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Abstract

Knowledge graph embedding (KGE) models
are designed for the task of link prediction,
which aims to infer missing triples by learn-
ing representations for entities and relations.
While KGE models excel at ranking-based link
prediction, the critical issue of probability cali-
bration has been largely overlooked, resulting
in uncalibrated estimates that limit their adop-
tion in high-stakes domains where trustworthy
predictions are essential. Addressing this is
challenging, as we demonstrate that existing
calibration methods are ill-suited to KGEs, of-
ten significantly degrading the essential rank-
ing performance they are meant to support. To
overcome this, we introduce the KGE Calibra-
tor (KGEC), the first probability calibration
method tailored for KGE models to enhance the
trustworthiness of their predictions. KGEC in-
tegrates three key techniques: a Jump Selection
Strategy that improves efficiency by selecting
the most informative instances while filtering
out less significant ones; Multi-Binning Scal-
ing, which models different confidence levels
separately to increase capacity and flexibility;
and a Wasserstein distance-based calibration
loss that further boosts calibration performance.
Extensive experiments across multiple datasets
demonstrate that KGEC consistently outper-
forms existing calibration methods in terms of
both effectiveness and efficiency, making it a
promising solution for calibration in KGE mod-
els1.

1 Introduction

Knowledge graphs (KGs) are essential resources
for a wide range of knowledge-driven tasks, includ-
ing semantic search (Xiong et al., 2017), knowl-
edge reasoning (Liu et al., 2021), question answer-
ing (Shen et al., 2019; Ye et al., 2023), and Neuro-
Symbolic AI (Yang and Curry, 2025). Prominent

1Codes available at https://github.com/Yang233666/KGE-
Calibrator

Figure 1: Uncalibrated scores for a query from
WN18RR (Dettmers et al., 2018) produced by the
TransE model (Bordes et al., 2013). Although the cor-
rect entity (“sibyl”) is highly ranked, the uncalibrated
scores lack probabilistic interpretability, highlighting
the need for calibration.

large-scale KGs such as YAGO (Suchanek et al.,
2007), DBpedia (Lehmann et al., 2015), and Free-
base (Bollacker et al., 2008) encompass millions of
entities and hundreds of millions of relational facts,
which are typically structured as sets of <head
entity, relation, tail entity> triples.

However, most KGs are incomplete due to ex-
traction errors and limited input resources. This
makes link prediction, also known as knowledge
graph completion, crucial for inferring missing
links and improving KG quality. To this end,
knowledge graph embedding (KGE) models such
as TransE (Bordes et al., 2013) and ComplEx
(Trouillon et al., 2016) tackle this problem by learn-
ing latent representations of entities and relations to
score the plausibility of candidate triples. Beyond
link prediction, KGE models have demonstrated
remarkable success across diverse applications, in-
cluding entity alignment (Sun et al., 2018) and
canonicalization (Shen et al., 2022).

While the ranking accuracy of KGE models has
seen significant advancements, the critical issue of
probability calibration remains largely overlooked.
Specifically, KGE models should output calibrated
probabilities alongside their predictions. How-
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ever, they typically produce uncalibrated scores
(Pezeshkpour et al., 2020; Tabacof and Costabello,
2020). This stems from link prediction being
framed as a ranking task, where metrics like Mean
Rank (MR) and HITS@N prioritize relative order-
ing while ignoring the reliability of output scores.
As a result, KGE models can assign implausible
scores to correct entities yet still perform well, as
shown in Figure 1. This shortcoming limits their
applications in high-stakes domains such as drug
and protein target discovery (Zeng et al., 2022; Mo-
hamed et al., 2020), where calibrated estimates are
essential.

To address this critical issue, increasing attention
has been directed toward the probability calibration
task of KGE models, which aims to convert the
uncalibrated scores assigned to candidate triples
into well-calibrated probability estimates. As a
post-processing technique, calibration improves
the trustworthiness of link prediction results, mak-
ing them more reliable for downstream applica-
tions. However, probability calibration in KGE
poses unique challenges compared to traditional
classification. Image classification datasets like
CIFAR-100 (Krizhevsky et al., 2009) or document
classification datasets like SST (Socher et al., 2013)
involve tens or hundreds of classes. In contrast,
KGE tasks treat each entity as a distinct class. This
creates a massive class space, a challenge present
even in standard benchmarks (e.g., FB15K and
WN18RR contain 14,951 and 40,943 entities, re-
spectively). This high cardinality yields extremely
small per-class probabilities and makes calibra-
tion highly sensitive. On WN18RR, for instance,
we empirically observe that 99.1% of uncalibrated
scores produced by TransE fall below 10−4, high-
lighting the dominance of near-zero values. Even
small perturbations in such distributions can dis-
tort the original ranking and negatively affect link
prediction performance. Therefore, preserving the
original ranking quality becomes a critical require-
ment, posing a distinctive challenge for probability
calibration in the KGE setting.

Despite its importance and unique challenges,
probability calibration in KGE remains largely un-
derexplored. Prior studies (Tabacof and Costabello,
2020; Pezeshkpour et al., 2020) have shown that
popular KGE models produce poorly calibrated
scores, resulting in unreliable probability estimates.
Several off-the-shelf calibration methods, such as
Platt Scaling, Isotonic Regression, and Tempera-
ture Scaling, have been evaluated (Safavi et al.,

2020; Zhu et al., 2022), but these methods are de-
signed for standard classifiers and are not well-
suited to the scale and ranking-sensitive nature of
KGE. A few works have explored calibration in spe-
cific tasks, including triple classification (Tabacof
and Costabello, 2020), relation prediction (Safavi
et al., 2020), and low-dimensional entity expit trans-
formations (Wang et al., 2021). However, no exist-
ing approach offers a calibration method explicitly
tailored to the probabilistic characteristics of KGE
models. This leaves a critical gap in improving the
trustworthiness of KGE-based link prediction.

To fill this gap, we propose KGE Calibrator
(KGEC), the first probability calibration method
tailored specifically for KGE models. To enhance
training efficiency under the large-scale class space
characteristic of KGE, we introduce the Jump Se-
lection Strategy, which selects the most informative
instances while discarding less significant ones. To
increase model expressiveness and better capture
the ranking-sensitive nature of KGE predictions,
we propose Multi-Binning Scaling, which mod-
els different probability levels separately, thereby
increasing model capacity and flexibility. Addition-
ally, we propose a Wasserstein distance-based loss
function to further boost calibration performance.
To the best of our knowledge, this is the first use of
the Wasserstein distance for probability calibration.

Contributions. Our major contributions can be
summarized as follows:
•We demonstrate that five of nine widely-used

post-hoc calibration methods degrade link predic-
tion performance for KGE entity prediction, indi-
cating they are unsuitable in this setting.
•We propose KGEC, the first probability calibra-

tion method specifically designed for KGE models,
which addresses the challenge of large class space
in calibration while preserving the original ranking
performance.
• A thorough experimental study over four

datasets demonstrates that KGEC consistently out-
performs existing calibration methods in both per-
formance and efficiency.

2 Related Work

Probability Calibration in KGE Models. Sev-
eral studies have highlighted that KGE models
produce poorly calibrated probability estimates.
Early work by (Tabacof and Costabello, 2020)
and (Pezeshkpour et al., 2020) showed that widely
used KGE models are poorly calibrated in triple
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classification tasks. To address this, (Tabacof
and Costabello, 2020) applied Platt Scaling (Platt
et al., 1999) and Isotonic Regression (Zadrozny
and Elkan, 2002), while (Safavi et al., 2020) ex-
plored Matrix Scaling and Vector Scaling (Guo
et al., 2017) in relation prediction. A broader evalu-
ation by (Zhu et al., 2022) tested additional off-the-
shelf calibration techniques, including Histogram
Binning (Zadrozny and Elkan, 2001), Beta Calibra-
tion (Kull et al., 2017), and Temperature Scaling
(Guo et al., 2017) for triple classification. Further-
more, (Rao, 2021) examined calibration under both
closed-world and open-world assumptions. While
these works shed light on the calibration issue in
KGE, they all rely on existing techniques origi-
nally designed for traditional classification prob-
lems. None propose a calibration method specif-
ically tailored for KGE models, leaving a critical
gap in the literature. For completeness, we provide
a summary of calibration methods explored in prior
KGE studies in Table 4 (Appendix A.1).

Expit Transformations. Expit transformations
aim to convert uncalibrated scores into probabilities
using functions such as the Sigmoid (Nickel et al.,
2015; Tabacof and Costabello, 2020; Zhu et al.,
2022) and Softmax (Pezeshkpour et al., 2020).
Other approaches include neighborhood interven-
tion consistency (NIC) (Wang et al., 2021) and
min-max scaling (Rao, 2021). However, recent
research (Zhu et al., 2022) has shown that even
when expit-transformed scores can be interpreted
as probabilities, they are still uncalibrated and unre-
liable. As a result, these expit transformations are
generally viewed as a preliminary step, typically
followed by a dedicated calibration method such
as Platt Scaling or Isotonic Regression. In fact,
(Zhu et al., 2022) concluded that expit transforma-
tions are ineffective in most cases and suggested
probability calibration as a better approach. Follow-
ing this direction, our work focuses exclusively on
probability calibration and does not include expit
transformations as part of our method design.

3 Preliminaries

Notations. We use calligraphic font for sets (e.g.,
E). Matrices are denoted by bold uppercase (e.g.,
P ∈ Rn×m). Row and column vectors extracted
from a matrix are bold lowercase (e.g., the i-th row
pi ∈ R1×m and the j-th column pj ∈ Rn×1). Stan-
dalone vectors (e.g., an embedding h or a vector
of probability estimates p) are also bold lowercase.

The vector of calibrated estimates is distinguished
with a hat (e.g., p̂). Scalars are denoted by plain
italic letters (e.g., n, m).

Knowledge Graph. A knowledge graph (KG)
G consists of a set of triples (h, r, t), where each
triple includes a head entity h ∈ E , a tail entity
t ∈ E , and a relation r ∈ R connecting head and
tail. Here, E andR refer to the sets of entities and
relations of G respectively, and m = |E| denotes
the total number of entities.

Knowledge Graph Embeddings. Knowledge
graph embedding (KGE) models aim to represent
each head entity h, relation r, and tail entity t from
a KG G as d-dimensional continuous embeddings
h, r, and t ∈ Rd. A core component of the KGE
model is its score function ψ, which evaluates the
plausibility of a triple (h, r, t) by computing a com-
patibility score ψ(h, r, t) from the corresponding
embeddings. Table 10 in Appendix F lists the score
functions of the most widely used KGE models.

Link Prediction. Link prediction, the primary
downstream task for KGE models, encompasses
both entity prediction and relation prediction. En-
tity prediction is generally more challenging due
to the large number of candidate entities. For ex-
ample, the widely used WN18RR (Dettmers et al.,
2018) dataset contains 40,943 entities but only 11
relations. In this paper, we focus on the more chal-
lenging entity prediction task, which includes both
head and tail prediction.

For head prediction, given a query (?, r, t), each
entity ei ∈ E is treated as a candidate for the miss-
ing head entity. The trained KGE model assigns a
score ψ(ei, r, t) to each candidate triple (ei, r, t),
where ei is a candidate head entity, and r and t are
the given relation and tail entity. These scores are
then ranked, with higher-ranked triples considered
more plausible, indicating that the corresponding
entity ei is a likely answer to the query (?, r, t).
The task of tail prediction is defined analogously
for queries of the form (h, r, ?).

KGE Probability Calibration. Given a head-
entity query (?, r, t), a KGE model with score func-
tion ψ first produces an uncalibrated score vector
over all m entities:

s = [ψ(e1, r, t), . . . , ψ(em, r, t)]
⊤ ∈ Rm, (1)

where s is the uncalibrated score vector. These
scores are typically converted into an initial vec-
tor of uncalibrated probability estimates p using
an expit transformation such as the Softmax func-
tion (σSM), where p = σSM(s). However, these
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Table 1: Effect of calibration on TransE’s ranking per-
formance (FB15K). Lower MR indicates better perfor-
mance; higher MRR and HITS@K are better. ↓ de-
notes performance degradation compared to the uncali-
brated (Uncal) baseline. Methods shown are Platt Scal-
ing (PS), Histogram Binning (HB), Isotonic Regression
(IR), Bayesian Binning into Quantiles (BBQ), Vector
Scaling (VS), Matrix Scaling (MS), Temperature Scal-
ing (TS), Meta-Cal, Parametrized Temperature Scaling
(PTS), and our proposed KGEC.

Method MR MRR HITS@1 HITS@3 HITS@10
FB15K

Uncal 40 0.731 0.646 0.793 0.865
PS 40 0.731 0.646 0.793 0.865
HB 2275 ↓ 0.570 ↓ 0.510 ↓ 0.614 ↓ 0.670 ↓
IR 982 ↓ 0.615 ↓ 0.530 ↓ 0.675 ↓ 0.761 ↓

BBQ 1275 ↓ 0.589 ↓ 0.509 ↓ 0.646 ↓ 0.726 ↓
VS 41 ↓ 0.730 ↓ 0.646 0.791 ↓ 0.862 ↓
MS 3687 ↓ 0.038 ↓ 0.024 ↓ 0.039 ↓ 0.061 ↓
TS 40 0.731 0.646 0.793 0.865

Meta-Cal 1149 ↓ 0.677 ↓ 0.604 ↓ 0.735 ↓ 0.787 ↓
PTS 40 0.731 0.646 0.793 0.865

KGEC 40 0.731 0.646 0.793 0.865

estimates often provide poor reflections of the true
likelihoods (Zhu et al., 2022).

The goal of probability calibration is to learn a
mapping that transforms the uncalibrated estimates
p into calibrated estimates p̂, such that each ele-
ment p̂i more faithfully reflects the likelihood of
correctness for the i-th candidate. Addressing this
challenge for KGE models is the primary focus
of this work. After calibration, the predicted an-
swer ŷ to the query and its associated calibrated
confidence are obtained as:

ŷ = argmax(p̂), p̂ = max(p̂), (2)

where ŷ denotes the most likely entity and p̂ quan-
tifies the calibrated confidence in this prediction.

Calibration Method Evaluation. To motivate
our work, we first demonstrate that preserving rank-
ing performance is a non-trivial requirement that
many standard calibration methods fail to meet. We
evaluate a set of widely used post-processing meth-
ods2 in the context of entity prediction. Specifically,
we consider nine representative methods and exam-
ine whether they preserve or degrade the ranking
performance of KGE models after calibration.

Table 1 presents the results of applying these
calibration methods to the TransE model on the
FB15K dataset. The results reveal the following
observations: (1) HB, IR, BBQ, MS, and Meta-Cal
substantially degrade performance, making them

2Brief descriptions of these calibration methods are pro-
vided in Appendix A.2.

Figure 2: An illustration of the proposed KGEC method.

unsuitable as calibrators for KGE models in the en-
tity prediction task; (2) PS, TS, and KGEC success-
fully preserve the original ranking performance,
demonstrating their suitability for this task; (3) VS
slightly degrades performance on FB15K, but given
that the decline is minor, so its overall impact re-
mains acceptable.

