
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 29798–29812
November 4-9, 2025 ©2025 Association for Computational Linguistics

The Good, the Bad, and the Debatable:
A Survey on the Impacts of Data for In-Context Learning

Stephanie Schoch Yangfeng Ji
Department of Computer Science

University of Virginia
Charlottesville, Virginia 22904

{sns2gr,yangfeng}@virginia.edu

Abstract

In-context learning is an emergent learning
paradigm that enables an LLM to learn an un-
seen task by seeing a number of demonstra-
tions in the context window. The quality of
the demonstrations is of paramount importance
as 1) context window size limitations restrict
the number of demonstrations that can be pre-
sented to the model, and 2) the model must
identify the task and potentially learn new, un-
seen input-output mappings from the limited
demonstration set. An increasing body of work
has also shown the sensitivity of predictions to
perturbations on the demonstration set. Given
this importance, this work presents a survey
on the current literature pertaining to the re-
lationship between data and in-context learn-
ing. We present our survey in three parts: the
“good” – qualities that are desirable when se-
lecting demonstrations, the “bad” – qualities
of demonstrations that can negatively impact
the model, as well as issues that can arise in
presenting demonstrations, and the “debatable”
– qualities of demonstrations with mixed results
or factors modulating data impacts.

1 Introduction

In-context learning (ICL) is an emergent capability
of large language models (LLMs) that allows them
to learn new tasks at inference time without any
parameter updates (Wei et al., 2022a). By provid-
ing a few examples (demonstrations) within the
context window (as illustrated in Figure 2), LLMs
can effectively "learn" in context and generalize to
unseen tasks (Brown et al., 2020). This is different
from traditional fine-tuning, which requires updat-
ing the model’s parameters to learn a specific task.
ICL, on the other hand, can infer from demonstra-
tions directly during prediction and leave model
parameters unchanged.

In ICL, performance depends on two key factors:
1) the base LLM and its prompt formatting capabili-
ties, and 2) the provided demonstrations in-context.
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Figure 1: The data-centric view of the topics covered in
this survey.

While the importance of the base model is well-
established, a systematic analysis of ICL from the
perspective of demonstration data has been largely
overlooked.

However, the data used in ICL is crucial for both
its performance and robustness, making it essential
to study. For example, different selected examples
can cause instability in performance, thereby caus-
ing a robustness issue dependent on the selected
examples (Rubin et al., 2022; Liu et al., 2022;
Wu et al., 2023; Zhao et al., 2021). Therefore,
while previous work has given a broad overview of
the ICL literature (Dong et al., 2024) and focused
on theoretical interpretations of ICL (Zhou et al.,
2024d), our work differs in that we take a data-
centric angle to analyze the current work on ICL.
Specifically, our work focuses on the impact of the
demonstration data on ICL. As shown in Figure 1,
we structure our survey in three parts: 1) the “good”
qualities of ICL data (section 3), 2) the “bad” qual-
ities of ICL data and issues that can arise due to
its organization (section 4), and 3) the “debatable”
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      Knitting is fun.               \n          Positive
      It’s miserably cold outside.     \n          Negative
      …
      Kittens are so sweet.               \n          Positive
      I liked the food!     \n          _______
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Figure 2: Overview of ICL using K input-output demonstrations concatenated to the test input {xtest, ytest},
overlaid with the topics covered in our survey (Good, Bad, Debatable).

qualities of ICL data and model factors that can
modulate data impacts (section 5).

2 Background

Brown et al. (2020) introduced in-context learning,
where a model conditions on a few input-output
pairings (demonstrations) concatenated to the tar-
get input in the context window. This enables the
model to learn to perform a given task at inference,
without any gradient updates. Formally, given a
test example xtest, in-context learning concatenates
K demonstrations to the task instruction I , where
S = {xi, yi}Ki=1 denotes the example set. The
full context window of the model is provided as
C = {I, S, xtest}. Brown et al. (2020) further iden-
tified few-shot (K = n), one-shot (K = 1), and
zero-shot (K = 0) settings in in-context learning.

