:
1. The player with the 2 of Clubs starts the first trick.
2. Players take turns in clockwise order , leading with
the suit following rules.
3. Each trick consists of:

- Playing cards in the order of player turns.
- Using Temporal Suit Shift if strategically
advantageous. When declared , the player 's chosen suit
acts as trump for that entire trick.

4. The winner of a trick leads the next trick.
5. Play continues until all cards have been played.

#### Winning Conditions:
- Game ends when a player reaches a preset disturbance
threshold (commonly 100 points).
- Player with the lowest disturbance score wins.

---

### 6. Other Game Mechanics & Rules

- No Hearts or Queen of Spades First Trick: During the
first trick , players must avoid playing hearts or the
Queen of Spades unless they have no alternative.
- Shooting the Moon: Capturing all Hearts and Queen of
Spades reduces disturbance to zero for that round ,
increasing opponents ' scores by 26 points.
- Temporal Strategy: Deciding when to use Temporal Suit
Shift is critical to altering trick outcomes. The
temporary trump suit impacts only one trick and reverts
after its resolution.

---
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### 7. Player Observation Information

#### Visible Information to Each Player:
- Cards in their own hand.
- Cards played in tricks.
- Scores of each player.
- Temporal Suit Shift use and declared trump suit.

#### Hidden Information:
- Cards in opponents ' hands.

---

### 8. Payoffs

##### Endgame Scoring:
- A point of disturbance equals 1 for each Heart.
- Queen of Spades is worth 13 disturbance points.
- Shooting the Moon results in zero points for the round ,
with opponents ' scores increased.

##### Winning Player 's Reward:
- Having the lowest disturbance score leads to victory
when the game concludes.

With these refinements , the "Hearts␣of␣Time" game
provides clarity on the use and impact of Temporal Suit
Shift , maintaining the intrigue and strategy native to
Hearts , while clearly outlining the new rules. Enjoy your
journey through the mystical realm as you guide your

temporal path among the "Hearts␣of␣Time."

Our variant of classical Hollywood Eights builds
on the original rules of matching ranks, suits, or
playing wild eights. However, when the classical
version revolves around matching suits or ranks
and using wild eights to control flow until a player
empties their hand, the variant introduces a se-
quence merging mechanics and a scoring race to
150 points.

Variant of Hollywood Eights from our work

## Card Merge Challenge: Refined Ruleset

### 1. Game State

#### Common Information:
- Stock Pile: Cards remaining in the draw pile.
- Starter Pile: Top card visible to all players.
- Player Order: Determined at the beginning of the game ,
visible to all.

#### Player -Specific Information:
- Public:

- Merged Sequences: Sequences successfully completed by
all players and visible to all.

- Scoreboard: Cumulative points of each player.
- Private:

- Player Hand: Cards held by each player , visible only
to themselves.

---

### 2. Card

#### Attributes:
- Rank: One of {A, 2, 3, 4, 5, 6, 7, 9, 10, J, Q, K}.
- Suit: One of {Hearts , Diamonds , Clubs , Spades }.
- Unique Symbol: A special symbol on each card for
merging purposes.
- Special Card: Eight acts as a wild card for both suit
and symbol changes.

---

### 3. Deck and Initial Dealing

#### Deck Composition:
- A standard 52-card deck with additional unique symbols
on each card.

#### Initial Dealing:
- Deal five cards face down to each player.
- Remaining cards form the stock pile.
- Top card of the stock pile is turned up to start the
starter pile. If this is an eight , it is inserted into
the deck , and another card is drawn.

---

### 4. Legal Action Space

#### On a Turn , a Player May:
1. Play a Card:

- Place one card from their hand on the starter pile.
- Prerequisite: The card must match the top card by
rank , suit , or symbol.

2. Merge Sequence:
- Create a sequence with the top card of the starter
pile combined with cards from the player 's hand.
- Required: Sequence of three or more cards sharing a
common symbol.
- Additional Rule: Only one merged sequence can be
created per turn.

3. Use Wild Card (Eight):
- Play an eight to change suit and symbol trajectory.

4. Draw a Card:
- Draw from the stock if they can 't play , OR opt to
strategically draw despite alternatives.
- Prerequisite: No matching card in hand , or by
strategic choice.

---

### 5. Round

#### Sequence of Play:
1. Player left of the dealer starts.
2. Turns proceed in clockwise order.
3. During a turn , a player:

- Plays a card or merges.
- Draws a card (if needed).
- The turn ends and passes to the next player.

4. Play continues until:
- A player reaches 150 points through merges and
regular gameplay.

#### Winning Conditions:
- A player wins upon reaching 150 points through
successful merges and card play.

---

### 6. Other Game Mechanics & Rules

- Merge Bonus: Successfully merging a sequence grants a
10-point bonus per card in the sequence.
- Wild Card Usage: Eights alter game flow , allowing suit
and symbol changes for new sequence formation.
- Score Recording: Results recorded across up to four
ongoing games , scoring detailed sequentially.

---

### 7. Player Observation Information

#### Visible Information to Each Player:
- The top card of the starter pile.
- Merged sequences on the table.
- Cumulative scores of all players.

#### Hidden Information:
- Identity of cards in the stock pile.
- Cards in opponents ' hands.

---

### 8. Payoffs

#### Endgame Scoring:
- Points awarded for each merged sequence:

- Each successful merge contributes to the score based
on the number of cards in the sequence.
- Align scoring with the traditional logic: Face cards
= 10 points; Eights = 20 points; Ace = 15 points;
Numbered cards = Pip value.

#### Objective Achievement:
- Game winner is the first to score 150 points through
strategic merging and regular gameplay , leveraging
visible and hidden game states smartly.

This refined description ensures the gameplay mechanics
are well -aligned with the new merging objective and
special card function , providing clarity and ensuring
strategic depth.

We also provide 3 variants of Go Fish, where
we use LLMs to summarize their differences to the
original version.
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Go Fish variants from our work (Differences summarized)

Variation 1
The varied game of Go Fish introduces a sequential
accumulation advantage , allowing players to peek at the
top card of the stock pile if they successfully request
and complete sequential ranks within the same turn.
Unlike the base game , the varied game focuses more on
strategic card requests and offers players the
opportunity to gain insight into upcoming cards. The
varied game emphasizes book completion as players can
continue their turn by requesting sequential ranks ,
adding a new layer of strategy. Additionally , while most
rules regarding initial dealing and turn sequences remain
consistent , the varied game subtly shifts the focus of

strategy towards leveraging sequential requests and
peeking privileges.

