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Abstract

Knowledge graph embedding (KGE) models
are designed for the task of link prediction,
which aims to infer missing triples by learn-
ing representations for entities and relations.
While KGE models excel at ranking-based link
prediction, the critical issue of probability cali-
bration has been largely overlooked, resulting
in uncalibrated estimates that limit their adop-
tion in high-stakes domains where trustworthy
predictions are essential. Addressing this is
challenging, as we demonstrate that existing
calibration methods are ill-suited to KGEs, of-
ten significantly degrading the essential rank-
ing performance they are meant to support. To
overcome this, we introduce the KGE Calibra-
tor (KGEC), the first probability calibration
method tailored for KGE models to enhance the
trustworthiness of their predictions. KGEC in-
tegrates three key techniques: a Jump Selection
Strategy that improves efficiency by selecting
the most informative instances while filtering
out less significant ones; Multi-Binning Scal-
ing, which models different confidence levels
separately to increase capacity and flexibility;
and a Wasserstein distance-based calibration
loss that further boosts calibration performance.
Extensive experiments across multiple datasets
demonstrate that KGEC consistently outper-
forms existing calibration methods in terms of
both effectiveness and efficiency, making it a
promising solution for calibration in KGE mod-
els'.

1 Introduction

Knowledge graphs (KGs) are essential resources
for a wide range of knowledge-driven tasks, includ-
ing semantic search (Xiong et al., 2017), knowl-
edge reasoning (Liu et al., 2021), question answer-
ing (Shen et al., 2019; Ye et al., 2023), and Neuro-
Symbolic AI (Yang and Curry, 2025). Prominent

!Codes available at https://github.com/Yang233666/KGE-
Calibrator

Query: (Greece, _member_of_domain_region, ?)
True answer: sibyl

Ranked candidate entities | Uncalibrated scores
Greece -0.1873
Holy_See -0.2946
sibyl -0.5992
Colosseum -0.8017
Sistine_Chapel -0.8683

Figure 1: Uncalibrated scores for a query from
WNI18RR (Dettmers et al., 2018) produced by the
TransE model (Bordes et al., 2013). Although the cor-
rect entity (“sibyl”) is highly ranked, the uncalibrated
scores lack probabilistic interpretability, highlighting
the need for calibration.

large-scale KGs such as YAGO (Suchanek et al.,
2007), DBpedia (Lehmann et al., 2015), and Free-
base (Bollacker et al., 2008) encompass millions of
entities and hundreds of millions of relational facts,
which are typically structured as sets of <head
entity, relation, tail entity> triples.

However, most KGs are incomplete due to ex-
traction errors and limited input resources. This
makes link prediction, also known as knowledge
graph completion, crucial for inferring missing
links and improving KG quality. To this end,
knowledge graph embedding (KGE) models such
as TransE (Bordes et al., 2013) and ComplEx
(Trouillon et al., 2016) tackle this problem by learn-
ing latent representations of entities and relations to
score the plausibility of candidate triples. Beyond
link prediction, KGE models have demonstrated
remarkable success across diverse applications, in-
cluding entity alignment (Sun et al., 2018) and
canonicalization (Shen et al., 2022).

While the ranking accuracy of KGE models has
seen significant advancements, the critical issue of
probability calibration remains largely overlooked.
Specifically, KGE models should output calibrated
probabilities alongside their predictions. How-
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ever, they typically produce uncalibrated scores
(Pezeshkpour et al., 2020; Tabacof and Costabello,
2020). This stems from link prediction being
framed as a ranking task, where metrics like Mean
Rank (MR) and HITS@N prioritize relative order-
ing while ignoring the reliability of output scores.
As a result, KGE models can assign implausible
scores to correct entities yet still perform well, as
shown in Figure 1. This shortcoming limits their
applications in high-stakes domains such as drug
and protein target discovery (Zeng et al., 2022; Mo-
hamed et al., 2020), where calibrated estimates are
essential.

To address this critical issue, increasing attention
has been directed toward the probability calibration
task of KGE models, which aims to convert the
uncalibrated scores assigned to candidate triples
into well-calibrated probability estimates. As a
post-processing technique, calibration improves
the trustworthiness of link prediction results, mak-
ing them more reliable for downstream applica-
tions. However, probability calibration in KGE
poses unique challenges compared to traditional
classification. Image classification datasets like
CIFAR-100 (Krizhevsky et al., 2009) or document
classification datasets like SST (Socher et al., 2013)
involve tens or hundreds of classes. In contrast,
KGE tasks treat each entity as a distinct class. This
creates a massive class space, a challenge present
even in standard benchmarks (e.g., FB15K and
WN18RR contain 14,951 and 40,943 entities, re-
spectively). This high cardinality yields extremely
small per-class probabilities and makes calibra-
tion highly sensitive. On WN18RR, for instance,
we empirically observe that 99.1% of uncalibrated
scores produced by TransE fall below 10~%, high-
lighting the dominance of near-zero values. Even
small perturbations in such distributions can dis-
tort the original ranking and negatively affect link
prediction performance. Therefore, preserving the
original ranking quality becomes a critical require-
ment, posing a distinctive challenge for probability
calibration in the KGE setting.

Despite its importance and unique challenges,
probability calibration in KGE remains largely un-
derexplored. Prior studies (Tabacof and Costabello,
2020; Pezeshkpour et al., 2020) have shown that
popular KGE models produce poorly calibrated
scores, resulting in unreliable probability estimates.
Several off-the-shelf calibration methods, such as
Platt Scaling, Isotonic Regression, and Tempera-
ture Scaling, have been evaluated (Safavi et al.,

2020; Zhu et al., 2022), but these methods are de-
signed for standard classifiers and are not well-
suited to the scale and ranking-sensitive nature of
KGE. A few works have explored calibration in spe-
cific tasks, including triple classification (Tabacof
and Costabello, 2020), relation prediction (Safavi
etal., 2020), and low-dimensional entity expit trans-
formations (Wang et al., 2021). However, no exist-
ing approach offers a calibration method explicitly
tailored to the probabilistic characteristics of KGE
models. This leaves a critical gap in improving the
trustworthiness of KGE-based link prediction.

To fill this gap, we propose KGE Calibrator
(KGEC), the first probability calibration method
tailored specifically for KGE models. To enhance
training efficiency under the large-scale class space
characteristic of KGE, we introduce the Jump Se-
lection Strategy, which selects the most informative
instances while discarding less significant ones. To
increase model expressiveness and better capture
the ranking-sensitive nature of KGE predictions,
we propose Multi-Binning Scaling, which mod-
els different probability levels separately, thereby
increasing model capacity and flexibility. Addition-
ally, we propose a Wasserstein distance-based loss
function to further boost calibration performance.
To the best of our knowledge, this is the first use of
the Wasserstein distance for probability calibration.

Contributions. Our major contributions can be
summarized as follows:

e We demonstrate that five of nine widely-used
post-hoc calibration methods degrade link predic-
tion performance for KGE entity prediction, indi-
cating they are unsuitable in this setting.

e We propose KGEC, the first probability calibra-
tion method specifically designed for KGE models,
which addresses the challenge of large class space
in calibration while preserving the original ranking
performance.

e A thorough experimental study over four
datasets demonstrates that KGEC consistently out-
performs existing calibration methods in both per-
formance and efficiency.

2 Related Work

Probability Calibration in KGE Models. Sev-
eral studies have highlighted that KGE models
produce poorly calibrated probability estimates.
Early work by (Tabacof and Costabello, 2020)
and (Pezeshkpour et al., 2020) showed that widely
used KGE models are poorly calibrated in triple
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classification tasks. To address this, (Tabacof
and Costabello, 2020) applied Platt Scaling (Platt
et al.,, 1999) and Isotonic Regression (Zadrozny
and Elkan, 2002), while (Safavi et al., 2020) ex-
plored Matrix Scaling and Vector Scaling (Guo
et al., 2017) in relation prediction. A broader evalu-
ation by (Zhu et al., 2022) tested additional off-the-
shelf calibration techniques, including Histogram
Binning (Zadrozny and Elkan, 2001), Beta Calibra-
tion (Kull et al., 2017), and Temperature Scaling
(Guo et al., 2017) for triple classification. Further-
more, (Rao, 2021) examined calibration under both
closed-world and open-world assumptions. While
these works shed light on the calibration issue in
KGE, they all rely on existing techniques origi-
nally designed for traditional classification prob-
lems. None propose a calibration method specif-
ically tailored for KGE models, leaving a critical
gap in the literature. For completeness, we provide
a summary of calibration methods explored in prior
KGE studies in Table 4 (Appendix A.1).

Expit Transformations. Expit transformations
aim to convert uncalibrated scores into probabilities
using functions such as the Sigmoid (Nickel et al.,
2015; Tabacof and Costabello, 2020; Zhu et al.,
2022) and Softmax (Pezeshkpour et al., 2020).
Other approaches include neighborhood interven-
tion consistency (NIC) (Wang et al., 2021) and
min-max scaling (Rao, 2021). However, recent
research (Zhu et al., 2022) has shown that even
when expit-transformed scores can be interpreted
as probabilities, they are still uncalibrated and unre-
liable. As a result, these expit transformations are
generally viewed as a preliminary step, typically
followed by a dedicated calibration method such
as Platt Scaling or Isotonic Regression. In fact,
(Zhu et al., 2022) concluded that expit transforma-
tions are ineffective in most cases and suggested
probability calibration as a better approach. Follow-
ing this direction, our work focuses exclusively on
probability calibration and does not include expit
transformations as part of our method design.

3 Preliminaries

Notations. We use calligraphic font for sets (e.g.,
£). Matrices are denoted by bold uppercase (e.g.,
P € R™™). Row and column vectors extracted
from a matrix are bold lowercase (e.g., the i-th row
p; € RY™™ and the j-th column p? € R™*!). Stan-
dalone vectors (e.g., an embedding h or a vector
of probability estimates p) are also bold lowercase.

The vector of calibrated estimates is distinguished
with a hat (e.g., p). Scalars are denoted by plain
italic letters (e.g., n, m).

Knowledge Graph. A knowledge graph (KG)
G consists of a set of triples (h,r,t), where each
triple includes a head entity h € &, a tail entity
t € &, and arelation r € R connecting head and
tail. Here, £ and R refer to the sets of entities and
relations of G respectively, and m = |€| denotes
the total number of entities.

Knowledge Graph Embeddings. Knowledge
graph embedding (KGE) models aim to represent
each head entity h, relation r, and tail entity ¢ from
a KG @G as d-dimensional continuous embeddings
h,r,and t € R A core component of the KGE
model is its score function v, which evaluates the
plausibility of a triple (h, r, t) by computing a com-
patibility score ¢ (h, r, t) from the corresponding
embeddings. Table 10 in Appendix F lists the score
functions of the most widely used KGE models.

Link Prediction. Link prediction, the primary
downstream task for KGE models, encompasses
both entity prediction and relation prediction. En-
tity prediction is generally more challenging due
to the large number of candidate entities. For ex-
ample, the widely used WN18RR (Dettmers et al.,
2018) dataset contains 40,943 entities but only 11
relations. In this paper, we focus on the more chal-
lenging entity prediction task, which includes both
head and tail prediction.

For head prediction, given a query (?,r,t), each
entity e; € £ is treated as a candidate for the miss-
ing head entity. The trained KGE model assigns a
score Y (e;, r, t) to each candidate triple (e;, 7, t),
where e; is a candidate head entity, and r and ¢ are
the given relation and tail entity. These scores are
then ranked, with higher-ranked triples considered
more plausible, indicating that the corresponding
entity e; is a likely answer to the query (?,r,t).
The task of tail prediction is defined analogously
for queries of the form (h,r, 7).

KGE Probability Calibration. Given a head-
entity query (7, 7, t), a KGE model with score func-
tion v first produces an uncalibrated score vector
over all m entities:

s = [Y(er,r,t),...,0(en,r,t)]T €R™, (1)

where s is the uncalibrated score vector. These
scores are typically converted into an initial vec-
tor of uncalibrated probability estimates p using
an expit transformation such as the Softmax func-
tion (ogM), where p = osnm(s). However, these
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Table 1: Effect of calibration on TransE’s ranking per-
formance (FB15K). Lower MR indicates better perfor-
mance; higher MRR and HITS@K are better. | de-
notes performance degradation compared to the uncali-
brated (Uncal) baseline. Methods shown are Platt Scal-
ing (PS), Histogram Binning (HB), Isotonic Regression
(IR), Bayesian Binning into Quantiles (BBQ), Vector
Scaling (VS), Matrix Scaling (MS), Temperature Scal-
ing (TS), Meta-Cal, Parametrized Temperature Scaling
(PTS), and our proposed KGEC.

Method MR  MRR  HITS@] HITS@3 HITS@I0
FBISK
Uncal 40 0731 0646 0793  0.865
PS 40 0731 0646 0793  0.865
HB  2275] 0570 0510, 0614) 0.670)
IR 982 0615 0530, 0675, 0.761]
BBQ 1275 0589] 0509 0.646] 0726
VS 41]  0730] 0646 0791 0862
MS 3687 0038 0024 0039] 0061
TS 40 0731  0.646 0793  0.865
Meta-Cal 1149 | 0677 0.604] 0735 0787
PTS 40 0731 0646 0793  0.865
KGEC 40 0731 0646 0793  0.865

estimates often provide poor reflections of the true
likelihoods (Zhu et al., 2022).

The goal of probability calibration is to learn a
mapping that transforms the uncalibrated estimates
p into calibrated estimates p, such that each ele-
ment p; more faithfully reflects the likelihood of
correctness for the i-th candidate. Addressing this
challenge for KGE models is the primary focus
of this work. After calibration, the predicted an-
swer ¢ to the query and its associated calibrated
confidence are obtained as:

g = argmax(p), p = max(p), )

where ¢ denotes the most likely entity and p quan-
tifies the calibrated confidence in this prediction.
Calibration Method Evaluation. To motivate
our work, we first demonstrate that preserving rank-
ing performance is a non-trivial requirement that
many standard calibration methods fail to meet. We
evaluate a set of widely used post-processing meth-
ods? in the context of entity prediction. Specifically,
we consider nine representative methods and exam-
ine whether they preserve or degrade the ranking
performance of KGE models after calibration.
Table 1 presents the results of applying these
calibration methods to the TransE model on the
FB15K dataset. The results reveal the following
observations: (1) HB, IR, BBQ, MS, and Meta-Cal
substantially degrade performance, making them

Brief descriptions of these calibration methods are pro-
vided in Appendix A.2.

