
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 30078–30095
November 4-9, 2025 ©2025 Association for Computational Linguistics

LaMDAgent: An Autonomous Framework for
Post-Training Pipeline Optimization via LLM Agents

Taro Yano
NEC Corporation

taro_yano@nec.com

Yoichi Ishibashi
NEC Corporation

yoichi-ishibashi@nec.com

Masafumi Oyamada
NEC Corporation
oyamada@nec.com

Abstract

Large Language Models (LLMs) have demon-
strated exceptional performance across a wide
range of tasks. To further tailor LLMs to
specific domains or applications, post-training
techniques such as Supervised Fine-Tuning
(SFT), Preference Learning, and model merg-
ing are commonly employed. While each of
these methods has been extensively studied in
isolation, the automated construction of com-
plete post-training pipelines remains an under-
explored area. Existing approaches typically
rely on manual design or focus narrowly on op-
timizing individual components, such as data
ordering or merging strategies. In this work,
we introduce LaMDAgent (short for Language
Model Developing Agent), a novel framework
that autonomously constructs and optimizes
full post-training pipelines through the use of
LLM-based agents. LaMDAgent systemati-
cally explores diverse model generation tech-
niques, datasets, and hyperparameter config-
urations, leveraging task-based feedback to
discover high-performing pipelines with min-
imal human intervention. Our experiments
show that LaMDAgent improves tool-use accu-
racy by 9.0 points while preserving instruction-
following capabilities. Moreover, it uncovers
effective post-training strategies that are often
overlooked by conventional human-driven ex-
ploration. We further analyze the impact of
data and model size scaling to reduce compu-
tational costs on the exploration, finding that
model size scalings introduces new challenges,
whereas scaling data size enables cost-effective
pipeline discovery.

1 Introduction

Large Language Models (LLMs) have undergone
rapid development, demonstrating exceptional per-
formance across diverse tasks and significantly
impacting both academic and industrial domains,
with the rise of high-performing proprietary mod-
els (OpenAI, 2023; Anthropic, 2024; Google, 2024)

as well as open-sourced models (Dubey et al., 2024;
Yang et al., 2024; DeepSeek-AI et al., 2024; Abdin
et al., 2024). LLM development typically involves
pre-training on large-scale web corpora followed
by post-training with curated data (Ouyang et al.,
2022), with this study focusing on the latter stage
due to the increasing emphasis on post-training
driven by the release of models and datasets tai-
lored for domain and task adaptation (Tie et al.,
2025).

In post-training, widely adopted approaches in-
clude Supervised Fine-Tuning (SFT) using human-
created prompt-response pairs and Preference
Learning based on preference labels for response
pairs (Rafailov et al., 2023; Ethayarajh et al., 2024;
Song et al., 2024; Munos et al., 2024). Further-
more, innovative techniques are rapidly evolving,
such as autonomous training data generation and
“model merging” that creates new models through
arithmetic operations on different model parame-
ters (Wortsman et al., 2022; Ilharco et al., 2023;
Yadav et al., 2023). To generate superior mod-
els, existing studies either manually build pipelines
or focus on optimizing specific steps such as fine-
tuning data orderings (Chen et al., 2023; Kim and
Lee, 2024; Pattnaik et al., 2024) or model merging
strategies (Ishibashi et al., 2025; Akiba et al., 2025).
However, full adaptation for target tasks requires
combining these methods into integrated pipelines
to optimize, yet automating this end-to-end process
remains largely unexplored.

In this paper, we propose Language Model
Developing Agent (LaMDAgent), a method that
autonomously constructs post-training pipelines
using LLM-based agents and continuously im-
proves them based on feedback from the generated
model’s performance on target tasks. LaMDAgent
treats heterogeneous model improving methods
such as supervised fine-tuning, preference learn-
ing, or model merging in a unified manner and
automates end-to-end post-training pipeline con-

30078

struction by exploring appropriate model genera-
tion methods, datasets, hyperparameters, and their
optimal application order, thereby reducing the spe-
cialized knowledge and human costs required for
pipeline construction.

Additionally, to reduce computational costs for
LaMDAgent’s exploration, we experimentally ver-
ify data size scaling and model size scaling, where
data size scaling and model size scaling respec-
tively involve exploring pipelines with smaller data
quantities and model sizes, then transferring the dis-
covered efficient pipelines to larger data quantities
and model sizes.

The contributions of this paper are as follows:

1. We propose an LLM Agents-driven frame-
work “LaMDAgent” that autonomously con-
structs and optimizes post-training pipeline.
LaMDAgent treats heterogeneous model im-
proving methods in a unified framework to
optimize the entire pipeline in post-training,
reducing the specialized knowledge and hu-
man costs required for pipeline construction.

2. In our experiments across two distinct settings,
we show that LaMDAgent effectively im-
proves mathematical capability by 3.7 points
in average accuracy in Experiment 1 and en-
hances tool utilization accuracy by 9.0 points
in Experiment 2 compared to strong baselines,
while maintaining general capabilities through
the discovery of novel pipelines that are not
easily identified by humans.

3. To reduce LaMDAgent’s exploration costs,
we verify the effectiveness of data size scal-
ing and model size scaling, finding that
model size scalings introduces new chal-
lenges, whereas scaling data size enables cost-
effective pipeline discovery.

2 Methodology

2.1 Overview
We propose a novel method called Language Model
Developing Agent (LaMDAgent) that fully auto-
mates the construction and optimization of lan-
guage model post-training pipelines using LLM
Agents. Figure 1 illustrates the overview of our
proposed method. The proposed method aims to
create better models by iteratively repeating the
following four steps: 1. Action enumeration , 2.
Action selection, 3. Model evaluation, and 4. Mem-
ory update. While stopping criteria can be based

on cost, runtime, or evaluation metrics, our experi-
ments use a fixed number of iterations and select
the pipeline with the highest reward value, cor-
responding to the best performance on validation
tasks. Details of our method are described in the
following sections.

2.2 Action Enumeration
For simplicity of explanation, we define the follow-
ing terms:

• Object: A concrete entity used in the model
training pipeline, such as Llama 3 8B as a
model or GSM8k as training data.

• Action: An action is a model improving
method that takes multiple objects, including
models, as input and outputs a new model. An
action is defined by an action type such as
"SFT" and the objects used, such as specific
data, models, or hyperparameters.

We obtain possible actions by enumerating all com-
binations of action types and objects. Specifically,
we use predefined action types and objects that in-
clude both pre-prepared datasets and models, as
well as models and data obtained during the iter-
ation. For example, if we have the action type
"SFT" is defined to take (base model, training data)
as input objects, and we have Gemma2 2B as a
base model and GSM8k and MATH as training
data, then possible actions can be enumerated as
(Gemma2 2B, GSM8k) and (Gemma2 2B, MATH).

2.3 Action Selection
We use the agent to select one promising model
improvement action from possible actions. Dur-
ing action selection, we provide the agent with a
prompt for action selection and parse its output to
determine the action. In practice, rather than pro-
viding all action candidates and having the agent
output a single action index, we first have the agent
select an action type in one inference step and iden-
tify the required object types based on the action
type. Then, we have the agent select objects in
an another inference step to determine the final ac-
tion. We first decide on the action type to avoid
action parsing failures that might occur if we give
the agent the complex task of selecting the action
type, understanding what object types are needed
for each action type, and selecting objects with-
out excess or deficiency. We select all objects in
a single inference step rather than multiple steps

30079

Figure 1: Overview of our LaMDAgent framework. LaMDAgent first enumerates actions from predefined model
improving action types and an object pool containing available data, models, parameters, and other objects (Step1.
Action Eunumeration). Next, the agent selects an action based on memory acquired from previous trials and executes
the selected action to generate a new model (Step2. Action Selection). Then evaluations on downstream tasks are
conducted (Step3. Model Evaluation). Based on the evaluation results of the newly generated model, the agent
considers promising future directions and insights, updating the accumulated memory (Step4. Memory Update).

to minimize order dependency in the selection pro-
cess.