Variation 2
In the Varied Game: Position Swap Edition of Go Fish , a
notable difference is the introduction of a Position Swap
mechanic , allowing players to strategically swap cards

by correctly guessing two card ranks in an opponent 's
hand. Unlike the base game , this version emphasizes
strategic plays and interactions over straightforward
card requests. While both versions involve forming books
by collecting four cards of the same rank , the varied
game allows for an additional guess -based action that can
change the course of a player 's strategy. The varied

game also permits shared victories in the event of a tie ,
whereas the base game typically ends in a draw or a

singular winner.

Variation 3
In the varied version of Go Fish , the stockpile cards are
entirely hidden , unlike in the base game where the

number of cards remaining is known. The varied game
introduces a "misdirection" special ability , allowing a
player once per cycle to request a card rank they do not
have , at the risk of skipping their next turn if caught
misusing it more than once. A cycle in the varied game is
defined as a complete sequence where each player has

taken a turn , resetting the misdirection ability. Finally
, winning conditions are similar , but misdirection use
and penalties during the game add an extra layer of
strategy not present in the base game.

B Code Generation

As shown in Figure 11, the pipeline comprises two
processes: initial code generation and iterative vali-
dation, both relying on interaction with our custom
card game engine.

This section starts from introducing the system
design of the game engine in B.1, followed by de-
tails of the first process in B.2. Validation process
has been briefly described in Section 3.2. In B.3,
we provide generated intermediate results for qual-
itative assessment. Finally, we evaluate the effec-
tiveness of our metric “PCon” in B.4.

B.1 Game engine design

Instead of generating entire game code from scratch
as in Qian et al. (2024), we instruct LLMs to fill in
several predefined functions, which are integrated
into our card game engine in Python.

To enable maximum compatibility for various
card games and easy integration with gameplay AI,
we adopt a framework structure where (1) game
state updates and gameplay AI are decoupled (Zha
et al., 2021); and (2) dependencies among game
logics are minimized by a functional programming
design (Wu et al., 2024). The logic of card games

are abstracted into 6 functions (initiation, initial-
ize deck, initial dealing, proceed round, get legal
actions, and get payoffs) running in a predefined
procedure (see Figure 10). Each function, which
modifies the game state in dictionary form, is what
our pipeline will generate.

initiation()

Over?

get_legal_actions()

proceed_round()

Observation

Action

Gameplay 
Agent

get_ payoffs() Gameplay record

get_observation()

init_deck()

init_dealing()

Figure 10: Game Engine Framework Design. The
game engine, composed of 6 core functions (in light
blue) in a fixed flow, interacts with external gameplay
agent (in light green) through game observation and
game action in dictionary forms.

The gameplay AI is integrated into this system
by receiving game observations and outputting
game actions in dictionaries. While our gameplay
AI directly handles dictionaries, for all LLM-based
agents we compared against, the game state is con-
verted to the following format. The example below
shows the observation information in one game
turn. LLM agents may receive concatenated infor-
mation from the past several turns.

B.2 Initial Code Generation
Given the text description of a card game as input,
this process creates its game code without syntax
or runtime error by the following phases:

Description structurization LLM is called to
rewrite the description into a structured markdown
format, where game description is sectioned into
game states, deck initialization, legal action space,
game play process, etc.

Retrieve examples By comparing the text em-
bedding cosine similarity between the structured
description of the input and the structured game de-
scriptions in the example database. We can retrieve
the closest game examples with their corresponding
code.

In our work, we construct an example database
containing 5 game descriptions and their game code
(“crazy-eights", “california-jack", “boat-house-
rum", “bull-poker", “baccarat"). These games are
selected from the 106 games without overlaps to
our test set.
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Code Drafting The framework drafts game code
using the structured description, game engine code
with function templates (detailed in B.1), and re-
trieved code examples. Those supporting infor-
mation is included in the system prompt as an in-
context learning practice. After the code draft un-
dergoes self-refinements with a fixed number of
rounds, the code is sent to the next phase.

Repeated Debugging The game code is itera-
tively refined using feedback from the game en-
gine to eliminate runtime errors. During testing,
player choices are randomized by sampling the le-
gal action space generated by the ‘get legal actions’
component. The game is executed 10 times with
different random seeds to explore diverse game
states. If runtime errors occur, the error messages
are fed back to the LLM, which adjusts the code
accordingly. This process repeats until the game
runs without errors.

B.3 Intermediate Results in Validation
In the code validation process, our method com-
pares the generated gameplay record with the game
description, identifying whether there exists an
inconsistency. Multiple consecutive observations
from different players are concatenated together.

Gameplay Record Section for “Go Fish”

Player 0 observes:
```
# Common Information
num_players: 4
current_player: 0
books: [3, 1, 3, 3]
stock_size: 0

# Player Information

## Player 0 (Self)
current_player: True
hand: [K, 10, 10, K, K]
books: ['2', '9', '5']

## Player 1
hand_size: 1
books: ['4']

## Player 2
hand_size: 2
books: ['6', '3', '7']

## Player 3
hand_size: 4
books: ['Q', 'J', 'A']

# Legal Actions
0: request -( target_player: 1, rank: K)
1: request -( target_player: 1, rank: 10)
2: request -( target_player: 2, rank: K)
3: request -( target_player: 2, rank: 10)
4: request -( target_player: 3, rank: K)
5: request -( target_player: 3, rank: 10)
```