__________________________________

Selected Probability
Estimates: p“€ R™

Apply Temperatures
T € R and Scaling
—m

Jump-Based

Selection
Ordered Probability
Matrix: P € R™™

Ouput: Calibrated Estimate
Matrix: P € R™™

__________________

One-hot

Expit n
Transformation 1
Label: Ground-truth Set: Y € R"
Input: Query Set X € R™ :: [ Y J
and Entity Set £ € R™ n —
‘\ 7 Wasserstein Distance Loss €— ;
7N\
N < 4

KGE Model 3

i S S S S S S

Figure 2: An illustration of the proposed KGEC method.

unsuitable as calibrators for KGE models in the en-
tity prediction task; (2) PS, TS, and KGEC success-
fully preserve the original ranking performance,
demonstrating their suitability for this task; (3) VS
slightly degrades performance on FB15K, but given
that the decline is minor, so its overall impact re-
mains acceptable.

These findings suggest that not all well-known
calibration methods are compatible with KGE-
based entity prediction. For a more comprehen-
sive view, the detailed results for additional KGE
models across multiple datasets are reported in Ta-
bles 5-8 in Appendix B.

4 KGE Calibrator

Figure 2 presents an overview of our proposed
KGE Calibrator (KGEC). We begin by describ-
ing the Jump Selection Strategy and Multi-Binning
Scaling, followed by the Wasserstein distance-
based loss function.

4.1 Jump Selection Strategy

Calibrating KGE models is challenging due to their
extremely large class spaces: each query involves
thousands of candidate entities, resulting in long-
tailed probability estimates dominated by near-zero
values. Directly using all candidates for calibration
training is both computationally prohibitive and
highly redundant. Our intuition is that calibration
for KGE models requires selecting a small but infor-
mative subset of candidates for training. Building
on this idea and inspired by the Log-Jump algo-
rithm (Shen et al., 2022), we propose the Jump
Selection Strategy (JSS), which retains only the
most informative instance per query identified via
the Jump measure (Sugar and James, 2003), while
discarding others. This reduces training size dra-
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Algorithm 1 Jump Selection Strategy (JSS)

Input: Query set X = {z; = (?,7;,t;)}1~, can-
didate entities £ = {e;}}.,, trained KGE
model 1.

Output: Most informative column index J* and
vector of probability estimates p* € R”.

1: fori=1,...,ndo

2:  Compute scores: s; < [@/}(ej,ri,ti)];”:l.
3:  Convert to probabilities: p; <— ogm(s;).
4: end for

5: Stack row vectors to form probability matrix
P < [p1,...,pn)" € R™™,

6: Sort each row of P in descending order to ob-
tain P.

7. forj=1,...,m—1do

Jj < Dku(p’ | 7).

9: end for

10: J* < arg max; J;.

11: p* «p’.

matically without sacrificing essential informative-
ness.

Principle of Informativeness. The core idea is
that the most informative instance lies at the tran-
sition point between highly informative and less
informative candidates. When candidate scores are
ranked, the resulting distribution typically exhibits
a steep drop from a few high-probability candi-
dates to a long tail of near-zero values. Selecting
the instance at this sharp transition ensures that the
retained example captures the highest degree of
informativeness. We formalize this intuition using
the Jump measure to quantify informativeness.

Method. The JSS procedure is detailed in Al-
gorithm 1. Given a set of queries X = {z;}"
and candidate entities & = {e;}" ,, the procedure
begins by iterating through each query. For each
query zx;, the trained KGE model v first produces
a vector of uncalibrated scores s; € R"™ over all
candidate entities (line 2). This score vector is then
converted into a vector of probability estimates p;
using the Softmax function ogyy (line 3).

After processing all queries, the resulting prob-
ability vectors {p;} are stacked as rows to form
a single matrix P € R™ " (line 5). To make
confidence transitions explicit, each row of P is
then sorted in descending order to yield a new ma-
trix P (line 6). This reordering does not affect
downstream performance. Link prediction metrics
depend only on relative ranks, and the following

calibration operates on the full vector of probability
estimates, regardless of order.

To quantify informativeness and detect the most
significant transition point, we compute the Kull-
back-Leibler (KL) divergence between consecutive
columns of 15, i.e., p/ and p/*1, as the Jump mea-
sure J; (lines 7-9). KL divergence is employed
here not as a loss function, but as a measure of
the informativeness shift between ranked adjacent
columns. Finally, the column index J* that maxi-
mizes this Jump measure is selected, and its corre-
sponding vector of probability estimates p* € R"
is retained as the most informative vector for sub-
sequent calibration training (lines 10-11).

By transforming the training instances from a
full probability matrix P € R™*™ into a single
informative column vector p* € R", JSS reduces
the number of training instances by a factor of m
without discarding critical information. A detailed
discussion and theoretical analysis of potential in-
formation loss are provided in Appendix C.

4.2 Multi-Binning Scaling

An effective post-hoc calibrator for KGE models
must satisfy two properties: it should be expressive
enough to correct complex miscalibration patterns
while strictly preserving the model’s original rank-
ing order, as metrics like MRR and HITS @K are
paramount. Temperature Scaling (TS) (Guo et al.,
2017), a widely used method, perfectly satisfies
the second property by applying a single scalar
temperature 7' > 0 to the logits. However, its sim-
plicity comes at the cost of limited expressiveness:
TS applies the same transformation to all probabil-
ity estimates regardless of magnitude (e.g., scaling
probabilities of 0.1 and 0.9 identically), making it
inadequate for calibrating the highly non-uniform
confidence distributions typical of KGE models.
A single global parameter is often too restrictive
to capture the nuanced calibration required across
different confidence levels.

To address this limitation, we introduce Multi-
Binning Scaling (MBS), a highly expressive and
flexible approach that inherits the rank-preserving
benefit of TS while improving calibration qual-
ity. Inspired by histogram binning (Zadrozny and
Elkan, 2001), the core idea of MBS is to partition
the confidence space into multiple segments and
learn a separate temperature for each, allowing the
model to apply different transformations to differ-
ent confidence levels.

Concretely, we partition the interval [0, 1] into
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W disjoint, equal-width bins, By, ..., By, and
associate each bin with an independent trainable
temperature parameter 17, > 0. For a given query
1, we use the single most informative probability,
p;, identified by our Jump Selection Strategy (Sec-
tion 4.1), to select the appropriate bin. The as-
sociated temperature is squared and inverted to
yield a bin-specific scaling factor 1/72, which
then multiplies the entire vector of probability es-
timates p;, uniformly rescaling estimates across
all candidate entities. For example, with W = 10
bins, a probability of p; = 0.75 falls into the bin
Bg = (0.7,0.8], and its corresponding tempera-
ture Ty determines the scaling factor applied to all
candidate entities for that query.

This simple multiplicative rescaling is crucial: it
guarantees ranking preservation while adaptively
modulating confidence levels across bins. Squaring
the temperature stabilizes optimization by smooth-
ing gradients, ensuring positive scaling, and pre-
venting excessively sharp updates. While we adopt
equal-width bins for simplicity, more advanced
strategies, such as adaptive or data-driven binning,
represent a promising extension. Ultimately, MBS
is highly efficient, as its complexity depends only
on the number of bins, requiring the training of
just W scalar temperature parameters. By com-
bining the rank-preserving property of TS with the
enhanced expressiveness of a bin-based transforma-
tion, MBS offers a principled and scalable solution
for KGE model calibration.

4.3 Optimization

While KL divergence is a commonly used loss func-
tion in deep learning, it poses notable limitations
for calibration in KGE models, such as gradient
instability and explosion’. To address these issues,
we propose using the Wasserstein distance as the
loss function for KGEC. Unlike KL divergence,
the Wasserstein distance provides a more stable
and geometrically meaningful way to compare con-
fidence distributions by considering the minimum
cost of transforming one distribution into another.
This perspective is especially valuable in calibra-
tion, where we aim to align the calibrated estimates
with ground-truth probability distributions while
preserving their structure.

The Wasserstein distance models calibration as
an optimal transport (OT) problem. As the loss
function requires a probability distribution, we first

3A detailed analysis is provided in Appendix D.

apply a Softmax transformation to the rescaled es-
timates from Multi-Binning Scaling (Section 4.2),
yielding the calibrated probability distribution p;.
The goal of OT problem is to find the most efficient
way to move mass from this calibrated probability
distribution p; € R™ to the ground-truth one-hot*
distribution q; € {0, 1}". The feasible set of trans-
port plans is defined by the transportation polytope
U (Pi, i), which contains all nonnegative transport
matrices P € R"™:

U(pi,qi) = {P € R"™|P1, = p;,

3
PT]-m:qi}v )

where 1, € R™ is the vector of ones.

Given a cost matrix M € R™*"™_ the Wasser-
stein distance is defined as the minimum transport
cost required to map p; to q; using the transport
matrix P.

min
PeU(pi,a:)

SRR
J l

where (-, -) denotes the Frobenius dot-product and
M =
between the j-th and /-th elements of p; and q;.
To improve computational efficiency, we use the
Sinkhorn distance (Cuturi, 2013), which provides
a fast approximation to the constrained Wasser-
stein distance by introducing entropy regulariza-
tion. Given the OT plan P and cost matrix M, the
Sinkhorn distance Dgp is defined as follows:

Dsp(bias) = (PAM),  (3)

Dwp(pi, i) = (P,M)

“

f)g - qﬁ‘ represents the absolute difference

where A > 0 is the weight for entropy regulariza-
tion. The OT plan P* is obtained by solving:

1
P = argmin (P,M)— —h(P), (6)
PeU(piai) A

where h(P) is the entropy of P. The solution P*
is computed iteratively via Sinkhorn normalization

(Cuturi, 2013) as follows:

u® = p; o (KTv0D),
(t) ) 7
v = q; @ (K u )a

where © indicates element-wise division, (¢) de-
notes the iteration time, and K = exp(—%) is the

“Here, q; is a one-hot vector where qf = 1 for the correct
entity 7, and q\ = 0 forall I # j.
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kernel matrix with entropy regularization weight A.
Finally, the optimal transport plan P* is given by:

P = diag (v(t)) K diag(u(t)). ®)

This Sinkhorn-regularized Wasserstein loss enables
more stable optimization and improves calibration
performance, particularly in the large class-space
settings typical of KGE tasks.

5 Experiments

We structure our experimental study to answer
three key research questions (RQs): RQ1: Can
KGEC outperform existing calibration methods?
RQ2: Is KGEC efficient in terms of training time
and memory usage? RQ3: What is the contribution
of each of its components? We first detail our ex-
perimental setting (Section 5.1), then address each
RQ in turn (Sections 5.2-5.4), and conclude with a
sensitivity analysis and case study.

5.1 Experimental Setting

5.1.1 Datasets

We evaluate our proposed model on four popu-
lar datasets, which are commonly used to evalu-
ate link prediction, where FB15K (Bordes et al.,
2013) and FB15K-237 (Toutanova and Chen, 2015)
were extracted from Freebase (Bollacker et al.,
2008), WN18 (Bordes et al., 2013) and WN18RR
(Dettmers et al., 2018) were extracted from Word-
Net (Miller, 1995). Note that FB15K-237 and
WNI18RR are subsets of FB15K and WN18, re-
spectively, in which near-same and near-reverse re-
lations have been removed. These datasets are pub-
licly available, and already partitioned into training,
validation and testing splits. The statistics of them
are summarized into Table 9 in Appendix E.

5.1.2 KGE Models

We evaluate KGEC on four well-established KGE
models: TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016), and RotatE (Sun et al., 2019). Their score
functions are listed in Table 10 in the Appendix F. It
is noted that our proposed method KGEC is model-
agnostic, as it can be applied to any KGE model
that produces a score for each candidate triple. We
therefore leave the evaluation of KGEC on other
KGE architectures for future work.

5.1.3 Evaluation Measures

To evaluate calibration performance, we adopt
three widely used evaluation metrics: Expected

Calibration Error (ECE) (Naeini et al., 2015), Adap-
tive Calibration Error (ACE) (Nixon et al., 2019),
and Negative Log-Likelihood (NLL). Each met-
ric captures different aspects of calibration qual-
ity. Due to space constraints, we refer readers to
(Naeini et al., 2015; Nixon et al., 2019) for detailed
formulations. For an overall comparison, we report
the Average performance by averaging each metric
across all datasets and KGE models.

5.1.4 Setting Details

To ensure a fair comparison, all calibration base-
lines® and metrics we used are from third-party
frameworks or their original implementations.
Specifically, the code of PS, HB, IR, BBQ, and TS
is from the net:cal library®. The code of MS and
VS, as well as all calibration metrics, is provided
by TorchUncertainty’. The code of Meta-Cal® and
PTS? is from their official repositories. For the
hyperparameter setting of KGEC, the number of
bins is set to 10, the learning rate to 0.01, the batch
size to 32, the initial temperature for each bin to
1.0, and the optimizer is AdamW (Loshchilov and
Hutter, 2019). Except for VS, MS, and TS, which
use the Multiclass setting, all other baselines use
the One-vs-All setting to avoid prohibitive training
time. We follow the closed world assumption in
our experiments, since the open world assumption
requires a label for each triple, which is not avail-
able in existing datasets. All reported results are
averaged over 10 independent runs.

5.2 Effectiveness Study for RQ1

Table 2 presents the calibration performance of
various methods across multiple KGE models and
datasets. Notably, baselines such as HB, IR, BBQ,
MS, and Meta-Cal are excluded, due to their detri-
mental impact on ranking performance, as evi-
denced in Table 1 (Section 3). Since preserving the
original ranking order is essential in KGE settings,
these calibration methods that degrade ranking per-
formance are considered unsuitable for practical
deployment and omitted from further evaluation.
Overall, KGEC consistently outperforms all
competitive baselines, achieving the lowest average
ECE, ACE, and NLL across all datasets and models.

SDue to space limitations, detailed descriptions of the cali-
bration baselines are deferred to Appendix A.2.
®https://efs-opensource.github.io/calibration-
framework/build/html/index.html
"https://torch-uncertainty.github.io
8https://github.com/maxc01/metacal/tree/master
*https://github.com/tochris/pts-uncertainty

29970


https://efs-opensource.github.io/calibration-framework/build/html/index.html
https://efs-opensource.github.io/calibration-framework/build/html/index.html
https://torch-uncertainty.github.io
https://github.com/maxc01/metacal/tree/master
https://github.com/tochris/pts-uncertainty

Table 2: Effect of different calibration methods on the performance of various KGE models across multiple datasets.
Best and second-ranked results are in bold and underlined, respectively. For ECE, ACE, and NLL, lower values

indicate better calibration performance.