While “in-context learning” is the most com-
mon and descriptive term, other names have been
used, sometimes interchangeably. For example,
few-shot prompting (Wei et al., 2022a) has been
used to refer to few-shot ICL (and sometimes even
used synonymously with ICL in general (Lu et al.,
2022; Ma et al., 2023)). Priming-based few-shot
learning (Kumar and Talukdar, 2021) is another al-
ternative. ICL can be considered a subcategory of
prompt learning, as it incorporates demonstrations
within the prompt. It is also related to traditional
few-shot learning, which encompasses techniques
like few-shot prompt-based fine-tuning or, simply,
few-shot prompting (Köksal et al., 2023). Despite
the variations, “in-context learning” remains the
predominant term for the collection of methods de-
scribed above and will be used in the rest of this
survey.

3 The Good: Desirable Data Qualities for
ICL

In this section, we address the question of what data
qualities improve ICL performance by surveying

demonstration selection methods. We identify and
structure our discussion around three key aspects:
similarity, diversity, and informativeness.

3.1 Similarity
Similarity focuses on the relationship between a
test input and a candidate demonstration, typically
computed using distance metrics to measure the
similarity of embeddings. One approach is to use
off-the-shelf embeddings (e.g. SBERT (Reimers
and Gurevych, 2019)) in-conjunction with unsuper-
vised similarity metrics. Liu et al. (2022) propose
a k-nearest neighbor based retriever that selects the
k semantically-similar candidates in embedding
space for each test sample using cosine similarity
or negative Euclidean distance. This method has
been extended to cross-lingual settings (Tanwar
et al., 2023). Shin et al. (2021) propose to instead
directly use GPT-3 to select similar examples for
few-shot semantic parsing, where the relevance of
a training example {ui, ti} to a test input u is com-
puted using p(u|ui).

Rather than using off-the-shelf embeddings or
directly using LLMs, other works aim to train a
prompt retriever. Rubin et al. (2022) propose a
method to learn embeddings for similarity-based
retrieval, EPR. It first retrieves candidate exam-
ples using an unsupervised retriever (e.g. BM25
(Robertson et al., 2009)) and then uses these to train
a dense retriever with contrastive learning. Finally,
the trained retriever uses the example embeddings
to select the top-k examples based on inner prod-
uct similarity. Li et al. (2023b) extend this to a
unified, multi-task setting, and Hu et al. (2022) pro-
pose a similar method of two-stage learned embed-
dings for dialogue state tracking. Liu et al. (2024b)
find that the previous methods learning similarity
measurements work because they integrate task-
agnostic similarities at different levels and incorpo-
rate task-specific similarity, and they propose two
selection methods that address these factors.
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Figure 3: Data-centric taxonomy of ICL.

While similarity considers the relationship be-
tween the test inputs and exemplars, considering
the relationship between exemplars (i.e. diversity)
is also effective, as discussed in the following sec-
tion. Notably, most methods that utilize the diver-
sity of examples also incorporate similarity.

3.2 Diversity

Diversity focuses on the relationship between can-
didate exemplars. Some methods incorporate
diversity-enhancing components into learned re-
trievers, either at training or inference. Ye et al.
(2023a) retrieve example sets using maximum a
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posteriori inference with a learned determinantal
point process (DPP) module, where the DPP kernel
is defined to incorporate both diversity and rele-
vance. Liu et al. (2024a) propose a sequential exam-
ple selection method that leverages LLM feedback
to score candidate example sequences for training,
then constructs diverse example sequences at infer-
ence using beam search.

Other works enhance diversity through iterative
selection with penalty terms on similarity. Ye et al.
(2023b) propose to iteratively select examples us-
ing maximum marginal relevance, incorporating
a penalty term on similarity to already selected
examples. Hongjin et al. (2022) iteratively select
examples to annotate in a “select-then-annotate”
paradigm, where candidate scores are discounted
based on their graph-based similarity to previously
selected examples. They further define a bucket-
ing procedure to annotate examples across diverse
model confidence scores, and finally select k exam-
ples from the annotated set using cosine similarity.

Similar to enhancing diversity through bucket-
ing (Hongjin et al., 2022), other methods use inter-
vals or clusters to select diverse examples. Zhang
et al. (2023) use k-means clustering to select di-
verse exemplars. Yao et al. (2024) use intervals to
select candidates across a diverse range of input-
candidate similarity scores, which are then used in
different prompts followed by a majority vote.