These findings suggest that not all well-known
calibration methods are compatible with KGE-
based entity prediction. For a more comprehen-
sive view, the detailed results for additional KGE
models across multiple datasets are reported in Ta-
bles 5–8 in Appendix B.

4 KGE Calibrator

Figure 2 presents an overview of our proposed
KGE Calibrator (KGEC). We begin by describ-
ing the Jump Selection Strategy and Multi-Binning
Scaling, followed by the Wasserstein distance-
based loss function.

4.1 Jump Selection Strategy

Calibrating KGE models is challenging due to their
extremely large class spaces: each query involves
thousands of candidate entities, resulting in long-
tailed probability estimates dominated by near-zero
values. Directly using all candidates for calibration
training is both computationally prohibitive and
highly redundant. Our intuition is that calibration
for KGE models requires selecting a small but infor-
mative subset of candidates for training. Building
on this idea and inspired by the Log-Jump algo-
rithm (Shen et al., 2022), we propose the Jump
Selection Strategy (JSS), which retains only the
most informative instance per query identified via
the Jump measure (Sugar and James, 2003), while
discarding others. This reduces training size dra-
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Algorithm 1 Jump Selection Strategy (JSS)

Input: Query set X = {xi = (?, ri, ti)}ni=1, can-
didate entities E = {ej}mj=1, trained KGE
model ψ.

Output: Most informative column index J∗ and
vector of probability estimates p∗ ∈ Rn.

1: for i = 1, . . . , n do
2: Compute scores: si ← [ψ(ej , ri, ti)]

m
j=1.

3: Convert to probabilities: pi ← σSM(si).
4: end for
5: Stack row vectors to form probability matrix

P← [p1, . . . ,pn]
⊤ ∈ Rn×m.

6: Sort each row of P in descending order to ob-
tain P̃.

7: for j = 1, . . . ,m− 1 do
8: Jj ← DKL

(
p̃ j ∥ p̃ j+1

)
.

9: end for
10: J∗ ← argmaxj Jj .
11: p∗ ← p̃ J∗

.

matically without sacrificing essential informative-
ness.

Principle of Informativeness. The core idea is
that the most informative instance lies at the tran-
sition point between highly informative and less
informative candidates. When candidate scores are
ranked, the resulting distribution typically exhibits
a steep drop from a few high-probability candi-
dates to a long tail of near-zero values. Selecting
the instance at this sharp transition ensures that the
retained example captures the highest degree of
informativeness. We formalize this intuition using
the Jump measure to quantify informativeness.

Method. The JSS procedure is detailed in Al-
gorithm 1. Given a set of queries X = {xi}ni=1

and candidate entities E = {ej}mj=1, the procedure
begins by iterating through each query. For each
query xi, the trained KGE model ψ first produces
a vector of uncalibrated scores si ∈ Rm over all
candidate entities (line 2). This score vector is then
converted into a vector of probability estimates pi

using the Softmax function σSM (line 3).
After processing all queries, the resulting prob-

ability vectors {pi} are stacked as rows to form
a single matrix P ∈ Rn×m (line 5). To make
confidence transitions explicit, each row of P is
then sorted in descending order to yield a new ma-
trix P̃ (line 6). This reordering does not affect
downstream performance. Link prediction metrics
depend only on relative ranks, and the following

calibration operates on the full vector of probability
estimates, regardless of order.

To quantify informativeness and detect the most
significant transition point, we compute the Kull-
back–Leibler (KL) divergence between consecutive
columns of P̃, i.e., p̃j and p̃j+1, as the Jump mea-
sure Jj (lines 7–9). KL divergence is employed
here not as a loss function, but as a measure of
the informativeness shift between ranked adjacent
columns. Finally, the column index J∗ that maxi-
mizes this Jump measure is selected, and its corre-
sponding vector of probability estimates p∗ ∈ Rn

is retained as the most informative vector for sub-
sequent calibration training (lines 10–11).

By transforming the training instances from a
full probability matrix P ∈ Rn×m into a single
informative column vector p∗ ∈ Rn, JSS reduces
the number of training instances by a factor of m
without discarding critical information. A detailed
discussion and theoretical analysis of potential in-
formation loss are provided in Appendix C.

4.2 Multi-Binning Scaling
An effective post-hoc calibrator for KGE models
must satisfy two properties: it should be expressive
enough to correct complex miscalibration patterns
while strictly preserving the model’s original rank-
ing order, as metrics like MRR and HITS@K are
paramount. Temperature Scaling (TS) (Guo et al.,
2017), a widely used method, perfectly satisfies
the second property by applying a single scalar
temperature T > 0 to the logits. However, its sim-
plicity comes at the cost of limited expressiveness:
TS applies the same transformation to all probabil-
ity estimates regardless of magnitude (e.g., scaling
probabilities of 0.1 and 0.9 identically), making it
inadequate for calibrating the highly non-uniform
confidence distributions typical of KGE models.
A single global parameter is often too restrictive
to capture the nuanced calibration required across
different confidence levels.

To address this limitation, we introduce Multi-
Binning Scaling (MBS), a highly expressive and
flexible approach that inherits the rank-preserving
benefit of TS while improving calibration qual-
ity. Inspired by histogram binning (Zadrozny and
Elkan, 2001), the core idea of MBS is to partition
the confidence space into multiple segments and
learn a separate temperature for each, allowing the
model to apply different transformations to differ-
ent confidence levels.

Concretely, we partition the interval [0, 1] into
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W disjoint, equal-width bins, B1, . . . , BW , and
associate each bin with an independent trainable
temperature parameter Tw > 0. For a given query
i, we use the single most informative probability,
p∗i , identified by our Jump Selection Strategy (Sec-
tion 4.1), to select the appropriate bin. The as-
sociated temperature is squared and inverted to
yield a bin-specific scaling factor 1/T 2

w, which
then multiplies the entire vector of probability es-
timates p̃i, uniformly rescaling estimates across
all candidate entities. For example, with W = 10
bins, a probability of p∗i = 0.75 falls into the bin
B8 = (0.7, 0.8], and its corresponding tempera-
ture T8 determines the scaling factor applied to all
candidate entities for that query.

This simple multiplicative rescaling is crucial: it
guarantees ranking preservation while adaptively
modulating confidence levels across bins. Squaring
the temperature stabilizes optimization by smooth-
ing gradients, ensuring positive scaling, and pre-
venting excessively sharp updates. While we adopt
equal-width bins for simplicity, more advanced
strategies, such as adaptive or data-driven binning,
represent a promising extension. Ultimately, MBS
is highly efficient, as its complexity depends only
on the number of bins, requiring the training of
just W scalar temperature parameters. By com-
bining the rank-preserving property of TS with the
enhanced expressiveness of a bin-based transforma-
tion, MBS offers a principled and scalable solution
for KGE model calibration.

4.3 Optimization

While KL divergence is a commonly used loss func-
tion in deep learning, it poses notable limitations
for calibration in KGE models, such as gradient
instability and explosion3. To address these issues,
we propose using the Wasserstein distance as the
loss function for KGEC. Unlike KL divergence,
the Wasserstein distance provides a more stable
and geometrically meaningful way to compare con-
fidence distributions by considering the minimum
cost of transforming one distribution into another.
This perspective is especially valuable in calibra-
tion, where we aim to align the calibrated estimates
with ground-truth probability distributions while
preserving their structure.

The Wasserstein distance models calibration as
an optimal transport (OT) problem. As the loss
function requires a probability distribution, we first

3A detailed analysis is provided in Appendix D.

apply a Softmax transformation to the rescaled es-
timates from Multi-Binning Scaling (Section 4.2),
yielding the calibrated probability distribution p̂i.
The goal of OT problem is to find the most efficient
way to move mass from this calibrated probability
distribution p̂i ∈ Rm to the ground-truth one-hot4

distribution qi ∈ {0, 1}m. The feasible set of trans-
port plans is defined by the transportation polytope
U(p̂i,qi), which contains all nonnegative transport
matrices P ∈ Rm×m

+ :

U(p̂i,qi) = {P ∈ Rm×m
+ |P1m = p̂i,

P⊤1m = qi},
(3)

where 1m ∈ Rm is the vector of ones.
Given a cost matrix M ∈ Rm×m, the Wasser-

stein distance is defined as the minimum transport
cost required to map p̂i to qi using the transport
matrix P.

DWD(p̂i,qi) = min
P∈U(p̂i,qi)

⟨P,M⟩

=
m∑

j

m∑

l

Pl
jM

l
j ,

(4)

where ⟨·, ·⟩ denotes the Frobenius dot-product and
Ml

j =
∣∣∣p̂j

i − ql
i

∣∣∣ represents the absolute difference
between the j-th and l-th elements of p̂i and qi.

To improve computational efficiency, we use the
Sinkhorn distance (Cuturi, 2013), which provides
a fast approximation to the constrained Wasser-
stein distance by introducing entropy regulariza-
tion. Given the OT plan Pλ and cost matrix M, the
Sinkhorn distance DSD is defined as follows:

DSD(p̂i,qi) =
〈
Pλ,M

〉
, (5)

where λ > 0 is the weight for entropy regulariza-
tion. The OT plan Pλ is obtained by solving:

Pλ = argmin
P∈U(p̂i,qi)

⟨P,M⟩ − 1

λ
h(P), (6)

where h(P) is the entropy of P. The solution Pλ

is computed iteratively via Sinkhorn normalization
(Cuturi, 2013) as follows:

u(t) = p̂i ⊘
(
K⊤v(t−1)

)
,

v(t) = qi ⊘
(
Ku(t)

)
,

(7)

where ⊘ indicates element-wise division, (t) de-
notes the iteration time, and K = exp(−M

λ ) is the
4Here, qi is a one-hot vector where qj

i = 1 for the correct
entity j, and ql

i = 0 for all l ̸= j.
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kernel matrix with entropy regularization weight λ.
Finally, the optimal transport plan Pλ is given by:

Pλ = diag
(
v(t)

)
K diag

(
u(t)

)
. (8)

This Sinkhorn-regularized Wasserstein loss enables
more stable optimization and improves calibration
performance, particularly in the large class-space
settings typical of KGE tasks.

5 Experiments

We structure our experimental study to answer
three key research questions (RQs): RQ1: Can
KGEC outperform existing calibration methods?
RQ2: Is KGEC efficient in terms of training time
and memory usage? RQ3: What is the contribution
of each of its components? We first detail our ex-
perimental setting (Section 5.1), then address each
RQ in turn (Sections 5.2–5.4), and conclude with a
sensitivity analysis and case study.

5.1 Experimental Setting
5.1.1 Datasets
We evaluate our proposed model on four popu-
lar datasets, which are commonly used to evalu-
ate link prediction, where FB15K (Bordes et al.,
2013) and FB15K-237 (Toutanova and Chen, 2015)
were extracted from Freebase (Bollacker et al.,
2008), WN18 (Bordes et al., 2013) and WN18RR
(Dettmers et al., 2018) were extracted from Word-
Net (Miller, 1995). Note that FB15K-237 and
WN18RR are subsets of FB15K and WN18, re-
spectively, in which near-same and near-reverse re-
lations have been removed. These datasets are pub-
licly available, and already partitioned into training,
validation and testing splits. The statistics of them
are summarized into Table 9 in Appendix E.

5.1.2 KGE Models
We evaluate KGEC on four well-established KGE
models: TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016), and RotatE (Sun et al., 2019). Their score
functions are listed in Table 10 in the Appendix F. It
is noted that our proposed method KGEC is model-
agnostic, as it can be applied to any KGE model
that produces a score for each candidate triple. We
therefore leave the evaluation of KGEC on other
KGE architectures for future work.

5.1.3 Evaluation Measures
To evaluate calibration performance, we adopt
three widely used evaluation metrics: Expected

Calibration Error (ECE) (Naeini et al., 2015), Adap-
tive Calibration Error (ACE) (Nixon et al., 2019),
and Negative Log-Likelihood (NLL). Each met-
ric captures different aspects of calibration qual-
ity. Due to space constraints, we refer readers to
(Naeini et al., 2015; Nixon et al., 2019) for detailed
formulations. For an overall comparison, we report
the Average performance by averaging each metric
across all datasets and KGE models.

5.1.4 Setting Details
To ensure a fair comparison, all calibration base-
lines5 and metrics we used are from third-party
frameworks or their original implementations.
Specifically, the code of PS, HB, IR, BBQ, and TS
is from the net:cal library6. The code of MS and
VS, as well as all calibration metrics, is provided
by TorchUncertainty7. The code of Meta-Cal8 and
PTS9 is from their official repositories. For the
hyperparameter setting of KGEC, the number of
bins is set to 10, the learning rate to 0.01, the batch
size to 32, the initial temperature for each bin to
1.0, and the optimizer is AdamW (Loshchilov and
Hutter, 2019). Except for VS, MS, and TS, which
use the Multiclass setting, all other baselines use
the One-vs-All setting to avoid prohibitive training
time. We follow the closed world assumption in
our experiments, since the open world assumption
requires a label for each triple, which is not avail-
able in existing datasets. All reported results are
averaged over 10 independent runs.

5.2 Effectiveness Study for RQ1

Table 2 presents the calibration performance of
various methods across multiple KGE models and
datasets. Notably, baselines such as HB, IR, BBQ,
MS, and Meta-Cal are excluded, due to their detri-
mental impact on ranking performance, as evi-
denced in Table 1 (Section 3). Since preserving the
original ranking order is essential in KGE settings,
these calibration methods that degrade ranking per-
formance are considered unsuitable for practical
deployment and omitted from further evaluation.

Overall, KGEC consistently outperforms all
competitive baselines, achieving the lowest average
ECE, ACE, and NLL across all datasets and models.

5Due to space limitations, detailed descriptions of the cali-
bration baselines are deferred to Appendix A.2.

6https://efs-opensource.github.io/calibration-
framework/build/html/index.html

7https://torch-uncertainty.github.io
8https://github.com/maxc01/metacal/tree/master
9https://github.com/tochris/pts-uncertainty
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Table 2: Effect of different calibration methods on the performance of various KGE models across multiple datasets.
Best and second-ranked results are in bold and underlined, respectively. For ECE, ACE, and NLL, lower values
indicate better calibration performance.