ECE TransE ComplEx DistMult RotatE Average
WNIS WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNI§ WNISRR FBISK FBIS5K-237
Uncal  0.502 0.265 0.580 0.212 0.852 0.424 0.696 0.228 0.528 0.389 0.694 0.221 0.429 0.385 0.684 0.224 0.457
PS 0.634 0.031 0.530 0.218 0.854 0.427 0.701 0.229 0.529 0.394 0.700 0.222 0.876 0.425 0.722 0.235 0.483
Vs 0.706 0.014 0.646 0.231 0.852 0.424 0.697 0.228 0.528 0.389 0.695 0.215 0.944 0.413 0.739 0.239 0.498
TS 0.634 0.031 0.680 0.203 0.852 0.424 0.701 0.228 0.528 0.389 0.700 0.221 0.687 0.384 0.722 0.223 0.475
PTS 0.523 0.013 0.530 0.231 0.854 0.430 0.060 0214 0.456 0.393 0.526 0.778 0.337 0.425 0.221 0.365 0.397
KGEC 0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
ACE TransE ComplEx DistMult RotatE Average
WNIS WNISRR FBISK FBI5SK-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBI5SK FBI5SK-237 | WNIS WNISRR FBISK FBI5K-237
Uncal 0506 0274  0.565 0.180 0852 0424  0.696 0.228 0528 0389  0.694 0.220 0429 0385  0.684 0.224 0.455
PS 0.628 0.033 0.530 0.217 0.854 0.427 0.701 0.229 0.529 0.394 0.700 0.222 0.876 0.425 0.722 0.235 0.483
VS 0.506 0.274 0.565 0.180 0.852 0.424 0.697 0.228 0.528 0.389 0.694 0.215 0.429 0.385 0.684 0.224 0.455
TS 0.628 0.033 3312 0.154 0.852 0.423 0.701 0.228 0.528 0.389 0.700 0.220 0.687 0.384 0.722 0.222 0.636
PTS 0.516 0.013 0.530 0.231 0.854 0.424 0.060 0.207 0.446 0.391 0.522 0.778 0.337 0.418 0.221 0.363 0.394
KGEC 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
NLL TransE ComplEx DistMult RotatE Average
WNIS WNISRR FBISK FBI5SK-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBI5K-237
Uncal  2.891 6.582 3.911 5.396 6.892 7.815 5.954 7.513 7.447 7.858 5.919 7.705 1.376 6.145 4.090 5.750 5.828
PS 3.839 7.304 3.829 5.836 8.831 8.974 7.093 8.438 9.117 9.065 7.257 8.621 3.350 7.364 4.799 6.271 6.874
S / / / / 6.892 7.814 5.952 7.510 7.446 7.857 5.916 7.692 1.376 / / / 6.495
TS 3.839 7.304 1.285 4.909 6.892 7.802 7.093 7.513 7.447 7.856 7.257 7.704 2.069 6.121 4.799 5.617 5.969
PTS / 9.181 3.829 9.448 9.314 9.171 1.906 5.714 / 9.496 4.847 / / / / / 6.990
KGEC  2.462 5.965 2.536 2.889 4.350 6.965 1.357 2911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396

Table 3: Training time in seconds and memory usage in
MBs taken to calibrate entity prediction using different
calibration methods. Best and second-ranked results are
in bold and underlined, respectively. For a fair compari-
son, these results are obtained using CPU only.

Method Average Time Average Memory

PS 40856.945 2542.715
VS 1.577 83.294

TS 8.649 2540.274

PTS 7035.177 8410.493
KGEC 4.716 21.665

A breakdown of these results reveals several key
findings: (1) Limited effectiveness of simple base-
lines. PS, VS, and TS often perform worse than
the uncalibrated models. Their poor performance
is likely due to their low model capacity, which is
insufficient to capture complex calibration patterns
in high-cardinality KGE settings. (2) Improved re-
sults with PTS. PTS shows marked improvement
over simple baselines by predicting temperature
parameters adaptively using a neural network. This
flexibility enables better handling of distributional
variation, leading to improved performance. (3) Su-
perior performance of KGEC. KGEC achieves the
best overall results across all metrics and datasets.
Together, these findings confirm that KGEC ef-
fectively addresses the unique challenges of KGE
calibration while preserving ranking quality.

5.3 Efficiency Study for RQ2

Table 3 reports the average training time and mem-
ory usage of different calibration methods across
multiple KGE models and datasets. To ensure a

fair comparison, all methods are evaluated on CPU-
only environments. Detailed experimental results
for each calibration method on individual datasets
and KGE models are presented in Table 11 (Ap-
pendix G).

Key Observations from Table 3: (1) KGEC
is the most efficient model in both training time
and memory usage, consistently outperforming all
baseline methods. (2) VS and TS exhibit compara-
ble efficiency, with slightly longer training times
than KGEC, which can be attributed to their sim-
ple parametric structures. (3) PTS incurs signifi-
cantly higher computational costs, both in time and
memory, despite its strong calibration performance.
This high overhead may limit its applicability in
large-scale or resource-constrained scenarios. (4)
PS is the slowest method, largely due to the im-
mense number of classes in KGE settings, which
makes binary logistic regression computationally
expensive.

5.4 Ablation Study for RQ3

To assess the individual contribution of each com-
ponent in KGEC, we perform a comprehensive
ablation study across five key metrics: ECE, ACE,
NLL, training time, and memory usage. We eval-
uate the following four variants: (1) KGEC: The
full model, incorporating all components: Jump
Selection Strategy (JSS), Multi-Binning Scaling
(MBS), and the Wasserstein distance-based loss.
(2) KGEC-loss: Replaces the Wasserstein loss with
KL divergence while retaining JSS and MBS. (3)
KGEC-loss-MBS: Further removes MBS, retaining
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Figure 3: Ablation study of KGEC components across
five evaluation metrics: ECE, ACE, NLL, training time
(seconds), and memory usage (MB). Lower values indi-
cate better performance.

only JSS and KL divergence. (4) KGEC-loss-MBS-
JSS: The base version using only KL divergence,
without any of the proposed enhancements. Fig-
ure 3 reports the average performance across all
datasets and KGE models, providing an overall
comparison of model variants. Detailed experi-
mental results for each component on individual
datasets and KGE models are presented in Table 12
(Appendix H).

Key Observations: (1) Full Model Superior-
ity. KGEC achieves the best performance across
all five metrics. It yields the lowest calibration er-
rors (ECE = 0.388, ACE = 0.348, NLL = 3.396)
while maintaining high efficiency (training time =
4.716s, memory usage = 21.665MB). (2) Impact of
Wasserstein Loss. Comparing KGEC to KGEC-loss
reveals substantial calibration improvements, vali-
dating the advantage of using Wasserstein distance
over KL divergence in high-cardinality, ranking-
sensitive KGE settings. This supports our hypoth-
esis that the Wasserstein-based objective is better
suited to the probability distribution landscape of
KGE. (3) Effect of MBS. Removing MBS (KGEC-
loss vs. KGEC-loss-MBS) degrades ECE (from
0.450 to 0.487) and NLL (from 4.960 to 5.590),
indicating that MBS enhances calibration by mod-
eling probability intervals more effectively. In-
terestingly, ACE improves after removing MBS.
This anomaly may arise because the KL divergence
used in KGEC-loss amplifies ACE more than ex-

pected, suggesting ACE is especially sensitive to
the choice of loss function. (4) Efficiency Gain
Sfrom JSS. While KGEC-loss-MBS and KGEC-loss-
MBS-JSS exhibit similar calibration performance,
the inclusion of JSS dramatically reduces train-
ing time (from 65.871s to 4.659s) and memory
usage (from 97.608MB to 20.032MB), confirming
JSS’s effectiveness in improving computational ef-
ficiency. Furthermore, a direct comparison against
a random sampling baseline shows JSS is not only
more efficient but also significantly more effective
at preserving calibration quality (see Appendix H).

Overall, all three components are essential for
balancing calibration performance and computa-
tional cost. MBS and Wasserstein loss enhance cal-
ibration performance, while JSS ensures efficiency
and stability. The full KGEC model thus delivers
the strongest and most balanced performance.

5.5 Sensitivity Analysis and Case Study

To further assess the robustness and practical util-
ity of KGEC, we conducted a sensitivity analy-
sis on its key hyperparameters and a qualitative
case study. Our sensitivity analysis, which varies
three hyperparameters: the number of bins, ini-
tial temperature, and learning rate, confirms that
KGEC’s performance is stable across a wide range
of settings. Additionally, the case study provides
concrete examples of how the method corrects mis-
calibrated predictions, addressing both over- and
under-confidence from base models. A detailed pre-
sentation is shown in Appendix I and Appendix J.

6 Conclusion

In this paper, we propose KGEC, the first prob-
ability calibration method tailored to the unique
challenges of KGE models. By integrating a novel
Jump Selection Strategy for efficiency, a Multi-
Binning Scaling module for expressiveness, and a
Wasserstein distance-based loss for stable optimiza-
tion, KGEC effectively calibrates KGE predictions
while strictly preserving their ranking performance.
Comprehensive experiments across multiple KGE
models and datasets demonstrate that KGEC signif-
icantly outperforms existing calibration baselines
in both calibration performance and computational
efficiency. Our work establishes a strong foun-
dation for trustworthy link prediction, and future
work may explore extensions to dynamic KGs or
integration with uncertainty-aware reasoning sys-
tems.
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Limitations

While KGEC achieves strong performance, we
identify several promising directions for future
work based on its current limitations:

(1) Alternative Expit Transformations. In this
work, we adopt the Softmax function as the ex-
pit transformation, as our primary focus is on the
calibration method itself. However, alternative ap-
proaches, such as NIC (Wang et al., 2021) and
min-max normalization (Rao, 2021), may further
improve performance and merit exploration in fu-
ture work.

(2) Task-Specific Calibration Considerations.
KGEC is optimized for static entity prediction tasks
in knowledge graphs. Its effectiveness in other
KGE-based applications, such as multi-hop rea-
soning, fact verification, or temporal/dynamic KG
settings, remains untested. These tasks may require
adaptation or redesign of the calibration strategy
to accommodate different data characteristics and
evaluation protocols.

(3) Limited Evaluation Across Advanced
KGE Architectures. While KGEC has been ex-
tensively evaluated on several representative KGE
models (e.g., TransE, DistMult, ComplEx, and Ro-
tatE), its generalization to more complex architec-
tures, such as hyperbolic embeddings, graph neural
networks, or transformer-based KGE models, has
not yet been studied. Extending KGEC to these set-
tings poses challenges in modeling and scalability,
and is an important direction for future work.
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A Calibration Baselines

A.1 Calibration Techniques Explored in
Existing KGE Literature

For completeness, Table 4 summarizes which cali-
bration methods have been employed in prior stud-
ies of KGE calibration. This overview highlights
that existing works all exclusively adapt off-the-
shelf methods originally designed for standard clas-
sification tasks, underscoring the need for calibra-
tion techniques tailored specifically to the KGE
setting.

A.2 Calibration Baselines Evaluated in Our
Experiments

We summarize the post-hoc probability calibration
baselines considered in this work:

o Platt Scaling (PS) (Platt et al., 1999) is a para-
metric calibration method that transforms the non-
probabilistic outputs of a binary classifier into cali-
brated confidence scores.

e Histogram Binning (HB) (Zadrozny and
Elkan, 2001) is a simple non-parametric approach
that partitions predictions into mutually exclusive
bins, assigning each bin a calibrated score.

e Isotonic Regression (IR) (Zadrozny and
Elkan, 2002) generalizes HB by jointly optimiz-
ing both bin boundaries and predictions through a
monotonic regression function.

e Bayesian Binning into Quantiles (BBQ)
(Naeini et al., 2015) extends HB by applying
Bayesian model averaging over multiple binning
models.

e Matrix Scaling (MS) and Vector Scaling (VS)
(Guo et al., 2017) are multi-class extensions of PS,
using matrix and vector transformations, respec-
tively.

e Temperature Scaling (TS) (Guo et al., 2017)
is the simplest extension of PS, employing a single
scalar temperature parameter 7' > 0 shared across
all predictions.

e Meta-Cal (Ma and Blaschko, 2021) combines
a bipartite-ranking model with selective classifica-

tion to construct a more flexible calibration map-
ping.

e Parametrized Temperature Scaling (PTS)
(Tomani et al., 2022) generalizes TS by computing
prediction-specific temperatures, parameterized by
a neural network.

In this study, we restrict our attention to post-
hoc probability calibration methods, which adjust
model outputs without altering the underlying KGE
training process. This ensures that the original rank-
ing of entities is preserved. Training-modifying ap-
proaches such as regularization (Ahn et al., 2019),
ensembles (Lakshminarayanan et al., 2017), MC-
dropout (Gal and Ghahramani, 2016), and mixup
(Thulasidasan et al., 2019) fall outside our scope,
as they fundamentally alter the embedding training
procedure.

We also exclude Beta Calibration (Kull et al.,
2017) due to its prohibitive computational cost. For
example, even on the smallest dataset (WN18RR),
it required over 60 hours to complete, making it
infeasible for our large-scale experiments. Finally,
we emphasize that this work focuses strictly on
probability calibration. Expit transformation alter-
natives such as replacing the Softmax function with
Sigmoid or NIC (Wang et al., 2021) are conceptu-
ally distinct and therefore not considered here.

B Effect of Different Calibration Methods
Across Datasets

In this section, we systematically evaluate nine
widely used post-hoc calibration methods on the en-
tity prediction task across four benchmark datasets.
The goal is to assess whether these calibration tech-
niques can improve probabilistic reliability while
preserving the ranking quality essential for knowl-
edge graph completion.

We report results using standard link prediction
metrics. Specifically, lower Mean Rank (MR) in-
dicates better performance, while higher values of
Mean Reciprocal Rank (MRR), HITS@ [, HITS@3,
and HITS@ 10 correspond to better ranking quality.

As shown in Table 5-8, several calibration meth-
ods, including HB, IR, BBQ, MS, and Meta-Cal,
substantially degrade entity ranking performance.
This suggests that these approaches disrupt the orig-
inal link prediction scores after calibration and are
therefore unsuitable for KGE-based entity predic-
tion.
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Table 4: Overview of calibration methods employed in prior KGE calibration studies. Each method is marked as
parametric or non-parametric, along with the corresponding references.