Action selection process can be written as

atype = Agent (gtype(m, ltype)) , (1)

aobj = Agent (gobj(m, lobj , atype)) , (2)

where atype, aobj , gtype and gobj are determined
action type, objects, prompt templates for selecting
action types and objects, respectively. The prompts
include memory m summarizing experiences from
past trials, candidate action types ltype, and objects
lobj . The actual gtype and gobj used in our experi-
ments is provided in Appendix D. In preliminary tri-
als, we observed mode collapse phenomena where
the agent kept selecting the same action as steps
progressed, so we explicitly included exploration
directives in the prompt. We also added instruc-
tions to remove bias after observing that models
generated at intermediate step i named as "Model
i" tended to be selected less frequently compared
to initial models like "Model GSM8k".

2.4 Model Evaluation
We evaluate the selected actions based on the per-
formance of the resulting model on target tasks and
provide feedback to the agent through numerical
scores. In single-task settings, the evaluation met-
ric itself can be used as the score, but in multi-task

settings, we need to aggregate metrics across tasks.
To account for different scales of evaluation metrics
across tasks, we define the multi-task score smulti

using the following formula:

smulti =
∑

k

αk · sksingle, (3)

where sksingle is the single-task reward for task k,
and 0 ≤ αk ≤ 1 are scaling factors. In this re-
search, we determine these factors so that the max-
imum contribution of each ssingle is uniform. For
example, MT-Bench metrics range up to 10, while
AceBench metrics reach 1, so we set the weights
for each score as αMT = 1/10, αAce = 1.

2.5 Memory Update
We update memories of the agent based on the

feedback received for the selected action. A mem-
ory is a text summarizing experiences from the
latest and past trials, and next promising directions
to explore. Memory at iteration t is derived from
the action at t-th iteration (attype, a

t
obj), score st,

and template gmem as follows:

mt = Agent(gmem((attype, a
t
obj , r

t),

{(at′type, at
′
obj , r

t′)}t′<t, {mt′}t′<t)). (4)

The memory updating template gmem used in our
experiments is provided in Appendix D.

30080

3 Experiment 1: Teaching Multiple Skills
to Base Models

3.1 Experimental Setup

We use Gemma2 2B (Rivière et al., 2024) 1 as
our base model, and we target the following
tasks in a multi-task setting: the arithmetic rea-
soning task GSM8k (Cobbe et al., 2021), the
commonsense reasoning task Commonsense QA
(CQA) (Talmor et al., 2019), and the reading com-
prehension task Trivia QA (TriviaQA) (Joshi et al.,
2017), all converted to 0-shot format. For out-of-
distribution evaluation tasks, we use GSMSym-
bolic (Mirzadeh et al., 2025), which is a more com-
plex version of GSM8k with rewritten numbers
in the questions, generative arithmetic reasoning
tasks from NumGLUE (Mishra et al., 2022) Type1
(NumGLUE1) and Type2 (NumGLUE2), the so-
cial common sense reasoning task SocialIQA (Sap
et al., 2019), and the reading comprehension
task Natural Questions (NQ) (Kwiatkowski et al.,
2019).

While our approach can handle any action that
produces a single model, the actions used in this
experiment and their required objects are:

• TIES-Merging (TIES): Model 1, Model 2,
merge weight (fixed), merge density (fixed)

• Supervised Fine-Tuning (SFT): Model, SFT
training data, learning rate (fixed)

TIES is a representative model merging technique,
while SFT is a standard training method using log-
likelihood maximization loss. As initial objects,
we prepared specialist models trained on 1,000 ex-
amples each from GSM8k, CQA, and TriviaQA
using Gemma2 2B as the base model, hereafter re-
ferred to as GSM8k-specialist, CQA-specialist, and
TriviaQA-specialist. We also use the training data
same as specialist models along with an aggregated
all data as initial objects for SFT. For hyperparam-
eters, we fix merging weights of (0.5, 0.5), density
of 0.5, and learning rate for SFT as 1e− 6. We use
100 examples from a different split as validation
data, and test data was held out from both train-
ing and validation data. To eliminate variability
from randomness, temperature was set to 0 during
both pipeline exploration and testing. For the agent
LLM, we use gpt-4o-2024-08-06 and performed
100 iterations of action selection and feedback.

1https://huggingface.co/google/gemma-2-2b

For details of evaluation methods, GSM8k in-
volves parsing the final numeric answer from the
prediction and exact matching with the ground
truth, CQA requires the answer choice to be
the form of "[[choice]]" and checking if the
parsed value is correct, and TriviaQA uses exact
match between normalized predictions and ground
truth. For out-of-distribution tasks, GSMSymbolic,
NumGLUE1, and NumGLUE2 uses the same eval-
uation method as GSM8k, SocialIQA uses the same
as CQA, and NQ uses the same as TriviaQA.

For compared methods, in addition to the
GSM8k, CQA, and TriviaQA specialists, we use
TIES (Grid Search), which optimizes the weights
of the three specialists through grid search, and
Fully Fine-Tuned, which is trained on all avail-
able training data. To evaluate the effectiveness
of LLM-based action selection, we also compare
with Policy=Random, Actions=(SFT, TIES)) which
randomly selects actions for 100 iterations, and Pol-
icy=LLM, Actions=(TIES) which removes the SFT
from predefined action types.

3.2 Results
The experimental results are shown in Table 1.
LaMDAgent Top-i refers to the model with the
i-th highest accuracy on validation set among those
generated by LaMDAgent. Bold values indicate
the best performance among comparison methods,
and underlined values indicate the top three.

LaMDAgent outperforms baselines, enhanc-
ing math skills while preserving others. Com-
pared to the best baseline, Fully Fine-Tuned,
LaMDAgent Top-1 shows 1.9 point improvement
in overall accuracy (Avg) on the test set, demon-
strating the effectiveness of the discovered pipeline.
The improvement is particularly notable in arith-
metic reasoning tasks, with LaMDAgent Top-
1 overperforms Fully Fine-Tuned by 3.7 points
on math-related tasks (GSM8k, GSMSymbolic,
NumGLUE1, NumGLUE2) on average, while
maintaining comparable performances on other
tasks. These results suggest that, even with identi-
cal training data, appropriately combining model
merging and training sequences using LaMDAgent
can incorporate multiple skills more effectively
than simple SFT on all the data.

Training is more effective than model merging
for acquiring multiple skills. Interestingly, unlike
findings in some previous works (Morrison et al.,
2024; Kuroki et al., 2024), in our experimental set-
ting, Fully Fine-Tuned, which was trained on all

30081

Table 1: LaMDAgent effectively balances multiple skills and generalizes out-of-distribution: The main results of
Experiment 1. LaMDAgent achieves the highest average performance (Avg) among compared methods. Notably,
LaMDAgent Top-1 overperforms Fully Fine-Tuned by 3.7 points on math-related tasks (GSM8k, GSMSymbolic,
NumGLUE1, NumGLUE2) on average, while maintaining performance on other tasks, demonstrating more effective
multi-skill acquisition than simply mixing training data or merging specialist models.

In-Distribution Out-of-Distribution
Method GSM8k CQA TriviaQA GSMSymbolic NumGLUE1 NumGLUE2 SocialIQA NQ Avg
Baselines
GSM8k-specialist 0.320 0.001 0.000 0.132 0.425 0.395 0.030 0.000 0.163
CQA-specialist 0.018 0.671 0.002 0.007 0.050 0.034 1.000 0.008 0.224
TriviaQA-specialist 0.046 0.027 0.675 0.017 0.050 0.280 0.905 0.269 0.284
TIES (Grid Search) 0.105 0.559 0.562 0.017 0.175 0.265 0.999 0.219 0.363
Fully Fine-Tuned 0.254 0.622 0.672 0.142 0.325 0.238 1.000 0.256 0.439

Proposed
LaMDAgent Top-1 0.284 0.628 0.670 0.145 0.375 0.302 1.000 0.259 0.458
LaMDAgent Top-2 0.306 0.627 0.673 0.140 0.350 0.361 1.000 0.248 0.463
LaMDAgent Top-3 0.267 0.674 0.658 0.146 0.300 0.256 1.000 0.250 0.444

Table 2: LLM-based action selection is effective: Ablation study results for LaMDAgent, with validation set
scores shown in parentheses. Random action selection achieves only scores comparable to Fully Fine-Tuned,
while LLM-based action selection achieves higher average performance. Additionally, the action space provided
significantly impacts generated model performances.