Player 0 decides to: request -( target_player: 1, rank: 10)
----------
Player 1 observes:
```
# Common Information
num_players: 4
current_player: 1
books: [3, 1, 3, 3]

stock_size: 0

# Player Information

## Player 0
hand_size: 5
books: ['2', '9', '5']
...

Relfecting on the gameplay record and the game
description, LLM generates validation analysis as
below:

Consistency validation results

*Step by step evaluation*

1. Turn 0 (Player 0):
- Player 0 has cards K, 10, 10, K, K and chooses to
request from Player 1 the rank 10. This is legal
because Player 0 has cards of rank 10.
- Player 1 has 1 card; no information if it was 10.
Assuming it wasn 't, Player 0 should "Go␣Fish ," but the
stock is empty. The turn ends.

2. Turn 1 (Player 1):
- Player 1 has only card 8 and requests rank 8 from
Player 0.
- Since Player 0 does not have this card (as per
observed hand K, 10, 10, K, K), the request fails , but
again no stock to draw from. The turn ends.

3. Turn 2 (Player 2):
- Player 2 has cards 10, 10 and requests rank 10 from
Player 0. This action is valid since they have rank 10
cards.

- Player 0 has two 10s to pass over -indicating a
successful request. Player 2 should take another turn
but this is not visible.

4. Turn 3 (Player 3) and Subsequent Observations:
- Player 3 requests rank 8 from Player 1. Since Player
1 does not have the rank (hand size is 1, card 8 not

explicitly confirmed), the turn would typically result
in "Go␣Fish."

- The same cycle continues; player 's actions become
clearer , but crucial observations like drawn or
obtained cards are missing , suggesting errors in turn
execution.

5. Game End:
- Legal actions remaining for the player with hand K,
K, K show remaining possibilities accurately. No
correct handling of potential book formation or
reattempts captured.

*Analysis Summary*
Summary:
```text
The progression of the turns does not effectively
simulate correct sequence dictated by rules , notably in
request fulfillment and subsequent actions not following
successful card claims due to incomplete turn handling.
Data missing for card exchanges leads to incongruity with
established gameplay mechanics.

```
Quote (optional):
```markdown
"Each turn consists of: Requesting cards from an opponent
; Drawing from the stock if the request results in 'Go
Fish '; Optionally revealing a book if completed; Passing
the turn after drawing or failing to make a catch. Re-
attempt: If a player successfully gets cards , they can
continue asking for the same or different rank."
```

Based on the validation results, code edits are
proposed by LLM. Same as (Xia et al., 2025a),
partial replacement edits are returned to save LLM
token usage.

Code Edit Proposal Example

<<<<<<< SEARCH
def proceed_round(action: dict , game_state: Dict , logger)
-> DotDict:

""" Process the action and update the game state ."""
current_player = game_state.common.current_player
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Figure 11: LLM agent workflow of game code generation.

logger.info(f"Player {current_player} takes an action
: {action }")

if action['action '] == 'request ':
process_request(action , game_state , logger)

elif action['action '] == 'draw ':
if game_state.common.facedown_cards.stock:

card = game_state.common.facedown_cards.stock
.pop()
game_state.players[current_player ].
facedown_cards.hand.append(card)
logger.info(f"Player {current_player} draws a
card .")

else:
logger.info("Stock pile is empty , no card to
draw .")

check_for_books(game_state.players[current_player],
game_state , logger)

# Check if the game is over
if is_game_over(game_state , logger):

return game_state

game_state.common.current_player = next_player(
game_state , logger)
return game_state

=======
def proceed_round(action: dict , game_state: Dict , logger)
-> DotDict:

""" Process the action and update the game state ."""
current_player = game_state.common.current_player
logger.info(f"Player {current_player} takes an action
: {action }")

if action['action '] == 'request ':
if process_request(action , game_state , logger):

return game_state # Successful request
allows player to continue.

elif action['action '] == 'draw ':
if game_state.common.facedown_cards.stock:

card = game_state.common.facedown_cards.stock
.pop()
game_state.players[current_player ].
facedown_cards.hand.append(card)
logger.info(f"Player {current_player} draws a
card .")

else:
logger.info("Stock pile is empty , no card to
draw .")

check_for_books(game_state.players[current_player],
game_state , logger)

# Check if the game is over
if is_game_over(game_state , logger):

return game_state

game_state.common.current_player = next_player(
game_state , logger)
return game_state

>>>>>>> REPLACE

B.4 Effectiveness of PCon Metric

To verify whether LLMs are good at consistency
evaluation, We assess our method, PCon, through
three experiments:

• Ground Truth Evaluation: We used 5 manu-
ally verified game codes, each with 5 game-
play records. PCon assessed their consistency
with the original game descriptions, where we
expected near-perfect scores.

• Small Deviations: Gameplay records were
compared to game descriptions (chosen from
our dataset) with 95% cosine similarity to the
original. We expected high but slightly re-
duced consistency scores.

• Large Deviations: Records were compared to
game descriptions with 70% similarity, where
we expected significantly lower scores.

The results aligned with our expectations (see
Figure 12). The average PCon score for the ground
truth group (9.68± 0.85) was significantly higher
than both deviation groups (8.96 ± 1.24 in small
deviation group and 2.25± 3.17 in large deviation
group, p < 0.05 in paired t-test), indicating PCon
effectively captures consistency, even in challeng-
ing scenarios involving subtle deviations.

It is important to note that LLM-based validation
process improves the code alignment, rather than
ensuring 100% correct code. We conducted a man-
ual verification to all generated games where LLM
detects no misalignment, where we still find minor
inconsistencies. For instance, there are simplified
implementation of complex rules: for poker games
with a large number of card evaluation standards
(such as Straight Flush, Four of a kind, Full House,
etc.), there are cases where our method does not
implement all the standards mentioned in the game
description. Also, incorrect information visibili-
ties may occur: sometimes, private information
for specific players may be leaked to the public
by game state outputs. However, the validation
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Figure 12: Effectiveness of PCon metric. Average
PCon metrics in three game sets, showing PCon is
aligned with the actual consistency between the game
play record and game description. Gray shaded areas
represent the standard errors of average PCon.

process still minimizes human effort in code de-
velopment, which benefits the overall prototyping
process.

C Gameplay AI

Figure 13 provides a detailed breakdown of the win
rate advantage across individual games. The plot
uses a radial layout, with each axis corresponding
to a specific game and advantage scores plotted as
distances from the center. Our method spans the
largest area in both the common and varied game
sets, indicating broad performance gains. In the
common games, it achieves the highest win rate
advantage in 10 out of 13 games, demonstrating
strong coverage across diverse rule sets.

OursBeliefRe�exionReActCoT

Figure 13: Gameplay AI win rate advantage by
games. Win rate advantage to random agents when
different methods are applied. The performance of ran-
dom agents (A(p, prandom) = 0) is shown as black dot-
ted circles. (left) Common games (right) varied games,
where the names of base games are shown in radial axis.

All games used in our evaluation are listed in
Table 4.

Genre Games
Rummy Boat House Rum
Casino Baccarat, Bull Poker, Cincinnati

Poker, Cincinnati Liz Poker, Fan