Finally, selecting diverse examples by diversi-
fying the embedded representations of inputs has
proven effective. Specifically, Qin et al. (2023)
select the top-k examples based on the cosine sim-
ilarity between each candidate exemplar and the
zero-shot reasoning path on the test input, use the
selected examples to generate a new reasoning path
on the test input, iterate n times (selecting new
examples with the updated reasoning paths each
time), and perform majority voting. Notably, they
argue that iterating on the reasoning path can en-
hance diversity by potentially selecting different
examples in each iteration.

3.3 Informativeness
Informativeness of examples relates to the contri-
bution of examples to the test input and has been
defined both at the individual and set level. At the
level of individual examples, Li and Qiu (2023) use
LLM feedback to measure how informative an ex-
ample is for the model to correctly classify the test
input, and subsequently apply a diversity-guided
search of permutations. Nguyen and Wong (2023)

use the influence function (Koh and Liang, 2017)
to select examples that have a positive impact on
performance.

Beyond the level of individual example infor-
mativeness, notions of coverage have been used
to select informative and diverse sets of examples.
This includes syntactic and lexical coverage for ma-
chine translation (Tang et al., 2024) and substruc-
ture coverage for compositional generalization in
semantic parsing (Levy et al., 2023). Gupta et al.
(2023b) extend the notion of coverage to diverse
tasks by selecting demonstration sets that are maxi-
mally informative for the salient aspects of the test
input (e.g. reasoning patterns) using BERTScore-
Recall (BSR). Related to information contained in
the examples, Shi et al. (2023a) show that including
examples with irrelevant information (i.e. distrac-
tors) can teach LLMs to ignore irrelevant context
and help mitigate distractability on reasoning tasks.

3.4 Discussion

Similarity vs. Diversity: Task-Dependent Trade-
offs. Several works point to a task- and dataset-
dependence on the importance of similarity vs. di-
versity in selecting examples. When proposing
in-context sampling (ICS), Yao et al. (2024) ex-
plored different sampling strategies: similarity (top-
k based on cosine similarity of embeddings), di-
versity (k at different intervals based on cosine
similarity, to capture more of the input space), and
hybrid (k2 from each). They found that no single
strategy performed best across all datasets. Qin
et al. (2023) found similar results when comparing
random sampling (diversity setting) with similarity
sampling. Other works that have shown impres-
sive performance have directly acknowledged and
accounted for this trade-off (Ye et al., 2023a,b).

Pre-Processed Input Representations & Other
Information Sources. While many selection
strategies directly utilize the embedded representa-
tions of test inputs and candidate exemplars, other
works pre-process the inputs prior to embedding
and subsequent selection, or otherwise incorporate
richer information sources such as explanations.
Qin et al. (2023) perform selection using the co-
sine similarity between candidate exemplars and
iterative representations of the LLM’s reasoning
path on a test input. An et al. (2023) use an LLM
to rewrite each candidate and test example using
skill-based descriptions, and then using the cosine
similarity between descriptions to select demon-
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strations. Other works incorporate the use of ex-
planations Ye et al. (2023b) and chain-of-thought
reasoning (Wei et al., 2022b) to enhance ICL per-
formance. Expanding on the prior discussion on
similarity and diversity, these factors are benefi-
cial when using pre-processed representations and
explanations as well (Ye et al., 2023b; Qin et al.,
2023).

4 The Bad: Data Issues in ICL

In this section, we address the question of what
qualities of data for ICL are undesirable, and what
can go wrong when there are issues with the se-
lected data. We center our discussion around: 1)
sensitivity to data organization, and 2) data biases.

4.1 Sensitivity to Data Organization

LLMs are sensitive to the choice of selected exam-
ples (Zhao et al., 2021; Liu et al., 2022) as well as
their order (Zhang et al., 2022; Chen et al., 2023b).
Both organization factors are data and model de-
pendent (Peng et al., 2024; Pecher et al., 2024).
For example, the performance of example permu-
tations cannot generalize across models, yet mod-
els of all sizes exhibit order sensitivity (Lu et al.,
2022). Recent works have also shown a sensitiv-
ity to the position of relevant information in the
context. Specifically, models are biased towards in-
formation at the beginning and end of the prompt in
long-contexts (Liu et al., 2024c), shortcut triggers
at the end of prompts (Tang et al., 2023), and labels
that are proximal to the test input (Zhao et al., 2021;
Li et al., 2024b; Nguyen and Wong, 2023) (covered
in more detail in subsection 4.2). Another factor of
data organization, the number of examples, is cov-
ered in section 5. Additionally, as we focus on the
demonstrations themselves, the impact of prompt
template is outside of the scope of our discussion.
In the following subsection, we discuss mitigation
strategies for sensitivity to example organization,
with a particular focus on ordering.