Method GSM8k CQA TriviaQA Avg

Policy=LLM, Actions=(SFT, TIES)) 0.284 (0.350) 0.628 (0.710) 0.670 (0.750) 0.527 (0.603)
Policy=Random, Actions=(SFT, TIES)) 0.257 (0.280) 0.594 (0.660) 0.674 (0.730) 0.508 (0.556)
Policy=LLM, Actions=(TIES) 0.032 (0.030) 0.588 (0.670) 0.575 (0.670) 0.398 (0.456)

data, outperformed TIES (Grid Search), which opti-
mizes model merging weights, on all in-distribution
tasks and 4 out of 5 out-of-distribution tasks, show-
ing a 7.6 point higher average accuracy.

Agent-based action selection is effective. The
ablation results in Table 2 show that random action
selection (Policy=Random, Actions=(SFT, TIES))
resulted in a 4.7 point decrease on the validation set
and a 1.9 point decrease on the test set, demonstrat-
ing that the agent-based action selection is effec-
tive and random pipeline search failed to discover
pipelines better than the baseline (0.508 vs. 0.516).
This is likely because as iterations progress, ran-
dom action selection tends to prioritize exploring
combinations of model merging, which is less ef-
fective in this setting as shown in TIES results, over
exploration of training data curricula. This occurs
because as the number of models increases with
iterations, the number of model merging action
candidates grows quadratically, while the number
of training candidates grows linearly, making the
former more likely to be selected randomly 2.

2For example, after 50 iterations with a single prede-
fined model, the total number of possible merge actions is(
50+1

2

)
= 1275, whereas the number of SFT actions is

50× 4; (data types) = 200, which is six times smaller.

The choice of action space significantly im-
pacts performance. Removing SFT from the ac-
tion space (Policy=LLM, Actions=(TIES)) led to
decreases of 14.7 and 12.9 points on validation and
test sets respectively, showing that the pre-defined
action space significantly affects the final achiev-
able accuracy.

Discovered pipelines. The highest-performing
pipelines discovered by LaMDAgent are shown in
Figure 3. The Top-1, 2, and 3 pipelines all have in
common that they end with training on all data. For
Top-1, the result is consistent with findings (Dong
et al., 2024) that learning mathematical skills first
before mixing with general skill data is beneficial
for balancing mathematical skills like GSM8k with
general skills like CQA and TriviaQA. Interest-
ingly, while model merging is typically used as a
final refinement stage after training, in our experi-
ments, pipelines that merge before training (Top-2
and Top-3) also performs well.

30082

Figure 3: Top-1, Top-2, and Top-3 pipelines discovered
in experiment 1.

Figure 4: LaMDAgent significantly improves tool us-
age capability while maintaining instruction-following
performance: The overall performance evaluation re-
sults of Experiment 2 indicate that LaMDAgent im-
proves AceBench accuracy by 9.0 points while preserv-
ing the MT-Bench score. In contrast, naive fine-tuning
approaches on either individual or full SFT datasets fail
to enhance tool usage capabilities, suggesting that the
task cannot be effectively addressed with such straight-
forward methods.

4 Experiment 2: Enhancing Tool Usage
Skills in Instruction-tuned Models

4.1 Experimental Setup

In a more realistic setting, we test whether LaMDA-
gent can enhance a specific skill (tool usage in this
case) while maintaining the original instruction-
following capabilities of a publicly available
instruction-tuned model, Gemma2 2B Instruct 3.
We use AceBench (Chen et al., 2025) to evaluate
tool usage capabilities and the first turn of MT-
Bench (Zheng et al., 2023) to evaluate instruction-
following capabilities. For action types, we adopt
TIES and SFT as in Experiment 1. Initial ob-

3https://huggingface.co/google/gemma-2-2b-it

Figure 5: LaMDAgent learns from feedback to exploit
promising actions while exploring unseen pipelines:
The graph shows the Average Score, Max Score, and
Standard Deviation recorded every 15 iterations. The
consistent increase in average score indicates that the
agent continues to learn from past feedback to exploit
promising actions. The non-zero standard deviation
through all iterations and improving max score implies
that the agent maintains exploration to discover further
improvement opportunities alongside exploitation.

jects include Gemma2 2B Instruct as the model,
and for tool usage training data we use Agent-
FLAN 4 (Chen et al., 2024), which includes Tool-
bench react10p, Toolbench tflan 60p r10r5u7, Tool-
bench tflan cot 30p, Agent instruct react, Agent
instruct tflan, Toolbench instruct j1s1 3k, and Tool-
bench negative, ToolACE 5 (Liu et al., 2024b),
and general instruction-following data of Wiz-
ardLM 6 (Xu et al., 2024). We randomly selected
up to 1,000 examples from each of the 7 Agent-
FLAN subsets, ToolACE, and WizardLM. As in
Experiment 1, we use gpt-4o-2024-08-06 as the
LLM for action selection and performed 100 itera-
tions.

For evaluation, we use only turn 1 of MT-
Bench for faster and more cost-effective assess-
ment, with gpt-4o-2024-08-06 as the evaluator. For
ACEBench, we report the accuracy in the Normal
setting, which measures single-turn function call
performance. The temperature parameter is set to
0 during both pipeline exploration and testing to
eliminate randomness.

Compared methods include the Gemma2 2B In-
struct, Individually fine-tuned models trained sepa-
rately on each of the 9 training datasets, and a Fully
fine-tuned model trained on all data. All fine-tuned
models use the same hyperparameters as the SFT

4https://huggingface.co/datasets/internlm/Agent-FLAN
5https://huggingface.co/datasets/Team-ACE/ToolACE
6https://huggingface.co/datasets/

WizardLMTeam/WizardLM_evol_instruct_V2_196k

30083

in LaMDAgent.

4.2 Results
The overall performance evaluation results of Ex-
periment 2 are summarized in Figure 4. Also, fig-
ure 5 plots the average score, maximum score, and
standard deviation of scores for models created by
LaMDAgent at 15-iteration intervals.

LaMDAgent enhances tool usage capabili-
ties of Gemma2 2B Instruct while preserv-
ing instruction-following capabilities. The best
model generated by LaMDAgent achieves an MT-
Bench score of 0.810, comparable to Gemma2
2B Instruct (0.804), while improving AceBench
accuracy from 0.410 to 0.500—a 9.0 point im-
provement. This demonstrates successful enhance-
ment of tool usage capabilities while maintaining
instruction-following performance. In contrast,
the all fine-tuned models, significantly degrades
both instruction-following and tool usage capabil-
ities. A possible explanation for this: Gemma2
2B Instruct may have already paid an "alignment
tax" (Ouyang et al., 2022) through extensive in-
struction tuning, and so unstable that additional
tool-focused training could cause catastrophic for-
getting of pre-training knowledge easily unless
the training pipeline is carefully selected. To sup-
port this hypothesis, as shown in Figure 5, while
LaMDAgent occasionally takes destructive actions,
it learns to avoid them over time through feedback
from downstream task, allowing the agent to au-
tomatically avoid such actions regardless of the
cause.

Exploiting from score-based feedback while
exploring unseen pipelines. As shown in Figure 5,
the average score continues to improve with itera-
tions, confirming that the LaMDAgent framework
effectively updates its memory to exploit promising
actions. The continuous improvement in maximum
score and non-zero values of standard deviation of
scores suggests that the agent maintains exploration
alongside exploitation.