Tan, Fan Tan (Varied), In-Between,
Liberty Fan Tan (Varied)

Trick Tak-
ing

California Jack, Crazy Eights, Go
Boom, Hearts, Hearts (Varied), Hol-
lywood Eights (Varied)

Other Go Fish, Go Fish (Varied), Linger
Longer, I Doubt it (Varied)

Table 4: Card games used in the evaluation, grouped by
genre

C.1 Compare to Human-designed Heuristics
We compared our method to two heuristic agents
from Zha et al. (2020), using head-to-head win
rate of the last game play agent as the main met-
ric. Across different player orderings, our approach
matched or exceeded human-designed heuristics:
outperforming them in Leduc Hold’em, underper-
forming in Uno, but still surpassing the random
agent.

Proceeding Last Leduc Holdem Uno
Random Random 70.5 24.5
Heuristic Random 79.3 18.5
Ours Random 39.7 23.4
Random Heuristic 70.7 27.8∗

Random Heuristic 78.5 24.4∗

Ours Heuristic 48.1∗ 29.8∗

Random Ours 82.0∗ 25.8
Heuristic Ours 84.6∗ 21.4∗

Heuristic Ours 59.3∗ 24.1

Table 5: Win Rate between human heuristics and our
work in Leduc Holdem and Uno. ∗ indicates a signif-
icant difference from settings where random player is
the last one. (chi-square test, p < 0.05).

These results show our method can generate
competent game AI suitable for early-stage pro-
totyping and generalizes to game variants without
manual design.

C.2 Ablation Study
To assess the contribution of key components in our
method, we perform an ablation study comparing
the full agent against two simplified variants:

• No Ensemble (“×ens”): It generates a single
comprehensive heuristic function instead of
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ensembling multiple LLM-generated strate-
gies.

• No Optimization (“×opt”): It retains the full
set of heuristics generated before the augmen-
tation step but skips the optimization phase,
using all heuristics equally without selection.

As shown in Table 6, both ablations result in
a sharp drop in performance, neither achieves a
positive average advantage over random agents.
These results indicate that both ensembling and the
optimization-based policy refinement are essential
to the effectiveness of our gameplay AI. All scores
are averaged over 50 runs per game.

Common Mutated All Games
Ours 14.7±19.3 19.7±30.5 16.3±22.6
×ens −3.2± 7.0 −2.1± 9.2 † −2.9± 7.5 †
×opt 0.2± 9.9 −1.5± 6.2 † −0.4± 8.7 †

Table 6: Game AI win rate advantage between our
method and its ablations. Means and standard devia-
tions (shown after ±) of win rate advantages (×10−2)
across all game instances. All metrics between our
method and its ablations show statistically significant
difference (p-value ≤ 0.05 in paired t-test). † represents
two metrics are unlikely to be different (p-value ≥ 0.7
in paired t-test).

C.3 Sensitivity Analysis
We vary the number of base policy items to evaluate
its impact on gameplay AI performance, measured
by win rate advantage. As shown in Table 7, using
a small number of base policy items (e.g., n =
2) results in decreased performance, likely due to
reduced diversity in the policy pool, where critical
strategies may not be surfaced due to sampling
limitations or combinatorial constraints. However,
increasing the number yields diminishing returns.
We observe no significant performance difference
between our default setting (n = 4) and a larger
configuration (n = 6). This plateau may reflect
the limitations of our current method: the LLM
may fail to generate meaningfully diverse strategies
beyond a certain point, or improved policies may
not emerge from simple combinations of heuristic
functions derived from those strategies.

C.4 Baseline Implementation
Although some previous work demonstrates satis-
factory performance in several popular games, they
are excluded from our comparative analysis as their

Population Common Varied All games
n=2 8.5 ±15.5 10.0 ±14.4 8.9 ±14.8

n=4 (Ours) 14.6 ±19.3 19.7 ±30.5 16.3 ±22.6

n=6 16.5 ±17.5 17.3 ±21.8 16.7 ±18.3

Table 7: Game AI win rate advantage with different
base policy population. Means and standard deviations
(shown after ±) of win rate advantages (×10−2) over
random agents across all game instances.

primary contributions focus on specific game gen-
res (Wang et al., 2024) or particular attributes of
game mechanics (Light et al., 2025). For example,
methods that learn directly from reward signals at
MCTS leaf nodes (Light et al., 2025) can hardly
work on games with extremely unbalanced search
trees. Because it is challenging to reach all termi-
nal states with reasonable computational resources.
As a result, one has to estimate the reward without
reaching the terminal nodes, which is beyond the
scope of their work.

Consequently, we focus on prior work that are
scalable. We choose Chain-of-Thought (Wei et al.,
2024), ReAct (Yao et al., 2023), Reflexion (Shinn
et al., 2023), and AgentPro (Zhang et al., 2024)
as our baselines. As AgentPro is particularly note-
worthy for its application of Belief-aware Decision-
Making imperfect information game scenarios, we
specifically implement the Belief-aware part for
comparison.

Although for our evaluation, we intended to use
the most performant LLM model available for ev-
ery method being compared, the number of LLM
calls being made by other works is a polynomial
order of magnitude greater than our work. For the
number of games being compared, this token cost is
prohibitively expensive (Figure 6). We have there-
fore opted for the most performant LLM within
budget for other works (4o-mini, which boasts sim-
ilar performance) and 4o for our work. Our model
is limited in that it requires at least 4o for its coding
accuracy. However, despite the difference between
LLM backbones, the 4o-mini being used for other
works is comparable if not better than the LLM
backbones that were originally used in the respec-
tive works.

C.4.1 Inputs for Baseline Methods
While our work uses game state dictionary as in-
puts, all baseline methods require natural language
inputs. Therefore, we adopt the gameplay record
format from the code generation pipeline to de-
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scribe the self game state, with private information
about other players removed.

To improve readability and highlight the public
progression of the game, we also include automati-
cally generated game comments alongside the self
game state. Rather than being generated directly
by LLMs, game comments are generated by the
commentary functions inside the game code. The
commentary function example below, designed by
LLMs, fetch variables from game state dictionary
to compose game comments such as “Player 2 cre-
ates a fusion card from: 2-diamond, 3-diamond,
4-diamond”.

Commentary Function Example

if can_create_fusion(cards , player):
for card in cards:

player.private.player_hand.remove(card)
player.public.fusion_cards.append(cards)
logger.info(f"Player {current_player} creates a
fusion card from: {cards }.")
if check_fusion_victory(player):

game_state.common.is_over = True
game_state.common.winner = current_player
logger.info(f"Player {current_player} wins by
creating three fusion cards !")

Game comments are accumulated over the
course of an entire turn, recording the public ac-
tions and effects of other players. Together, the
comments and the self game state form a compos-
ite game observation for a single turn. For each
agent, we maintain a game history consisting of the
five most recent turns.

Game Observation for Boat House Rum

# Gameplay since your last decision
Dealing 7 cards to each player
Player 0 decides to: draw -( source: discard_pile)
Player 0 draws cards from discard pile.
Player 0 decides to: discard -( card_idx: 6)
Player 0 discards A-diamonds.
Player 1 decides to: draw -( source: discard_pile)
Player 1 draws cards from discard pile.
Player 1 decides to: discard -( card_idx: 3)
Player 1 discards 9-diamonds.

# Common Information
num_players: 3
current_player: 2
has_drawn_cards_this_turn: False
discard_pile: [{'rank ': '9', 'suit ': 'diamonds '}]