ECE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

Uncal 0.502 0.265 0.580 0.212 0.852 0.424 0.696 0.228 0.528 0.389 0.694 0.221 0.429 0.385 0.684 0.224 0.457
PS 0.634 0.031 0.530 0.218 0.854 0.427 0.701 0.229 0.529 0.394 0.700 0.222 0.876 0.425 0.722 0.235 0.483
VS 0.706 0.014 0.646 0.231 0.852 0.424 0.697 0.228 0.528 0.389 0.695 0.215 0.944 0.413 0.739 0.239 0.498
TS 0.634 0.031 0.680 0.203 0.852 0.424 0.701 0.228 0.528 0.389 0.700 0.221 0.687 0.384 0.722 0.223 0.475

PTS 0.523 0.013 0.530 0.231 0.854 0.430 0.060 0.214 0.456 0.393 0.526 0.778 0.337 0.425 0.221 0.365 0.397
KGEC 0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388

ACE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

Uncal 0.506 0.274 0.565 0.180 0.852 0.424 0.696 0.228 0.528 0.389 0.694 0.220 0.429 0.385 0.684 0.224 0.455
PS 0.628 0.033 0.530 0.217 0.854 0.427 0.701 0.229 0.529 0.394 0.700 0.222 0.876 0.425 0.722 0.235 0.483
VS 0.506 0.274 0.565 0.180 0.852 0.424 0.697 0.228 0.528 0.389 0.694 0.215 0.429 0.385 0.684 0.224 0.455
TS 0.628 0.033 3.312 0.154 0.852 0.423 0.701 0.228 0.528 0.389 0.700 0.220 0.687 0.384 0.722 0.222 0.636

PTS 0.516 0.013 0.530 0.231 0.854 0.424 0.060 0.207 0.446 0.391 0.522 0.778 0.337 0.418 0.221 0.363 0.394
KGEC 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348

NLL TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

Uncal 2.891 6.582 3.911 5.396 6.892 7.815 5.954 7.513 7.447 7.858 5.919 7.705 1.376 6.145 4.090 5.750 5.828
PS 3.839 7.304 3.829 5.836 8.831 8.974 7.093 8.438 9.117 9.065 7.257 8.621 3.350 7.364 4.799 6.271 6.874
VS / / / / 6.892 7.814 5.952 7.510 7.446 7.857 5.916 7.692 1.376 / / / 6.495
TS 3.839 7.304 1.285 4.909 6.892 7.802 7.093 7.513 7.447 7.856 7.257 7.704 2.069 6.121 4.799 5.617 5.969

PTS / 9.181 3.829 9.448 9.314 9.171 1.906 5.714 / 9.496 4.847 / / / / / 6.990
KGEC 2.462 5.965 2.536 2.889 4.350 6.965 1.357 2.911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396

Table 3: Training time in seconds and memory usage in
MBs taken to calibrate entity prediction using different
calibration methods. Best and second-ranked results are
in bold and underlined, respectively. For a fair compari-
son, these results are obtained using CPU only.

Method Average Time Average Memory
PS 40856.945 2542.715
VS 7.577 83.294
TS 8.649 2540.274

PTS 7035.177 8410.493
KGEC 4.716 21.665

A breakdown of these results reveals several key
findings: (1) Limited effectiveness of simple base-
lines. PS, VS, and TS often perform worse than
the uncalibrated models. Their poor performance
is likely due to their low model capacity, which is
insufficient to capture complex calibration patterns
in high-cardinality KGE settings. (2) Improved re-
sults with PTS. PTS shows marked improvement
over simple baselines by predicting temperature
parameters adaptively using a neural network. This
flexibility enables better handling of distributional
variation, leading to improved performance. (3) Su-
perior performance of KGEC. KGEC achieves the
best overall results across all metrics and datasets.
Together, these findings confirm that KGEC ef-
fectively addresses the unique challenges of KGE
calibration while preserving ranking quality.

5.3 Efficiency Study for RQ2

Table 3 reports the average training time and mem-
ory usage of different calibration methods across
multiple KGE models and datasets. To ensure a

fair comparison, all methods are evaluated on CPU-
only environments. Detailed experimental results
for each calibration method on individual datasets
and KGE models are presented in Table 11 (Ap-
pendix G).

Key Observations from Table 3: (1) KGEC
is the most efficient model in both training time
and memory usage, consistently outperforming all
baseline methods. (2) VS and TS exhibit compara-
ble efficiency, with slightly longer training times
than KGEC, which can be attributed to their sim-
ple parametric structures. (3) PTS incurs signifi-
cantly higher computational costs, both in time and
memory, despite its strong calibration performance.
This high overhead may limit its applicability in
large-scale or resource-constrained scenarios. (4)
PS is the slowest method, largely due to the im-
mense number of classes in KGE settings, which
makes binary logistic regression computationally
expensive.

5.4 Ablation Study for RQ3

To assess the individual contribution of each com-
ponent in KGEC, we perform a comprehensive
ablation study across five key metrics: ECE, ACE,
NLL, training time, and memory usage. We eval-
uate the following four variants: (1) KGEC: The
full model, incorporating all components: Jump
Selection Strategy (JSS), Multi-Binning Scaling
(MBS), and the Wasserstein distance-based loss.
(2) KGEC-loss: Replaces the Wasserstein loss with
KL divergence while retaining JSS and MBS. (3)
KGEC-loss-MBS: Further removes MBS, retaining
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Figure 3: Ablation study of KGEC components across
five evaluation metrics: ECE, ACE, NLL, training time
(seconds), and memory usage (MB). Lower values indi-
cate better performance.

only JSS and KL divergence. (4) KGEC-loss-MBS-
JSS: The base version using only KL divergence,
without any of the proposed enhancements. Fig-
ure 3 reports the average performance across all
datasets and KGE models, providing an overall
comparison of model variants. Detailed experi-
mental results for each component on individual
datasets and KGE models are presented in Table 12
(Appendix H).

Key Observations: (1) Full Model Superior-
ity. KGEC achieves the best performance across
all five metrics. It yields the lowest calibration er-
rors (ECE = 0.388, ACE = 0.348, NLL = 3.396)
while maintaining high efficiency (training time =
4.716s, memory usage = 21.665MB). (2) Impact of
Wasserstein Loss. Comparing KGEC to KGEC-loss
reveals substantial calibration improvements, vali-
dating the advantage of using Wasserstein distance
over KL divergence in high-cardinality, ranking-
sensitive KGE settings. This supports our hypoth-
esis that the Wasserstein-based objective is better
suited to the probability distribution landscape of
KGE. (3) Effect of MBS. Removing MBS (KGEC-
loss vs. KGEC-loss-MBS) degrades ECE (from
0.450 to 0.487) and NLL (from 4.960 to 5.590),
indicating that MBS enhances calibration by mod-
eling probability intervals more effectively. In-
terestingly, ACE improves after removing MBS.
This anomaly may arise because the KL divergence
used in KGEC-loss amplifies ACE more than ex-

pected, suggesting ACE is especially sensitive to
the choice of loss function. (4) Efficiency Gain
from JSS. While KGEC-loss-MBS and KGEC-loss-
MBS-JSS exhibit similar calibration performance,
the inclusion of JSS dramatically reduces train-
ing time (from 65.871s to 4.659s) and memory
usage (from 97.608MB to 20.032MB), confirming
JSS’s effectiveness in improving computational ef-
ficiency. Furthermore, a direct comparison against
a random sampling baseline shows JSS is not only
more efficient but also significantly more effective
at preserving calibration quality (see Appendix H).

Overall, all three components are essential for
balancing calibration performance and computa-
tional cost. MBS and Wasserstein loss enhance cal-
ibration performance, while JSS ensures efficiency
and stability. The full KGEC model thus delivers
the strongest and most balanced performance.

5.5 Sensitivity Analysis and Case Study

To further assess the robustness and practical util-
ity of KGEC, we conducted a sensitivity analy-
sis on its key hyperparameters and a qualitative
case study. Our sensitivity analysis, which varies
three hyperparameters: the number of bins, ini-
tial temperature, and learning rate, confirms that
KGEC’s performance is stable across a wide range
of settings. Additionally, the case study provides
concrete examples of how the method corrects mis-
calibrated predictions, addressing both over- and
under-confidence from base models. A detailed pre-
sentation is shown in Appendix I and Appendix J.

6 Conclusion

In this paper, we propose KGEC, the first prob-
ability calibration method tailored to the unique
challenges of KGE models. By integrating a novel
Jump Selection Strategy for efficiency, a Multi-
Binning Scaling module for expressiveness, and a
Wasserstein distance-based loss for stable optimiza-
tion, KGEC effectively calibrates KGE predictions
while strictly preserving their ranking performance.
Comprehensive experiments across multiple KGE
models and datasets demonstrate that KGEC signif-
icantly outperforms existing calibration baselines
in both calibration performance and computational
efficiency. Our work establishes a strong foun-
dation for trustworthy link prediction, and future
work may explore extensions to dynamic KGs or
integration with uncertainty-aware reasoning sys-
tems.
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Limitations

While KGEC achieves strong performance, we
identify several promising directions for future
work based on its current limitations:

(1) Alternative Expit Transformations. In this
work, we adopt the Softmax function as the ex-
pit transformation, as our primary focus is on the
calibration method itself. However, alternative ap-
proaches, such as NIC (Wang et al., 2021) and
min-max normalization (Rao, 2021), may further
improve performance and merit exploration in fu-
ture work.

(2) Task-Specific Calibration Considerations.
KGEC is optimized for static entity prediction tasks
in knowledge graphs. Its effectiveness in other
KGE-based applications, such as multi-hop rea-
soning, fact verification, or temporal/dynamic KG
settings, remains untested. These tasks may require
adaptation or redesign of the calibration strategy
to accommodate different data characteristics and
evaluation protocols.

(3) Limited Evaluation Across Advanced
KGE Architectures. While KGEC has been ex-
tensively evaluated on several representative KGE
models (e.g., TransE, DistMult, ComplEx, and Ro-
tatE), its generalization to more complex architec-
tures, such as hyperbolic embeddings, graph neural
networks, or transformer-based KGE models, has
not yet been studied. Extending KGEC to these set-
tings poses challenges in modeling and scalability,
and is an important direction for future work.
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A Calibration Baselines

A.1 Calibration Techniques Explored in
Existing KGE Literature

For completeness, Table 4 summarizes which cali-
bration methods have been employed in prior stud-
ies of KGE calibration. This overview highlights
that existing works all exclusively adapt off-the-
shelf methods originally designed for standard clas-
sification tasks, underscoring the need for calibra-
tion techniques tailored specifically to the KGE
setting.

A.2 Calibration Baselines Evaluated in Our
Experiments

We summarize the post-hoc probability calibration
baselines considered in this work:
• Platt Scaling (PS) (Platt et al., 1999) is a para-

metric calibration method that transforms the non-
probabilistic outputs of a binary classifier into cali-
brated confidence scores.
• Histogram Binning (HB) (Zadrozny and

Elkan, 2001) is a simple non-parametric approach
that partitions predictions into mutually exclusive
bins, assigning each bin a calibrated score.
• Isotonic Regression (IR) (Zadrozny and

Elkan, 2002) generalizes HB by jointly optimiz-
ing both bin boundaries and predictions through a
monotonic regression function.
• Bayesian Binning into Quantiles (BBQ)

(Naeini et al., 2015) extends HB by applying
Bayesian model averaging over multiple binning
models.
•Matrix Scaling (MS) and Vector Scaling (VS)

(Guo et al., 2017) are multi-class extensions of PS,
using matrix and vector transformations, respec-
tively.
• Temperature Scaling (TS) (Guo et al., 2017)

is the simplest extension of PS, employing a single
scalar temperature parameter T > 0 shared across
all predictions.
•Meta-Cal (Ma and Blaschko, 2021) combines

a bipartite-ranking model with selective classifica-

tion to construct a more flexible calibration map-
ping.
• Parametrized Temperature Scaling (PTS)

(Tomani et al., 2022) generalizes TS by computing
prediction-specific temperatures, parameterized by
a neural network.

In this study, we restrict our attention to post-
hoc probability calibration methods, which adjust
model outputs without altering the underlying KGE
training process. This ensures that the original rank-
ing of entities is preserved. Training-modifying ap-
proaches such as regularization (Ahn et al., 2019),
ensembles (Lakshminarayanan et al., 2017), MC-
dropout (Gal and Ghahramani, 2016), and mixup
(Thulasidasan et al., 2019) fall outside our scope,
as they fundamentally alter the embedding training
procedure.

We also exclude Beta Calibration (Kull et al.,
2017) due to its prohibitive computational cost. For
example, even on the smallest dataset (WN18RR),
it required over 60 hours to complete, making it
infeasible for our large-scale experiments. Finally,
we emphasize that this work focuses strictly on
probability calibration. Expit transformation alter-
natives such as replacing the Softmax function with
Sigmoid or NIC (Wang et al., 2021) are conceptu-
ally distinct and therefore not considered here.

B Effect of Different Calibration Methods
Across Datasets

In this section, we systematically evaluate nine
widely used post-hoc calibration methods on the en-
tity prediction task across four benchmark datasets.
The goal is to assess whether these calibration tech-
niques can improve probabilistic reliability while
preserving the ranking quality essential for knowl-
edge graph completion.

We report results using standard link prediction
metrics. Specifically, lower Mean Rank (MR) in-
dicates better performance, while higher values of
Mean Reciprocal Rank (MRR), HITS@1, HITS@3,
and HITS@10 correspond to better ranking quality.

As shown in Table 5–8, several calibration meth-
ods, including HB, IR, BBQ, MS, and Meta-Cal,
substantially degrade entity ranking performance.
This suggests that these approaches disrupt the orig-
inal link prediction scores after calibration and are
therefore unsuitable for KGE-based entity predic-
tion.
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Table 4: Overview of calibration methods employed in prior KGE calibration studies. Each method is marked as
parametric or non-parametric, along with the corresponding references.

Calibration Method Parametric Used in Works
Isotonic Regression (Zadrozny and Elkan, 2002) No (Tabacof and Costabello, 2020), (Wang et al., 2021), (Zhu et al., 2022)
Histogram Binning (Zadrozny and Elkan, 2001) No (Zhu et al., 2022)
Beta Calibration (Kull et al., 2017) Yes (Zhu et al., 2022)
Platt Scaling (Platt et al., 1999) Yes (Tabacof and Costabello, 2020), (Wang et al., 2021), (Zhu et al., 2022)
Matrix Scaling (Guo et al., 2017) Yes (Safavi et al., 2020)
Vector Scaling (Guo et al., 2017) Yes (Safavi et al., 2020)
Temperature Scaling (Guo et al., 2017) Yes (Zhu et al., 2022)

C Detailed Description of the Jump
Selection Strategy (JSS)

In the main paper (Section 4.1), we introduced the
Jump Selection Strategy (JSS) as a principled
method to reduce the size of calibration training
data while preserving the essential informativeness
of the retained samples. Here, we provide a more
detailed exposition of the motivation, intuition, and
theoretical considerations behind JSS.

C.1 Challenge of Large Class Spaces.

A core difficulty in calibrating KGE models lies in
the extremely large candidate space. Each query
may involve thousands of possible entities, result-
ing in probability distributions dominated by a long
tail of near-zero values. Using all candidates for
calibration training is both computationally pro-
hibitive and information-redundant: the majority
of entries contribute little to overall informative-
ness. Thus, an effective selection mechanism is
needed to retain only the most informative instance
per query.

C.2 Principle of Informativeness.

The informativeness of a candidate is defined as its
ability to characterize the transition from highly in-
formative predictions to less informative ones. Em-
pirically, when candidate probabilities are ranked,
the distribution exhibits a steep drop from a small
number of dominant candidates to a long tail of
negligible ones. The most informative instance lies
at this transition point, where the contrast between
candidates is strongest. Selecting this instance en-
sures that calibration focuses on the sample carry-
ing the greatest informativeness.