Calibration Method Parametric Used in Works

Isotonic Regression (Zadrozny and Elkan, 2002) No (Tabacof and Costabello, 2020), (Wang et al., 2021), (Zhu et al., 2022)
Histogram Binning (Zadrozny and Elkan, 2001) No (Zhu et al., 2022)

Beta Calibration (Kull et al., 2017) Yes (Zhu et al., 2022)

Platt Scaling (Platt et al., 1999) Yes (Tabacof and Costabello, 2020), (Wang et al., 2021), (Zhu et al., 2022)
Matrix Scaling (Guo et al., 2017) Yes (Safavi et al., 2020)

Vector Scaling (Guo et al., 2017) Yes (Safavi et al., 2020)

Temperature Scaling (Guo et al., 2017) Yes (Zhu et al., 2022)

C Detailed Description of the Jump
Selection Strategy (JSS)

In the main paper (Section 4.1), we introduced the
Jump Selection Strategy (JSS) as a principled
method to reduce the size of calibration training
data while preserving the essential informativeness
of the retained samples. Here, we provide a more
detailed exposition of the motivation, intuition, and
theoretical considerations behind JSS.

C.1 Challenge of Large Class Spaces.

A core difficulty in calibrating KGE models lies in
the extremely large candidate space. Each query
may involve thousands of possible entities, result-
ing in probability distributions dominated by a long
tail of near-zero values. Using all candidates for
calibration training is both computationally pro-
hibitive and information-redundant: the majority
of entries contribute little to overall informative-
ness. Thus, an effective selection mechanism is
needed to retain only the most informative instance

per query.

C.2 Principle of Informativeness.

The informativeness of a candidate is defined as its
ability to characterize the transition from highly in-
formative predictions to less informative ones. Em-
pirically, when candidate probabilities are ranked,
the distribution exhibits a steep drop from a small
number of dominant candidates to a long tail of
negligible ones. The most informative instance lies
at this transition point, where the contrast between
candidates is strongest. Selecting this instance en-
sures that calibration focuses on the sample carry-
ing the greatest informativeness.

C.3 Reordering Step.

To detect this transition consistently, we first re-
order each query’s probability vector into descend-
ing order. This guarantees a monotonic sequence
from most informative to least informative candi-

dates, making the transition explicit. Although this
step perturbs the raw candidate alignment, it does
not alter downstream objectives: (i) Link predic-
tion is ranking-based, not order-sensitive. Thus,
perturbing candidate order within a query does not
affect evaluation metrics such as MRR or HITS @K.
(i1) As demonstrated in Multi-Binning Scaling (Sec-
tion 4.2), for query i, all of the M elements in the
probability vector P; are transformed using the
same temperature parameter 7)2. MBS is applied
uniformly across the entire vector P;, regardless
of its internal order. Therefore, the calibrated out-
put preserves the original ranking. Reordering is
therefore a benign preprocessing step that enables
consistent identification of the most informative
instance.

C.4 Illustrative Toy Example.

To make the procedure concrete, consider the fol-
lowing probability matrix with three queries (rows)
and three candidates (columns):

0.1 0.2 0.3
P=1(04 06 02f. “
0.5 0.1 04

After reordering each row in descending order,
we obtain

0.3 02 01
P=06 04 02 (10)
0.5 0.4 0.1

We then compute KL-based Jump Measures be-
tween adjacent columns of P, which yields

J =10.0039, 0.0541], (11)

indicating that the maximum jump occurs at the
second column (J* = 1 in zero-based indexing).
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Table 5: Effect of different calibration methods on Table 6: Effect of different calibration methods on
the performance of the TransE model across various  the performance of the ComplEx model across various
datasets. 1" indicates an improvement, while | indicates datasets. 1 indicates an improvement, while | indicates

a decline compared to the original uncalibrated results. a decline compared to the original uncalibrated results.
Method MR MRR _ HITS@] HITS@3 HITS@I0 Method MR MRR _ HITS@] HITS@3 HITS@I0
WNI8 WNI8
Uncal 263 0772 0706 0807 0920 Uncal 311 0893 0854 0925 0953
PS 2607 0772 0706 0807  0.920 PS  3II 0893 0854 0925 0953
HB 15299 0225] 0212 0236] 0240] HB 14328 0274] 0262 0285 0289]
IR 14590 0251 0232] 0267) 0279 IR 14094 ] 0290 0280 0298) 0.304]
BBQ  15178) 0218) 0200 0233) 0244 BBQ  13657) 0236] 0.194] 0271 0306
VS 2581 0772 0706 0807 0920 VS 3051 0893 0854 0925 0953
MS 16483 0013, 0005, 0013) 0029 MS  16825) 0011) 0004, 0012, 0022]
TS 2601 0772 0706 0807 0920 TS 311 0893 0854 0925 0953
Meta-Cal 1784 | 0718 0.657] 0749  0.856 | Meta-Cal 1260  0.851) 0813 0.880) 0908
PTS 2116 0751, 0706  0775) 0849 PTS 311 0893 0854 0925 0953
KGEC 263 0772 0706 0807  0.920 KGEC 311 0893 0854 0925 0953
WNISRR WNISRR
Uncal 3437 0223 0014 0401 0528 Uncal 5469 0469 0428 0486 0552
PS 3437 0223 0014 0401 0528 PS 5469 0469 0428 0486  0.552
HB 19455 0071) 00537 0087] 0.099 ] HB 18836 0.107] 0.100] 0112 0.118]
IR 18143] 0.102) 00801 0119 0.139] IR 18244] 0.103) 0090 0110 0.124]
BBQ  18196] 0071] 00507 0085) 0.105] BBQ 18200 0087/ 0076, 0097) 0.105]
VS 34211 02241 0014 0401 05291 VS 54471 0469 0428 0486  0.552
MS 18178 0.009) 0003, 0.008) 0.020 | MS  18191) 0.009) 0003] 0.009) 0020
TS 3437 0223 0014 0401  0.528 TS 5469 0469 0428 0486  0.552
Meta-Cal 3437 0223 0014 0401 0528 Meta-Cal 6416  0445] 0407] 0459]  0.522
PTS 3437 0223 0014 0401 0528 PTS 5469 0469 0428 0486  0.552
KGEC 3437 0223 0014 0401 0528 KGEC 5469 0469 0428 0486  0.552
FBISK FBISK
Uncal ~ 40 0731 0646 0793 0865 Uncal ~ 45 0770 0703 0816  0.885
PS 40 0731 0646 0793  0.865 PS 45 0770 0703 0816  0.885
HB  2275| 0570 0510, 0614 0670 HB  1747) 0610 0543, 0661, 0.724]
IR 982) 0615 0530 0675 0761 IR 970]  0652] 0579 0704] 0780
BBQ 1275 0580) 0509) 0646] 0726 BBQ 797,  0597) 0509) 0656, 0757
VS 41 0730 0646 0791 0862 VS 437 0770 0703 0816  0.8861
MS 3687, 0.038, 0024, 0039, 0061} MS 3693 0025 0010 0024] 0055]
TS 40 0.731 0646 0793 0865 TS 45 0770 0703 0816  0.885
Meta-Cal 1149 | 0.677) 0.604| 0735 0787 Meta-Cal 484 |  0715] 0651 0759 0826
PTS 40 0.731 0646 0793 0865 PTS 45 0770 0703 0816  0.885
KGEC 40 0731 0646 0793  0.865 KGEC 45 0770 0703 0816  0.885
FBI5K-237 FBI5K-237
Uncal 173 0330 0231 0368 0527 Uncal 166 0322 0230 0352 0511
PS 173 0330 0231 0368 0527 PS 166 0322 0230 0352 0511
HB  3497| 0289] 0224] 0321 0416] HB  2882| 0274] 0201 0305 0420]
IR 2141 0309) 02341 0343] 0455 IR 2185 0296 02201 0328) 0449
BBQ 2335 0280] 0209] 0310) 0422 BBQ 1661 0249) 0176 0273] 0399 |
vs 173 0330 0231 0368 0527 Vs 166 0322 0230 0352 05121
MS 3704 0033) 0014] 0032) 0070 MS 3704 0.033) 0014] 0032) 0070
TS 173 0330 0231 0368 0527 TS 166 0322 0230 0352 0511
Meta-Cal 1231) 0308 0218] 0344] 0490 Meta-Cal 267 0310 0218 0339] 0498
PTS 173 0330 0231 0368 0527 PTS 166 0322 0230 0352 0511
KGEC 173 0330 0231 0368 0527 KGEC 166 0322 0230 0352 0511
Thus, the second column of P is selected as the App]ylng temperature sca]ing y1€1dS the cali-
most informative instance per query: brated confidence matrix
0.2 [0l 02 03]
p'=(04]. (12) 0.72 0.72 0.72
0.4 p_ |04 06 02
For each query (row), suppose the temperatures 152 152 1.5?
selected by MBS based on the binned values in p* 05 01 04 (14)
are L1.02 1.02 1.02
0.20 0.40 0.60
0.7 = [0.18 0.27 0.09
T= |15 (13) 10.50 0.10 0.40
1.0

As observed, this rescaling preserves the rela-
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Table 7: Effect of different calibration methods on
the performance of the DistMult model across various
datasets. 1" indicates an improvement, while | indicates
a decline compared to the original uncalibrated results.

Method MR MRR HITS@] HITS@3 HITS@I0
WNI18
Uncal 227 0.685 0.529 0.829 0.933
PS 227 0.685 0.529 0.829 0.933
HB 14718 | 0240 0216 0262 0271
IR 142711 0260 0237 0279 0294
BBQ 13614 | 0201 0.154 ] 0232 0.293 |

\S 2241 0.685 0.529 0.829 0.933

MS 16984 | 0.011 ] 0.004 | 0.012] 0.022]
TS 227 0.685 0.529 0.829 0.933

Meta-Cal 770 | 0.663 | 0508, 0.805] 0.908 |

PTS 240 | 0.685 0.529 0.829 0932 ]
KGEC 227 0.685 0.529 0.829 0.933

WNI1SRR
Uncal 4912 0.439 0.394 0.453 0.532
PS 49091 0.439 0.394 0.453 0.532

HB 19006 | 0.100 ] 0.090+ 0.108] 0.117]
IR 18174 0.099] 0.0831 0.109] 0.124]
BBQ 18192 0.088] 0.073+ 0.100/ 0.109]
VS 48881 0439 0394 0453 0.532
MS 18172 0.009] 0.003) 0.009] 0.020]
TS 4909+ 0439 0394 0453 0.532
Meta-Cal 6157 0406] 0366 0419] 0493
PTS 4909+ 0439 0394 0453 0.532
KGEC 49091 0439 0394 0453 0.532
FBISK
Uncal 41 0768  0.701 0.813 0.884
PS 41 0768  0.701 0.813 0.884
HB 1528 | 0630 0562 0679 0.748 ]
IR 952  0.667) 0599 0713 0.787
BBQ 692 0603 0512 0.65] 0.775]
VS 391 0768  0.701 0.8141 0.8851
MS 3693 0.025) 0010, 0024] 0055]
TS 41 0768  0.701 0.813 0.884
Meta-Cal 202 0746 0.680) 0790 0.861
PTS 41 0768  0.701 0.813 0.884
KGEC 41 0768  0.701 0.813 0.884
FBI5K-237
Uncal 174 0309 0222 0337 0484
PS 174 0309 0222 0337 0484
HB  2695] 0256, 0.184] 0286 0.401]
IR 2156 0280] 02051 0311, 0427
BBQ 1562 0235] 0.163] 0259] 0378
Vs 1724 0305 0216 0333] 0484
MS 3704 0.033] 0014, 0032] 0070]
TS 174 0309 0222 0337 0484
Meta-Cal 259 | 0300 0213 0327) 0474
PTS 5659 0222 0222  0222) 0223)
KGEC 174 0309 0222 0337 0484

tive ordering of candidates within each row, and
thus ranking-based metrics (e.g., MRR, HITS @K)
remain unaffected.

C.5 KL Divergence as Jump Measure.

Given the reordered probability matrix P, we com-
pute the Jump measure J; as the KL divergence
between adjacent columns. KL is not used here as
a loss function but as a relative difference metric,
quantifying how informativeness changes between
consecutive ranked positions. A large KL value
indicates a sharp change in informativeness, corre-
sponding to the transition point. Unlike its unstable
behavior in one-hot settings (where zero entries

Table 8: Effect of different calibration methods on
the performance of the RotatE model across various
datasets. 1 indicates an improvement, while | indicates
a decline compared to the original uncalibrated results.

Method MR MRR  HITS@] HITS@3 HITS@10
WNI8
Uncal 270 0.950 0944 0952  0.960
PS 270 0950 0944 0952  0.960
HB 139100 0279 0263 0294 0299
IR 139621 0297 0286 0308 0313]
BBQ 13801 0271 0253 0286] 0297
VS 270 0950 0944 0952  0.960
MS 16626 0.013] 0005, 0013] 0027
TS 270 0.950 0944 0952  0.960
Meta-Cal 1917 0.905) 0904 0905| 0.905]
PTS 474 0949] 0944 0951 0958
KGEC 270 0950 0944 0952  0.960
WNISRR
Uncal 3421 0476 0429 0496 0570
PS 3421 0476 0429 04971 0.570
HB 18719 0.114] 0104 0.122] 0.127]
IR 18047 | 0.118] 0.103) 0.128] 0.143 ]
BBQ 18189 0.086] 0.073] 0.095] 0.105]
VS 3422 0476 0429 04971 0.570
MS  18195] 0.009) 0003, 0.008, 0.020]
TS 3421 0476 0429 04971 0570
Meta-Cal 6168 | 0448 0409 0464 0523
PTS 3776 0474 0429 0493 0564 |
KGEC 3421 0476 0429 04971 0.570
FBISK
Uncal 41 0791 0739  0.825 0.881
PS 41 0791 0739 0825  0.881
HB 1843 0642 0588) 0682 0731
IR 961  0.696] 0.635] 0741 0799
BBQ  1027) 0662 0599 0709 0768
Vs 42 0791 0739  0.825  0.880
MS 3693 0.025] 0010 0024] 0055]
S 41 0791 0739 0825  0.881
Meta-Cal 457 0750 0700 0.783 | 0.835]
PTS 1122 0763 0739  0.782] 0.801 ]
KGEC 41 0791 0739 0825  0.881
FBI5K-237
Uncal 178 0336 0239 0374 0530
PS 178 0336 0239 0374 0530
HB 3458, 0285, 0221 0317, 0412]
IR 21310 0307) 0232] 0340 0455]
BBQ  2292| 0275] 0204] 0305) 0415]
Vs 1790 0336 0239 0374 0530
MS 3704 0.033] 0014) 0032] 0070
TS 178 0336 0239 0374 0530
Meta-Cal 246 0328 0232 0365] 0522
PTS 179 0336 0239 0374 0530
KGEC 178 0336 0239 0374 0530

occur), KL is well-defined here because all com-
pared vectors are soft probability distributions with
non-zero entries.