stock_size: 30

# Player Information

## Player 0
score: 0
melds: []
hand_size: 7
recent_discard_draw_size: 0

## Player 1
score: 0
melds: []
hand_size: 7
recent_discard_draw_size: 0

## Player 2 (Self)
score: 0
current_player: True
melds: []
hand: [{'rank ': '3', 'suit ': 'diamonds '}, {'rank ': 'Q', '
suit ': 'spades '}, {'rank ': 'Q', 'suit ': 'hearts '}, {'rank
': '3', 'suit ': 'spades '}, {'rank ': '4', 'suit ': 'hearts

'}, {'rank ': '4', 'suit ': 'spades '}, {'rank ': '2', 'suit
': 'diamonds '}]
recent_discard_draw: []

# Legal Actions
0: draw -( source: stock)
1: draw -( source: discard_pile)

C.4.2 Training Reflexion Agents
The evaluation protocol involved training Reflex-
ion agents across all games, with performance mea-
sured using a rolling average winning rate calcu-
lated over windows of 40 games. This measure-
ment was repeated for 10 distinct windows across
all games in our test set. The optimal reflection
step was subsequently determined by selecting the
iteration that yielded the highest mean winning rate
across the entire game suite.

C.5 Intermediate Results

During the construction of gameplay AI, our
method produces policy components in text form
first, which is converted to code during the second
augmentation process.

Gameplay AI policy component as texts

Prioritize Building Melds
Focus on arranging cards in the hand into matched sets of
either three or four of a kind , or sequences of three or
more cards of the same suit. Discard cards that do not

contribute towards completing a meld.

Draw from Discard Pile Judiciously
Only draw from the discard pile when the top two cards
can be directly used to form a meld or significantly
improve the hand. Otherwise , prefer drawing from the
stock pile to maintain unpredictability.

Reserve Key Cards
Keep hold of high -value cards like aces and face cards
only if they are part of an ongoing strategy to complete
a meld or if they are necessary to win the game soon.
Otherwise , discard them to minimize penalty points.

PotentialMeldCreationValue
A metric that assesses the potential of forming new melds
after drawing two cards , either from the stock pile or

discard pile. It evaluates the likely improvement in the
hand 's structure , considering both the draw options and
the current meld opportunities.

UnmatchedCardPenalty
A metric that evaluates the penalty incurred from holding
high -value unmatched cards. This metric helps in

deciding the priority of discarding high -value cards from
the hand to lower potential score penalties.

Refined Meld Building Strategy (Mutually inspired policy)
To refine the strategy for building melds , the AI player
should incorporate the following steps: prioritize
drawing from the source that maximizes '
PotentialMeldCreationValue.' When choosing cards to
discard , evaluate based on 'UnmatchedCardPenalty ,'
preferably discarding high -penalty cards unless they
significantly contribute to potential melds. Use '
MeldCompletionLikelihood ' to assess laying off
opportunities. Lastly , factor in '
OpponentInterferenceRisk ' to prevent assisting opponents
with your discards. These criteria ensure strategic
decision -making based on the game state , maximizing
winning potential and minimizing penalties.

Gameplay AI policy component in code

def score(state: dict , action: str) -> float:
# Helper function to calculate the potential meld
creation value
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def calculate_potential_meld_creation_value(hand ,
card):

value = 0
# Check for potential sets (three or four of a
kind)
rank_count = sum(1 for c in hand if c['rank '] ==
card['rank '])
if rank_count == 2: # possibility to make a set
of three

value += 0.3
if rank_count == 3: # possibility to make a set
of four

value += 0.5

# Check for potential sequences
card_ranks = {'A': 1, '2': 2, '3': 3, '4': 4,
'5': 5, '6': 6,

'7': 7, '8': 8, '9': 9, '10': 10, '
J': 11, 'Q': 12, 'K': 13}

hand_ranks = [card_ranks[c['rank ']] for c in hand
if c['suit '] == card['suit ']]

hand_ranks.append(card_ranks[card['rank ']])
hand_ranks.sort()

# Look for consecutive cards
for i in range(len(hand_ranks) - 2):

if hand_ranks[i+1] == hand_ranks[i] + 1 and
hand_ranks[i+2] == hand_ranks[i] + 2:

value += 0.4

return value

# Helper function to calculate unmatched card penalty
def calculate_unmatched_card_penalty(hand):

penalty = 0
for card in hand:

penalty += {'A': 11, 'K': 10, 'Q': 10, 'J':
10,

'10': 10, '9': 9, '8': 8, '7': 7,
'6': 6, '5': 5, '4': 4, '3': 3,
'2': 2}[ card['rank ']]

return penalty

# Extract relevant information
current_player_index = state['common ']['
current_player ']
current_player = state['players '][
current_player_index]
hand = current_player['facedown_cards ']['hand ']
discard_pile = state['common '][' faceup_cards ']['
discard_pile ']

# Initialize the result score
result_score = 0.0

# Calculate potential meld creation value of the
action
if action == "draw":

draw_source = state['legal_actions '][0][ 'args ']['
source '] # assuming we're provided with actions
arguments

# Check both stock and discard pile for card
drawing
if draw_source == "stock":

# Assuming uncertainty based draw , hence less
score boost

result_score += 0.1 # a relatively small
optimistic boost for drawing

elif draw_source == "discard_pile ":
if discard_pile:

top_discard_card = discard_pile [-1]
result_score +=
calculate_potential_meld_creation_value(
hand , top_discard_card)

else:
result_score += 0.05 # minor score
addition when discard pile is empty

# Evaluating penalty for unmatched cards
unmatched_penalty = calculate_unmatched_card_penalty(
hand)
result_score -= unmatched_penalty * 0.01 # reduce
score proportionally to the penalty

# Make sure that the final score is between 0 and 1\n
result_score = max(0, min(1, result_score))

return result_score

D Benefits for related studies

Our work benefits the related research communities
in the following ways:

Game distance and recommendation Com-
pared to game distance metrics that builds on low-
level code structure (Jung and Hoey, 2021), our
work could facilitate a more explainable distance
metric, as its node units incorporates higher-level
abstractions with increased legibility. Also, as our
graph-indexed database reveals the dependency
between game mechanics (in Figure 8), it can
be integrated into a game mechanics recommen-
dation framework with friendly user interface as
(Machado et al., 2019), thus enabling a human-in-
the-loop game design.

Game Code Data Generator Our work can be
treated as a synthetic data generator specialized
in creating programs with long and complex in-
struction. Its generated game code can be used to
fine-tune domain specific code generative models
(Wu et al., 2024), or be used as test case data for
general program synthesis methods.

Extendable Gameplay AI Benchmark Com-
pared to prior work that focus on a small set of card
games (Costarelli et al., 2024; Zha et al., 2021),
we provide a much larger scale game benchmark
environment for gameplay AIs. Additionally, prior
work in LLM-based gameplay AI suffers a limita-
tion in evaluation: LLMs may have seen the game
strategy during their training, making it challenge
to evaluate the true performance of the gameplay
framework. By designing and constructing novel
game environments with minimal human effort, our
work can help bridging this gap.

E LLM System Prompts

E.1 Game Mechanics Design
System Prompt for game logic extraction (depth 1)

You are a wonderful card game designer who extract game
logic chains from the game description. You will be given
a game description and you need to extract the game

logic chains step by step.

# Task

Read the following game description and answer the
questions: how to win this card game? Please respond with
all direct mechanics that contribute or hinder to this.

for example: discard all the cards , get highest hand
score. Your output should be a JSON object with the
following format:
```json
[