C.3 Reordering Step.

To detect this transition consistently, we first re-
order each query’s probability vector into descend-
ing order. This guarantees a monotonic sequence
from most informative to least informative candi-

dates, making the transition explicit. Although this
step perturbs the raw candidate alignment, it does
not alter downstream objectives: (i) Link predic-
tion is ranking-based, not order-sensitive. Thus,
perturbing candidate order within a query does not
affect evaluation metrics such as MRR or HITS@K.
(ii) As demonstrated in Multi-Binning Scaling (Sec-
tion 4.2), for query i, all of the M elements in the
probability vector Pi are transformed using the
same temperature parameter T 2

w. MBS is applied
uniformly across the entire vector Pi, regardless
of its internal order. Therefore, the calibrated out-
put preserves the original ranking. Reordering is
therefore a benign preprocessing step that enables
consistent identification of the most informative
instance.

C.4 Illustrative Toy Example.

To make the procedure concrete, consider the fol-
lowing probability matrix with three queries (rows)
and three candidates (columns):

P =



0.1 0.2 0.3
0.4 0.6 0.2
0.5 0.1 0.4


 . (9)

After reordering each row in descending order,
we obtain

P̃ =



0.3 0.2 0.1
0.6 0.4 0.2
0.5 0.4 0.1


 . (10)

We then compute KL-based Jump Measures be-
tween adjacent columns of P̃, which yields

J = [0.0039, 0.0541], (11)

indicating that the maximum jump occurs at the
second column (J∗ = 1 in zero-based indexing).
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Table 5: Effect of different calibration methods on
the performance of the TransE model across various
datasets. ↑ indicates an improvement, while ↓ indicates
a decline compared to the original uncalibrated results.

Method MR MRR HITS@1 HITS@3 HITS@10
WN18

Uncal 263 0.772 0.706 0.807 0.920
PS 260 ↑ 0.772 0.706 0.807 0.920
HB 15299 ↓ 0.225 ↓ 0.212 ↓ 0.236 ↓ 0.240 ↓
IR 14590 ↓ 0.251 ↓ 0.232 ↓ 0.267 ↓ 0.279 ↓

BBQ 15178 ↓ 0.218 ↓ 0.200 ↓ 0.233 ↓ 0.244 ↓
VS 258 ↑ 0.772 0.706 0.807 0.920
MS 16483 ↓ 0.013 ↓ 0.005 ↓ 0.013 ↓ 0.029 ↓
TS 260 ↑ 0.772 0.706 0.807 0.920

Meta-Cal 1784 ↓ 0.718 ↓ 0.657 ↓ 0.749 ↓ 0.856 ↓
PTS 2116 ↓ 0.751 ↓ 0.706 0.775 ↓ 0.849 ↓

KGEC 263 0.772 0.706 0.807 0.920
WN18RR

Uncal 3437 0.223 0.014 0.401 0.528
PS 3437 0.223 0.014 0.401 0.528
HB 19455 ↓ 0.071 ↓ 0.053 ↑ 0.087 ↓ 0.099 ↓
IR 18143 ↓ 0.102 ↓ 0.080 ↑ 0.119 ↓ 0.139 ↓

BBQ 18196 ↓ 0.071 ↓ 0.050 ↑ 0.085 ↓ 0.105 ↓
VS 3421 ↑ 0.224 ↑ 0.014 0.401 0.529 ↑
MS 18178 ↓ 0.009 ↓ 0.003 ↓ 0.008 ↓ 0.020 ↓
TS 3437 0.223 0.014 0.401 0.528

Meta-Cal 3437 0.223 0.014 0.401 0.528
PTS 3437 0.223 0.014 0.401 0.528

KGEC 3437 0.223 0.014 0.401 0.528
FB15K

Uncal 40 0.731 0.646 0.793 0.865
PS 40 0.731 0.646 0.793 0.865
HB 2275 ↓ 0.570 ↓ 0.510 ↓ 0.614 ↓ 0.670 ↓
IR 982 ↓ 0.615 ↓ 0.530 ↓ 0.675 ↓ 0.761 ↓

BBQ 1275 ↓ 0.589 ↓ 0.509 ↓ 0.646 ↓ 0.726 ↓
VS 41 ↓ 0.730 ↓ 0.646 0.791 ↓ 0.862 ↓
MS 3687 ↓ 0.038 ↓ 0.024 ↓ 0.039 ↓ 0.061 ↓
TS 40 0.731 0.646 0.793 0.865

Meta-Cal 1149 ↓ 0.677 ↓ 0.604 ↓ 0.735 ↓ 0.787 ↓
PTS 40 0.731 0.646 0.793 0.865

KGEC 40 0.731 0.646 0.793 0.865
FB15K-237

Uncal 173 0.330 0.231 0.368 0.527
PS 173 0.330 0.231 0.368 0.527
HB 3497 ↓ 0.289 ↓ 0.224 ↓ 0.321 ↓ 0.416 ↓
IR 2141 ↓ 0.309 ↓ 0.234 ↑ 0.343 ↓ 0.455 ↓

BBQ 2335 ↓ 0.280 ↓ 0.209 ↓ 0.310 ↓ 0.422 ↓
VS 173 0.330 0.231 0.368 0.527
MS 3704 ↓ 0.033 ↓ 0.014 ↓ 0.032 ↓ 0.070 ↓
TS 173 0.330 0.231 0.368 0.527

Meta-Cal 1231 ↓ 0.308 ↓ 0.218 ↓ 0.344 ↓ 0.490 ↓
PTS 173 0.330 0.231 0.368 0.527

KGEC 173 0.330 0.231 0.368 0.527

Thus, the second column of P̃ is selected as the
most informative instance per query:

p∗ =



0.2
0.4
0.4


 . (12)

For each query (row), suppose the temperatures
selected by MBS based on the binned values in p∗

are

T =



0.7
1.5
1.0


 . (13)

Table 6: Effect of different calibration methods on
the performance of the ComplEx model across various
datasets. ↑ indicates an improvement, while ↓ indicates
a decline compared to the original uncalibrated results.

Method MR MRR HITS@1 HITS@3 HITS@10
WN18

Uncal 311 0.893 0.854 0.925 0.953
PS 311 0.893 0.854 0.925 0.953
HB 14328 ↓ 0.274 ↓ 0.262 ↓ 0.285 ↓ 0.289 ↓
IR 14094 ↓ 0.290 ↓ 0.280 ↓ 0.298 ↓ 0.304 ↓

BBQ 13657 ↓ 0.236 ↓ 0.194 ↓ 0.271 ↓ 0.306 ↓
VS 305 ↑ 0.893 0.854 0.925 0.953
MS 16825 ↓ 0.011 ↓ 0.004 ↓ 0.012 ↓ 0.022 ↓
TS 311 0.893 0.854 0.925 0.953

Meta-Cal 1260 ↓ 0.851 ↓ 0.813 ↓ 0.880 ↓ 0.908 ↓
PTS 311 0.893 0.854 0.925 0.953

KGEC 311 0.893 0.854 0.925 0.953
WN18RR

Uncal 5469 0.469 0.428 0.486 0.552
PS 5469 0.469 0.428 0.486 0.552
HB 18836 ↓ 0.107 ↓ 0.100 ↓ 0.112 ↓ 0.118 ↓
IR 18244 ↓ 0.103 ↓ 0.090 ↓ 0.110 ↓ 0.124 ↓

BBQ 18200 ↓ 0.087 ↓ 0.076 ↓ 0.097 ↓ 0.105 ↓
VS 5447 ↑ 0.469 0.428 0.486 0.552
MS 18191 ↓ 0.009 ↓ 0.003 ↓ 0.009 ↓ 0.020 ↓
TS 5469 0.469 0.428 0.486 0.552

Meta-Cal 6416 ↓ 0.445 ↓ 0.407 ↓ 0.459 ↓ 0.522
PTS 5469 0.469 0.428 0.486 0.552

KGEC 5469 0.469 0.428 0.486 0.552
FB15K

Uncal 45 0.770 0.703 0.816 0.885
PS 45 0.770 0.703 0.816 0.885
HB 1747 ↓ 0.610 ↓ 0.543 ↓ 0.661 ↓ 0.724 ↓
IR 970 ↓ 0.652 ↓ 0.579 ↓ 0.704 ↓ 0.780 ↓

BBQ 797 ↓ 0.597 ↓ 0.509 ↓ 0.656 ↓ 0.757 ↓
VS 43 ↑ 0.770 0.703 0.816 0.886 ↑
MS 3693 ↓ 0.025 ↓ 0.010 ↓ 0.024 ↓ 0.055 ↓
TS 45 0.770 0.703 0.816 0.885

Meta-Cal 484 ↓ 0.715 ↓ 0.651 ↓ 0.759 ↓ 0.826 ↓
PTS 45 0.770 0.703 0.816 0.885

KGEC 45 0.770 0.703 0.816 0.885
FB15K-237

Uncal 166 0.322 0.230 0.352 0.511
PS 166 0.322 0.230 0.352 0.511
HB 2882 ↓ 0.274 ↓ 0.201 ↓ 0.305 ↓ 0.420 ↓
IR 2185 ↓ 0.296 ↓ 0.220 ↑ 0.328 ↓ 0.449 ↓

BBQ 1661 ↓ 0.249 ↓ 0.176 ↓ 0.273 ↓ 0.399 ↓
VS 166 0.322 0.230 0.352 0.512 ↑
MS 3704 ↓ 0.033 ↓ 0.014 ↓ 0.032 ↓ 0.070 ↓
TS 166 0.322 0.230 0.352 0.511

Meta-Cal 267 ↓ 0.310 ↓ 0.218 ↓ 0.339 ↓ 0.498 ↓
PTS 166 0.322 0.230 0.352 0.511

KGEC 166 0.322 0.230 0.352 0.511

Applying temperature scaling yields the cali-
brated confidence matrix

P̂ =




0.1

0.72
0.2

0.72
0.3

0.72

0.4

1.52
0.6

1.52
0.2

1.52

0.5

1.02
0.1

1.02
0.4

1.02




=



0.20 0.40 0.60
0.18 0.27 0.09
0.50 0.10 0.40




(14)

As observed, this rescaling preserves the rela-
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Table 7: Effect of different calibration methods on
the performance of the DistMult model across various
datasets. ↑ indicates an improvement, while ↓ indicates
a decline compared to the original uncalibrated results.

Method MR MRR HITS@1 HITS@3 HITS@10
WN18

Uncal 227 0.685 0.529 0.829 0.933
PS 227 0.685 0.529 0.829 0.933
HB 14718 ↓ 0.240 ↓ 0.216 ↓ 0.262 ↓ 0.271 ↓
IR 14271 ↓ 0.260 ↓ 0.237 ↓ 0.279 ↓ 0.294 ↓

BBQ 13614 ↓ 0.201 ↓ 0.154 ↓ 0.232 ↓ 0.293 ↓
VS 224 ↑ 0.685 0.529 0.829 0.933
MS 16984 ↓ 0.011 ↓ 0.004 ↓ 0.012 ↓ 0.022 ↓
TS 227 0.685 0.529 0.829 0.933

Meta-Cal 770 ↓ 0.663 ↓ 0.508 ↓ 0.805 ↓ 0.908 ↓
PTS 240 ↓ 0.685 0.529 0.829 0.932 ↓

KGEC 227 0.685 0.529 0.829 0.933
WN18RR

Uncal 4912 0.439 0.394 0.453 0.532
PS 4909 ↑ 0.439 0.394 0.453 0.532
HB 19006 ↓ 0.100 ↓ 0.090 ↑ 0.108 ↓ 0.117 ↓
IR 18174 ↓ 0.099 ↓ 0.083 ↑ 0.109 ↓ 0.124 ↓

BBQ 18192 ↓ 0.088 ↓ 0.073 ↑ 0.100 ↓ 0.109 ↓
VS 4888 ↑ 0.439 0.394 0.453 0.532
MS 18172 ↓ 0.009 ↓ 0.003 ↓ 0.009 ↓ 0.020 ↓
TS 4909 ↑ 0.439 0.394 0.453 0.532

Meta-Cal 6157 ↓ 0.406 ↓ 0.366 ↓ 0.419 ↓ 0.493 ↓
PTS 4909 ↑ 0.439 0.394 0.453 0.532

KGEC 4909 ↑ 0.439 0.394 0.453 0.532
FB15K

Uncal 41 0.768 0.701 0.813 0.884
PS 41 0.768 0.701 0.813 0.884
HB 1528 ↓ 0.630 ↓ 0.562 ↓ 0.679 ↓ 0.748 ↓
IR 952 ↓ 0.667 ↓ 0.599 ↓ 0.713 ↓ 0.787 ↓

BBQ 692 ↓ 0.603 ↓ 0.512 ↓ 0.659 ↓ 0.775 ↓
VS 39 ↑ 0.768 0.701 0.814 ↑ 0.885 ↑
MS 3693 ↓ 0.025 ↓ 0.010 ↓ 0.024 ↓ 0.055 ↓
TS 41 0.768 0.701 0.813 0.884

Meta-Cal 202 ↓ 0.746 ↓ 0.680 ↓ 0.790 ↓ 0.861 ↓
PTS 41 0.768 0.701 0.813 0.884

KGEC 41 0.768 0.701 0.813 0.884
FB15K-237

Uncal 174 0.309 0.222 0.337 0.484
PS 174 0.309 0.222 0.337 0.484
HB 2695 ↓ 0.256 ↓ 0.184 ↓ 0.286 ↓ 0.401 ↓
IR 2156 ↓ 0.280 ↓ 0.205 ↑ 0.311 ↓ 0.427 ↓

BBQ 1562 ↓ 0.235 ↓ 0.163 ↓ 0.259 ↓ 0.378 ↓
VS 172 ↑ 0.305 ↓ 0.216 ↓ 0.333 ↓ 0.484
MS 3704 ↓ 0.033 ↓ 0.014 ↓ 0.032 ↓ 0.070 ↓
TS 174 0.309 0.222 0.337 0.484

Meta-Cal 259 ↓ 0.300 ↓ 0.213 ↓ 0.327 ↓ 0.474 ↓
PTS 5659 ↓ 0.222 ↓ 0.222 0.222 ↓ 0.223 ↓

KGEC 174 0.309 0.222 0.337 0.484

tive ordering of candidates within each row, and
thus ranking-based metrics (e.g., MRR, HITS@K)
remain unaffected.

C.5 KL Divergence as Jump Measure.

Given the reordered probability matrix P̃, we com-
pute the Jump measure Jj as the KL divergence
between adjacent columns. KL is not used here as
a loss function but as a relative difference metric,
quantifying how informativeness changes between
consecutive ranked positions. A large KL value
indicates a sharp change in informativeness, corre-
sponding to the transition point. Unlike its unstable
behavior in one-hot settings (where zero entries

Table 8: Effect of different calibration methods on
the performance of the RotatE model across various
datasets. ↑ indicates an improvement, while ↓ indicates
a decline compared to the original uncalibrated results.