Formally, the column index J* that maximizes
Jj is selected, and the corresponding column vector
p* € R"is retained as the most informative sample

per query.

C.6 Information Loss Quantification via
Shannon Entropy

To analyze the effect of JSS on information preser-
vation, we quantify the potential information loss
incurred when reducing a probability matrix P €
RN*M t0 a single informative column vector p* €
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RY. We measure information content using Shan-
non entropy.

Let P € RV*M be a real-valued matrix with
N rows and M columns. To quantify the amount
of information contained in P, we apply Shannon
entropy to the empirical distribution of its elements.
Suppose the entries are discretized into a finite al-
phabet X (e.g., via binning or quantization). Then
the entropy of the matrix P is defined as:

ZPP

reX

)logpp(z),  (15)
where pp(z) denotes the empirical probability
mass function over the elements of P.

Similarly, consider selecting a single column
vector v € RY from P, ie., v = P. ; for some
j €{1,..., M}, its entropy is:

- pu(2)

TeEX
The loss in information due to column selection is
thus:

1ngv ) (16)

AH = H(P) — H(v).

We discuss three representative cases:

A7)

Case 1: Independent and Identically Distributed
(i.i.d.) Columns. If each column of P is drawn
independently from the same distribution (i.i.d.),
the matrix entropy decomposes additively:

M
:ZH(V]') =M - H(v), (18)
=1

where H(v;) = H(v) for all j. Therefore, the
information loss becomes:

AH = (M —1)-H(v), (19)

indicating that P stores M times more information
than any single column under the i.i.d. assumption.

Case 2: Correlated Columns. If the columns
are not independent, entropy is subadditive due to
redundancy:

(20)

M
P) <) H(vj),
j=1

and the total information is reduced by mutual de-
pendencies. Formally,

M
:ZH(V])

J=1

— Redundancy, 21

where Redundancy quantifies mutual information
shared between columns.

Case 3: Identical Columns. In the extreme case
where all columns are identical,

H(P)=H(v), AH=0, (22)
meaning no information is lost by reducing P to
one column.

Discussion. These cases illustrate that although
selecting a single column inevitably reduces en-
tropy in the i.i.d. case, real KGE outputs exhibit
strong redundancy across candidate entities. JSS
exploits this redundancy by identifying the column
with the largest information jump, thereby retaining
the most informative subset of probabilities while
dramatically reducing computational cost.

C.7 Outcome and Comparison.

JSS reduces the training size by a factor of m (the
number of candidates per query), transforming the
full probability matrix P € R™*™ into a single
informative column vector p* € R™. This com-
pression preserves the informativeness required
for calibration while eliminating redundancy. Un-
like naive random sampling, which risks discarding
boundary instances with high informativeness, JSS
consistently identifies the most valuable instance.
Empirical results and theoretical analysis confirm
that JSS improves both efficiency and reliability in
calibration training.

D Limitations of KL Divergence in
High-Cardinality Calibration

Kullback-Leibler (KL) divergence is one of the
most widely used loss functions in deep learning
and probability calibration. However, when applied
to high-cardinality tasks such as entity prediction
in KGE models, KL divergence exhibits critical
limitations that undermine its effectiveness. Each
query in KGE involves tens of thousands of candi-
date entities, yielding probability distributions with
extremely sparse support and long tails of near-zero
values. In such regimes, KL divergence is prone to
gradient vanishing and gradient explosion, leading
to instability during optimization.

Failure modes. Two issues are particularly prob-
lematic: (i) when the true label probability ¢; is
nonzero but the predicted probability p; — 0,
the KL term becomes negligible, suppressing the
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contribution of informative but low-probability in-
stances; (ii) when p; > 0 but ¢; = 0, the divergence
becomes infinite, yielding unstable or divergent gra-
dients. Both behaviors compromise the robustness
of calibration in large-scale KGE settings.
Formal definition. Let p and ¢ be two discrete
probability distributions over a finite set X'. The
KL divergence from ¢ to p is defined as:

=) pl) log

zeX

Dxw(p || q) (23)

While this expression is well-defined when both
p(z) > 0and ¢(x) > 0, edge cases involving zero
probabilities require special attention. Below, we
analyze two important cases.

Case 1: p(z) =0
If p(x) = 0, the corresponding term is:

0
q(x)

Although log 0 is undefined, this product is conven-
tionally set to 0, justified by the limit:

0-log 24)

=0.

25
q(z) =

lim ulo
u—0t & (@)

Hence, for both analytical and numerical purposes:

p(z) =0 whenp(x)=0.

q(x)
Case 2: ¢(z) = 0and p(x) >0

If p(z) > 0 but g(x)
logarithm diverges:

p(z)log (26)

= 0, the ratio inside the

log @ = +00, 27
q(x)
and thus the corresponding term is:
Dki(p|l q) =400 ifdzeX
such that p(z) > 0 (28)
and g(x) = 0.
Summary

Each term p(z) log 2 E 3 in the KL divergence ad-

mits the following interpretation:

e If p(xz) = 0, the contribution is defined as 0
(by convention via limiting argument).

Table 9: Statistics of the used KGE datasets.

dataset #Entity #Relation #Training #Validation #Testing

WNI18 40,943 18 141,442 5,000 5,000
WNI8RR 40,943 11 86,835 3,034 3,134
FB15K 14,951 1,345 483,142 50,000 59,071
FB15K-237 14,541 237 272,115 17,535 20,466

* If p(x) > 0 and g(x) = 0, the contribution is
400, making the divergence infinite.

Thus, KL divergence is finite if and only if the
support of p is a subset of the support of g:

»  if supp(p)

" p(x)log 24,
Dxr(pllg) =1z @) C supp(q),
~+00, otherwise.
(29)

Implication for KGE calibration. This support
mismatch arises frequently in knowledge graph
entity prediction, where sparse distributions and
zero-valued targets dominate. In practice, it yields
vanishing gradients for informative low-probability
entities and exploding gradients when mismatched
supports occur. These issues render KL divergence
unstable and unreliable as a calibration loss, moti-
vating our adoption of the Wasserstein distance in
Section 4.3, which remains finite and geometrically
meaningful even under sparse distributions.

E Dataset Statistics

Table 9 summarizes the key statistics of the bench-
mark KGE datasets used in our experiments. All
four datasets are widely adopted in the link predic-
tion literature, with FB15K (Bordes et al., 2013)
and WN18 (Bordes et al., 2013) serving as the
original benchmarks. However, both contain a sub-
stantial number of inverse or redundant relations,
which can cause information leakage across train-
ing, validation, and testing splits, leading to overly
optimistic results. To address this issue, FB15K-
237 was introduced by Toutanova and Chen (2015)
as a cleaned version of FB15K, obtained by remov-
ing near-duplicate and inverse relations so that test
triples cannot be trivially inferred from training
data. Similarly, WN18RR (Dettmers et al., 2018)
was constructed from WN18 by excluding inverse
relations, thereby providing a more challenging
and realistic evaluation benchmark. Each dataset is
publicly available and comes pre-partitioned into
training, validation, and testing splits, which we
use without modification.

These datasets differ substantially in both scale
and relational complexity. For example, FB15K
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Table 10: Score functions of popular KGE models. Here,
||l || denotes the L1 norm, (-) denotes the generalized dot
product, t* is the complex conjugate of t, Re(+) extracts
the real part of a complex number, and o denotes the
Hadamard (element-wise) product.

KGE Model Score Function
TransE (Bordes et al., 2013) —|h+r—t
DistMult (Yang et al., 2015) (r,h,t)
ComplEx (Trouillon et al., 2016) ~ Re((r, h,t*))
RotatE (Sun et al., 2019) —|lhor—t]

contains over 1,300 relation types, while FB15K-
237 reduces this number to 237 to mitigate redun-
dancy. WN18 and WN18RR share the same set
of entities (40,943) but differ in their relation sets,
with WN18RR offering a more robust evaluation
by removing symmetric and inverse patterns. To-
gether, these datasets span diverse characteristics
of real-world knowledge graphs, covering both lex-
ical (WordNet-based) and factual (Freebase-based)
domains. Notably, the large entity space in FB15K
and FB15K-237 introduces a long-tailed distribu-
tion of candidate entities, which poses significant
challenges for probability calibration: most classes
receive extremely low predicted probabilities, am-
plifying the issues of sparsity and miscalibration
that our proposed method is designed to address.

F Score Functions of Popular KGE
Models

We summarize the score functions of several widely
used KGE models in Table 10. These definitions
provide the basis for the experiments discussed in
the Section 5. Beyond link prediction, KGE mod-
els have also been successfully applied to a broad
range of tasks, such as entity alignment (Sun et al.,
2018), canonicalization (Yang and Curry, 2024;
Yang et al., 2025), and question answering (Bor-
des et al., 2014), highlighting their versatility and
impact across diverse knowledge-intensive applica-
tions.

G Detailed Experimental Results on
Efficiency Study for RQ2

To complement the aggregated efficiency results in
Table 3 in Section 5.3, we present a fine-grained
breakdown of calibration costs across different
datasets and KGE models in Table 11. Specifi-
cally, the table reports both the training time (in sec-
onds) and peak memory usage (in MBs) required
to calibrate entity prediction under CPU-only en-

vironments, ensuring a fair comparison across all
methods.

This detailed analysis provides two important
insights.  First, it reveals the scalability chal-
lenges of certain methods: for example, Platt Scal-
ing (PS) and Parametrized Temperature Scaling
(PTS) incur prohibitive computational overhead
on larger datasets such as FB15K, making them
impractical for large-scale applications. In con-
trast, lightweight approaches such as Vector Scal-
ing (VS), Temperature Scaling (TS), and our pro-
posed KGEC method exhibit consistently low re-
source consumption. Second, the memory profiles
highlight significant disparities: PTS can require
over 8 GB of memory on FB15K, whereas KGEC
achieves state-of-the-art calibration accuracy with
average memory usage of only ~22 MB.

Overall, Table 11 demonstrates that KGEC not
only achieves superior calibration performance but
also remains the most resource-efficient approach
across all benchmarks. These results further sup-
port the conclusions in Section 5.3, where we ar-
gued that efficiency is essential for deploying cali-
bration in knowledge-intensive systems.

H Detailed Experimental Results on
Ablation Study for RQ3

In this section, we provide the complete experimen-
tal results for our ablation study.

Table 12 reports the detailed performance of
each component in KGEC across individual
datasets and KGE models, covering all evaluation
metrics (ECE, ACE, NLL, training time, and mem-
ory usage). These results complement the averaged
findings presented in Section 5.4 by illustrating the
effect of each component in a fine-grained manner.

Effectiveness of JSS vs. Random Sampling.
Beyond the above comparisons, we further ana-
lyze the effectiveness of JSS against a Random
Sampling baseline to directly validate its contribu-
tion. JSS consistently retains the most informative
sample per query, thereby guiding the calibration
process more effectively. In contrast, Random Sam-
pling often discards informative instances and in-
troduces instability in large class spaces, leading
to degraded calibration. As shown in Figure 4,
JSS achieves markedly better calibration across
all metrics (ECE: 0.388 vs. 0.467, ACE: 0.348 vs.
0.495, NLL: 3.396 vs. 5.725). These results high-
light that JSS simultaneously enhances efficiency
and preserves calibration quality, whereas Random
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Table 11: Training time in seconds and memory usage in MBs taken to calibrate entity prediction using different
calibration methods. Best and second-ranked results are in bold and underlined, respectively. For a fair comparison,
these results are obtained using CPU only.

Time

TransE

ComplEx

DistMult

WNIS

WNISRR FBI5SK

FBISK-237

WNI8

WNISRR FBISK

FBI5SK-237

WNI8

WNISRR FBISK

FBI5SK-237

WNIS

WNISRR FBISK

FBISK-237

Average

PS
Vs

PTS

50551.471
2.857
5235

3452.440

32130.612  66566.552
1.893 25.357
3.207 20.037

2123.849  16769.166

22756.968
3.493
6.475

5856.000

44484.280
2.661
5.063

3432.436

27740.023  66631.859
1.620 16.228
3121 18.825

2122273 16510.019

20060.975
3218
6.276

5764.345

48902.412
4.114
5.180

3450.331

31739.057  58074.230
1.914 20.779
3.204 19.734

2120.555  16898.528

21682.032
3.456
6.412

5868.468

46162.422
2.656
5.456

3425.148

30198.810  65506.688
1.706 25.995
3.171 20.646

2113.001  16802.984

20522.725
3.277
6.345

5853.287

40856.945
7.577
8.649

7035.177

KGEC

2.727

1.776 10.873

3.602

2.698

1.727 10.560

3.624

2.741

1.696 10.645

3.705

2.662

1.658 10.758

4.003

4.716

Memory

TransE

ComplEx

DistMult

RotatE

WNIS

WNISRR FBISK

FBISK-237

WNIS

WNISRR FBISK

FBISK-237

WNIS

WNISRR FBISK

FBISK-237

WNIS

WNISRR FBISK

FBISK-237

Average

PS
Vs
TS
PTS

1564.336
84.477
1562.625
6655.574

950.762 5706.102
84.383 86.098
948.453 5703.750

7017.359  11154.340

1948.508
84.348
1947.629
9554.723

1566.598
82.059
1562.984
6804.816

950.270 5706.832
83.152 86.918
949.285 5703.047

7022.313  10185.500

1948.664
80.770
1945.566
9629.871

1565.820
83.609
1562.340
6957.012

949.633 5705.828
83.883 80.883
948.504 5704.801

6696.055  10180.105

1947.574
81.320
1945.828
9407.988

1566.477
80.570
1562914
7047.270

950.793 5706.875
83.145 86.152
948.566 5703.359

7074.051  10521.520

1948371
80.941
1944.730
8659.395

2542.715
83.294
2540.274
8410.493

KGEC

30.484

28.289 7.570

15.273

26.652

32.176 9.535

15.285

34.316

32.047 10.531

13.492

34.320

32.191 7.551

16.930

21.665

NLL

0.5

0.4

0.3

0.2

0.1

0.0

0.467

Random

0.5
0.388
0.4
0.3
0.2

0.1

0.0
Jss

0.495

Random

0.348

Jss

5.725

number of bins increases, KGEC becomes more
expressive and better calibrated. The best average

3.396
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Figure 4: Overall comparison between Random sam-
ple and JSS in KGEC, showing average performance
across all datasets and KGE models. Lower values of
ECE, ACE, and NLL indicate better performance.