{
"name": "Name of the game mechanic",
"type": "<only choose among: Contribute , Hinder ,
Mixed >",
"description ": "A concise explanation of how the
mechanic works",
"reasoning ": "Explain how this mechanic
contributes to the goal"

},
...

]
```
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Remember to extract mechanics that DIRECTLY relate to the
goal. Examples:

```
input: <a UNO game description >
correct extraction: "Empty the hands"
wrong extraction: "Play a matching card" or "Draw 4 cards
".
analysis: "Play a matching card" or "Draw 4 cards" should
be extracted in future steps.

```
```
input: The main purpose of the game is to remove all
cards from the table , assembling them in the tableau
before removing them. Initially , 54 cards are dealt to
the tableau in ten piles , face down except for the top
cards. The tableau piles build down by rank , and in-suit
sequences can be moved together. The 50 remaining cards
can be dealt to the tableau ten at a time when none of
the piles are empty.
correct extraction: "Remove all cards from the table"
wrong extraction: "Move sequences strategically ".
```

# Game Description
{game_description}

System Prompt for game logic extraction (depth 2+)

What are the game mechanics/concept that directly trigger
/stop this mechanic: {goal}? Please respond with the
direct mechanic that contributes to this.

- Try your best to extract ALL direct mechanics.
- When evaluating , pay special attention to mechanics
that are interesting or unique.
- You can choose from previously extracted mechanics: {
previous_mechanics }. But you can also extract new
mechanics/concepts.
- Use the same format as before.
- Usually there are always mechanics or concepts to
extract , unless you have reached the end of the chain
such as card design or very basic elements.
- If there are no more mechanics or concepts to extract ,
respond with:
```json
[]
```

System Prompt for reflecting on logic extraction

Check and refine your results based on the following
criteria:
(1) Are there any mechanics that are not DIRECTLY related
to the goal?

Respond a complete result in the same format as before.

System Prompt for concept summary

**Role **: You are an assistant tasked with summarizing
game concept from a list of gameplay mechanics.

** Instructions **:
1. **Input **: You will receive a list of gameplay concept
instances. These concepts are often centered around a

theme or have similar mechanics.
2. ** Output **: Your response should include:
```json
{

"name": "<The name of the game concept >",
"description ":{

"common ": "<A concise statement that generalizes
the core concept or theme common across the
listed gameplay concept instances.>",
"variation ": "How the description of given
instances vary from the shared common themes ."

}
}
```

# Your input
{input_text}

System Prompt for designing new logic instances

{prefix_prompt }. Now design the novel concept instance
based on your summary.
- The concept should center around the summary you have
concluded.

- The concept should be different from all given
instances.
- You should specify its name and description.
- You should follow this format:
```json
{

"name": "Name of the game concept (e.g., Dynamic Wild
Card , Critical Threshold).",

"description ": "A short concise explanation ,
following the writing style of the previous instances
."