LaMDAgent is more effective when training
and target distributions do not match. The
score difference between Fully Fine-Tuned and
LaMDAgent in Experiment 1 was smaller than
in Experiment 2, indicating that LaMDAgent pro-
vides greater benefits in Experiment 2. This is be-
cause when trainining and target distributions are
the same, simply minimizing the loss function on
target tasks can yield good performances, whereas
when distributions differ (as in Experiment 2), min-

imizing loss on all training data doesn’t necessarily
minimize loss on target data. Such scenarios repre-
sent effective applications for LaMDAgent.

Discovered pipelines. Figure 6 shows the Top-1

Figure 6: Top-1 and Top-2 pipelines discovered in ex-
periment 2.

and Top-2 pipelines with the highest scores. Both
pipelines train on Agent instruct tflan followed
by ToolACE, suggesting these datasets were ef-
fective for AceBench. However, since the Fully
Fine-Tuned model (which included these datasets)
performs worse than the baseline Gemma2 2b In-
struct, suggesting that excluding unnecessary data
and establishing an appropriate training orderings
are crucial. The Top-1 model’s score evolution is
0.442 (SFT on Agent instruct tflan) → 0.592 (SFT
on ToolACE) → 0.625 (SFT on ToolACE) → 0.655
(SFT on Toolbench tflan 60-r10r5u7), showing that
similar performance improvements at each step cu-
mulatively contributed to the final score, which
cannot be easily identified by humans.

5 Reducing Computational Cost

In this section, we investigate the effectiveness of
data size scaling and model size scaling inspired
by pre-training scaling laws (Rivière et al., 2024)
as methods to reduce the computational cost of
LaMDAgent’s pipeline exploration.

Data size scaling is effective. Data size scaling
is based on the expectation that pipelines with high
scores on small data sizes will maintain high scores
when data size is increased. This approach involves
exploring effective pipelines with small data sizes,
then scaling up the data within those pipelines. For
data size scaling to be effective, pipelines that out-
perform others with small data sizes must continue
to outperform when data sizes are increased.

To verify the effectiveness of data size scaling,
we examine how scores change when increasing
the data in pipelines discovered in Experiment 1 by
factors of 2, 4, and 6 times the exploration size. The
results are shown in Figure 7. The Top-1 pipeline
maintains the highest accuracy across all data sizes,
demonstrating that pipelines with high accuracy
on small data sizes maintain their advantage when

30084

scaled up, confirming the effectiveness of data size
scaling for computational cost reduction.

Figure 7: Data size scaling is effective for computa-
tional cost reduction: Overall score when scaling num-
ber of training examples in Top-k pipelines. The Top-1
pipeline consistently performs best, suggesting that ef-
fective pipelines at small scales remain effective with
more data.

Table 3: Challenges exist in computational cost reduc-
tion via model size scaling: Evaluation scores of trans-
ferred pipelines on Gemma2 9B, suggesting that al-
though some performance gaps are maintained, they
sometimes diminish with model size scaling.

Method Top-1 Top-50 Top-80 Top-90 Top-100
2B-based 0.603 0.573 0.553 0.546 0.297
9B-based 0.797 0.803 0.783 0.783 0.200

Model size scaling has limitations. Model size
scaling is the model size version of scaling, which
involves exploring effective pipelines with small
models, then scaling up the models within those
pipelines.

To verify the effectiveness of model size scaling,
we change the base model from Gemma2 2B to
Gemma2 9B to transfer the discovered pipelines
in experiment 1. The results are shown in Table 3.
When comparing Top-1 with Top-80, 90, and 100,
which had score differences of more than 5 points
with the 2B model, the Top-1 pipeline still achieves
higher scores with 9B, showing that discovered
pipelines remain effective when base model size
increases. However, the score difference between
Top-1 and Top-50, which was about 3 points with
2B models, reverses when scaling to the larger
model, suggesting that small score gaps may dis-
appear when increasing model size. Therefore, in
practice, rather than pursuing small pipeline dif-
ferences that risk disappearing, diversifying action
space to explore large score gaps may be an ef-

fective use case for LaMDAgent when expecting
model size scaling.

6 Related Work

LLM Agents. LLMs have evolved beyond chat-
bots to agents capable of executing diverse actions
(Wang et al., 2024; Xi et al., 2025). ReAct (Yao
et al., 2023) enables iterative reasoning via thought-
action-observation loops, while Reflexion (Shinn
et al., 2023) introduces verbal learning from feed-
back on past trajectories. Key areas include web
automation (Ning et al., 2025; Zhou et al., 2024;
Deng et al., 2023) and tool use (Patil et al., 2024;
Qu et al., 2025; Qin et al., 2024). To our knowl-
edge, this is the first work to automate post-training
using LLM agents, treating improvement strategies
as actions and model scores as rewards.

LLM for AutoML. The application of LLMs
to Automated Machine Learning (AutoML) has
emerged as a prominent investigation area. MLE-
Bench (Chan et al., 2025) provides a comprehen-
sive benchmark assessing LLM proficiency as ma-
chine learning practitioners, using 75 Kaggle com-
petitions. Most methods (Yang et al., 2025; Liu
et al., 2025b; Jiang et al., 2025; Chi et al., 2024;
Trirat et al., 2024) use agentic approaches, utiliz-
ing LLMs for automatic code generation, improve-
ment, and debugging, with model accuracy as feed-
back. Additionally, several agentic methods use
LLMs to automatically improve LLMs themselves:
Cheng et al. (2025); Liu et al. (2025a) optimizes
LLM architecture, Lu et al. (2024) focuses on loss
functions for preference learning, and Ishibashi
et al. (2024) optimizes code for model merging
algorithms. These studies focused on optimizing
specific LLM aspects. To our knowledge, this is
the first study to optimize the entire post-training
process of LLMs while validating scaling methods
for reducing computational costs in post-training
pipeline search.

Curriculum Learning in Post-Training. Post-
training performance is sensitive to the order of
training data. SKILL-IT (Chen et al., 2023) prior-
itizes samples effective on validation sets. DMT
(Dong et al., 2024) uses a two-stage process start-
ing from specialized to general tasks. Kim and
Lee (2024) proposes reordering based on attention
scores, query length, and loss, while Curri-DPO
(Pattnaik et al., 2024) begins with examples show-
ing large preference gaps. Other domain-specific
efforts exist (Zhao et al., 2021; Upadhyay et al.,

30085

2025; Qi et al., 2025). However, most rely on
heuristics and expert knowledge. Our work aims to
automate curriculum discovery via LLM agents.

Model Merging. Model merging combines pa-
rameters from multiple models via arithmetic oper-
ations. Wortsman et al. (2022) and Task Arithmetic
(Ilharco et al., 2023) show that adding or subtract-
ing parameters can enhance robustness or transfer
task skills. Techniques like TIES-Merging (Yadav
et al., 2023), DARE (Yu et al., 2024), and many oth-
ers (Huang et al., 2024; Jang et al., 2024a,b; Khalifa
et al., 2024; Ortiz-Jiménez et al., 2023; Liu et al.,
2024a) continue to expand the field. MergeKit
(Goddard et al., 2024) facilitates implementation of
merging techniques. Evolutionary methods (Akiba
et al., 2025) and skill-efficient merging (Morrison
et al., 2024; Kuroki et al., 2024) optimize model
merging parameters on target tasks. Since merging
and training are not independent, optimizing both
jointly is crucial. This paper is the first to propose
a unified approach that automates both training and
merging through LLM agents to construct optimal
pipelines.

