
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 30419–30434
November 4-9, 2025 ©2025 Association for Computational Linguistics

Finding your MUSE: Mining Unexpected Solutions Engine

Nir sweed♠, Hanit Hakim♠, Ben Wolfson♢, Hila Lifshitz△, Dafna Shahaf♠
♠ The Hebrew University of Jerusalem ♢ New York University

△ Warwick Business School
{nir.sweed, hanit.hakim}@mail.huji.ac.il bw916@stern.nyu.edu

hdiginnovation@gmail.com dshahaf@cs.huji.ac.il

Abstract

Innovators often exhibit cognitive fixation on
existing solutions or nascent ideas, hindering
the exploration of novel alternatives. This pa-
per introduces a methodology for constructing
Functional Concept Graphs (FCGs), intercon-
nected representations of functional elements
that support abstraction, problem reframing,
and analogical inspiration. Our approach yields
large-scale, high-quality FCGs with explicit ab-
straction relations, overcoming limitations of
prior work. We further present MUSE, an algo-
rithm leveraging FCGs to generate creative in-
spirations for a given problem. We demonstrate
our method by computing an FCG on 500K
patents, which we release for further research.
A user study indicates that participants exposed
to MUSE’s inspirations generated more cre-
ative ideas, both in terms of absolute number
(up to 19% increase over participants not given
inspirations) and ratio (75%, compared to 49%
for no inspirations).

1 Introduction

A well-documented challenge in design and
problem-solving is fixation, wherein individuals
become prematurely attached to a narrow set of
familiar solutions or features, thereby impeding
the generation of truly novel concepts (Jansson
and Smith, 1991; Purcell and Gero, 1996). This
cognitive inertia can significantly limit the effec-
tive exploration of the design space – the abstract
space of all possible solutions to a given problem.
Navigating this complex space to identify diverse
and high-quality solutions requires systematic ap-
proaches that encourage cognitive flexibility and
the consideration of a broad range of alternatives.

Existing methodologies for ideation often fall
short in robustly guiding designers out of fixation
traps or in structuring the vastness of the design
space in a functionally meaningful way. While
keyword-based search can retrieve superficially re-

lated concepts, it often fails to uncover deeper func-
tional analogies that are crucial for creative leaps
(Holyoak and Thagard, 1996). There is a growing
need for representations that capture the core func-
tional essence of ideas, enabling a more principled
exploration of potential solutions.

We build upon an idea explored in recent work,
that suggested decomposing ideas into their fun-
damental purposes (problems) and mechanisms
(solutions) and organizing these into a structured
representation called a Functional Concept Graph
(FCG) (Hope et al., 2022). In FCGs nodes corre-
spond to purposes and mechanisms of products;
edges either link between purposes and mecha-
nisms that achieve them, or between purposes and
their abstraction (i.e., a more general problems).

We posit that such a representation can serve
as a powerful cognitive scaffold for designers and
problem-solvers. Specifically, by enabling navi-
gation across interconnected functional elements,
it facilitates the abstraction of problem statements
and the discovery of analogical inspirations from
domains that might seem unrelated at the surface

Figure 1: An example of a Functional Concept Graph.
Node represent problem (spurposes, in blue) and solu-
tions (mechanisms, in orange). Connections between
problem nodes indicate abstraction. Connection be-
tween solution and problem nodes indicates the mecha-
nism can solve the problem.

30419



level (Gentner, 1983; Gick and Holyoak, 1980).
For example, see Figure 1. Suppose an inventor

wishes to protect their plants from the sun. They
are familiar with standard mechanisms, such as
shade canopies. Through the graph, they might
discover analogous mechanisms linked to the same
abstract purpose. For example, they might reach
the purpose node “protect skin from sun” through
shared parent “protect organisms from the sun”,
which might inspire them to think of sunscreen
for plants (which, surprisingly, has already been
invented). Alternatively, they might explore even
higher-level abstractions. This structured explo-
ration can systematically help designers break free
from initial conceptual ruts, reframe their under-
standing of the problem, and ultimately chart more
innovative trajectories within the design space.