}
```

Prefix Prompts for designing new logic instances (partially
shown)

"You are tasked with designing a novel card game concept.
Reflect on all aspects of this challenge , including

understanding core elements , researching existing games ,
defining game objectives , developing themes , innovating
mechanics , player interaction , rule -setting , prototyping ,
gathering feedback , and iterating on your design.

Confirm your comprehension before proceeding with design
suggestions .",

"Before diving into the problem , take a moment to clear
your mind and approach it with a fresh perspective. With
a clear mind , you can create more innovative solutions .\n
\nYou are a skilled card game designer. With these fresh
insights , please design a novel game concept instance
based on your experience and expertise.",

"As an experienced designer of card games , create an
innovative game concept inspired by your prior insights
.",

"To design a novel card game concept , first ensure you
have a clear understanding of the essential elements:
game objectives , rules , mechanics , and player dynamics.
Identify what information might be missing or unclear ,
such as game balance issues , potential for player
engagement , or themes. Use this review to innovate and
develop an improved or entirely new game concept that
enhances the player 's experience and meets the outlined
objectives. Focus on creating unique mechanics or themes
that differentiate it from existing games.",

"You are a skilled card game designer. Please design a
novel game concept instance , emphasizing teamwork and
open communication. Seek input on the implications and
potential impact of different design elements on gameplay
. Leverage the diverse perspectives and expertise of the
group to enhance the creativity and effectiveness of the
game design.",

E.2 Code Generation
Prompts for description structurization

Design a structured ruleset for implementing a card game
system based on the provided input. Ensure the output
includes key components as below. The output should be
comprehensive , logical , and organized in a format
suitable for programming or detailed documentation
purposes. Wrap the output in a markdown block.

Include the following sections:
1. **Game State**

- Define the game state , categorized into common
information and player -specific information (grouped
into public and private).

2. **Card**
- Specify card attributes such as rank , suit , and any
special abilities or values.

3. **Deck and Initial Dealing **
- Describe the deck composition , dealing process , and
setup at the beginning of the game.

4. **Legal Action Space**
- List all possible actions players can perform
during their turn , specifying the prerequisites of
each action.

5. **Round**
- Describe the sequence of play and how the game
progresses from one player to the next.
- Elaborate in each players ' turn , the order of
actions they can take , and the outcomes of each
action.
- Explain how the game ends and the winning
conditions. Pay attention to corner cases such as
deck exhaustion or all players passing.

6. **Other Game Mechanics & Rules**

29759



- Detail any additional game mechanics , rules , or
special actions that players can take during the game
.

7. ** Player Observation Information **
- Specify what information players can observe during
the game , such as their hand , the starter pile ,

declared suits , and opponent actions.
8. ** Payoffs **

- Explain when game ends , how scoring works ,
including point values for cards.

Ensure clarity and precision to facilitate implementation
or usage as a reference for game rules.

# Example
{example}

System Prompts for code draft

You are a card game programmer tasked with implementing a
card game based on the given description. Using the

provided class templates , your goal is to write only the
necessary child classes and implement only the methods
indicated with `TODO ` comments.

** Instructions :**
- Include only the methods you need to override from the
provided class templates.
- Respond with complete , runnable Python code.
- Do **not** include TODOs , placeholders , or explanations
; output only the final code.

**Code Environment :**
- These code belongs to a larger game framework. Use them
as reference only. Don 't include them in your response.

```
{environment_code}
```

**Code Template :**
- Only modify or implement the methods specified with `
TODO ` comments to complete the game logic.
```
{python_classes}
```

** Examples for Reference :**
Use these examples as a guide for response format and
method implementation.
{examples}

---

### Your Task
Based on the following game description , implement the
required classes and methods:

**Game Description :**
```
{game_description}
```

### Note:
- Do **not** raise exceptions (e.g., `ValueError `) when
parsing action strings. Instead , ensure the legal action
space and action string format are appropriately
structured.

Prompts for consistency validation

You are a card game programmer who verifies code for a
card game. You are given a card game description and a
part of game play log using the code.

# Task
- You should evaluate step by step to see if the game
play log aligns with the rules in the game description.
- Also , examine if the legal action choices in each turn
is correct and complete.
- If the game play aligns with the rules , simply return "
pass" in the analysis summary.
- If the game play does not align with the rules , you
should response in a two -part format: summary and quote(
optional). Focus one issue at a time.

# Your game description
```
{game_description}
```

# Your game play log
Note: Only the last several turns of the play log is
provided. But if the play log is too short or empty ,
there might be some errors in the game code.

```
{game_play_log}
```

# Output Format

If the game play log aligns with the rules:
```
*** Step by step evaluation ***
<your evaluation here >

*** Analysis Summary ***
```pass ```
```

If you doubt the log is too short or empty because of
some errors in the game code:
```
*** Step by step evaluation ***
<your evaluation here >

*** Analysis Summary ***
```log is too short or empty ```
```

Otherwise:
```
*** Step by step evaluation ***
<your evaluation here >