7 Conclusion

In this work, we propose LaMDAgent, an auto-
mated framework for constructing post-training
pipelines via LLM-based agents. Empirical results
across two experimental settings demonstrate that
LaMDAgent substantially outperforms all base-
lines by autonomously identifying effective yet
often-overlooked strategies by practitioners. To re-
duce the computational cost of pipeline exploration,
we investigated scaling strategies and found that
data-size scaling offers benefits, whereas model-
size scaling poses nontrivial challenges. These find-
ings position LaMDAgent as a promising direction
toward automating and systematizing post-training
pipeline design, thereby reducing reliance on do-
main expertise and facilitating broader accessibility
in LLM adaptation.

8 Limitations

Our experiments were conducted using Gemma 2
as the base model. It remains to be investigated
how the outcomes might change when different
base models are used. Furthermore, we only used
English-language datasets. While our method is
not expected to be highly language-dependent, it
remains unclear whether it performs adequately on
minority or low-resource languages.

In principle, the proposed framework allows for
arbitrary action types. However, in this study, we
focused on TIES-Merging and Supervised Fine-
Tuning. It would be highly interesting to explore
what kinds of pipelines could be discovered by
combining our method with other model merging
techniques, preference learning approaches, or data
generation strategies.

Our experiments did not yield positive results
in the context of model size scaling. Therefore,
achieving positive transfer at larger scales may re-
quire further innovation in future work.

References
Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat S. Behl, Alon Benhaim, Misha Bilenko, Jo-
han Bjorck, Sébastien Bubeck, Martin Cai, Caio
César Teodoro Mendes, Weizhu Chen, Vishrav
Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo
de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter,
Amit Garg, Abhishek Goswami, Suriya Gunasekar,
Emman Haider, Junheng Hao, Russell J. Hewett,
Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauff-
mann, Nikos Karampatziakis, Dongwoo Kim, Ma-
houd Khademi, Lev Kurilenko, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric
Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra,
Daniel Perez-Becker, Thomas Portet, Reid Pryzant,
Heyang Qin, Marko Radmilac, Corby Rosset, Sam-
budha Roy, Olatunji Ruwase, Olli Saarikivi, Amin
Saied, Adil Salim, Michael Santacroce, Shital Shah,
Ning Shang, Hiteshi Sharma, Xia Song, Masahiro
Tanaka, Xin Wang, Rachel Ward, Guanhua Wang,
Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu,
Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu,
Chengruidong Zhang, Cyril Zhang, Jianwen Zhang,
Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang,
and Xiren Zhou. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
CoRR, abs/2404.14219.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and
David Ha. 2025. Evolutionary optimization of model
merging recipes. Nat. Mac. Intell., 7(2):195–204.

Anthropic. 2024. Claude 3.5 sonnet.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James
Aung, Dane Sherburn, Evan Mays, Giulio Starace,
Kevin Liu, Leon Maksin, Tejal Patwardhan, Alek-
sander Madry, and Lilian Weng. 2025. Mle-bench:
Evaluating machine learning agents on machine
learning engineering. In The Thirteenth International
Conference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang,
Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang,

30086

https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.1038/S42256-024-00975-8
https://doi.org/10.1038/S42256-024-00975-8
https://www.anthropic.com/news/claude-3-5-sonnet
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=6s5uXNWGIh

Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi
Wang, Defu Lian, Baoqun Yin, Yasheng Wang, and
Wu Liu. 2025. Acebench: Who wins the match point
in tool usage? Preprint, arXiv:2501.12851.

Mayee F. Chen, Nicholas Roberts, Kush Bhatia, Jue
Wang, Ce Zhang, Frederic Sala, and Christopher Ré.
2023. Skill-it! A data-driven skills framework for
understanding and training language models. In Ad-
vances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024. Agent-flan: Designing data and
methods of effective agent tuning for large language
models. In Findings of the Association for Compu-
tational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 9354–
9366. Association for Computational Linguistics.

Junyan Cheng, Peter Clark, and Kyle Richardson. 2025.
Language modeling by language models. CoRR,
abs/2506.20249.

Yizhou Chi, Yizhang Lin, Sirui Hong, Duyi Pan, Yay-
ing Fei, Guanghao Mei, Bangbang Liu, Tianqi
Pang, Jacky Kwok, Ceyao Zhang, Bang Liu, and
Chenglin Wu. 2024. SELA: tree-search enhanced
LLM agents for automated machine learning. CoRR,
abs/2410.17238.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,

Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, and Wangding Zeng. 2024. Deepseek-v3
technical report. CoRR, abs/2412.19437.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samual Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for the
web. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng
Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng
Yuan, Chang Zhou, and Jingren Zhou. 2024. How
abilities in large language models are affected by
supervised fine-tuning data composition. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 177–198. Association for Computational
Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. KTO: model
alignment as prospect theoretic optimization. CoRR,
abs/2402.01306.

Charles Goddard, Shamane Siriwardhana, Malikeh
Ehghaghi, Luke Meyers, Vladimir Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. 2024.

30087

https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2501.12851
http://papers.nips.cc/paper_files/paper/2023/hash/70b8505ac79e3e131756f793cd80eb8d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/70b8505ac79e3e131756f793cd80eb8d-Abstract-Conference.html
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.557
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.557
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.557
https://doi.org/10.48550/ARXIV.2506.20249
https://doi.org/10.48550/ARXIV.2410.17238
https://doi.org/10.48550/ARXIV.2410.17238
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2412.19437
https://doi.org/10.48550/ARXIV.2412.19437
http://papers.nips.cc/paper_files/paper/2023/hash/5950bf290a1570ea401bf98882128160-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/5950bf290a1570ea401bf98882128160-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.18653/V1/2024.ACL-LONG.12
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2402.01306
https://doi.org/10.48550/ARXIV.2402.01306

Arcee’s MergeKit: A toolkit for merging large lan-
guage models. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing: Industry Track, pages 477–485, Miami,
Florida, US. Association for Computational Linguis-
tics.

Google. 2024. Our next-generation model: Gemini 1.5.

Shih-Cheng Huang, Pin-Zu Li, Yu-Chi Hsu, Kuang-
Ming Chen, Yu-Tung Lin, Shih-Kai Hsiao,
Richard Tzong-Han Tsai, and Hung-yi Lee. 2024.
Chat vector: A simple approach to equip llms with
instruction following and model alignment in new
languages. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pages 10943–10959.
Association for Computational Linguistics.

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Yoichi Ishibashi, Taro Yano, and Masafumi Oyamada.
2024. Can large language models invent algorithms
to improve themselves? CoRR, abs/2410.15639.

Yoichi Ishibashi, Taro Yano, and Masafumi Oyamada.
2025. Can large language models invent algorithms
to improve themselves? In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL 2025 - Volume
1: Long Papers, Albuquerque, New Mexico, USA,
April 29 - May 4, 2025, pages 10332–10363. Associ-
ation for Computational Linguistics.

Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han.
2024a. Model stock: All we need is just a few fine-
tuned models. In Computer Vision - ECCV 2024 -
18th European Conference, Milan, Italy, September
29-October 4, 2024, Proceedings, Part XLIV, volume
15102 of Lecture Notes in Computer Science, pages
207–223. Springer.

Young Kyun Jang, Dat Huynh, Ashish Shah, Wen-
Kai Chen, and Ser-Nam Lim. 2024b. Spherical lin-
ear interpolation and text-anchoring for zero-shot
composed image retrieval. In Computer Vision -
ECCV 2024 - 18th European Conference, Milan, Italy,
September 29-October 4, 2024, Proceedings, Part
XIX, volume 15077 of Lecture Notes in Computer
Science, pages 239–254. Springer.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth,
Dixing Xu, Ian Kaplan, Deniss Jacenko, and Yuxiang
Wu. 2025. AIDE: ai-driven exploration in the space
of code. CoRR, abs/2502.13138.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly

supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL
2017, Vancouver, Canada, July 30 - August 4, Volume
1: Long Papers, pages 1601–1611. Association for
Computational Linguistics.

Muhammad Khalifa, Yi Chern Tan, Arash Ahmadian,
Tom Hosking, Honglak Lee, Lu Wang, Ahmet Üstün,
Tom Sherborne, and Matthias Gallé. 2024. If you
can’t use them, recycle them: Optimizing merging
at scale mitigates performance tradeoffs. CoRR,
abs/2412.04144.