Sampling fails to achieve this balance.

In addition, Table 13 presents a focused compari-
son between JSS and a Random Sampling baseline
across four representative KGE models and mul-
tiple datasets. Results are reported on the three
calibration metrics (ECE, ACE, and NLL), where
lower values indicate better performance. This
table provides the full results underlying the sum-
mary trends shown in Figure 4, further demon-
strating the effectiveness and stability of JSS over
Random Sampling.

I Sensitivity Analysis

To assess the robustness and stability of our pro-
posed KGEC method, we conduct a comprehen-
sive sensitivity analysis by varying three critical
hyperparameters: the number of bins, the initial
temperature, and the learning rate. We evaluate
the impact of each parameter on three calibration
metrics, i.e., ECE, ACE, and NLL, across all KGE
models and datasets. Results are summarized in
Tables 14, 15, and 16.

Effect of the Number of Bins. We vary the num-
ber of bins from 1 to 20. Table 14 shows that
using only one bin (equivalent to vanilla tempera-
ture scaling) results in poor performance across all
metrics, highlighting its limited flexibility. As the

performance is observed at 19 bins (ECE = 0.352,
ACE = 0.343, NLL = 3.361), though results are
stable within the 10-20 bin range. This confirms
the importance of multi-binning for modeling di-
verse score distributions, while also indicating that
KGEC is robust to bin selection within a reasonable
interval.

Effect of Initial Temperature. We examine ini-
tial temperature values ranging from O to 2.0. As
shown in Table 15, extreme initializations (e.g., 0.0
or 2.0) lead to degraded performance due to opti-
mization instability. An initial temperature of 1.0
yields the best results (ECE = 0.388, ACE = 0.348,
NLL = 3.396), aligning with standard practice in
temperature scaling (Guo et al., 2017). The results
indicate that KGEC is relatively insensitive to this
hyperparameter, as long as it is initialized within a
moderate range.

Effect of Learning Rate. Table 16 presents re-
sults under learning rates ranging from 0.001 to 0.1.
We find that too small learning rates (e.g., 0.001)
may underfit the calibration model, while overly
large values (e.g., 0.1) can cause instability and
degraded performance. The learning rate of 0.01
achieves the best overall calibration (ECE = 0.388,
ACE = 0.348, NLL = 3.396), striking a balance
between convergence speed and stability.

Summary. Across all experiments, KGEC
demonstrates strong robustness to hyperparame-
ter variations. The best performance is consistently
achieved with moderate hyperparameter values: a
bin count between 10 and 20, an initial temperature
near 1.0, and a learning rate around 0.01. These
findings suggest that KGEC is both stable and prac-
tical, requiring minimal hyperparameter tuning for
optimal performance across diverse KGE models
and datasets.
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Table 12: Effect of each component in KGEC on the performance and efficiency of various KGE models across
multiple datasets. For all the five metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Aver

eE WNIS _WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBISK-237 | WNIS _WNISRR FBISK FBISK-237 | WNIS _WNISRR FBISK FBISK-237 | ""“¢¢
KGEC-loss-MBS-JSS 0642 0.195  0.637 0213 0852 0423 0.691 0228 0528 0389 0.689 0.220 0805 0383 0.671 0222 0487
KGEC-loss MBS 0.634 0196 0637 0213 0852 0423 0.691 0228 0528 0389 0688 0.220 0821 0383 0672 0222 0487
KGEC-loss 0611 019 0408 0.199 0824 0377 0.689 0.161 0501 0388 0683 0.165 0813 0327 0.642 0215 0450
KGEC 0171 0280 0459 0.150 0833 0418 0678 0.189 0446 0383 0683 0178 0467 0307 0466 0.094 0388

ACE TransE ComplEx DistMult RotatE A
WNIS _WNISRR FBISK FBISK-237 | WNIS _WNISRR FBISK FBISK-237 | WNIS _WNISRR FBISK FBISK-237 | WNIS _WNISRR FBISK FBISK-237 | "“6¢
KGEC-loss-MBS-JSS 0517 0285 0.636 0.168 0852 0423 0.691 0227 0527 0389 0688 0.220 0405 0383 0.636 0220 0454
KGEC-loss MBS~ 0.516 0285 0630 0.168 0852 0423 0.690 0227 0527 0389 0688 0.220 0402 0383 0.636 0220 0454
KGEC-loss 0510 0283 7651 0.943 0823 0350 0670 0.161 0501 0388  0.666 0.163 0401 0278 3.092 0308 1.074
KGEC 0131 0277 0293 0.082 0833 0418 0465 0207 0457 0383 0516 0.199 0467 0306 0466 0063 0348

NIL TransE ComplEx DistMult RotatF, N
WNIS _WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBISK-237 | WNIS _WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBISK-237 | ""“8¢
KGEC-lossMBS-JSS 2827 6544 3270 5177 6830 7777 5329 7294 7384 7820 5294 7.485 1313 6107 3465 5531 5500
KGEC-loss MBS~ 2.834 6544 3310 5189 6831 7778 5311 7.300 7384 7812 5265 7.479 1304 6107 3470 5521 5.590
KGEC-loss 2834 6330 0687 4093 4856 7636 6732 3811 5407 7772 6444 3.950 1309 6327 5014 6.156 4960
KGEC 2462 5965 2536 2.889 4350 6965 1357 2911 2843 7119 1319 3.106 1036 4698 2033 2743 3.396

Iraining Time/ TransE ComplEx DistMult RotatF, N
raiming 1me /S —yNTS  WNISRR FBISK _FBISK-237 | WNIS _WNISRR FBISK FBISK-237 | WNIS _WNISRR FBISK FBI5K-237 | WNIS _WNISRR FBISK FBIsK-237 | ““"*¢
KGEC-loss-MBS-JSS 39769 24.104  139.544 54700 | 40996 23856 148.151  50.186 | 39.602 24557 147.145 52021 | 30.659 24270 153269 52023 | 65871
KGEC-lossMBS ~ 2.8904 1638 11442 3.598 2714 1611 10166 3546 2661 1645 10147 3.603 2825 1608 10760 3.695 4659
KGEC-loss 2785 1676 10305 3598 2915 1650 10246 3.597 2660 1644 10490 3527 2671 1605 10747 3.578 4.606
KGEC 2727 1776 10873 3.602 2608 1727 10560 3.624 2741 169 10645 3705 2662 1658 10758 4.003 4716

o Usace / MB TransE ComplEx DistMult RotatE, N
emory sage WNIS WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBISK237 | “""“#¢
KGEC-loss-MBS-ISS 161801 126.141 58465 50965 | 170.850 111168 41053  655/4 | 174496 124086 56414 56473 | 160.766 94270 45000 63301 | 97.608
KGEC-loss-MBS ~ 29.027  27.121 6871 17969 | 31258 26676  7.535 10391 | 25426 27.184 8750 14277 | 32906 30742 6422 17961 | 20032
KGEC-loss 20414 27.145 6898 18016 | 25645 26879  8.145 10375 | 32254 26613  8.695 14320 | 32754 30965  10.172 17316 | 20350
KGEC 30484 28289 7570 15273 | 26652 32176 9.535 15285 | 34316 32047 10531 13492 | 34320 32191 7551 16930 | 21.665

Table 13: Ablation study on the effectiveness of the JSS component in KGEC. We compare KGEC with JSS
against a Random baseline across four KGE models (TransE, ComplEx, DistMult, RotatE) on multiple datasets.

Results are reported using ECE, ACE, and NLL,

where lower values indicate better performance.

ECE TransE ComplEx DistMult RotatE Average
WNI18 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNI8S WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBI5SK FBI5SK-237 rag
Random  0.474 0.199 0.644 0.199 0.851 0.423 0.697 0.228 0.527 0.390 0.697 0.221 0.579 0.398 0.714 0.225 0.467
JSS 0.171 0.280 0.459 0.150 0.833 0418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
ACE TransE ComplEx DistMult RotatE A
WNI8 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBI5SK FBI5SK-237 | WNI8 WNISRR FBI5SK FBI5SK-237 verage
Random  0.486 0.292 0.936 0.259 0.851 0.423 0.697 0.228 0.527 0.390 0.697 0.220 0.579 0.398 0.714 0.225 0.495
JSS 0.131 0.277 0.293 0.082 0.833 0418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
NLL TransE ComplEx DistMult RotatE A
WNIS8 WNISRR FBI5K FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBISK FBISK-237 | WNIS WNISRR FBI5SK FBI5K-237 verage
Random  3.028 6.518 2.575 3.355 6.497 7.761 6.043 7.577 7.222 8.007 6.338 7.735 1.721 6.516 4.880 5.825 5.725
JSS 2.462 5.965 2.536 2.889 4.350 6.965 1.357 2911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396

Query: ('North_Atlantic_Treaty_Organization, _member_meronym, ?)

True answer: Netherlands

Query: (Greece, _member_of_domain_region, ?)
True answer: sibyl
Ranked candidate entities | Uncalibrated scores | Calibrated probabilities
Greece -0.1873 0.0302
Holy_See -0.2946 0.0272
sibyl -0.5992 0.0200
Colosseum -0.8017 0.0164
Sistine_Chapel -0.8683 0.0153
Roman -1.1427 0.0116
Italy -1.1464 0.0116
Rome -1.1873 0.0111
Seven_Hills_of Rome -1.3174 0.0098
augur -1.3962 0.0090

Figure 5: Case 1 from the WN18RR dataset using the

TransE model.

J Case Study

Ranked candidate entities | Uncalibrated scores | Calibrated probabilities
N°“hff;;an’i‘;'§tfiggeatyfo 1.9763 0.3756
Netherlands 1.6756 0.2781
European_Union 0.9763 0.1382
Benelux 0.9763 0.1382
Apeldoorn -0.4998 0.0316
Leiden -0.5236 0.0308
Frisian_Islands -0.5844 0.0290
Friesland -0.6578 0.0270
Netherlander -0.6780 0.0264
British_Commonwealth -0.7083 0.0256

Figure 6: Case 2 from the WN18RR dataset using the
TransE model.

To illustrate the practical benefits of KGEC cali-

bration, we present two representative case stud-
ies from the WN18RR dataset using the TransE
model, as shown in Figure 5 and Figure 6. These

examples highlight how calibrated probabilities of-
fer more interpretable and informative confidence
scores compared to raw, uncalibrated scores.
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Case 1: (Greece, _member_of domain_region,
?) The ground-truth answer for this query is sibyl,
which is ranked third among the candidate enti-
ties based on the model’s raw scores. However,
the uncalibrated scores do not reflect a meaningful
confidence distribution, with the top-ranked entity
Greece receiving a score of —0.1873 and the cor-
rect answer sibyl receiving —0.5992, a difference
that is difficult to interpret probabilistically.

After applying KGEC calibration, the corre-
sponding estimates become more interpretable:

e Greece: 0.0302
* Holy See: 0.0272
* sibyl (true answer): 0.0200

These calibrated estimates clearly reflect the uncer-
tainty inherent in the model’s prediction. Although
the correct answer is not ranked first, its estimate is
close to that of the top candidates, suggesting it is
still a plausible prediction. This shows that KGEC
can better express confidence levels, especially in
cases with closely competing candidates.

Case 2: (North_Atlantic_Treaty_Organization,
_member_meronym, ?) In this case, the true an-
swer is Netherlands, which is correctly ranked sec-
ond. The raw score of the correct answer (1.6756)
is only slightly lower than that of the top-ranked
entity North Atlantic Treaty Organization (1.9763),
but the significance of this difference is unclear
without proper calibration.

With KGEC, the calibrated estimates provide a
more informative picture:

* North Atlantic Treaty Organization: 0.3756
* Netherlands (true answer): 0.2781
* European Union: 0.1382

Here, although the true answer is not ranked first,
its calibrated estimate is still relatively high, reflect-
ing the model’s uncertainty and partially shared
semantics among top candidates. This enables
downstream applications to interpret and poten-
tially leverage multiple candidates rather than over-
committing to the top-1 prediction.

Insights. These case studies demonstrate that:

* KGEC enhances the interpretability of model
outputs by transforming unnormalized scores
into well-calibrated estimates.

* It allows more accurate reflection of confi-
dence levels, particularly in ambiguous or
competitive ranking situations.

* Even when the top-1 prediction is incorrect,
KGEC highlights alternative candidates with
meaningful confidence, which is valuable for
applications such as knowledge graph reason-
ing, question answering, and downstream en-
semble methods.