4.1.1 Mitigating Ordering Sensitivity
Approaches to mitigating sensitivity to ordering
can be categorized as: 1) identifying a good or-
der of selected examples, 2) selecting examples
simultaneously with their order, and 3) selecting
examples with lower variance across permutations.

Select-then-Organize: Identifying an Effective
Ordering. When selecting examples based on
their similarity to the test input, one practice is to

sort the examples in ascending order of similarity,
with the most similar example the most proximal
to the test input (Ye et al., 2023a; Rubin et al.,
2022). Complexity, as measured by LLM perplex-
ity, is also effective for ordering similar examples
to the test input, from least to most complex in a
curriculum learning framework (Liu et al., 2024d)
Alternatively, Kumar and Talukdar (2021) use a
genetic algorithm to search for a good permutation
of demonstrations.

Concepts from information theory have also
been effective to find optimal example orderings.
Lu et al. (2022) propose local and global entropy
metrics for demonstration reordering. Wu et al.
(2023) propose an information-theory-driven rank-
ing algorithm and find the best subset organization
based on the codelength to compress and transmit
label y given test input x and organization c. Guo
et al. (2024) first filter candidate orderings using
a content-free (Zhao et al., 2021) entropy metric,
then select an order that maximizes the output in-
fluence of each test instance.

Select-and-Organize: Selecting Examples with
Their Order. Approaches that focus on reorder-
ing examples may fail depending on the selected
examples. Zhang et al. (2022) demonstrate that on
TREC (Voorhees and Tice, 2000), even the best per-
forming permutation of k = 4 examples (4! = 24
permutations) performs below a random baseline
on 9 out of 30 selected example sets.

Sequential example selection can identify a good
selection and permutation of examples. Ma et al.
(2023) sequentially select a permutation of exam-
ples using entropy as a measure of predictive bias
over labels, where higher entropy correlates with
higher accuracy. Zhang et al. (2022) propose ac-
tive example selection and use reinforcement learn-
ing to optimize a policy for sequential data selec-
tion and annotation. Liu et al. (2024a) sequen-
tially select examples and score candidate exam-
ple sequences using LLM feedback. These meth-
ods also increase stability across permutations (Liu
et al., 2024a) and different unlabeled example pools
(Zhang et al., 2022).

Selecting Stable Subsets. Rather than select-
and-organize or select-then-organize paradigms,
an alternative approach is to identify data subsets
to sample from that are more robust to different
orderings. Chang and Jia (2023) focus specifically
on identifying stable data subsets to sample from,
where stability is defined as having higher aver-
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age and worst-case accuracy compared to sampling
from the full training set. They propose two meth-
ods to find stable subsets: scoring each example
by the average validation accuracy when combined
with random examples (inspired by Data Shapley
(Ghorbani and Zou, 2019)) and scoring each ex-
ample based on the associated weights of a linear
regression model fit to predict the LLM’s output
based on which example is present at each index in
the prompt.

Zhao et al. (2021) suggested that instability and
sensitivity to data organization arises from biases
in models towards predicting certain answers. In-
terestingly, however, balanced labels do not consis-
tently lead to greater performance or less variance
across permutations than unbalanced labels (Zhang
et al., 2022). We cover data biases, including label
biases, in more detail in the following section.

4.2 Data Biases

In this section, we address two questions: 1) how
do data biases impact the robustness and perfor-
mance of ICL, and 2) how can negative impacts
from data biases be mitigated?

4.2.1 Types of Data Biases
Based on the current literature, we identify and dis-
cuss two categories of data biases: shortcut learn-
ing and label biases.