Jisu Kim and Juhwan Lee. 2024. Strategic data order-
ing: Enhancing large language model performance
through curriculum learning. CoRR, abs/2405.07490.

So Kuroki, Taishi Nakamura, Takuya Akiba, and Yujin
Tang. 2024. Agent skill acquisition for large lan-
guage models via cycleqd. CoRR, abs/2410.14735.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

Tian Yu Liu, Aditya Golatkar, and Stefano Soatto.
2024a. Tangent transformers for composition, pri-
vacy and removal. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yux-
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan
Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming
Tang, Defu Lian, Qun Liu, and Enhong Chen. 2024b.
Toolace: Winning the points of LLM function calling.
CoRR, abs/2409.00920.

Yixiu Liu, Yang Nan, Weixian Xu, Xiangkun Hu, Lyu-
manshan Ye, Zhen Qin, and Pengfei Liu. 2025a.
Alphago moment for model architecture discovery.
CoRR, abs/2507.18074.

Zexi Liu, Yuzhu Cai, Xinyu Zhu, Yujie Zheng, Runkun
Chen, Ying Wen, Yanfeng Wang, Weinan E, and
Siheng Chen. 2025b. Ml-master: Towards ai-for-ai
via integration of exploration and reasoning. CoRR,
abs/2506.16499.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex J. Chan,
Jakob N. Foerster, Mihaela van der Schaar, and
Robert T. Lange. 2024. Discovering preference op-
timization algorithms with and for large language
models. In Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

30088

https://doi.org/10.18653/v1/2024.emnlp-industry.36
https://doi.org/10.18653/v1/2024.emnlp-industry.36
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024
https://doi.org/10.18653/V1/2024.ACL-LONG.590
https://doi.org/10.18653/V1/2024.ACL-LONG.590
https://doi.org/10.18653/V1/2024.ACL-LONG.590
https://openreview.net/forum?id=6t0Kwf8-jrj
https://doi.org/10.48550/ARXIV.2410.15639
https://doi.org/10.48550/ARXIV.2410.15639
https://aclanthology.org/2025.naacl-long.519/
https://aclanthology.org/2025.naacl-long.519/
https://doi.org/10.1007/978-3-031-72784-9_12
https://doi.org/10.1007/978-3-031-72784-9_12
https://doi.org/10.1007/978-3-031-72655-2_14
https://doi.org/10.1007/978-3-031-72655-2_14
https://doi.org/10.1007/978-3-031-72655-2_14
https://doi.org/10.48550/ARXIV.2502.13138
https://doi.org/10.48550/ARXIV.2502.13138
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.48550/ARXIV.2412.04144
https://doi.org/10.48550/ARXIV.2412.04144
https://doi.org/10.48550/ARXIV.2412.04144
https://doi.org/10.48550/ARXIV.2405.07490
https://doi.org/10.48550/ARXIV.2405.07490
https://doi.org/10.48550/ARXIV.2405.07490
https://doi.org/10.48550/ARXIV.2410.14735
https://doi.org/10.48550/ARXIV.2410.14735
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.1162/TACL_A_00276
https://openreview.net/forum?id=VLFhbOCz5D
https://openreview.net/forum?id=VLFhbOCz5D
https://doi.org/10.48550/ARXIV.2409.00920
https://doi.org/10.48550/ARXIV.2507.18074
https://doi.org/10.48550/ARXIV.2506.16499
https://doi.org/10.48550/ARXIV.2506.16499
http://papers.nips.cc/paper_files/paper/2024/hash/9d88b87b31986f8293bb0067a841579e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9d88b87b31986f8293bb0067a841579e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9d88b87b31986f8293bb0067a841579e-Abstract-Conference.html

Seyed-Iman Mirzadeh, Keivan Alizadeh, Hooman
Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. 2025. Gsm-symbolic: Understanding the
limitations of mathematical reasoning in large lan-
guage models. In The Thirteenth International Con-
ference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Singh Sachdeva, Peter Clark, Chitta Baral,
and Ashwin Kalyan. 2022. Numglue: A suite of
fundamental yet challenging mathematical reasoning
tasks. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3505–3523. Association for
Computational Linguistics.

Jacob Morrison, Noah A. Smith, Hannaneh Hajishirzi,
Pang Wei Koh, Jesse Dodge, and Pradeep Dasigi.
2024. Merge to learn: Efficiently adding skills to lan-
guage models with model merging. In Findings of the
Association for Computational Linguistics: EMNLP
2024, Miami, Florida, USA, November 12-16, 2024,
pages 15604–15621. Association for Computational
Linguistics.

Rémi Munos, Michal Valko, Daniele Calandriello, Mo-
hammad Gheshlaghi Azar, Mark Rowland, Zhao-
han Daniel Guo, Yunhao Tang, Matthieu Geist,
Thomas Mesnard, Côme Fiegel, Andrea Michi,
Marco Selvi, Sertan Girgin, Nikola Momchev, Olivier
Bachem, Daniel J. Mankowitz, Doina Precup, and Bi-
lal Piot. 2024. Nash learning from human feedback.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Liangbo Ning, Ziran Liang, Zhuohang Jiang, Haohao
Qu, Yujuan Ding, Wenqi Fan, Xiaoyong Wei, Shanru
Lin, Hui Liu, Philip S. Yu, and Qing Li. 2025. A sur-
vey of webagents: Towards next-generation AI agents
for web automation with large foundation models.
CoRR, abs/2503.23350.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pas-
cal Frossard. 2023. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,

NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2024. Gorilla: Large language
model connected with massive apis. In Advances in
Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Sys-
tems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024.

Pulkit Pattnaik, Rishabh Maheshwary, Kelechi Ogueji,
Vikas Yadav, and Sathwik Tejaswi Madhusudhan.
2024. Enhancing alignment using curriculum learn-
ing & ranked preferences. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2024, Miami, Florida, USA, November 12-16, 2024,
pages 12891–12907. Association for Computational
Linguistics.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao
Sun, Jiadai Sun, Xinyue Yang, Yu Yang, Shuntian
Yao, Wei Xu, Jie Tang, and Yuxiao Dong. 2025. We-
brl: Training LLM web agents via self-evolving on-
line curriculum reinforcement learning. In The Thir-
teenth International Conference on Learning Repre-
sentations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2024. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2025. Tool learning with large language mod-
els: a survey. Frontiers Comput. Sci., 19(8):198343.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Morgane Rivière, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos,
Ravin Kumar, Charline Le Lan, Sammy Jerome, An-
ton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan
Girgin, Nikola Momchev, Matt Hoffman, Shantanu
Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn,
Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin
Abdagic, Amanda Carl, Amy Shen, Andy Brock,

30089

https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
https://doi.org/10.18653/V1/2022.ACL-LONG.246
https://doi.org/10.18653/V1/2022.ACL-LONG.246
https://doi.org/10.18653/V1/2022.ACL-LONG.246
https://aclanthology.org/2024.findings-emnlp.915
https://aclanthology.org/2024.findings-emnlp.915
https://openreview.net/forum?id=Y5AmNYiyCQ
https://doi.org/10.48550/ARXIV.2503.23350
https://doi.org/10.48550/ARXIV.2503.23350
https://doi.org/10.48550/ARXIV.2503.23350
https://doi.org/10.48550/ARXIV.2303.08774
http://papers.nips.cc/paper_files/paper/2023/hash/d28077e5ff52034cd35b4aa15320caea-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d28077e5ff52034cd35b4aa15320caea-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/e4c61f578ff07830f5c37378dd3ecb0d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/e4c61f578ff07830f5c37378dd3ecb0d-Abstract-Conference.html
https://aclanthology.org/2024.findings-emnlp.754
https://aclanthology.org/2024.findings-emnlp.754
https://openreview.net/forum?id=oVKEAFjEqv
https://openreview.net/forum?id=oVKEAFjEqv
https://openreview.net/forum?id=oVKEAFjEqv
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://doi.org/10.1007/S11704-024-40678-2
https://doi.org/10.1007/S11704-024-40678-2
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html