Method MR MRR HITS@1 HITS@3 HITS@10
WN18

Uncal 270 0.950 0.944 0.952 0.960
PS 270 0.950 0.944 0.952 0.960
HB 13910 ↓ 0.279 ↓ 0.263 ↓ 0.294 ↓ 0.299 ↓
IR 13962 ↓ 0.297 ↓ 0.286 ↓ 0.308 ↓ 0.313 ↓

BBQ 13801 ↓ 0.271 ↓ 0.253 ↓ 0.286 ↓ 0.297 ↓
VS 270 0.950 0.944 0.952 0.960
MS 16626 ↓ 0.013 ↓ 0.005 ↓ 0.013 ↓ 0.027 ↓
TS 270 0.950 0.944 0.952 0.960

Meta-Cal 1917 ↓ 0.905 ↓ 0.904 ↓ 0.905 ↓ 0.905 ↓
PTS 474 ↓ 0.949 ↓ 0.944 0.951 ↓ 0.958 ↓

KGEC 270 0.950 0.944 0.952 0.960
WN18RR

Uncal 3421 0.476 0.429 0.496 0.570
PS 3421 0.476 0.429 0.497 ↑ 0.570
HB 18719 ↓ 0.114 ↓ 0.104 ↓ 0.122 ↓ 0.127 ↓
IR 18047 ↓ 0.118 ↓ 0.103 ↓ 0.128 ↓ 0.143 ↓

BBQ 18189 ↓ 0.086 ↓ 0.073 ↓ 0.095 ↓ 0.105 ↓
VS 3422 ↓ 0.476 0.429 0.497 ↑ 0.570
MS 18195 ↓ 0.009 ↓ 0.003 ↓ 0.008 ↓ 0.020 ↓
TS 3421 0.476 0.429 0.497 ↑ 0.570

Meta-Cal 6168 ↓ 0.448 ↓ 0.409 ↓ 0.464 ↓ 0.523 ↓
PTS 3776 ↓ 0.474 ↓ 0.429 0.493 ↓ 0.564 ↓

KGEC 3421 0.476 0.429 0.497 ↑ 0.570
FB15K

Uncal 41 0.791 0.739 0.825 0.881
PS 41 0.791 0.739 0.825 0.881
HB 1843 ↓ 0.642 ↓ 0.588 ↓ 0.682 ↓ 0.731 ↓
IR 961 ↓ 0.696 ↓ 0.635 ↓ 0.741 ↓ 0.799 ↓

BBQ 1027 ↓ 0.662 ↓ 0.599 ↓ 0.709 ↓ 0.768 ↓
VS 42 ↓ 0.791 0.739 0.825 0.880 ↓
MS 3693 ↓ 0.025 ↓ 0.010 ↓ 0.024 ↓ 0.055 ↓
TS 41 0.791 0.739 0.825 0.881

Meta-Cal 457 ↓ 0.750 ↓ 0.700 ↓ 0.783 ↓ 0.835 ↓
PTS 1122 ↓ 0.763 ↓ 0.739 0.782 ↓ 0.801 ↓

KGEC 41 0.791 0.739 0.825 0.881
FB15K-237

Uncal 178 0.336 0.239 0.374 0.530
PS 178 0.336 0.239 0.374 0.530
HB 3458 ↓ 0.285 ↓ 0.221 ↓ 0.317 ↓ 0.412 ↓
IR 2131 ↓ 0.307 ↓ 0.232 ↓ 0.340 ↓ 0.455 ↓

BBQ 2292 ↓ 0.275 ↓ 0.204 ↓ 0.305 ↓ 0.415 ↓
VS 179 ↓ 0.336 0.239 0.374 0.530
MS 3704 ↓ 0.033 ↓ 0.014 ↓ 0.032 ↓ 0.070 ↓
TS 178 0.336 0.239 0.374 0.530

Meta-Cal 246 ↓ 0.328 ↓ 0.232 ↓ 0.365 ↓ 0.522 ↓
PTS 179 ↓ 0.336 0.239 0.374 0.530

KGEC 178 0.336 0.239 0.374 0.530

occur), KL is well-defined here because all com-
pared vectors are soft probability distributions with
non-zero entries.

Formally, the column index J∗ that maximizes
Jj is selected, and the corresponding column vector
p∗ ∈ Rn is retained as the most informative sample
per query.

C.6 Information Loss Quantification via
Shannon Entropy

To analyze the effect of JSS on information preser-
vation, we quantify the potential information loss
incurred when reducing a probability matrix P ∈
RN×M to a single informative column vector p∗ ∈
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RN . We measure information content using Shan-
non entropy.

Let P ∈ RN×M be a real-valued matrix with
N rows and M columns. To quantify the amount
of information contained in P, we apply Shannon
entropy to the empirical distribution of its elements.
Suppose the entries are discretized into a finite al-
phabet X (e.g., via binning or quantization). Then
the entropy of the matrix P is defined as:

H(P) = −
∑

x∈X
pP(x) log pP(x), (15)

where pP(x) denotes the empirical probability
mass function over the elements of P.

Similarly, consider selecting a single column
vector v ∈ RN from P, i.e., v = P:,j for some
j ∈ {1, . . . ,M}, its entropy is:

H(v) = −
∑

x∈X
pv(x) log pv(x), (16)

The loss in information due to column selection is
thus:

∆H = H(P)−H(v). (17)

We discuss three representative cases:

Case 1: Independent and Identically Distributed
(i.i.d.) Columns. If each column of P is drawn
independently from the same distribution (i.i.d.),
the matrix entropy decomposes additively:

H(P) =

M∑

j=1

H(vj) =M ·H(v), (18)

where H(vj) = H(v) for all j. Therefore, the
information loss becomes:

∆H = (M − 1) ·H(v), (19)

indicating that P stores M times more information
than any single column under the i.i.d. assumption.

Case 2: Correlated Columns. If the columns
are not independent, entropy is subadditive due to
redundancy:

H(P) <
M∑

j=1

H(vj), (20)

and the total information is reduced by mutual de-
pendencies. Formally,

H(P) =
M∑

j=1

H(vj)− Redundancy, (21)

where Redundancy quantifies mutual information
shared between columns.

Case 3: Identical Columns. In the extreme case
where all columns are identical,

H(P) = H(v), ∆H = 0, (22)

meaning no information is lost by reducing P to
one column.

Discussion. These cases illustrate that although
selecting a single column inevitably reduces en-
tropy in the i.i.d. case, real KGE outputs exhibit
strong redundancy across candidate entities. JSS
exploits this redundancy by identifying the column
with the largest information jump, thereby retaining
the most informative subset of probabilities while
dramatically reducing computational cost.

C.7 Outcome and Comparison.

JSS reduces the training size by a factor of m (the
number of candidates per query), transforming the
full probability matrix P ∈ Rn×m into a single
informative column vector p∗ ∈ Rn. This com-
pression preserves the informativeness required
for calibration while eliminating redundancy. Un-
like naive random sampling, which risks discarding
boundary instances with high informativeness, JSS
consistently identifies the most valuable instance.
Empirical results and theoretical analysis confirm
that JSS improves both efficiency and reliability in
calibration training.

D Limitations of KL Divergence in
High-Cardinality Calibration

Kullback–Leibler (KL) divergence is one of the
most widely used loss functions in deep learning
and probability calibration. However, when applied
to high-cardinality tasks such as entity prediction
in KGE models, KL divergence exhibits critical
limitations that undermine its effectiveness. Each
query in KGE involves tens of thousands of candi-
date entities, yielding probability distributions with
extremely sparse support and long tails of near-zero
values. In such regimes, KL divergence is prone to
gradient vanishing and gradient explosion, leading
to instability during optimization.
Failure modes. Two issues are particularly prob-
lematic: (i) when the true label probability qi is
nonzero but the predicted probability pi → 0,
the KL term becomes negligible, suppressing the
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contribution of informative but low-probability in-
stances; (ii) when pi > 0 but qi = 0, the divergence
becomes infinite, yielding unstable or divergent gra-
dients. Both behaviors compromise the robustness
of calibration in large-scale KGE settings.
Formal definition. Let p and q be two discrete
probability distributions over a finite set X . The
KL divergence from q to p is defined as:

DKL(p ∥ q) =
∑

x∈X
p(x) log

p(x)

q(x)
. (23)

While this expression is well-defined when both
p(x) > 0 and q(x) > 0, edge cases involving zero
probabilities require special attention. Below, we
analyze two important cases.

Case 1: p(x) = 0

If p(x) = 0, the corresponding term is:

0 · log 0

q(x)
. (24)

Although log 0 is undefined, this product is conven-
tionally set to 0, justified by the limit:

lim
u→0+

u log
u

q(x)
= 0. (25)

Hence, for both analytical and numerical purposes:

p(x) log
p(x)

q(x)
= 0 when p(x) = 0. (26)

Case 2: q(x) = 0 and p(x) > 0

If p(x) > 0 but q(x) = 0, the ratio inside the
logarithm diverges:

log
p(x)

q(x)
= +∞, (27)

and thus the corresponding term is:

DKL(p ∥ q) = +∞ if ∃x ∈ X
such that p(x) > 0

and q(x) = 0.

(28)

Summary

Each term p(x) log p(x)
q(x) in the KL divergence ad-

mits the following interpretation:

• If p(x) = 0, the contribution is defined as 0
(by convention via limiting argument).

Table 9: Statistics of the used KGE datasets.

dataset #Entity #Relation #Training #Validation #Testing
WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134
FB15K 14,951 1,345 483,142 50,000 59,071

FB15K-237 14,541 237 272,115 17,535 20,466

• If p(x) > 0 and q(x) = 0, the contribution is
+∞, making the divergence infinite.

Thus, KL divergence is finite if and only if the
support of p is a subset of the support of q:

DKL(p ∥ q) =





∑
x
p(x) log p(x)

q(x) ,
if supp(p)

⊆ supp(q),

+∞, otherwise.
(29)

Implication for KGE calibration. This support
mismatch arises frequently in knowledge graph
entity prediction, where sparse distributions and
zero-valued targets dominate. In practice, it yields
vanishing gradients for informative low-probability
entities and exploding gradients when mismatched
supports occur. These issues render KL divergence
unstable and unreliable as a calibration loss, moti-
vating our adoption of the Wasserstein distance in
Section 4.3, which remains finite and geometrically
meaningful even under sparse distributions.

E Dataset Statistics

Table 9 summarizes the key statistics of the bench-
mark KGE datasets used in our experiments. All
four datasets are widely adopted in the link predic-
tion literature, with FB15K (Bordes et al., 2013)
and WN18 (Bordes et al., 2013) serving as the
original benchmarks. However, both contain a sub-
stantial number of inverse or redundant relations,
which can cause information leakage across train-
ing, validation, and testing splits, leading to overly
optimistic results. To address this issue, FB15K-
237 was introduced by Toutanova and Chen (2015)
as a cleaned version of FB15K, obtained by remov-
ing near-duplicate and inverse relations so that test
triples cannot be trivially inferred from training
data. Similarly, WN18RR (Dettmers et al., 2018)
was constructed from WN18 by excluding inverse
relations, thereby providing a more challenging
and realistic evaluation benchmark. Each dataset is
publicly available and comes pre-partitioned into
training, validation, and testing splits, which we
use without modification.

These datasets differ substantially in both scale
and relational complexity. For example, FB15K
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Table 10: Score functions of popular KGE models. Here,
∥·∥ denotes the L1 norm, ⟨·⟩ denotes the generalized dot
product, t∗ is the complex conjugate of t, Re(·) extracts
the real part of a complex number, and ◦ denotes the
Hadamard (element-wise) product.

KGE Model Score Function
TransE (Bordes et al., 2013) −∥h+ r− t∥
DistMult (Yang et al., 2015) ⟨r,h, t⟩
ComplEx (Trouillon et al., 2016) Re(⟨r,h, t∗⟩)
RotatE (Sun et al., 2019) −∥h ◦ r− t∥

contains over 1,300 relation types, while FB15K-
237 reduces this number to 237 to mitigate redun-
dancy. WN18 and WN18RR share the same set
of entities (40,943) but differ in their relation sets,
with WN18RR offering a more robust evaluation
by removing symmetric and inverse patterns. To-
gether, these datasets span diverse characteristics
of real-world knowledge graphs, covering both lex-
ical (WordNet-based) and factual (Freebase-based)
domains. Notably, the large entity space in FB15K
and FB15K-237 introduces a long-tailed distribu-
tion of candidate entities, which poses significant
challenges for probability calibration: most classes
receive extremely low predicted probabilities, am-
plifying the issues of sparsity and miscalibration
that our proposed method is designed to address.

F Score Functions of Popular KGE
Models

We summarize the score functions of several widely
used KGE models in Table 10. These definitions
provide the basis for the experiments discussed in
the Section 5. Beyond link prediction, KGE mod-
els have also been successfully applied to a broad
range of tasks, such as entity alignment (Sun et al.,
2018), canonicalization (Yang and Curry, 2024;
Yang et al., 2025), and question answering (Bor-
des et al., 2014), highlighting their versatility and
impact across diverse knowledge-intensive applica-
tions.

G Detailed Experimental Results on
Efficiency Study for RQ2

To complement the aggregated efficiency results in
Table 3 in Section 5.3, we present a fine-grained
breakdown of calibration costs across different
datasets and KGE models in Table 11. Specifi-
cally, the table reports both the training time (in sec-
onds) and peak memory usage (in MBs) required
to calibrate entity prediction under CPU-only en-

vironments, ensuring a fair comparison across all
methods.

This detailed analysis provides two important
insights. First, it reveals the scalability chal-
lenges of certain methods: for example, Platt Scal-
ing (PS) and Parametrized Temperature Scaling
(PTS) incur prohibitive computational overhead
on larger datasets such as FB15K, making them
impractical for large-scale applications. In con-
trast, lightweight approaches such as Vector Scal-
ing (VS), Temperature Scaling (TS), and our pro-
posed KGEC method exhibit consistently low re-
source consumption. Second, the memory profiles
highlight significant disparities: PTS can require
over 8 GB of memory on FB15K, whereas KGEC
achieves state-of-the-art calibration accuracy with
average memory usage of only ∼22 MB.

Overall, Table 11 demonstrates that KGEC not
only achieves superior calibration performance but
also remains the most resource-efficient approach
across all benchmarks. These results further sup-
port the conclusions in Section 5.3, where we ar-
gued that efficiency is essential for deploying cali-
bration in knowledge-intensive systems.

H Detailed Experimental Results on
Ablation Study for RQ3

In this section, we provide the complete experimen-
tal results for our ablation study.

Table 12 reports the detailed performance of
each component in KGEC across individual
datasets and KGE models, covering all evaluation
metrics (ECE, ACE, NLL, training time, and mem-
ory usage). These results complement the averaged
findings presented in Section 5.4 by illustrating the
effect of each component in a fine-grained manner.