Shortcut learning. Features learned by LLMs
may be semantically meaningful (i.e. robust) or
related to biases and spuriously correlated label
mappings (non-robust) (Du et al., 2023). The learn-
ing of these features has been termed “shortcut
learning” as it pertains to the model learning se-
mantically irrelevant features that may not relate to
the underlying task. While most previous studies
look at settings with weight updates, recent works
have demonstrated that LLMs can also learn short-
cut features in the context window.

Token-level shortcut features learnable from
demonstrations include letters, symbols, common
words, rare words, and sentences (i.e. sequences
of tokens) (Tang et al., 2023). At a higher level,
features such as length (Schoch and Ji, 2025a), text
styles (Tang et al., 2023), and concepts (e.g. the
concept “food” being spuriously correlated with
a specific label) (Zhou et al., 2024c) have also
been shown to be learnable from demonstrations.
Tang et al. (2023) show there is a positional com-
ponent in shortcut learning, where LLMs are par-

ticularly biased towards shortcuts placed at the end
of prompts.

In addition to learning shortcut features from
demonstrations, LLMs can exhibit shortcut behav-
iors on in-context demonstrations. Sun et al. (2024)
show that LLMs can utilize reasoning shortcuts
such as negation and word overlap in in-context set-
tings. LLMs can also exhibit a tendency to instead
copy answers from the exemplars, termed copy
bias, rather than learning an underlying pattern in
tasks that require novel responses (e.g. counting
vowels) (Ali et al., 2024). Si et al. (2023) use un-
derspecified demonstrations (where two features
such as sentiment and topic are equally predictive
of the label) to show that LLMs can exhibit feature
bias, where the model is biased towards using one
feature over the other. Jang et al. (2024) identified
demonstration bias as the reliance of LLMs on se-
mantic priors rather than learning new input-label
relationships (discussed in more detail in section 5).

Label biases. In its simplest form, label bias
refers to an undesirable behavior where a LLM pre-
dicts certain labels over others. Reif and Schwartz
(2024) defined two measures to quantify label bias:
relative standard deviation of class-wise accuracy
(Croce et al., 2021; Benz et al., 2021), which is
defined as the standard deviation of class-wise ac-
curacy divided by the mean overall accuracy, and
BiasScore, which is defined as the total variation
distance between the estimated model output distri-
bution and the uniform distribution over labels.

LLMs can acquire label biases through pretrain-
ing data and in-context demonstrations. Label bias
acquired during pretraining has been termed vanilla
label bias (Fei et al., 2023) and common token bias
(Zhao et al., 2021). It can be thought of as the
uncontextual preference of the model to predicting
certain labels or answers, and may relate to the
pretraining term frequencies (Fei et al., 2023). On
multiple choice datasets, LLMs can also exhibit
selection bias where the LLM exhibits a preference
to select specific option IDs as answers (Zheng
et al., 2024). Fei et al. (2023) also identify a fur-
ther form of label bias that can be acquired during
pretraining, domain-label bias, where the model
relies on prior knowledge of the task when making
predictions, based on learned associations between
words and labels in pretraining.

The label bias acquired from demonstrations has
been termed context-label bias (Fei et al., 2023).
Both the distribution and position of labels in the
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demonstration set can bias outputs in ICL (Zhao
et al., 2021). Majority label bias refers to the ten-
dency of LLMs to predict labels that are seen fre-
quently in the in-context examples, i.e. the distri-
bution of in-context labels is skewed (Zhao et al.,
2021; Gupta et al., 2023a). Recency bias occurs
when the LLM is biased towards predicting labels
seen at the end of the prompt (Zhao et al., 2021).
Nguyen and Wong (2023) used influence to con-
firm recency bias, and Li et al. (2024b) demon-
strated label recency bias in long-context LLMs.
Notably, label recency bias has some connection
to Tang et al. (2023) who found that LLMs were
biased towards shortcut trigger placed at the end
of prompts. While many of these works focus on
classification tasks, Gao et al. (2024) extend the
discussion to generation tasks, finding that label
noise in demonstrations degrades ICL performance
on generation tasks (i.e. noisy annotations on text
generation tasks hurts performance).