Overall, these cases exemplify the effectiveness of
KGEC in improving the trustworthiness and usabil-
ity of KGE models.
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Table 14: Effect of different number of bins in KGEC on the performance of various KGE models across multiple
datasets. For all the three metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBI5SK FBISK-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBI5SK-237
0.702 0.196 0.586 0.198 0.851 0.422 0.642 0.227 0.527 0.389 0.687 0.221 0.904 0.382 0.663 0.222 0.489
0.305 0.316 0.581 0.184 0.850 0.422 0.677 0.190 0.521 0.387 0.683 0.219 0.476 0.305 0.671 0.105 0.431
0.214 0.238 0.498 0.183 0.848 0.422 0.677 0.190 0.515 0.385 0.683 0.180 0.467 0.293 0.653 0.101 0.409
0.245 0.249 0.491 0.180 0.848 0.421 0.677 0.190 0.447 0.385 0.682 0.179 0.486 0.286 0.646 0.098 0.407
0.235 0.262 0.479 0.182 0.848 0.420 0.677 0.189 0.447 0.385 0.682 0.179 0.470 0.297 0.622 0.102 0.405
0.211 0.260 0.514 0.170 0.848 0.419 0.677 0.189 0.447 0.384 0.682 0.179 0.487 0.290 0.584 0.112 0.403
0.159 0.273 0.457 0.147 0.848 0.418 0.678 0.189 0.447 0.384 0.682 0.179 0.451 0.304 0.593 0.104 0.394
0.194 0.269 0.460 0.161 0.848 0.418 0.678 0.189 0.446 0.384 0.682 0.179 0.464 0.307 0.529 0.126 0.396
0.181 0.276 0.444 0.160 0.841 0.418 0.678 0.189 0.446 0.384 0.683 0.178 0.464 0.305 0.498 0.157 0.394
0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
0.164 0.283 0.416 0.137 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.476 0.316 0.491 0.093 0.387
0.163 0.281 0.388 0.162 0.833 0418 0.678 0.189 0.446 0.383 0.683 0.178 0.475 0.316 0.475 0.100 0.386
0.148 0.287 0.370 0.123 0.835 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.471 0.317 0.459 0.086 0.379
0.125 0.293 0.376 0.140 0.835 0.417 0.677 0.189 0.446 0.382 0.683 0.178 0.472 0.319 0.458 0.116 0.381
0.102 0.294 0.336 0.129 0.824 0.417 0.678 0.189 0.446 0.381 0.682 0.178 0.475 0.318 0.461 0.076 0.374
0.154 0.296 0.349 0.061 0.769 0.416 0.677 0.189 0.446 0.379 0.682 0.178 0.472 0.319 0.494 0.087 0.373
0.120 0.296 0.313 0.064 0.764 0.415 0.585 0.189 0.446 0.377 0.682 0.178 0.478 0.324 0.490 0.091 0.363
0.115 0.293 0.256 0.085 0.749 0.415 0.589 0.189 0.446 0.377 0.640 0.178 0.472 0.325 0.489 0.134 0.360
0.113 0.293 0.256 0.084 0.749 0.415 0.579 0.189 0.446 0.377 0.603 0.178 0.482 0.326 0.488 0.062 0.352
0.135 0.298 0.261 0.073 0.753 0.416 0.580 0.189 0.445 0.376 0.577 0.178 0.478 0.319 0.493 0.046 0.351
TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBI5K FBI5K-237 | WNIS WNISRR FBISK FBISK-237 | WNI8 WNISRR FBI5SK FBI5K-237
0.598 0.285 0.565 0.158 0.851 0.422 0.633 0.227 0.527 0.389 0.686 0.221 0.385 0.382 0.602 0.220 0.447
0.318 0.323 0.406 0.128 0.849 0.422 0.494 0.217 0.519 0.387 0.538 0.217 0.476 0.242 0.495 0.093 0.383
0.232 0.243 0.378 0.104 0.848 0.422 0.491 0.217 0.511 0.385 0.533 0.217 0.467 0.226 0.471 0.076 0.364
0.171 0.253 0.328 0.097 0.848 0.421 0.488 0.213 0.460 0.385 0.530 0.213 0.449 0.281 0.450 0.082 0.354
0.155 0.264 0.307 0.099 0.848 0.420 0.484 0.211 0.460 0.385 0.529 0.210 0.458 0.297 0.441 0.069 0.352
0.125 0.262 0.261 0.083 0.848 0.419 0.481 0.210 0.460 0.384 0.527 0.204 0.457 0.290 0.454 0.070 0.346
0.135 0.271 0.277 0.061 0.848 0.418 0.478 0.209 0.460 0.384 0.526 0.204 0.451 0.304 0.419 0.067 0.345
0.129 0.267 0.264 0.080 0.848 0418 0.475 0.208 0.457 0.384 0.522 0.203 0.464 0.307 0.456 0.072 0.347
0.142 0.274 0.270 0.085 0.841 0.418 0.471 0.208 0.457 0.384 0.521 0.200 0.463 0.305 0.454 0.099 0.349
0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
0.111 0.280 0.278 0.076 0.833 0.418 0.460 0.207 0.457 0.383 0.513 0.199 0.461 0.316 0.491 0.061 0.347
0.107 0.278 0.259 0.100 0.833 0.418 0.456 0.207 0.457 0.383 0.508 0.199 0.475 0.316 0.475 0.061 0.346
0.128 0.284 0.240 0.077 0.834 0.418 0.450 0.206 0.457 0.383 0.503 0.197 0.471 0.316 0.459 0.059 0.343
0.113 0.291 0.238 0.088 0.834 0.417 0.446 0.205 0.455 0.382 0.497 0.196 0.471 0.319 0.458 0.062 0.342
0.107 0.292 0.239 0.086 0.823 0.417 0.441 0.204 0.455 0.381 0.492 0.195 0.475 0.318 0.461 0.057 0.340
0.111 0.294 0.234 0.063 0.767 0.416 0.436 0.204 0.455 0.379 0.486 0.194 0.472 0.319 0.494 0.053 0.336
0.100 0.296 0.237 0.064 0.762 0.415 0.550 0.204 0.453 0.377 0.481 0.193 0.478 0.324 0.490 0.053 0.342
0.119 0.293 0.248 0.083 0.746 0.415 0.576 0.204 0.453 0.377 0.466 0.192 0.471 0.325 0.489 0.075 0.346
Bin=19 0.115 0.293 0.247 0.090 0.746 0.415 0.534 0.203 0.453 0.377 0.482 0.192 0.482 0.326 0.488 0.046 0.343
Bin=20 0.107 0.298 0.249 0.073 0.750 0.416 0.557 0.203 0.450 0.376 0.553 0.192 0.478 0.319 0.493 0.048 0.348
NLL TransE ComplEx DistMult RotatE Average
WNIS8 WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBI5SK FBI5K-237 | WNIS WNISRR FBISK FBISK-237 | WNIS WNISRR FBI5SK FBI5K-237
2.544 6.543 3910 4.774 6.524 7.496 3.589 7.208 6.944 7.947 5.152 8.395 1.165 6.078 3.184 5.515 5.436
2.865 6.212 3.076 3.365 5.963 7.513 1.350 2.908 5.477 7.578 1.314 6.650 1.281 4.606 1.989 3.056 4.075
2712 6.265 2.986 3.290 5.633 7.513 1.350 2.908 4.913 7.338 1.315 3.101 1.184 4.472 2.042 2.774 3.737
2.605 6.185 2.845 3.191 5.633 7.299 1.351 2.909 2.843 7.338 1.315 3.101 1.100 4.745 1.974 2911 3.584
2.537 6.109 2.766 3.061 5.633 7.202 1.351 2.909 2.843 7.338 1.315 3.102 1.088 4.821 2.011 2.713 3.550
2.523 6.085 2.642 3.062 5.633 7.123 1.352 2.909 2.843 7.200 1.316 3.104 1.062 4.716 2.083 2.643 3518
2515 6.023 2.641 3.112 5.633 7.009 1.352 2910 2.843 7.200 1.316 3.104 1.038 4.787 1.939 2,672 3.506
2.499 6.024 2.607 2.956 5.656 7.001 1.353 2910 2.844 7.200 1.317 3.104 1.051 4.772 2.039 2.580 3.495
2.493 5.987 2.602 2.895 4.835 6.965 1.355 2910 2.843 7.200 1317 3.105 1.035 4.711 2,011 2473 3421
2.462 5.965 2.536 2.889 4.350 6.965 1.357 2911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396
2.466 5.944 2.532 2.898 4.350 6.965 1.358 2911 2.843 7.119 1.319 3.106 1.013 4.754 2.123 2.743 3.403
2.448 5.943 2.529 2.798 4.350 6.929 1.359 2911 2.843 7.114 1.321 3.106 1.043 4.731 2.037 2.666 3.383
2.447 5919 2.486 2.871 4.415 6.933 1.360 2911 2.843 7.114 1.323 3.107 1.022 4.714 1.959 2.772 3.387
2437 5.889 2.482 2.809 4.415 6.867 1.363 2912 2.845 7.027 1.326 3.108 1.017 4714 1.941 2.593 3.359
2438 5.880 2498 2.803 3.987 6.867 1.363 2912 2.845 6.935 1.329 3.108 1.024 4.689 1.942 2.813 3.340
2.449 5.870 2.463 2.883 2.931 6.773 1.366 2912 2.845 6.813 1331 3.109 1.014 4.684 2.060 2.669 3.261
2434 5.859 2487 2.855 2.873 6.726 2.678 2913 2.846 6.722 1.333 3.109 1.023 4.722 2.030 2.638 3.328
2.449 5.865 2513 2779 2.711 6.724 2.860 2913 2.846 6.722 1.860 3.110 1.010 4715 2.012 2.509 3.350
2.445 5.862 2.498 2.745 2.711 6.733 2.569 2913 2.846 6.682 2.235 3.110 1.029 4.706 1.996 2.702 3.361
2438 5.842 2489 2.791 2.749 6.734 2710 2913 2.849 6.635 2.743 3.110 1.014 4.611 2.010 2.818 3.404
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Table 15: Effect of different initial temperature parameters in KGEC on the performance of various KGE models
across multiple datasets. For all the three metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WNIS WNISRR FBISK FBI5SK-237 | WNIS WNISRR FBISK FBI5SK-237 | WNIS WNISRR FBISK FBISK-237 | WNIS WNISRR FBISK FBI5K-237
0.382 0.582 0.405 0.213 0.699 0.374 0.677 0.190 0.447 0.349 0.683 0.180 0.118 0.322 0.612 0.237 0.404
0.382 0.582 0312 0.213 0.699 0.374 0.677 0.190 0.447 0.349 0.683 0.180 0.118 0.389 0.670 0.236 0.406
0.337 0.014 0.626 0.221 0.699 0.374 0.678 0.189 0.447 0.349 0.683 0.179 0.603 0.420 0.719 0.239 0.424
0.696 0.013 0.626 0.221 0.699 0.374 0.678 0.189 0.447 0.349 0.683 0.179 0.939 0.428 0.719 0.239 0.467
0.705 0.014 0.627 0.221 0.699 0.374 0.678 0.189 0.447 0.349 0.683 0.178 0.944 0.426 0.729 0.239 0.469
0.706 0.014 0.645 0.221 0.699 0.279 0.678 0.189 0.447 0.222 0.683 0.178 0.944 0.397 0.709 0.239 0.453
0.706 0.268 0.624 0.233 0.699 0.348 0.678 0.189 0.447 0.336 0.683 0.178 0.944 0.320 0.668 0.239 0.472
0.706 0.390 0.566 0.233 0.699 0.384 0.678 0.189 0.447 0.356 0.683 0.178 0.907 0.244 0.597 0.239 0.468
0.706 0.424 0.520 0.226 0.793 0.404 0.678 0.189 0.446 0.370 0.683 0.178 0.355 0.215 0.530 0.173 0.431
0.444 0.342 0.496 0.200 0.823 0.412 0.678 0.189 0.446 0.376 0.683 0.178 0.402 0.273 0.492 0.124 0410
0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
0.199 0.232 0.419 0.109 0.848 0.420 0.678 0.189 0.446 0.386 0.683 0.178 0.547 0.331 0.495 0.098 0.391
0.278 0.195 0.365 0.073 0.849 0.422 0.606 0.189 0.485 0.388 0.683 0.178 0.608 0.350 0.528 0.101 0.394
0.340 0.165 0.335 0.051 0.850 0.423 0.592 0.189 0.513 0.388 0.683 0.178 0.656 0.362 0.551 0.106 0.399
0.390 0.141 0.360 0.064 0.851 0.424 0.618 0.189 0.519 0.390 0.683 0.178 0.696 0.373 0.568 0.108 0.409
0.430 0.122 0.388 0.082 0.852 0.425 0.599 0.190 0.524 0.390 0.602 0.178 0.727 0.382 0.581 0.133 0.413
0.463 0.105 0.411 0.097 0.852 0.425 0.625 0.209 0.525 0.391 0.597 0.178 0.752 0.390 0.594 0.128 0.421
0.491 0.090 0.429 0.110 0.852 0.425 0.611 0.213 0.526 0.391 0.609 0.193 0.773 0.395 0.609 0.150 0.429
0.515 0.079 0.447 0.121 0.853 0.426 0.607 0.223 0.527 0.392 0.611 0.186 0.791 0.400 0.622 0.162 0.435
0.534 0.069 0.462 0.133 0.853 0.426 0.616 0.223 0.527 0.392 0.614 0.198 0.807 0.404 0.631 0.167 0.441
0.550 0.061 0.475 0.141 0.853 0.426 0.644 0.225 0.528 0.392 0.613 0.209 0.820 0.407 0.638 0.172 0.447
TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBI5SK FBI5K-237 | WNI8 WNISRR FBI5K FBI5K-237 | WNI8 WNISRR FBI5K FBI5K-237 | WNIS WNISRR FBISK FBISK-237
55708  27.896  26.189 4.896 0.679 0.163 0.515 0.226 0.471 0.240 0.547 0.228 50.620  3.966 4.828 1.306 11.155
37.388  18.451  12.026 4.896 0.679 0.163 0.515 0.226 0.471 0.240 0.547 0.228 27979  3.158 4.275 1.278 7.032
8.518 4.825 2.672 1.805 0.688 0.160 0.467 0.210 0.458 0.238 0.517 0.201 8.266 1911 2.159 0.995 2.131
4.237 2.449 2.671 1.805 0.688 0.160 0.466 0.208 0.458 0.238 0.517 0.200 3.453 1.006 2.154 0.995 1.357
2.585 1.508 2.646 1.814 0.688 0.160 0.465 0.208 0.457 0.238 0.516 0.200 1.404 0.483 0.288 0.995 0916
1.535 0.994 0311 1.795 0.688 0.265 0.465 0.207 0.457 0.208 0.516 0.200 0.726 0.195 0.298 0.995 0.616
0.947 0.721 0.249 0.392 0.688 0.347 0.465 0.207 0.457 0.335 0.516 0.200 0314 0.119 0.327 0.994 0.455
0.573 0.542 0.242 0.290 0.689 0.384 0.465 0.207 0.457 0.355 0.516 0.199 0.105 0.152 0.362 0.994 0.408