Effectiveness of JSS vs. Random Sampling.
Beyond the above comparisons, we further ana-
lyze the effectiveness of JSS against a Random
Sampling baseline to directly validate its contribu-
tion. JSS consistently retains the most informative
sample per query, thereby guiding the calibration
process more effectively. In contrast, Random Sam-
pling often discards informative instances and in-
troduces instability in large class spaces, leading
to degraded calibration. As shown in Figure 4,
JSS achieves markedly better calibration across
all metrics (ECE: 0.388 vs. 0.467, ACE: 0.348 vs.
0.495, NLL: 3.396 vs. 5.725). These results high-
light that JSS simultaneously enhances efficiency
and preserves calibration quality, whereas Random
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Table 11: Training time in seconds and memory usage in MBs taken to calibrate entity prediction using different
calibration methods. Best and second-ranked results are in bold and underlined, respectively. For a fair comparison,
these results are obtained using CPU only.

Time TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

PS 50551.471 32130.612 66566.552 22756.968 44484.280 27740.023 66631.859 20060.975 48902.412 31739.057 58074.230 21682.032 46162.422 30198.810 65506.688 20522.725 40856.945
VS 2.857 1.893 25.357 3.493 2.661 1.620 16.228 3.218 4.114 1.914 20.779 3.456 2.656 1.706 25.995 3.277 7.577
TS 5.235 3.207 20.037 6.475 5.063 3.121 18.825 6.276 5.180 3.204 19.734 6.412 5.456 3.171 20.646 6.345 8.649

PTS 3452.440 2123.849 16769.166 5856.000 3432.436 2122.273 16510.019 5764.345 3450.331 2120.555 16898.528 5868.468 3425.148 2113.001 16802.984 5853.287 7035.177
KGEC 2.727 1.776 10.873 3.602 2.698 1.727 10.560 3.624 2.741 1.696 10.645 3.705 2.662 1.658 10.758 4.003 4.716

Memory TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

PS 1564.336 950.762 5706.102 1948.508 1566.598 950.270 5706.832 1948.664 1565.820 949.633 5705.828 1947.574 1566.477 950.793 5706.875 1948.371 2542.715
VS 84.477 84.383 86.098 84.348 82.059 83.152 86.918 80.770 83.609 83.883 80.883 81.320 80.570 83.145 86.152 80.941 83.294
TS 1562.625 948.453 5703.750 1947.629 1562.984 949.285 5703.047 1945.566 1562.340 948.504 5704.801 1945.828 1562.914 948.566 5703.359 1944.730 2540.274

PTS 6655.574 7017.359 11154.340 9554.723 6804.816 7022.313 10185.500 9629.871 6957.012 6696.055 10180.105 9407.988 7047.270 7074.051 10521.520 8659.395 8410.493
KGEC 30.484 28.289 7.570 15.273 26.652 32.176 9.535 15.285 34.316 32.047 10.531 13.492 34.320 32.191 7.551 16.930 21.665

Figure 4: Overall comparison between Random sam-
ple and JSS in KGEC, showing average performance
across all datasets and KGE models. Lower values of
ECE, ACE, and NLL indicate better performance.

Sampling fails to achieve this balance.
In addition, Table 13 presents a focused compari-

son between JSS and a Random Sampling baseline
across four representative KGE models and mul-
tiple datasets. Results are reported on the three
calibration metrics (ECE, ACE, and NLL), where
lower values indicate better performance. This
table provides the full results underlying the sum-
mary trends shown in Figure 4, further demon-
strating the effectiveness and stability of JSS over
Random Sampling.

I Sensitivity Analysis

To assess the robustness and stability of our pro-
posed KGEC method, we conduct a comprehen-
sive sensitivity analysis by varying three critical
hyperparameters: the number of bins, the initial
temperature, and the learning rate. We evaluate
the impact of each parameter on three calibration
metrics, i.e., ECE, ACE, and NLL, across all KGE
models and datasets. Results are summarized in
Tables 14, 15, and 16.

Effect of the Number of Bins. We vary the num-
ber of bins from 1 to 20. Table 14 shows that
using only one bin (equivalent to vanilla tempera-
ture scaling) results in poor performance across all
metrics, highlighting its limited flexibility. As the

number of bins increases, KGEC becomes more
expressive and better calibrated. The best average
performance is observed at 19 bins (ECE = 0.352,
ACE = 0.343, NLL = 3.361), though results are
stable within the 10–20 bin range. This confirms
the importance of multi-binning for modeling di-
verse score distributions, while also indicating that
KGEC is robust to bin selection within a reasonable
interval.

Effect of Initial Temperature. We examine ini-
tial temperature values ranging from 0 to 2.0. As
shown in Table 15, extreme initializations (e.g., 0.0
or 2.0) lead to degraded performance due to opti-
mization instability. An initial temperature of 1.0
yields the best results (ECE = 0.388, ACE = 0.348,
NLL = 3.396), aligning with standard practice in
temperature scaling (Guo et al., 2017). The results
indicate that KGEC is relatively insensitive to this
hyperparameter, as long as it is initialized within a
moderate range.

Effect of Learning Rate. Table 16 presents re-
sults under learning rates ranging from 0.001 to 0.1.
We find that too small learning rates (e.g., 0.001)
may underfit the calibration model, while overly
large values (e.g., 0.1) can cause instability and
degraded performance. The learning rate of 0.01
achieves the best overall calibration (ECE = 0.388,
ACE = 0.348, NLL = 3.396), striking a balance
between convergence speed and stability.

Summary. Across all experiments, KGEC
demonstrates strong robustness to hyperparame-
ter variations. The best performance is consistently
achieved with moderate hyperparameter values: a
bin count between 10 and 20, an initial temperature
near 1.0, and a learning rate around 0.01. These
findings suggest that KGEC is both stable and prac-
tical, requiring minimal hyperparameter tuning for
optimal performance across diverse KGE models
and datasets.
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Table 12: Effect of each component in KGEC on the performance and efficiency of various KGE models across
multiple datasets. For all the five metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

KGEC-loss-MBS-JSS 0.642 0.195 0.637 0.213 0.852 0.423 0.691 0.228 0.528 0.389 0.689 0.220 0.805 0.383 0.671 0.222 0.487
KGEC-loss-MBS 0.634 0.196 0.637 0.213 0.852 0.423 0.691 0.228 0.528 0.389 0.688 0.220 0.821 0.383 0.672 0.222 0.487

KGEC-loss 0.611 0.196 0.408 0.199 0.824 0.377 0.689 0.161 0.501 0.388 0.683 0.165 0.813 0.327 0.642 0.215 0.450
KGEC 0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388

ACE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

KGEC-loss-MBS-JSS 0.517 0.285 0.636 0.168 0.852 0.423 0.691 0.227 0.527 0.389 0.688 0.220 0.405 0.383 0.636 0.220 0.454
KGEC-loss-MBS 0.516 0.285 0.630 0.168 0.852 0.423 0.690 0.227 0.527 0.389 0.688 0.220 0.402 0.383 0.636 0.220 0.454

KGEC-loss 0.510 0.283 7.651 0.943 0.823 0.350 0.670 0.161 0.501 0.388 0.666 0.163 0.401 0.278 3.092 0.308 1.074
KGEC 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348

NLL TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

KGEC-loss-MBS-JSS 2.827 6.544 3.270 5.177 6.830 7.777 5.329 7.294 7.384 7.820 5.294 7.485 1.313 6.107 3.465 5.531 5.590
KGEC-loss-MBS 2.834 6.544 3.310 5.189 6.831 7.778 5.311 7.300 7.384 7.812 5.265 7.479 1.304 6.107 3.470 5.521 5.590

KGEC-loss 2.834 6.330 0.687 4.093 4.856 7.636 6.732 3.811 5.407 7.772 6.444 3.950 1.309 6.327 5.014 6.156 4.960
KGEC 2.462 5.965 2.536 2.889 4.350 6.965 1.357 2.911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396

Training Time / s TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

KGEC-loss-MBS-JSS 39.769 24.194 139.544 54.700 40.996 23.856 148.151 50.186 39.602 24.557 147.145 52.021 39.659 24.270 153.269 52.023 65.871
KGEC-loss-MBS 2.894 1.638 11.442 3.598 2.714 1.611 10.166 3.546 2.661 1.645 10.147 3.603 2.825 1.608 10.760 3.695 4.659

KGEC-loss 2.785 1.676 10.305 3.598 2.915 1.650 10.246 3.597 2.660 1.644 10.490 3.527 2.671 1.605 10.747 3.578 4.606
KGEC 2.727 1.776 10.873 3.602 2.698 1.727 10.560 3.624 2.741 1.696 10.645 3.705 2.662 1.658 10.758 4.003 4.716

Memory Usage / MB TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

KGEC-loss-MBS-JSS 161.801 126.141 58.465 50.965 170.859 111.168 41.953 65.574 174.496 124.086 56.414 56.473 160.766 94.270 45.000 63.301 97.608
KGEC-loss-MBS 29.027 27.121 6.871 17.969 31.258 26.676 7.535 10.391 25.426 27.184 8.750 14.277 32.906 30.742 6.422 17.961 20.032

KGEC-loss 29.414 27.145 6.898 18.016 25.645 26.879 8.145 10.375 32.254 26.613 8.695 14.320 32.754 30.965 10.172 17.316 20.350
KGEC 30.484 28.289 7.570 15.273 26.652 32.176 9.535 15.285 34.316 32.047 10.531 13.492 34.320 32.191 7.551 16.930 21.665

Table 13: Ablation study on the effectiveness of the JSS component in KGEC. We compare KGEC with JSS
against a Random baseline across four KGE models (TransE, ComplEx, DistMult, RotatE) on multiple datasets.
Results are reported using ECE, ACE, and NLL, where lower values indicate better performance.

ECE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

Random 0.474 0.199 0.644 0.199 0.851 0.423 0.697 0.228 0.527 0.390 0.697 0.221 0.579 0.398 0.714 0.225 0.467
JSS 0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388

ACE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

Random 0.486 0.292 0.936 0.259 0.851 0.423 0.697 0.228 0.527 0.390 0.697 0.220 0.579 0.398 0.714 0.225 0.495
JSS 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348

NLL TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

Random 3.028 6.518 2.575 3.355 6.497 7.761 6.043 7.577 7.222 8.007 6.338 7.735 1.721 6.516 4.880 5.825 5.725
JSS 2.462 5.965 2.536 2.889 4.350 6.965 1.357 2.911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396

Figure 5: Case 1 from the WN18RR dataset using the
TransE model.

J Case Study

To illustrate the practical benefits of KGEC cali-
bration, we present two representative case stud-
ies from the WN18RR dataset using the TransE
model, as shown in Figure 5 and Figure 6. These

Figure 6: Case 2 from the WN18RR dataset using the
TransE model.

examples highlight how calibrated probabilities of-
fer more interpretable and informative confidence
scores compared to raw, uncalibrated scores.
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Case 1: (Greece, _member_of_domain_region,
?) The ground-truth answer for this query is sibyl,
which is ranked third among the candidate enti-
ties based on the model’s raw scores. However,
the uncalibrated scores do not reflect a meaningful
confidence distribution, with the top-ranked entity
Greece receiving a score of −0.1873 and the cor-
rect answer sibyl receiving −0.5992, a difference
that is difficult to interpret probabilistically.

After applying KGEC calibration, the corre-
sponding estimates become more interpretable:

• Greece: 0.0302

• Holy See: 0.0272

• sibyl (true answer): 0.0200

These calibrated estimates clearly reflect the uncer-
tainty inherent in the model’s prediction. Although
the correct answer is not ranked first, its estimate is
close to that of the top candidates, suggesting it is
still a plausible prediction. This shows that KGEC
can better express confidence levels, especially in
cases with closely competing candidates.

Case 2: (North_Atlantic_Treaty_Organization,
_member_meronym, ?) In this case, the true an-
swer is Netherlands, which is correctly ranked sec-
ond. The raw score of the correct answer (1.6756)
is only slightly lower than that of the top-ranked
entity North Atlantic Treaty Organization (1.9763),
but the significance of this difference is unclear
without proper calibration.

With KGEC, the calibrated estimates provide a
more informative picture:

• North Atlantic Treaty Organization: 0.3756

• Netherlands (true answer): 0.2781

• European Union: 0.1382

Here, although the true answer is not ranked first,
its calibrated estimate is still relatively high, reflect-
ing the model’s uncertainty and partially shared
semantics among top candidates. This enables
downstream applications to interpret and poten-
tially leverage multiple candidates rather than over-
committing to the top-1 prediction.

Insights. These case studies demonstrate that:

• KGEC enhances the interpretability of model
outputs by transforming unnormalized scores
into well-calibrated estimates.

• It allows more accurate reflection of confi-
dence levels, particularly in ambiguous or
competitive ranking situations.

• Even when the top-1 prediction is incorrect,
KGEC highlights alternative candidates with
meaningful confidence, which is valuable for
applications such as knowledge graph reason-
ing, question answering, and downstream en-
semble methods.

Overall, these cases exemplify the effectiveness of
KGEC in improving the trustworthiness and usabil-
ity of KGE models.
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Table 14: Effect of different number of bins in KGEC on the performance of various KGE models across multiple
datasets. For all the three metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

Bin=1 0.702 0.196 0.586 0.198 0.851 0.422 0.642 0.227 0.527 0.389 0.687 0.221 0.904 0.382 0.663 0.222 0.489
Bin=2 0.305 0.316 0.581 0.184 0.850 0.422 0.677 0.190 0.521 0.387 0.683 0.219 0.476 0.305 0.671 0.105 0.431
Bin=3 0.214 0.238 0.498 0.183 0.848 0.422 0.677 0.190 0.515 0.385 0.683 0.180 0.467 0.293 0.653 0.101 0.409
Bin=4 0.245 0.249 0.491 0.180 0.848 0.421 0.677 0.190 0.447 0.385 0.682 0.179 0.486 0.286 0.646 0.098 0.407
Bin=5 0.235 0.262 0.479 0.182 0.848 0.420 0.677 0.189 0.447 0.385 0.682 0.179 0.470 0.297 0.622 0.102 0.405
Bin=6 0.211 0.260 0.514 0.170 0.848 0.419 0.677 0.189 0.447 0.384 0.682 0.179 0.487 0.290 0.584 0.112 0.403
Bin=7 0.159 0.273 0.457 0.147 0.848 0.418 0.678 0.189 0.447 0.384 0.682 0.179 0.451 0.304 0.593 0.104 0.394
Bin=8 0.194 0.269 0.460 0.161 0.848 0.418 0.678 0.189 0.446 0.384 0.682 0.179 0.464 0.307 0.529 0.126 0.396
Bin=9 0.181 0.276 0.444 0.160 0.841 0.418 0.678 0.189 0.446 0.384 0.683 0.178 0.464 0.305 0.498 0.157 0.394
Bin=10 0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
Bin=11 0.164 0.283 0.416 0.137 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.476 0.316 0.491 0.093 0.387
Bin=12 0.163 0.281 0.388 0.162 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.475 0.316 0.475 0.100 0.386
Bin=13 0.148 0.287 0.370 0.123 0.835 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.471 0.317 0.459 0.086 0.379
Bin=14 0.125 0.293 0.376 0.140 0.835 0.417 0.677 0.189 0.446 0.382 0.683 0.178 0.472 0.319 0.458 0.116 0.381
Bin=15 0.102 0.294 0.336 0.129 0.824 0.417 0.678 0.189 0.446 0.381 0.682 0.178 0.475 0.318 0.461 0.076 0.374
Bin=16 0.154 0.296 0.349 0.061 0.769 0.416 0.677 0.189 0.446 0.379 0.682 0.178 0.472 0.319 0.494 0.087 0.373
Bin=17 0.120 0.296 0.313 0.064 0.764 0.415 0.585 0.189 0.446 0.377 0.682 0.178 0.478 0.324 0.490 0.091 0.363
Bin=18 0.115 0.293 0.256 0.085 0.749 0.415 0.589 0.189 0.446 0.377 0.640 0.178 0.472 0.325 0.489 0.134 0.360
Bin=19 0.113 0.293 0.256 0.084 0.749 0.415 0.579 0.189 0.446 0.377 0.603 0.178 0.482 0.326 0.488 0.062 0.352
Bin=20 0.135 0.298 0.261 0.073 0.753 0.416 0.580 0.189 0.445 0.376 0.577 0.178 0.478 0.319 0.493 0.046 0.351