While biases are generally problematic for per-
formance and generalization, the presence of bi-
ases may also relate to observable robustness issues
across different ICL configurations. (Zhao et al.,
2021) suggested that label biases can cause high
performance variance (i.e. instability) across differ-
ent training examples, permutations, and prompt
formats. Label bias also obscures sensitivity in ICL,
yet sensitivity is important to quantify as predic-
tions sensitive to perturbation are less likely to be
correct (Chen et al., 2023b). In the next section, we
discuss techniques to mitigate various data biases.

4.2.2 Mitigating Data Biases
In this section, we discuss methods that have been
used to mitigate data biases. Notably, as data biases
can lead to sensitivity to data organization, mitiga-
tion methods that address label biases often further
address sensitivity to data organization.

One of the primary methods of mitigating la-
bel biases lies in calibrating the model’s output
distribution (i.e. shifting the decision boundary)
using an estimated bias prior p̂ = p(y | C),
where y ∈ Y denotes the label set and C denotes
the context. Zhao et al. (2021) propose to esti-
mate this prior using a content-free input. Using
p̂ = p(y | [N/A], C), they define a calibration ma-
trix W = diag(p̂)−1 and transform uncalibrated
scores using Wp(y | x,C). This effectively shifts
the output distribution so there is a uniform distri-
bution over labels when using a content-free input.
Fei et al. (2023) suggest that this cannot address

“domain-label” biases arising from word-label as-
sociations of the task learned during pretraining.
They propose to use random in-domain words
rather than content-free inputs and averaging over
M times, p̂ = 1

M

∑M
j=1 p(y | [randomi.d.]j , C).

They shift the output distribution by dividing by
the prior,

ŷi = argmaxy∈Y
p(y | xi, C)

p̂
. (1)

Several works have suggested that methods us-
ing heuristics such as content-free or random in-
domain inputs are too simplistic and may introduce
new bias, and propose alternatives using the test
inputs (Zhou et al., 2024a), generated sequences
(Jiang et al., 2023), and in-context demonstrations
(Reif and Schwartz, 2024). Zhou et al. (2024a)
propose to directly use batches of M unlabeled
test data, p̂ = p(y | C)j = Ex∼P (x)

[
p(y = yj |

x,C)
]
≈ 1

M

∑M
i=1 p(y = yj | x(i), C)∀yj ∈ Y

and calibrate the output probability with Equation 1.
This is essentially shifting the decision boundary
by the mean for each class and effectively aligns
the score distribution to the estimated class mean
to reduce any impact of label biases. Jiang et al.
(2023) use the generative capabilities of LLMs
to estimate the in-context label marginal using
Monte Carlo sampling of generated sequences with
p̂ = 1

L

∑L
l=1 pLM

(
T (y) | D(Dπ

t ) ⊕ T (xl)
)

,

where xl is a generated sequence sampled from
pLM

(
T (y) | D(Dπ

t )
)

. This value is then plugged
back into Equation 1. Reif and Schwartz (2024) ob-
tain output probabilities pi(y) for each in-context
example using a leave-one-out method. They then
average the output probabilities for each label
and obtain p̂ using the mean of the intra-label
averages p̂(y) = 1

Y

∑
l∈Y

(
1

|Dl|
∑

yi∈Dl
pi(y)

)
,

where Dl = {pi | yi = l}. Calibration param-
eters are then computed as in (Zhao et al., 2021).
Jang et al. (2024) similarly estimate the semantic
prior on labels using a leave-one-out method on the
demonstrations that additionally incorporates an
estimate of the word-by-word semantic distribution
using random shuffling (and use Equation 1). Esti-
mation of bias priors has also shown effective for
mitigating selection bias for option IDs in multiple
choice datasets (Zheng et al., 2024).

Alternatively, some calibration methods adopt
statistical models to calibrate the output distribu-
tion. Han et al. (2023b) use a Gaussian Mixture
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Model to learn a robust decision boundary, and Nie
et al. (2022) augment predictions with a k-nearest-
neighbor classifier over a datastore.