0.307 0.422 0.257 0.209 0.792 0.404 0.465 0.207 0.457 0.369 0.516 0.199 0.230 0.213 0.402 0.113 0.348
0.144 0.339 0.275 0.141 0.822 0.412 0.465 0.207 0.457 0.376 0.516 0.199 0.366 0.273 0.427 0.070 0.343
0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
0.200 0.230 0.309 0.050 0.847 0.420 0.465 0.207 0.457 0.386 0.516 0.199 0.547 0.331 0.495 0.064 0.358
0.278 0.195 0.331 0.042 0.848 0.422 0.582 0.207 0.478 0.388 0.516 0.199 0.608 0.350 0.528 0.088 0.379
0.340 0.167 0.359 0.048 0.850  0.423 0.493 0.207 0.509 0.388 0.516 0.199 0.656 0.362 0.551 0.094 0.385
0.390 0.145 0.385 0.059 0.851 0.424 0.607 0.207 0.516 0.390 0.517 0.199 0.696 0.373 0.568 0.095 0.401
0.430 0.126 0.409 0.074 0.851 0.425 0.563 0.197 0.523 0.390 0.501 0.199 0.727 0.382 0.581 0.122 0.406
0.463 0.110 0.429 0.094 0.852 0.425 0.618 0.209 0.525 0.391 0.509 0.199 0.752 0.390 0.594 0.116 0.417
0.491 0.096 0.445 0.109 0.852 0.425 0.593 0.211 0.526 0.391 0.597 0.199 0.773 0.395 0.609 0.142 0.429
0.515 0.086 0.462 0.121 0.853 0.426 0.584 0.222 0.527 0.392 0.600 0.197 0.791 0.400 0.622 0.158 0.435
0.534 0.076 0.474 0.133 0.853 0.426 0.604 0.222 0.527 0.392 0.606 0.200 0.807 0.404 0.631 0.163 0.441
0.550 0.068 0.485 0.141 0.853 0.426 0.644 0.224 0.528 0.392 0.604 0.203 0.820 0.407 0.638 0.169 0.447
TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBISK FBI5K-237 | WNI8 WNISRR FBI5SK FBI5K-237 | WNIS WNISRR FBI5SK FBI5SK-237 | WNIS WNISRR FBISK FBI5K-237
1714 1977 -0.694 0.791 2287 3210 1349 2.908 2841 3253 1314 3.099 3229 1540 0515 1.145 1223
-1.422 2.230 -0.296 0.791 2.287 3210 1.349 2.908 2.841 3.253 1.314 3.099 -2.814 1.620 -0.452 1.150 1317
-0.209 3.154 0.492 1.014 2.287 3211 1.356 2.909 2.843 3.253 1.318 3.104 -1.858 1.738 -0.316 1.166 1.591
0.378 3.833 0.493 1.014 2.288 3211 1.356 2910 2.843 3.253 1.319 3.104 -1.191 2238 -0.315 1.165 1.744
0.786 4.312 0.498 1.012 2.288 3.211 1.356 2910 2.843 3.253 1319 3.104 -0.549 2.683 1.189 1.166 1.961
1.172 4.722 1.926 1.016 2.288 4.151 1.356 2.910 2.843 4318 1.319 3.105 -0.187 3.085 1.339 1.166 2.283
1.494 5.037 2.077 2.197 2.288 4.852 1.356 2910 2.843 5.461 1.319 3.105 0.125 3.460 1.501 1.166 2.574
1.771 5.317 2.191 2.374 2.288 5.459 1.356 2910 2.843 5.889 1.319 3.105 0.395 3.839 1.682 1.167 2.744
2.037 5.560 2322 2.542 3.267 6.058 1.356 2910 2.843 6.328 1.319 3.105 0.637 4.125 1.825 2429 3.042
2.261 5.773 2434 2.710 3.937 6.483 1.357 2910 2.843 6.642 1319 3.106 0.847 4.456 1.902 2.582 3.223
2.462 5.965 2.536 2.889 4350  6.965 1.357 2911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2743 3.396
2.651 6.142 2.635 3.006 5.567 7.214 1.357 2911 2.844 7.429 1.319 3.106 1.219 4.929 2.149 2727 3.575
2.820 6.302 2.743 3.155 5.739 7.427 2.960 2911 3.803 7.687 1.319 3.106 1.383 5.144 2.293 3.136 3.871
2975 6.453 2.844 3.328 6.148 7.606 2410 2911 4.791 7.751 1319 3.106 1.538 5312 2.407 3.201 4.006
3.121 6.597 2.934 3.421 6.262 7.852 3.194 2911 5.248 8.071 1319 3.106 1.688 5.502 2.499 3.216 4.184
3.256 6.729 3.043 3.579 6.591 8.080 2.817 3.398 5.977 8213 2415 3.106 1.819 5.678 2.578 3.521 4.425
3.380 6.863 3.137 3715 6.859 8.228 3322 4.532 6.350 8.329 2.543 3.107 1.942 5.855 2.668 3.466 4.643
3.502 6.995 3211 3.834 6.977 8.418 3.058 4.880 6.663 8.459 3.156 4.061 2.056 6.014 2.776 3.708 4.861
3.618 7.108 3.298 3.936 7.242 8.485 2979 6.043 7.090 8.595 3.186 3.850 2.165 6.183 2.880 3.883 5.034
3.724 7.221 3.376 4.053 7.456 8.669 3.164 5.999 7.228 8.794 3.245 4.284 2274 6.327 2.960 3.945 5.170
3.822 7.331 3.447 4.136 7.635 8.782 3.690 6.353 7.515 8.882 3.230 5.035 2.375 6.462 3.029 4.035 5.360
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Table 16: Effect of different learning rate in KGEC on the performance of various KGE models across multiple
datasets. For all the three metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBI5SK FBI5K-237 | WNI8 WNISRR FBISK FBI5SK-237 | WNI8 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBISK-237
Ir=0.001  0.184 0.229 0.469 0.098 0.852 0.423 0.644 0.228 0.528 0.389 0.659 0.220 0.492 0.381 0.498 0.191 0.405
Ir=0.002  0.172 0.231 0.517 0.052 0.852 0.423 0.608 0.227 0.527 0.388 0.596 0.218 0.476 0.371 0.456 0.092 0.388
Ir=0.003  0.199 0.265 0.534 0.099 0.851 0.423 0.593 0.226 0.527 0.388 0.594 0.212 0.481 0.361 0.467 0.092 0.395
Ir=0.004  0.203 0.276 0.535 0.138 0.851 0.422 0.595 0.222 0.526 0.387 0.605 0.191 0.478 0.353 0.480 0.098 0.398
Ir=0.005  0.179 0.281 0.521 0.157 0.850  0.422 0.594 0.213 0.525 0.386 0.612 0.178 0.479 0.344 0.476 0.092 0.394
Ir=0.006  0.202 0.286 0.520 0.160 0.849 0.421 0.678 0.207 0.522 0.386 0.683 0.178 0.477 0.333 0.483 0.091 0.405
0.201 0.291 0.497 0.166 0.849 0.421 0.678 0.189 0.517 0.385 0.683 0.178 0.472 0.323 0.462 0.110 0.401
0.188 0.287 0.491 0.163 0.846 0.419 0.678 0.189 0.495 0.384 0.683 0.178 0.466 0.317 0.455 0.127 0.398
0.188 0.284 0.478 0.167 0.843 0.419 0.678 0.189 0446  0.384 0.683 0.178 0.467 0.313 0.463 0.097 0.392
0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
Ir=0.020 0.152 0.246 0.380 0.064 0.699 0.392 0.678 0.189 0.446 0.353 0.683 0.178 0.514 0.273 0.560 0.239 0.378
Ir=0.030 0.184  0.228 0.460 0.080 0.699 0.374 0.677 0.189 0446  0.349 0.683 0.178 0.562 0.289 0.606 0.238 0.390
040 0244 0211 0.507 0.114 0.699 0.374 0.678 0.189 0446  0.349 0.683 0.178 0.598 0.290 0.638 0.097 0.393
Ir=0.050  0.305 0.189 0.530 0.139 0.699 0.374 0.677 0.189 0.446 0.349 0.682 0.178 0.623 0.295 0.652 0.238 0.410
Ir=0.060  0.342 0.163 0.554 0.212 0.699 0.364 0.677 0.189 0.446 0.205 0.683 0.178 0.635 0.330 0.674 0.237 0.412
Ir=0.070  0.393 0.153 0.569 0.164 0.699 0.374 0.677 0.190 0.526  0.349 0.683 0.178 0.656 0.330 0.679 0.239 0.429
Ir=0.080 0.418 0.135 0.577 0.174 0.699 0.407 0.678 0.189 0.446 0.349 0.682 0.178 0.685 0.332 0.680 0.239 0.429
Ir=0.090  0.456 0.130 0.584 0.184 0.826 0.374 0.677 0.189 0.446 0.385 0.683 0.178 0.716 0.350 0.693 0.237 0.444
Ir=0.100 0494  0.108 0.590 0.193 0.699 0.374 0.677 0.189 0.527 0.349 0.683 0.178 0.742 0.331 0.696 0.239 0.442
ACE TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBISK FBI5K-237 | WNI8S WNISRR FBISK FBI5SK-237 | WNI8 WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBISK-237
Ir=0.001  0.220 0.237 0.276 0.098 0.852 0.423 0.644 0.227 0.527 0.388 0.659 0.219 0.492 0.380 0.498 0.190 0.396
1r=0.002  0.171 0.236 0.248 0.037 0.851 0.423 0.587 0.226 0.527 0.388 0.562 0.216 0.459 0.370 0.456 0.069 0.364
Ir=0.003  0.119 0.263 0.247 0.049 0.851 0.423 0.513 0.225 0.526 0.388 0.547 0.205 0.457 0.361 0.445 0.069 0.356
Ir=0.004  0.108 0.273 0.252 0.075 0.851 0.422 0.486 0.220 0.525 0.387 0.499 0.198 0.457 0.352 0.437 0.063 0.350
0.109 0.278 0.256 0.092 0.850  0.422 0.527 0.211 0.524  0.386 0.497 0.199 0.461 0.344 0.440 0.067 0.354
0.107 0.283 0.264 0.095 0.849 0.421 0.465 0.208 0.521 0.386 0.516 0.199 0.463 0.333 0.435 0.065 0.351
0.112 0.288 0.264 0.101 0.849 0.421 0.465 0.207 0514  0.385 0.516 0.199 0.465 0.323 0.448 0.066 0.351
Ir=0.008  0.122 0.284 0.272 0.097 0.845 0.419 0.465 0.207 0.488 0.384 0.516 0.199 0.466 0.317 0.452 0.071 0.350
1r=0.009  0.127 0.281 0.284 0.100 0.842 0.419 0.465 0.207 0.457 0.384 0.516 0.199 0.467 0.313 0.463 0.062 0.349
Ir=0.010 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
Ir=0.020 0.146 0.244 0.400 0.048 0.689 0.392 0.465 0.207 0.457 0.352 0.517 0.199 0.514 0.273 0.560 0.994 0.404
0.163 0.227 0.471 0.075 0.689 0.160 0.484 0.207 0.457 0.238 0.517 0.199 0.562 0.289 0.606 1.010 0.397
0.244 0211 0.511 0.114 0.689 0.160 0.466 0.207 0.457 0.238 0.522 0.199 0.598 0.290 0.638 0.085 0.352
0.305 0.191 0.535 0.139 0.689 0.160 0.486 0.207 0.457 0.238 0.529 0.199 0.623 0.295 0.652 1.115 0.426
Ir=0.060  0.342 0.167 0.554 2.220 0.689 0.364 0.493 0.207 0.457 0.189 0.519 0.199 0.635 0.330 0.674 1.067 0.569
1r=0.070  0.393 0.157 0.569 0.164 0.689 0.160 0.493 0.212 0.526  0.238 0.518 0.199 0.656 0.330 0.679 0.987 0.436
Ir=0.080 0.418 0.139 0.577 0.174 0.689 0.407 0.469 0.207 0.457 0.238 0.533 0.199 0.685 0.332 0.680 0.986 0.449
Ir=0.090 0.456 0.136 0.584 0.184 0.826 0.160 0.503 0.208 0.457 0.383 0.517 0.200 0.716 0.350 0.693 1.142 0.470
Ir=0.100 0494  0.114 0.590 0.193 0.689 0.160 0.498 0.208 0.527 0.240 0.521 0.200 0.742 0.331 0.696 0.997 0.450
NLL TransE ComplEx DistMult RotatE Average
WNI8 WNISRR FBI5SK FBI5K-237 | WNI8S WNISRR FBISK FBI5SK-237 | WNI§ WNISRR FBISK FBI5K-237 | WNIS WNISRR FBISK FBISK-237
2.751 6.481 2.469 3.771 6.777 7.749 3.691 7.271 7.279 7.797 4.071 7.207 1.254 5.847 2.159 4.410 5.061
2.505 6.267 2.341 3.233 6.634 7.665 3.006 6.945 7.073 7.729 2.871 6.351 1.014  5.546 1.997 2.862 4.627
2471 6.029 2.309 3.034 6514  7.599 2.511 6.618 6.818 7.646 2.763 5.263 1.008 5.357 1.961 2.860 4.423
2.468 5.984 2311 2924 6.292 7.493 2.301 5.853 6.526 7.562 2353 3.975 1.010 5217 1.934 2.703 4.182
2.473 5.966 2.331 2.865 6.188 7.455 2.587 4.799 6.230 7.495 2256 3.106 1.019 5.101 1.942 2.817 4.039
2.464 5.947 2353 2.853 5874  7.356 1.357 4372 5670  7.383 1.319 3.106 1.024 4.965 1.927 2.793 3.798
2462 5.931 2.406 2.834 5773 7.280 1.357 2911 5.093 7.362 1.319 3.106 1.028 4.857 1.970 2.635 3.645
Ir=0.008  2.466 5.942 2.444 2.845 5.288 7.094 1.357 2911 4.088 7.253 1.319 3.106 1.032 4.800 1.984 2.573 3.531
1Ir=0.009  2.465 5.951 2473 2.831 4.963 7.113 1.357 2911 2.843 7.203 1.319 3.106 1.033 4.757 2.026 2.711 3.441
Ir=0.010 2.462 5.965 2.536 2.889 4350  6.965 1.357 2911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396
Ir=0.020 2.519 6.087 3.006 3.237 2.288 5.673 1.356 2911 2.844 5.811 1.319 3.106 1.146 4.446 2.456 1.167 3.086
2.579 6.160 3.362 3.546 2.288 3.211 1.351 2910 2.844 3.254 1.320 3.106 1.274 4.564 2.756 1.167 2.856
2747 6.236 3.661 3.855 2.288 3211 1.356 2910 2.844 3.254 1.320 3.106 1370 4575 3.027 3.067 3.052
2.896 6.335 3.839 4.096 2.288 3211 1.352 2910 2.844 3.254 1.315 3.106 1.436 4.608 3.173 1.159 2.989
2.990 6.475 4.068 0.967 2.288 5.092 1.350 2910 2.844 4.147 1.322 3.106 1.474 4.934 3.466 1.167 3.037
3.149 6.532 4.254 4.399 2.288 3211 1.350 2.909 6.683 3.253 1.321 3.106 1.531 4.920 3.546 1.177 3.352
3.225 6.648 4.370 4.564 2.288 6.227 1.361 2910 2.844 3.253 1.315 3.105 1.640 4945 3.557 1.177 3.339
3.366 6.692 4.495 4.759 4.059 3.211 1.350 2910 2.844 7.289 1.319 3.105 1.767 5.153 3.803 1.171 3.581
3.533 6.874 4.587 4.993 2.288 3.211 1.350 2.910 7.271 3.253 1.321 3.105 1.887 4.928 3.867 1.174 3.534
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