Andy Coenen, Anthony Laforge, Antonia Pater-
son, Ben Bastian, Bilal Piot, Bo Wu, Brandon
Royal, Charlie Chen, Chintu Kumar, Chris Perry,
Chris Welty, Christopher A. Choquette-Choo, Danila
Sinopalnikov, David Weinberger, Dimple Vijayku-
mar, Dominika Rogozinska, Dustin Herbison, Elisa
Bandy, Emma Wang, Eric Noland, Erica Moreira,
Evan Senter, Evgenii Eltyshev, Francesco Visin,
Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus
Martins, Hadi Hashemi, Hanna Klimczak-Plucinska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda
Mein, Jack Zhou, James Svensson, Jeff Stanway,
Jetha Chan, Jin Peng Zhou, Joana Carrasqueira,
Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz,
Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin
McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish
Greene, Lars Lowe Sjösund, Lauren Usui, Laurent
Sifre, Lena Heuermann, Leticia Lago, and Lilly Mc-
Nealus. 2024. Gemma 2: Improving open language
models at a practical size. CoRR, abs/2408.00118.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le
Bras, and Yejin Choi. 2019. Socialiqa: Common-
sense reasoning about social interactions. CoRR,
abs/1904.09728.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei
Huang, Yongbin Li, and Houfeng Wang. 2024. Pref-
erence ranking optimization for human alignment. In
Thirty-Eighth AAAI Conference on Artificial Intelli-
gence, AAAI 2024, Thirty-Sixth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI
2024, Fourteenth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2014, Febru-
ary 20-27, 2024, Vancouver, Canada, pages 18990–
18998. AAAI Press.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4149–4158. Association for Computational
Linguistics.

Guiyao Tie, Zeli Zhao, Dingjie Song, Fuyang Wei, Rong
Zhou, Yurou Dai, Wen Yin, Zhejian Yang, Jiangyue
Yan, Yao Su, Zhenhan Dai, Yifeng Xie, Yihan Cao,
Lichao Sun, Pan Zhou, Lifang He, Hechang Chen,
Yu Zhang, Qingsong Wen, Tianming Liu, Neil Zhen-
qiang Gong, Jiliang Tang, Caiming Xiong, Heng Ji,
Philip S. Yu, and Jianfeng Gao. 2025. A survey

on post-training of large language models. CoRR,
abs/2503.06072.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang.
2024. Automl-agent: A multi-agent LLM framework
for full-pipeline automl. CoRR, abs/2410.02958.

Ojasw Upadhyay, Abishek Saravanakumar, and Ayman
Ismail. 2025. Synlexlm: Scaling legal llms with
synthetic data and curriculum learning. Preprint,
arXiv:2504.18762.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei,
and Jirong Wen. 2024. A survey on large language
model based autonomous agents. Frontiers Comput.
Sci., 18(6):186345.

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak
Gadre, Rebecca Roelofs, Raphael Gontijo Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi,
Yair Carmon, Simon Kornblith, and Ludwig Schmidt.
2022. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increas-
ing inference time. In International Conference on
Machine Learning, ICML 2022, 17-23 July 2022, Bal-
timore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 23965–23998.
PMLR.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan,
Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran
Wang, Changhao Jiang, Yicheng Zou, Xiangyang
Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng,
Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuan-
jing Huang, Qi Zhang, and Tao Gui. 2025. The rise
and potential of large language model based agents:
a survey. Sci. China Inf. Sci., 68(2).

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A.
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Ad-
vances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei
Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,

30090

https://doi.org/10.48550/ARXIV.2408.00118
https://doi.org/10.48550/ARXIV.2408.00118
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://doi.org/10.1609/AAAI.V38I17.29865
https://doi.org/10.1609/AAAI.V38I17.29865
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.18653/V1/N19-1421
https://doi.org/10.48550/ARXIV.2503.06072
https://doi.org/10.48550/ARXIV.2503.06072
https://doi.org/10.48550/ARXIV.2410.02958
https://doi.org/10.48550/ARXIV.2410.02958
https://arxiv.org/abs/2504.18762
https://arxiv.org/abs/2504.18762
https://doi.org/10.1007/S11704-024-40231-1
https://doi.org/10.1007/S11704-024-40231-1
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://doi.org/10.1007/S11432-024-4222-0
https://doi.org/10.1007/S11432-024-4222-0
https://doi.org/10.1007/S11432-024-4222-0
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html

Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024. Qwen2.5 technical report. CoRR,
abs/2412.15115.

Xu Yang, Xiao Yang, Shikai Fang, Bowen Xian, Yuante
Li, Jian Wang, Minrui Xu, Haoran Pan, Xinpeng
Hong, Weiqing Liu, Yelong Shen, Weizhu Chen, and
Jiang Bian. 2025. R&d-agent: Automating data-
driven AI solution building through llm-powered
automated research, development, and evolution.
CoRR, abs/2505.14738.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Yangyang Zhao, Zhenyu Wang, and Zhenhua Huang.
2021. Automatic curriculum learning with over-
repetition penalty for dialogue policy learning. In
Thirty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Vir-
tual Event, February 2-9, 2021, pages 14540–14548.
AAAI Press.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2024. Webarena: A realistic web en-
vironment for building autonomous agents. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

A Cost Analysis

In this section, we analyze the computational costs
associated with LaMDAgent to evaluate its practi-
cal feasibility for real-world deployment.

GPU costs. When we use Qwen2.5 0.5B-
Instruct in the same setting as Experiment2, the

total GPU hours consumed were 106.1 hours. De-
tailed costs of each stages are shown in Table 4.

Table 4: Computational costs for training, merging, and
evaluation. We used NVIDIA L40S GPU for all stages.

Stage # GPUs Runtime (h) GPU Hours
SFT 8 0.0908 0.726
TIES 1 0.0541 0.0541
AceBench 2 0.123 0.246
MT-Bench 1 0.103 0.103

API costs. The aggregate API costs totaled 19.9
U.S. dollars. A comprehensive breakdown is pro-
vided in Table 5.

Table 5: Token usage and costs for each step. Token
counts are shown in thousands.

Usage Input (×103) Output (×103)
Action Type Selection 1844 ($4.61) 87 ($0.879)
Object Selection 1880 ($4.70) 45 ($0.449)
Feedback Generation 3548 ($8.87) 40 ($0.399)
Total 7280 ($18.2) 173 ($1.73)

B Additional Experimental Results

Changing base models. To verify the perfor-
mance of LaMDAgent with other model families,
we conducted experiments using the same configu-
ration as Experiment 2 but changed the base model
from Gemma2 2B-Instruct to Qwen2.5 0.5B/1.5B-
Instruct. The results are shown in Table 6.

Table 6: Experimental results for changing the base
model.

Model ACEBench MT-Bench Avg
Qwen2.5 0.5B-Instruct 0.20 0.535 0.368
w/ LaMDAAgent 0.18 0.680 0.430
Qwen2.5 1.5B-Instruct 0.45 0.715 0.583
w/ LaMDAAgent 0.44 0.741 0.590

Even when changing the base model to Qwen2.5,
we consistently achieved improved average per-
formance, demonstrating that the effectiveness of
LaMDAgent is independent of base model selec-
tion. However, unlike the results with Gemma2 2B-
Instruct, tool performance slightly decreased while
general task capabilities improved. Examining the
training history, MT-Bench scores consistently con-
tinued to improve, suggesting that LaMDAgent
may have a tendency to continuously enhance per-
formance on specific tasks among multiple tasks.