Rather than calibrating the model output distribu-
tion externally, other works aim to calibrate the in-
ternal mechanisms of the model. Zhao et al. (2024)
add noise to the model parameters to minimize
the impact of pretrained token and label biases.
To calibrate the model’s prediction bias, they per-
turb model parameters using random noise sampled
from a normal distribution N (0, σ2) with intensity
hyperparameter λ. This allows interpolation be-
tween each parameter θi and the noise matrix using
θ′i = (1 − λ)θi + λN (0, σ2). Other works aim
to identify and mitigate components responsible
for the bias. Zhou et al. (2024b) showed that label
biases can stem from biased behaviors of attention
heads and feed-forward network vectors and miti-
gated their impact via masking. Ali et al. (2024) use
Integrated Gradients (Sundararajan et al., 2017) to
identify neurons responsible for copy bias and mit-
igate their impact via pruning. The pruned models
perform better and also lead to better task vectors
(Hendel et al., 2023), indicating that bias neurons
can interfere with the model’s ability to learn the
underlying task.

The design of in-context demonstrations and
prompts can also be used to mitigate shortcut be-
haviors, such as designing prompts to reduce re-
liance on negation and overlap on reasoning tasks
(Sun et al., 2024), using in-context demonstrations
to mitigate length biases from fine-tuned models
(Schoch and Ji, 2025a), and using semantically-
relevant labels to mitigate feature biases (Si et al.,
2023). On generation tasks, noisy annotations can
be identified and replaced with their nearest neigh-
bors that are likely to be clean, using a perplexity-
based method (Gao et al., 2024).

5 The Debatable: Open Questions in ICL

In this section, we discuss data qualities in ICL
that have mixed results (ground truth labels, input
length, number of examples) as well as the relation-
ship between ICL demonstrations and the underly-
ing model (model size, pretraining data). Within
this discussion, we include some open questions.

Ground Truth Labels. Some work has sug-
gested that correct input-label pairings have mini-
mal impact on ICL performance (Min et al., 2022).
However, other works have suggested that the im-
portance of ground truth labels is dependent on the

task and task difficulty (Madaan and Yazdanbakhsh,
2023; Yoo et al., 2022), experimental configuration
(Yoo et al., 2022), and model size (Pan et al., 2023;
Wei et al., 2024). While some work has begun
to analyze the mechanisms responsible for how
LLMs utilize label information (Wang et al., 2023)
and the influence of semantic priors (Pan et al.,
2023), the role of ground truth labels (and underly-
ing mechanisms) in in-context learning remains an
open research area.

Model Size. Increasing the size of models can
increase the potential performance gains from in-
context learning (Milios et al., 2023; Lu et al.,
2022). However, it can also increase the poten-
tial for robustness issues stemming from the in-
context demonstrations. This includes vulnerability
to shortcut features (Tang et al., 2023; Schoch and
Ji, 2025a), input noise (Shi et al., 2023b), and label
noise (Pan et al., 2023; Wei et al., 2024; Shi et al.,
2023b) in the demonstrations. This underscores
an important direction in accounting for potential
trade-offs between performance and robustness un-
der ICL settings with respect to model size. Some
works posit that the vulnerability to noise may arise
from the fact that larger models cover more hidden
features whereas smaller models emphasize more
hidden features (Shi et al., 2023b), or from the
ability of larger models to override their pretrained
priors in comparison to smaller models (Pan et al.,
2023; Wei et al., 2024). Other works, however,
have shown promise for smaller models to override
semantic priors and learn new input-label mappings
(Kossen et al., 2024; Jang et al., 2024).

Input Length. The impact of input length on
ICL performance is not currently well-understood.
Chang and Jia (2023) did not find a correlation be-
tween good examples selected by their method and
sequence length, other than a small negative corre-
lation when sequence length is very long. Length
information, however, can be learned by the model
in-context (Schoch and Ji, 2025a). Some other
studies have incorporated length into their meth-
ods of analysis and label bias mitigation. Fei et al.
(2023) calibrate output distributions using random
in-domain word sequences of the average input text
length. Min et al. (2022) selected examples with
similar lengths to the test inputs in their analysis of
ICL. However, it is unclear whether similar length
to test inputs is important given the absence of re-
sults with dissimilar or otherwise varied lengths.
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Number of Examples. There are currently a
number of conflicting results regarding the number
of examples to use for ICL. Some works have sug-
gested that learning with few demonstrations out-
performs zero-shot settings (Min et al., 2022), yet
other work has shown this may not generalize to all
datasets and models (Brown et al., 2020; Xie et al.,
2022; Lin and Lee, 2024). Further, some works
show conflicting results on performance plateaus.
Wang et al. (2024) found performance plateaus at
k = 4 under their LLM-R framework, whereas Min
et al. (2022) found performance plateaus occurring
at k ≥ 8. They further suggested that aspects im-
portant for ICL such as the input distribution, label
space, and input-output mapping format are eas-
ily recoverable from few examples, whereas larger
amounts of data (such as in fine-tuning settings) are
required to supervise input-label correspondence
(Min et al., 2022).