*** Analysis Summary ***
Summary:
```text
<summarize the issue >
```
Quote (optional):
```markdown
<quote related game description segment if game play log
does not align with the rules >
```
```

E.3 Gameplay AI Generation

Design game policy components (strategy style) in text

You are a powerful assistant who designs an AI player for
a card game.

# Game rules
{game_description}

# Game state
The AI player knows all cards in its hands , all game play
history. But it does not know the content of other

players ' hands.

# Potential actions
{game_actions}

# Task
Please think in steps to provide me {item_num} useful
strategies to win the game.
For each strategy , please describe its definition and how
it relates to the game state and a potential action.

# Response format
Please respond in the following JSON format:
{format_instructions}

Design game policy components (metric style) in text

You are a powerful assistant who designs an AI player for
a card game.

# Game rules
{game_description}

# Game state
The AI player knows all cards in its hands , all game play
history. But it does not know the content of other

players ' hands.

# Potential actions
{game_actions}

# Task
To design a good game play policy , we need to design some
game state metrics that constitute a reward function.

Now please think in steps to tell me what useful metric
can we derive from a game state?
The metric should be correlated with both the game state
and the potential action. Provide me with {item_num}

29760



metrics.

# Response format
Please respond in the following JSON format:
{format_instructions}

Mutually inspire game policy components in text

You are a powerful assistant who designs an AI player for
a card game.

# Game rules
{game_description}

# Game state
The AI player knows all cards in its hands , all game play
history. But it does not know the content of other

players ' hands.

# Potential actions
{game_actions}

# Task
Given the following strategy of the game:
```json
{game_strategy}
```

Please think in steps to refine the strategy using the
following criteria:
(1) If the strategy has anything obscure , for example , if
it mentions "strategically use" or "use at critical

moments" without specifying what the critical moments are
, please clarify what the critical moments are.
(2) If the strategy is conditioned on a game state metric
, please describe how such a strategy will be conditioned
on the game state. Here are some hints of the game state

:
```json
{game_metrics}
```

# Response format
Please respond in the following JSON format:
{format_instructions}

Design code for game policy components

You are an action -value engineer trying to write action -
value functions in python. Your goal is to write an
action -value function that will help the agent decide
actions in a card game.

# The game
{game_description}

# The policy
In this action -value function , you will focus on the
following policy of the game:
{game_policy}

# The input
The function should be able to take a game state and a
planned game action as input. The input should be as
follows:
{input_description}

# The output
You should return a reward value ranging from 0 to 1. It
is an estimate of the probability of winning the game.
The closer the reward is to 1, the larger chance of
winning we will have.
Try to make the output more continuous.
The reward should be calculated based on both the game
state and the given game action.

# Response format
You should return a python function in this format:
```python
def score(state: dict , action: str) -> float:

pass
return result_score

```

Refine code for game policy components

Here are some criteria for the code review:
- No TODOs , pass , placeholders , or any incomplete code;
- Include all code in the score function. Don 't create
custom class or functions outside;

- the last line should be "return result_score", and the
result_score should be a float;
- You can only use the following modules: math , numpy (as
np), random;

- no potential bugs;

First , you should check the above criteria one by one and
review the code in detail. Show your thinking process.

Then , if the codes are perfect , please end your response
with the following sentence:
```
Result is good.
```

Otherwise , you should end your response with the full
corrected function code.

Game-play Prompt for Chain-of-thought Agent

You are a player in a card game. Please do your best to
beat the other players and win the game.

The card game is as follows:
```
{game_description}
```

Your current state is as follows:
{observation}

Please think in steps and make a decision based on the
current state of the game.

You should return an index of the action you want to take
from the list of legal actions.

Wrap your response in a dictionary with the key 'action '
and the value as the index of the action you want to take
.
for example (You MUST return the action index in the
following format):

```json
{

"action ": 0
}
```

Game-play Prompt for ReAct Agent

You are a player in a card game. Please do your best to
beat the other players and win the game.

The card game is as follows:
```
{game_description}
```

Previous observation of game history and your current
state is as follows:
```
{observation}
```

Your available actions are as follows:
```
{actions}
```

Please think in steps and make a decision based on the
current state of the game.
You should return an index of the action you want to take
from the list of legal actions.

Instructions:
1. Analyze the query , previous reasoning steps , and
observations.
2. Decide on the next action: choose an action or provide
a final answer.

3. Respond in the following JSON format:

Remember:
- Be thorough in your reasoning.
- Choose actions when you need more information.
- Always base your reasoning on the actual observations
from chosen action.

If you have enough information to answer the query , wrap
your response in a dictionary with the key 'action ' and
the value as the index of the action you want to take.
for example (You MUST return the action index in the
following format):

```json
{
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"thought ": "Your detailed reasoning about what to do
next",
"action ": 0

}
```

Game-play Prompt for Reflexion Agent

You are a player in a card game. Please do your best to
beat the other players and win the game.

The card game is as follows:
```
{game_description}
```

Previous observation of game history and your current
state is as follows:
```
{observation}
```

Your available legal actions are as follows:
```
{actions}
```

Your previous reflection based on the game state is as
follows:
```
{reflection}
```

Please think in steps and make a decision based on the
current state of the game.
You should return an index of the action you want to take
from the list of legal actions.

Instructions:
1. Analyze the query , previous reasoning steps , and
observations.
2. Decide on the next action: choose an action or provide
a final answer.

3. Respond in the following JSON format:

Remember:
- Be thorough in your reasoning.
- Choose actions when you need more information.
- Always base your reasoning on the actual observations
from chosen action.

If you have enough information to answer the query , wrap
your response in a dictionary with the key 'action ' and
the value as the index of the action you want to take.
You MUST return the action index in the following format:

```json
{

"thought ": "Your detailed reasoning about what to do
next",
"action ": 0

}
```

Long-term Reflection Prompt for Reflexion Agent

You are a player in a card game. The card game is as
follows:
```
{game_description}
```
This is the payoffs for the game:
```
[{ payoffs}], you are player {idx} (list index starting
from 0).
```
Here is the previous reflections based on the game
results:
```
{reflection}
```

The game is over. Please reflect on the game and provide
a detailed summarization for WINNING the game including
strategies used , reasoning for actions , and any other
relevant information.
You should return a string with your reflection on the
game , including strategies used , reasoning for actions ,
and any other relevant information.
Each reflection item should be precised and concise ,
NEVER repeat the same reflection twice.
You MUST return the reflection in the following format
and ONLY add at most 2 most important new summarization
to the previous reflection:

```json
{

"reflection ": "1: strategy 1; 2: strategy 2; ..."
}
```

Game-play Prompt for Belief Agent

You are a player in a card game. Please do your best to
beat the other players and win the game.

The card game description is as follows:
```
{game_description}
```

Previous observation of game history and your current
state is as follows:
```
{observation}
```

Here is your previous reflection based on the game state
is as follows:
```
{reflection}
```

Previous belief is as follows:
```
self -belief: {self_belief}
world -belief: {world_belief}
```

Please read the game decription and observation carefully
.
Then you should analyze your own cards and your
strategies in Self -belief and then analyze the opponents
cards in World -belief.
Lastly , please select your action from:
```
{actions}
```

You MUST return the action index in the following format:
```json
{

"self -belief ": "I have a good hand",
"world -belief ": "Dealer has a bad hand",
"action ": 1

}
```
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