ACE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

Bin=1 0.598 0.285 0.565 0.158 0.851 0.422 0.633 0.227 0.527 0.389 0.686 0.221 0.385 0.382 0.602 0.220 0.447
Bin=2 0.318 0.323 0.406 0.128 0.849 0.422 0.494 0.217 0.519 0.387 0.538 0.217 0.476 0.242 0.495 0.093 0.383
Bin=3 0.232 0.243 0.378 0.104 0.848 0.422 0.491 0.217 0.511 0.385 0.533 0.217 0.467 0.226 0.471 0.076 0.364
Bin=4 0.171 0.253 0.328 0.097 0.848 0.421 0.488 0.213 0.460 0.385 0.530 0.213 0.449 0.281 0.450 0.082 0.354
Bin=5 0.155 0.264 0.307 0.099 0.848 0.420 0.484 0.211 0.460 0.385 0.529 0.210 0.458 0.297 0.441 0.069 0.352
Bin=6 0.125 0.262 0.261 0.083 0.848 0.419 0.481 0.210 0.460 0.384 0.527 0.204 0.457 0.290 0.454 0.070 0.346
Bin=7 0.135 0.271 0.277 0.061 0.848 0.418 0.478 0.209 0.460 0.384 0.526 0.204 0.451 0.304 0.419 0.067 0.345
Bin=8 0.129 0.267 0.264 0.080 0.848 0.418 0.475 0.208 0.457 0.384 0.522 0.203 0.464 0.307 0.456 0.072 0.347
Bin=9 0.142 0.274 0.270 0.085 0.841 0.418 0.471 0.208 0.457 0.384 0.521 0.200 0.463 0.305 0.454 0.099 0.349
Bin=10 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
Bin=11 0.111 0.280 0.278 0.076 0.833 0.418 0.460 0.207 0.457 0.383 0.513 0.199 0.461 0.316 0.491 0.061 0.347
Bin=12 0.107 0.278 0.259 0.100 0.833 0.418 0.456 0.207 0.457 0.383 0.508 0.199 0.475 0.316 0.475 0.061 0.346
Bin=13 0.128 0.284 0.240 0.077 0.834 0.418 0.450 0.206 0.457 0.383 0.503 0.197 0.471 0.316 0.459 0.059 0.343
Bin=14 0.113 0.291 0.238 0.088 0.834 0.417 0.446 0.205 0.455 0.382 0.497 0.196 0.471 0.319 0.458 0.062 0.342
Bin=15 0.107 0.292 0.239 0.086 0.823 0.417 0.441 0.204 0.455 0.381 0.492 0.195 0.475 0.318 0.461 0.057 0.340
Bin=16 0.111 0.294 0.234 0.063 0.767 0.416 0.436 0.204 0.455 0.379 0.486 0.194 0.472 0.319 0.494 0.053 0.336
Bin=17 0.100 0.296 0.237 0.064 0.762 0.415 0.550 0.204 0.453 0.377 0.481 0.193 0.478 0.324 0.490 0.053 0.342
Bin=18 0.119 0.293 0.248 0.083 0.746 0.415 0.576 0.204 0.453 0.377 0.466 0.192 0.471 0.325 0.489 0.075 0.346
Bin=19 0.115 0.293 0.247 0.090 0.746 0.415 0.534 0.203 0.453 0.377 0.482 0.192 0.482 0.326 0.488 0.046 0.343
Bin=20 0.107 0.298 0.249 0.073 0.750 0.416 0.557 0.203 0.450 0.376 0.553 0.192 0.478 0.319 0.493 0.048 0.348

NLL TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

Bin=1 2.544 6.543 3.910 4.774 6.524 7.496 3.589 7.208 6.944 7.947 5.152 8.395 1.165 6.078 3.184 5.515 5.436
Bin=2 2.865 6.212 3.076 3.365 5.963 7.513 1.350 2.908 5.477 7.578 1.314 6.650 1.281 4.606 1.989 3.056 4.075
Bin=3 2.712 6.265 2.986 3.290 5.633 7.513 1.350 2.908 4.913 7.338 1.315 3.101 1.184 4.472 2.042 2.774 3.737
Bin=4 2.605 6.185 2.845 3.191 5.633 7.299 1.351 2.909 2.843 7.338 1.315 3.101 1.100 4.745 1.974 2.911 3.584
Bin=5 2.537 6.109 2.766 3.061 5.633 7.202 1.351 2.909 2.843 7.338 1.315 3.102 1.088 4.821 2.011 2.713 3.550
Bin=6 2.523 6.085 2.642 3.062 5.633 7.123 1.352 2.909 2.843 7.200 1.316 3.104 1.062 4.716 2.083 2.643 3.518
Bin=7 2.515 6.023 2.641 3.112 5.633 7.009 1.352 2.910 2.843 7.200 1.316 3.104 1.038 4.787 1.939 2.672 3.506
Bin=8 2.499 6.024 2.607 2.956 5.656 7.001 1.353 2.910 2.844 7.200 1.317 3.104 1.051 4.772 2.039 2.580 3.495
Bin=9 2.493 5.987 2.602 2.895 4.835 6.965 1.355 2.910 2.843 7.200 1.317 3.105 1.035 4.711 2.011 2.473 3.421
Bin=10 2.462 5.965 2.536 2.889 4.350 6.965 1.357 2.911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396
Bin=11 2.466 5.944 2.532 2.898 4.350 6.965 1.358 2.911 2.843 7.119 1.319 3.106 1.013 4.754 2.123 2.743 3.403
Bin=12 2.448 5.943 2.529 2.798 4.350 6.929 1.359 2.911 2.843 7.114 1.321 3.106 1.043 4.731 2.037 2.666 3.383
Bin=13 2.447 5.919 2.486 2.871 4.415 6.933 1.360 2.911 2.843 7.114 1.323 3.107 1.022 4.714 1.959 2.772 3.387
Bin=14 2.437 5.889 2.482 2.809 4.415 6.867 1.363 2.912 2.845 7.027 1.326 3.108 1.017 4.714 1.941 2.593 3.359
Bin=15 2.438 5.880 2.498 2.803 3.987 6.867 1.363 2.912 2.845 6.935 1.329 3.108 1.024 4.689 1.942 2.813 3.340
Bin=16 2.449 5.870 2.463 2.883 2.931 6.773 1.366 2.912 2.845 6.813 1.331 3.109 1.014 4.684 2.060 2.669 3.261
Bin=17 2.434 5.859 2.487 2.855 2.873 6.726 2.678 2.913 2.846 6.722 1.333 3.109 1.023 4.722 2.030 2.638 3.328
Bin=18 2.449 5.865 2.513 2.779 2.711 6.724 2.860 2.913 2.846 6.722 1.860 3.110 1.010 4.715 2.012 2.509 3.350
Bin=19 2.445 5.862 2.498 2.745 2.711 6.733 2.569 2.913 2.846 6.682 2.235 3.110 1.029 4.706 1.996 2.702 3.361
Bin=20 2.438 5.842 2.489 2.791 2.749 6.734 2.710 2.913 2.849 6.635 2.743 3.110 1.014 4.611 2.010 2.818 3.404
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Table 15: Effect of different initial temperature parameters in KGEC on the performance of various KGE models
across multiple datasets. For all the three metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

init=0 0.382 0.582 0.405 0.213 0.699 0.374 0.677 0.190 0.447 0.349 0.683 0.180 0.118 0.322 0.612 0.237 0.404
init=0.1 0.382 0.582 0.312 0.213 0.699 0.374 0.677 0.190 0.447 0.349 0.683 0.180 0.118 0.389 0.670 0.236 0.406
init=0.2 0.337 0.014 0.626 0.221 0.699 0.374 0.678 0.189 0.447 0.349 0.683 0.179 0.603 0.420 0.719 0.239 0.424
init=0.3 0.696 0.013 0.626 0.221 0.699 0.374 0.678 0.189 0.447 0.349 0.683 0.179 0.939 0.428 0.719 0.239 0.467
init=0.4 0.705 0.014 0.627 0.221 0.699 0.374 0.678 0.189 0.447 0.349 0.683 0.178 0.944 0.426 0.729 0.239 0.469
init=0.5 0.706 0.014 0.645 0.221 0.699 0.279 0.678 0.189 0.447 0.222 0.683 0.178 0.944 0.397 0.709 0.239 0.453
init=0.6 0.706 0.268 0.624 0.233 0.699 0.348 0.678 0.189 0.447 0.336 0.683 0.178 0.944 0.320 0.668 0.239 0.472
init=0.7 0.706 0.390 0.566 0.233 0.699 0.384 0.678 0.189 0.447 0.356 0.683 0.178 0.907 0.244 0.597 0.239 0.468
init=0.8 0.706 0.424 0.520 0.226 0.793 0.404 0.678 0.189 0.446 0.370 0.683 0.178 0.355 0.215 0.530 0.173 0.431
init=0.9 0.444 0.342 0.496 0.200 0.823 0.412 0.678 0.189 0.446 0.376 0.683 0.178 0.402 0.273 0.492 0.124 0.410
init=1.0 0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
init=1.1 0.199 0.232 0.419 0.109 0.848 0.420 0.678 0.189 0.446 0.386 0.683 0.178 0.547 0.331 0.495 0.098 0.391
init=1.2 0.278 0.195 0.365 0.073 0.849 0.422 0.606 0.189 0.485 0.388 0.683 0.178 0.608 0.350 0.528 0.101 0.394
init=1.3 0.340 0.165 0.335 0.051 0.850 0.423 0.592 0.189 0.513 0.388 0.683 0.178 0.656 0.362 0.551 0.106 0.399
init=1.4 0.390 0.141 0.360 0.064 0.851 0.424 0.618 0.189 0.519 0.390 0.683 0.178 0.696 0.373 0.568 0.108 0.409
init=1.5 0.430 0.122 0.388 0.082 0.852 0.425 0.599 0.190 0.524 0.390 0.602 0.178 0.727 0.382 0.581 0.133 0.413
init=1.6 0.463 0.105 0.411 0.097 0.852 0.425 0.625 0.209 0.525 0.391 0.597 0.178 0.752 0.390 0.594 0.128 0.421
init=1.7 0.491 0.090 0.429 0.110 0.852 0.425 0.611 0.213 0.526 0.391 0.609 0.193 0.773 0.395 0.609 0.150 0.429
init=1.8 0.515 0.079 0.447 0.121 0.853 0.426 0.607 0.223 0.527 0.392 0.611 0.186 0.791 0.400 0.622 0.162 0.435
init=1.9 0.534 0.069 0.462 0.133 0.853 0.426 0.616 0.223 0.527 0.392 0.614 0.198 0.807 0.404 0.631 0.167 0.441
init=2.0 0.550 0.061 0.475 0.141 0.853 0.426 0.644 0.225 0.528 0.392 0.613 0.209 0.820 0.407 0.638 0.172 0.447

ACE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

init=0 55.708 27.896 26.189 4.896 0.679 0.163 0.515 0.226 0.471 0.240 0.547 0.228 50.620 3.966 4.828 1.306 11.155
init=0.1 37.388 18.451 12.026 4.896 0.679 0.163 0.515 0.226 0.471 0.240 0.547 0.228 27.979 3.158 4.275 1.278 7.032
init=0.2 8.518 4.825 2.672 1.805 0.688 0.160 0.467 0.210 0.458 0.238 0.517 0.201 8.266 1.911 2.159 0.995 2.131
init=0.3 4.237 2.449 2.671 1.805 0.688 0.160 0.466 0.208 0.458 0.238 0.517 0.200 3.453 1.006 2.154 0.995 1.357
init=0.4 2.585 1.508 2.646 1.814 0.688 0.160 0.465 0.208 0.457 0.238 0.516 0.200 1.404 0.483 0.288 0.995 0.916
init=0.5 1.535 0.994 0.311 1.795 0.688 0.265 0.465 0.207 0.457 0.208 0.516 0.200 0.726 0.195 0.298 0.995 0.616
init=0.6 0.947 0.721 0.249 0.392 0.688 0.347 0.465 0.207 0.457 0.335 0.516 0.200 0.314 0.119 0.327 0.994 0.455
init=0.7 0.573 0.542 0.242 0.290 0.689 0.384 0.465 0.207 0.457 0.355 0.516 0.199 0.105 0.152 0.362 0.994 0.408
init=0.8 0.307 0.422 0.257 0.209 0.792 0.404 0.465 0.207 0.457 0.369 0.516 0.199 0.230 0.213 0.402 0.113 0.348
init=0.9 0.144 0.339 0.275 0.141 0.822 0.412 0.465 0.207 0.457 0.376 0.516 0.199 0.366 0.273 0.427 0.070 0.343
init=1.0 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
init=1.1 0.200 0.230 0.309 0.050 0.847 0.420 0.465 0.207 0.457 0.386 0.516 0.199 0.547 0.331 0.495 0.064 0.358
init=1.2 0.278 0.195 0.331 0.042 0.848 0.422 0.582 0.207 0.478 0.388 0.516 0.199 0.608 0.350 0.528 0.088 0.379
init=1.3 0.340 0.167 0.359 0.048 0.850 0.423 0.493 0.207 0.509 0.388 0.516 0.199 0.656 0.362 0.551 0.094 0.385
init=1.4 0.390 0.145 0.385 0.059 0.851 0.424 0.607 0.207 0.516 0.390 0.517 0.199 0.696 0.373 0.568 0.095 0.401
init=1.5 0.430 0.126 0.409 0.074 0.851 0.425 0.563 0.197 0.523 0.390 0.501 0.199 0.727 0.382 0.581 0.122 0.406
init=1.6 0.463 0.110 0.429 0.094 0.852 0.425 0.618 0.209 0.525 0.391 0.509 0.199 0.752 0.390 0.594 0.116 0.417
init=1.7 0.491 0.096 0.445 0.109 0.852 0.425 0.593 0.211 0.526 0.391 0.597 0.199 0.773 0.395 0.609 0.142 0.429
init=1.8 0.515 0.086 0.462 0.121 0.853 0.426 0.584 0.222 0.527 0.392 0.600 0.197 0.791 0.400 0.622 0.158 0.435
init=1.9 0.534 0.076 0.474 0.133 0.853 0.426 0.604 0.222 0.527 0.392 0.606 0.200 0.807 0.404 0.631 0.163 0.441
init=2.0 0.550 0.068 0.485 0.141 0.853 0.426 0.644 0.224 0.528 0.392 0.604 0.203 0.820 0.407 0.638 0.169 0.447