The performance plateaus at k ≥ 8 (Min et al.,
2022), however, may be dependent on the spe-
cific organization (selection and order) of exam-
ples (Schoch and Ji, 2025b). Wu et al. (2023) ob-
served similar plateaus at k = 8 when using a ran-
dom baseline, but under their self-adaptive method
for selecting a good organization of demonstra-
tions, performance consistently increased from k =
{0, 1, ..., 32}. Lu et al. (2022) similarly observed
performance increases using k = {1, 2, ..., 32},
and further underscored the importance of order-
ing by noting that increasing the number of exam-
ples does not decrease the variance across permuta-
tions. Beyond sensitivity to ordering, Schoch and
Ji (2025a) demonstrated that increasing the num-
ber of examples can increase the sensitivity of the
model to data biases in the demonstrations.

There are also task-specific considerations in the
benefit or risk of increasing the number of exam-
ples. On reasoning tasks, Chen et al. (2023a) also
showed that one example can outperform settings
with more examples due to interference and spuri-
ous correlations that can arise between examples.
On text generation tasks, Gao et al. (2024) showed
that increasing the number of examples in the pres-
ence of noisy annotations can degrade performance,
even when using selection methods such as top-k.

Pretraining Data. The pretraining data distribu-
tion is impactful on ICL learnability (Wies et al.,
2023). Properties that have been identified as bene-
ficial for the emergence of ICL include burstiness,
a large number of rarely occurring classes (Chan

et al., 2022), and diverse tasks (Kirsch et al., 2022;
Yadlowsky et al., 2023; Raventós et al., 2024).
While task diversity is important, in few-shot ICL
settings pretraining data does not necessarily re-
quire domain relevance to the downstream task
(Han et al., 2023a; Shin et al., 2022).

The pretraining data distribution can also im-
pact the model’s performance on different test data
in-context. Pretraining label and token term fre-
quencies can introduce bias into the model’s output
distribution (Zhao et al., 2021). Other work has
demonstrated positive correlations between term
frequencies and ICL performance on numerical rea-
soning tasks (Razeghi et al., 2022) and QA tasks
(Kandpal et al., 2023). For models where the pre-
training data is unknown, this can make the eval-
uation of ICL performance difficult to interpret
(Razeghi et al., 2022).

6 Discussion & Conclusion

In this survey, we gave an overview on the relation-
ship between data and ICL. Beyond the open issues
raised in section 5, there are several important di-
rections for data-centric ICL research. Notably,
much of the current work on understanding data
impacts in ICL are on reasoning and classification
tasks. Extending our understanding on generation
tasks (Gao et al., 2024), low-resource tasks (Patel
et al., 2022), and long-context settings (Li et al.,
2024c; Liu et al., 2024c; Bertsch et al., 2024; Hao
et al., 2022; Li et al., 2023a; Agarwal et al., 2024)
would greatly enrich the discussion. Additionally,
a number of different theoretical interpretations of
ICL have been proposed (Xie et al., 2022; Dai et al.,
2023), and understanding ICL data through these
lenses could serve as an interesting future direction.

7 Limitations

In this work, we aimed to provide a comprehensive,
data-centric overview of the ICL literature. While
we made every effort to include all of the relevant
works, we may have overlooked some valuable
contributions given the extensive and rapidly pro-
gressing state of ICL research. Additionally, to
realistically constrain the scope of our survey, we
note several areas which are outside of the scope
of the current work. Specifically, potential data-
centric ICL works with domain-specific challenges
were outside of the scope of the current work, as
well as more extensive discussion of long-context
LLMs and many-shot ICL settings. As an addi-
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tional constraint on scope, we did not include works
on prompt template design. However, we acknowl-
edge that the prompt template is an important de-
sign component that interacts with the ICL demon-
strations. We leave a survey on prompt template
design to future work.
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