30091

https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.48550/ARXIV.2505.14738
https://doi.org/10.48550/ARXIV.2505.14738
https://doi.org/10.48550/ARXIV.2505.14738
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=fq0NaiU8Ex
https://doi.org/10.1609/AAAI.V35I16.17709
https://doi.org/10.1609/AAAI.V35I16.17709
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

This indicates the necessity of feedback mecha-
nisms other than the average accuracy across mul-
tiple tasks that we adopted, in order to improve
targeted characteristics such as tool performance.

Expanding action spaces. To investigate per-
formance when varying the search space of the
pipeline, we conducted experiments with the same
configuration as Experiment 2 but added hyperpa-
rameter exploration as an action. The experimental
results are shown in Table 7.

Table 7: Experimental results for varying action spaces.

Action Space ACEBench MT-Bench Avg
Setting 1 0.500 0.810 0.655
Setting 2 0.410 0.795 0.602
Setting 3 0.450 0.793 0.621

• Setting 1: All hyperparameters fixed (identical
configuration to Experiment 2)

• Setting 2: SFT learning rate expanded from
[1e-6] to [1e-7, 5e-7, 1e-6, 5e-6, 1e-5]

• Setting 3: SFT learning rate expanded from
[1e-6] to [5e-7, 1e-6, 5e-6], and TIES weights
expanded from [0.5, 0.5] to [[0.5, 0.5], [0.9,
0.1]]

Although expanding the search space should the-
oretically yield better optimal solution, the search
efficiency decreases because poorly performing
learning rates may be included in the search range.
We believe that within the short iteration limit of
100 iterations used in our configuration, the nega-
tive effects of reduced search efficiency outweighed
the benefits of expanding the search space.

C Differences from AutoML Agents

When comparing with AutoML agents, such as ML-
Master (the state-of-the-art method in MLE-Bench)
applied to LLM post-training, the primary differ-
ence lies in the optimization space: code space
such as Python (ML-Master) versus pre-defined
action combinations (LaMDAgent). The detailed
comparison with LaMDAgent arising from this fun-
damental difference is shown in Table 8

1. Guardrails: ML-Master directly executes
LLM-generated code, requiring guardrails
such as sandboxing to prevent deletion of im-
portant files or environmental changes. In
contrast, LaMDAgent requires no guardrails

Table 8: Comparison between ML-Master and LaMDA-
gent across multiple aspects. ✓ indicates favorable
characteristics, × indicates unfavorable characteristics,
and ∼ indicates intermediate characteristics.

Aspect ML-Master LaMDAgent

Guardrails × ✓
Controllability × ✓
Multiple Environments ∼ ✓
Cost Efficiency × ✓
Manual Prompting Cost × ✓
Action Space Size ✓ ×
Manual Coding Cost ✓ ×

as it does not perform file operations or envi-
ronment setup.

2. Controllability: When specifying desired
models, training methods, or datasets for LLM
training, LaMDAgent can limit exploration to
combinations of these specified components.
However, ML-Master relies on prompt-based
constraints, which may lead to exploration of
unintended spaces.

3. Multiple Environments: When different
types of model improvement actions require
different environments (e.g., different versions
of transformers), complex pipelines like "en-
vironment setup → action → environment
setup → action..." are difficult with current
ML-Master implementations. LaMDAgent
handles this easily due to the loose coupling
of action executions.

4. Manual Prompting Cost: ML-Master
requires exhaustive specification of
environment-related information such
as server details and paths necessary for
coding. LaMDAgent allows execution
with arbitrary settings simply by writing
configurations in a YAML file.

5. Cost Efficiency: In ML-Master, code is ex-
ecuted from scratch for each run, which can
result in repeated training under identical set-
tings and thus waste computational resources.
In contrast, LaMDAgent improves efficiency
by reusing previously trained components.
Furthermore, this work uniquely investigates
whether LLMs can autonomously achieve
computational cost reduction through scaling,
without explicit human guidance.

30092

6. Action Space Size: While ML-Master opti-
mizes the entire codebase, LaMDAgent can
be interpreted as being limited to optimizing
predefined combinations. Consequently, ML-
Master operates within a broader optimization
space.

7. Manual Coding Cost: Manual coding cost
is nearly zero for ML-Master, while LaMDA-
gent requires pre-written code for each action.
However, once LLM fine-tuning code is writ-
ten, it can be reused across various situations.

Based on the above analysis, LaMDAgent is more
suitable for developers who already possess model
training code, have defined their optimization
search space, and seek to conduct controlled ex-
periments—particularly LLM developers. Con-
versely, AutoML approaches are more appropriate
for practitioners with limited LLM training expe-
rience who encounter difficulties in implementing
training code.

D Templates

Figure 8, 9, and 10 are prompt templates for action
type selection, object selection, and memory gener-
ation in our proposed LaMDAgent, respectively.

Figure 11 shows an example of configs for
LaMDAgent.

30093

Prompt template to select an action type

You are a developer of Large Language Models (LLMs) who tests model improvement strategies based on a
given hypothesis. You are provided with Self -Reflections obtained from analyzing the result of a
previous trial conducted for model improvement. Based on the Self -Reflections , select one action
type from the Action Type List to create a more performant model. Analyze the Self -Reflections to
identify the most promising action type , and provide the number of the selected action type at the
end. If the Self -Reflections are not provided , please select randomly.

Self -Reflections:
<reflection >

Action List:
<action_types >

Selected Action Type NUMBER:

Figure 8: Prompt template to select an action type.

Prompt template to select objects

You are a developer of Large Language Models (LLMs). Your task is to determine a configuration for
creating an LLM.

The configuration consists of multiple object types , and for each object type , you must select one
object from a set of candidate objects.

To aid in your selection , you are provided with introspective analysis based on past LLM configurations
and their outcomes.

Please output the selected objects in the order of the object types displayed , using comma separation
and enclosed in [[]], e.g., [[1, 0, 2]] at the end of the output. If the Self -Reflections are not
provided , please select randomly and think of a combination that has not been tried in the past

trials. Also , the k-th model at step n is named in the format 0--n--k. Since such models also have
promising potential , please include them in the search scope.

Self -Reflections:
<reflection >

Object Candidates:
<object_cands >

Selected Object NUMBERs:

Figure 9: Prompt template to select objects.

Prompt template to update memory

You are a developer of Large Language Models (LLMs) that can improve models based on self reflections.
You will be given results and memories of the previous improving trials. The results consist of
actions and scores , where the scores are out of 1 point. And also , You will be provided with newly
aquired trials. In a few sentences , update your memories based on the previous trials , memoeries ,
and new results.

Previous Results
<previous results >

Previous Memories Aquired from Previous Trials
<previous memories >

Newly aquired Results
<new results >

Updated Memory:

Figure 10: Prompt template to update memory.

30094

An example config of our proposed method

{
"seed": 42,
"total_timesteps ": 100,
"controller ": "LaMDAgent_gpt",
"controller_model ": "gpt -4o-2024 -11 -20" ,
"objects ": {

"base_models ": [" models/gemma -2-2b"],
"models ": [" models/gemma -2-2b--gsm8k_1k", "models/gemma -2-2b--commonsense_qa_1k", "models/gemma

-2-2b--trivia_qa_1k_w_context ","models/gemma -2-2b"],
"sft_dataset ": ["data/sft_formatted/gsm8k_1k", "data/sft_formatted/commonsense_qa_1k", "data/

sft_formatted/trivia_qa_1k_w_context", "data/sft_formatted/gsm1k_cqa1k_tqa1k "],
"sft_lr ": [0.000001] ,
"ties_weights ": [[0.5, 0.5]],
"ties_density ": [0.5],

},
"action_types ": {

"sft": [" models", "sft_dataset", "sft_lr"],
"ties_merging ": [" base_models", "models", "models", "ties_weights", "ties_density "]

},
"eval_tasks ": [[" gsm8k", "acc"], [" commonsenseqa", "acc"], [" trivia_qa_w_context", "acc"]],
"score_aggregation ": "mean"

}

Figure 11: An example config of our proposed method.

30095