NLL TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

init=0 -1.714 1.977 -0.694 0.791 2.287 3.210 1.349 2.908 2.841 3.253 1.314 3.099 -3.229 1.540 -0.515 1.145 1.223
init=0.1 -1.422 2.230 -0.296 0.791 2.287 3.210 1.349 2.908 2.841 3.253 1.314 3.099 -2.814 1.620 -0.452 1.150 1.317
init=0.2 -0.209 3.154 0.492 1.014 2.287 3.211 1.356 2.909 2.843 3.253 1.318 3.104 -1.858 1.738 -0.316 1.166 1.591
init=0.3 0.378 3.833 0.493 1.014 2.288 3.211 1.356 2.910 2.843 3.253 1.319 3.104 -1.191 2.238 -0.315 1.165 1.744
init=0.4 0.786 4.312 0.498 1.012 2.288 3.211 1.356 2.910 2.843 3.253 1.319 3.104 -0.549 2.683 1.189 1.166 1.961
init=0.5 1.172 4.722 1.926 1.016 2.288 4.151 1.356 2.910 2.843 4.318 1.319 3.105 -0.187 3.085 1.339 1.166 2.283
init=0.6 1.494 5.037 2.077 2.197 2.288 4.852 1.356 2.910 2.843 5.461 1.319 3.105 0.125 3.460 1.501 1.166 2.574
init=0.7 1.777 5.317 2.191 2.374 2.288 5.459 1.356 2.910 2.843 5.889 1.319 3.105 0.395 3.839 1.682 1.167 2.744
init=0.8 2.037 5.560 2.322 2.542 3.267 6.058 1.356 2.910 2.843 6.328 1.319 3.105 0.637 4.125 1.825 2.429 3.042
init=0.9 2.261 5.773 2.434 2.710 3.937 6.483 1.357 2.910 2.843 6.642 1.319 3.106 0.847 4.456 1.902 2.582 3.223
init=1.0 2.462 5.965 2.536 2.889 4.350 6.965 1.357 2.911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396
init=1.1 2.651 6.142 2.635 3.006 5.567 7.214 1.357 2.911 2.844 7.429 1.319 3.106 1.219 4.929 2.149 2.727 3.575
init=1.2 2.820 6.302 2.743 3.155 5.739 7.427 2.960 2.911 3.803 7.687 1.319 3.106 1.383 5.144 2.293 3.136 3.871
init=1.3 2.975 6.453 2.844 3.328 6.148 7.606 2.410 2.911 4.791 7.751 1.319 3.106 1.538 5.312 2.407 3.201 4.006
init=1.4 3.121 6.597 2.934 3.421 6.262 7.852 3.194 2.911 5.248 8.071 1.319 3.106 1.688 5.502 2.499 3.216 4.184
init=1.5 3.256 6.729 3.043 3.579 6.591 8.080 2.817 3.398 5.977 8.213 2.415 3.106 1.819 5.678 2.578 3.521 4.425
init=1.6 3.380 6.863 3.137 3.715 6.859 8.228 3.322 4.532 6.350 8.329 2.543 3.107 1.942 5.855 2.668 3.466 4.643
init=1.7 3.502 6.995 3.211 3.834 6.977 8.418 3.058 4.880 6.663 8.459 3.156 4.061 2.056 6.014 2.776 3.708 4.861
init=1.8 3.618 7.108 3.298 3.936 7.242 8.485 2.979 6.043 7.090 8.595 3.186 3.850 2.165 6.183 2.880 3.883 5.034
init=1.9 3.724 7.221 3.376 4.053 7.456 8.669 3.164 5.999 7.228 8.794 3.245 4.284 2.274 6.327 2.960 3.945 5.170
init=2.0 3.822 7.331 3.447 4.136 7.635 8.782 3.690 6.353 7.515 8.882 3.230 5.035 2.375 6.462 3.029 4.035 5.360
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Table 16: Effect of different learning rate in KGEC on the performance of various KGE models across multiple
datasets. For all the three metrics, the lower the better.

ECE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

lr=0.001 0.184 0.229 0.469 0.098 0.852 0.423 0.644 0.228 0.528 0.389 0.659 0.220 0.492 0.381 0.498 0.191 0.405
lr=0.002 0.172 0.231 0.517 0.052 0.852 0.423 0.608 0.227 0.527 0.388 0.596 0.218 0.476 0.371 0.456 0.092 0.388
lr=0.003 0.199 0.265 0.534 0.099 0.851 0.423 0.593 0.226 0.527 0.388 0.594 0.212 0.481 0.361 0.467 0.092 0.395
lr=0.004 0.203 0.276 0.535 0.138 0.851 0.422 0.595 0.222 0.526 0.387 0.605 0.191 0.478 0.353 0.480 0.098 0.398
lr=0.005 0.179 0.281 0.521 0.157 0.850 0.422 0.594 0.213 0.525 0.386 0.612 0.178 0.479 0.344 0.476 0.092 0.394
lr=0.006 0.202 0.286 0.520 0.160 0.849 0.421 0.678 0.207 0.522 0.386 0.683 0.178 0.477 0.333 0.483 0.091 0.405
lr=0.007 0.201 0.291 0.497 0.166 0.849 0.421 0.678 0.189 0.517 0.385 0.683 0.178 0.472 0.323 0.462 0.110 0.401
lr=0.008 0.188 0.287 0.491 0.163 0.846 0.419 0.678 0.189 0.495 0.384 0.683 0.178 0.466 0.317 0.455 0.127 0.398
lr=0.009 0.188 0.284 0.478 0.167 0.843 0.419 0.678 0.189 0.446 0.384 0.683 0.178 0.467 0.313 0.463 0.097 0.392
lr=0.010 0.171 0.280 0.459 0.150 0.833 0.418 0.678 0.189 0.446 0.383 0.683 0.178 0.467 0.307 0.466 0.094 0.388
lr=0.020 0.152 0.246 0.380 0.064 0.699 0.392 0.678 0.189 0.446 0.353 0.683 0.178 0.514 0.273 0.560 0.239 0.378
lr=0.030 0.184 0.228 0.460 0.080 0.699 0.374 0.677 0.189 0.446 0.349 0.683 0.178 0.562 0.289 0.606 0.238 0.390
lr=0.040 0.244 0.211 0.507 0.114 0.699 0.374 0.678 0.189 0.446 0.349 0.683 0.178 0.598 0.290 0.638 0.097 0.393
lr=0.050 0.305 0.189 0.530 0.139 0.699 0.374 0.677 0.189 0.446 0.349 0.682 0.178 0.623 0.295 0.652 0.238 0.410
lr=0.060 0.342 0.163 0.554 0.212 0.699 0.364 0.677 0.189 0.446 0.205 0.683 0.178 0.635 0.330 0.674 0.237 0.412
lr=0.070 0.393 0.153 0.569 0.164 0.699 0.374 0.677 0.190 0.526 0.349 0.683 0.178 0.656 0.330 0.679 0.239 0.429
lr=0.080 0.418 0.135 0.577 0.174 0.699 0.407 0.678 0.189 0.446 0.349 0.682 0.178 0.685 0.332 0.680 0.239 0.429
lr=0.090 0.456 0.130 0.584 0.184 0.826 0.374 0.677 0.189 0.446 0.385 0.683 0.178 0.716 0.350 0.693 0.237 0.444
lr=0.100 0.494 0.108 0.590 0.193 0.699 0.374 0.677 0.189 0.527 0.349 0.683 0.178 0.742 0.331 0.696 0.239 0.442

ACE TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

lr=0.001 0.220 0.237 0.276 0.098 0.852 0.423 0.644 0.227 0.527 0.388 0.659 0.219 0.492 0.380 0.498 0.190 0.396
lr=0.002 0.171 0.236 0.248 0.037 0.851 0.423 0.587 0.226 0.527 0.388 0.562 0.216 0.459 0.370 0.456 0.069 0.364
lr=0.003 0.119 0.263 0.247 0.049 0.851 0.423 0.513 0.225 0.526 0.388 0.547 0.205 0.457 0.361 0.445 0.069 0.356
lr=0.004 0.108 0.273 0.252 0.075 0.851 0.422 0.486 0.220 0.525 0.387 0.499 0.198 0.457 0.352 0.437 0.063 0.350
lr=0.005 0.109 0.278 0.256 0.092 0.850 0.422 0.527 0.211 0.524 0.386 0.497 0.199 0.461 0.344 0.440 0.067 0.354
lr=0.006 0.107 0.283 0.264 0.095 0.849 0.421 0.465 0.208 0.521 0.386 0.516 0.199 0.463 0.333 0.435 0.065 0.351
lr=0.007 0.112 0.288 0.264 0.101 0.849 0.421 0.465 0.207 0.514 0.385 0.516 0.199 0.465 0.323 0.448 0.066 0.351
lr=0.008 0.122 0.284 0.272 0.097 0.845 0.419 0.465 0.207 0.488 0.384 0.516 0.199 0.466 0.317 0.452 0.071 0.350
lr=0.009 0.127 0.281 0.284 0.100 0.842 0.419 0.465 0.207 0.457 0.384 0.516 0.199 0.467 0.313 0.463 0.062 0.349
lr=0.010 0.131 0.277 0.293 0.082 0.833 0.418 0.465 0.207 0.457 0.383 0.516 0.199 0.467 0.306 0.466 0.063 0.348
lr=0.020 0.146 0.244 0.400 0.048 0.689 0.392 0.465 0.207 0.457 0.352 0.517 0.199 0.514 0.273 0.560 0.994 0.404
lr=0.030 0.163 0.227 0.471 0.075 0.689 0.160 0.484 0.207 0.457 0.238 0.517 0.199 0.562 0.289 0.606 1.010 0.397
lr=0.040 0.244 0.211 0.511 0.114 0.689 0.160 0.466 0.207 0.457 0.238 0.522 0.199 0.598 0.290 0.638 0.085 0.352
lr=0.050 0.305 0.191 0.535 0.139 0.689 0.160 0.486 0.207 0.457 0.238 0.529 0.199 0.623 0.295 0.652 1.115 0.426
lr=0.060 0.342 0.167 0.554 2.220 0.689 0.364 0.493 0.207 0.457 0.189 0.519 0.199 0.635 0.330 0.674 1.067 0.569
lr=0.070 0.393 0.157 0.569 0.164 0.689 0.160 0.493 0.212 0.526 0.238 0.518 0.199 0.656 0.330 0.679 0.987 0.436
lr=0.080 0.418 0.139 0.577 0.174 0.689 0.407 0.469 0.207 0.457 0.238 0.533 0.199 0.685 0.332 0.680 0.986 0.449
lr=0.090 0.456 0.136 0.584 0.184 0.826 0.160 0.503 0.208 0.457 0.383 0.517 0.200 0.716 0.350 0.693 1.142 0.470
lr=0.100 0.494 0.114 0.590 0.193 0.689 0.160 0.498 0.208 0.527 0.240 0.521 0.200 0.742 0.331 0.696 0.997 0.450

NLL TransE ComplEx DistMult RotatE Average
WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237 WN18 WN18RR FB15K FB15K-237

lr=0.001 2.751 6.481 2.469 3.771 6.777 7.749 3.691 7.271 7.279 7.797 4.071 7.207 1.254 5.847 2.159 4.410 5.061
lr=0.002 2.505 6.267 2.341 3.233 6.634 7.665 3.006 6.945 7.073 7.729 2.871 6.351 1.014 5.546 1.997 2.862 4.627
lr=0.003 2.471 6.029 2.309 3.034 6.514 7.599 2.511 6.618 6.818 7.646 2.763 5.263 1.008 5.357 1.961 2.860 4.423
lr=0.004 2.468 5.984 2.311 2.924 6.292 7.493 2.301 5.853 6.526 7.562 2.353 3.975 1.010 5.217 1.934 2.703 4.182
lr=0.005 2.473 5.966 2.331 2.865 6.188 7.455 2.587 4.799 6.230 7.495 2.256 3.106 1.019 5.101 1.942 2.817 4.039
lr=0.006 2.464 5.947 2.353 2.853 5.874 7.356 1.357 4.372 5.670 7.383 1.319 3.106 1.024 4.965 1.927 2.793 3.798
lr=0.007 2.462 5.931 2.406 2.834 5.773 7.280 1.357 2.911 5.093 7.362 1.319 3.106 1.028 4.857 1.970 2.635 3.645
lr=0.008 2.466 5.942 2.444 2.845 5.288 7.094 1.357 2.911 4.088 7.253 1.319 3.106 1.032 4.800 1.984 2.573 3.531
lr=0.009 2.465 5.951 2.473 2.831 4.963 7.113 1.357 2.911 2.843 7.203 1.319 3.106 1.033 4.757 2.026 2.711 3.441
lr=0.010 2.462 5.965 2.536 2.889 4.350 6.965 1.357 2.911 2.843 7.119 1.319 3.106 1.036 4.698 2.033 2.743 3.396
lr=0.020 2.519 6.087 3.006 3.237 2.288 5.673 1.356 2.911 2.844 5.811 1.319 3.106 1.146 4.446 2.456 1.167 3.086
lr=0.030 2.579 6.160 3.362 3.546 2.288 3.211 1.351 2.910 2.844 3.254 1.320 3.106 1.274 4.564 2.756 1.167 2.856
lr=0.040 2.747 6.236 3.661 3.855 2.288 3.211 1.356 2.910 2.844 3.254 1.320 3.106 1.370 4.575 3.027 3.067 3.052
lr=0.050 2.896 6.335 3.839 4.096 2.288 3.211 1.352 2.910 2.844 3.254 1.315 3.106 1.436 4.608 3.173 1.159 2.989
lr=0.060 2.990 6.475 4.068 0.967 2.288 5.092 1.350 2.910 2.844 4.147 1.322 3.106 1.474 4.934 3.466 1.167 3.037
lr=0.070 3.149 6.532 4.254 4.399 2.288 3.211 1.350 2.909 6.683 3.253 1.321 3.106 1.531 4.920 3.546 1.177 3.352
lr=0.080 3.225 6.648 4.370 4.564 2.288 6.227 1.361 2.910 2.844 3.253 1.315 3.105 1.640 4.945 3.557 1.177 3.339
lr=0.090 3.366 6.692 4.495 4.759 4.059 3.211 1.350 2.910 2.844 7.289 1.319 3.105 1.767 5.153 3.803 1.171 3.581
lr=0.100 3.533 6.874 4.587 4.993 2.288 3.211 1.350 2.910 7.271 3.253 1.321 3.105 1.887 4.928 3.867 1.174 3.534
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