However, the implementation of Hope et al.
(2022) was very limited. Most notably, their edges
only capture simple co-occurrence patterns in the
corpus; there is no guarantee of explicitly encoding
abstraction. In addition, their annotation process
relied heavily on crowdworkers, which resulted in
a noisy graph, and graph-building did not scale.

In this work, we take advantage of the tremen-
dous recent progress of LLMs and reimagine Func-
tional Concept Graphs. Our contributions are:

• We propose a novel, scalable approach to con-
structing Functional Concept Graphs that re-
sults in richer, better-connected and less noisy
graphs, whose edges explicitly encode abstrac-
tion relations.

• We compute an FCG on 500K patents, and
release it for further research.

• We introduce MUSE, an algorithm that, given
an FCG and a target problem, can produce in-
spirations for creatively solving the problem.

• We conduct a user study and show MUSE in-
spirations can enhance human creativity. Our
analysis shows that using our inspirations, par-
ticipants were able to come up with up to
19% more creative solutions, in comparison to
participants that did not receive inspirations.
More importantly, 75% of the solutions pro-
duced by participants exposed to MUSE’s in-
spirations were deemed creative (compared
to 49% for participants who did not see the
inspirations).

• We release all the data and code used for cre-
ating the graph and analysis. 1

1Code and data: https://github.com/NSweed/MUSE

2 Functional Concept Graphs

Our goal is to automatically build a Functional Con-
cept Graph (FCG) (Hope et al., 2022) and develop
an algorithm to sample inspirations from it, given
a target problem.

Building upon the foundations of functional
modeling, an FCG provides a structured graphi-
cal representation. Nodes embody functional con-
cepts, encompassing both the intended purposes
(problems tackled) and the underlying mechanisms
(solutions) that enable these purposes. A directed
edge between a purpose node and a mechanism
node indicates that the mechanism is useful for
achieving the purpose; a directed edge between
two purposes indicates that the first is an abstrac-
tion of the second (see Figure 1).

3 Data

We chose to test our idea on a patent corpus because
it is vast, publicly available and contains a variety
of real-life problems and solutions. In contrast,
Hope et al. (2022) has used a much smaller dataset
of crowdsourced innovations.

We use a dataset taken from Patentsview.org
website (Toole et al., 2021), which contains patents
registered in the U.S. since the 1940s. From each
patent, we take its title and abstract text, which con-
tains an informative description of the product. In
addition, as part of our annotations, we used each
patent CPC tag.

CPC (Cooperative Patent Classification) is a hi-
erarchical patent classification system, developed
by the European and US Patent Offices. The sys-
tem assigns each patent with (potentially multiple)
CPC tags. Each tag has an id and a short name.

Out of the full patent corpus extracted from the
website, we included only patents that belong to
3 CPC top-level tags (out of 9 overall): Human
Necessities (A), Operations and Transport (B), and
Mechanical Engineering (F). We included those
tags as they are likely to describe relatively simple
everyday products, as opposed to sections that de-
scribe more specific professional domains such as
Chemistry and Metallurgy (C). After the filtering,
we were left with about 3M patents. Due to a bud-
get limitations, we sampled 500K patents and used
them as our corpus.

4 Constructing an FCG

Our pipeline consists of 3 main steps (see Figure 2):
(1) extracting problems and solutions from a large

30420

https://github.com/NSweed/MUSE
https://patentsview.org/


Figure 2: A visualization of our full pipeline. (1) We start by extracting purpose and mechanism tags from patent
descriptions. (2) Then, we create the problem and solution nodes. To reduce the amount of computation, we first
cluster the purpose tags to create loose clusters, then aggressively cluster each loose cluster to obtain the problem
nodes. This clustering induces the solution nodes as well. (3) The final step is to create edges connecting the
problem nodes by finding abstraction relations, and then enhacing connectivity through virtual nodes.

dataset of patents, (2) creating the nodes of the
FCG and (3) adding in the edges.

4.1 Extracting problems and solutions

We start by annotating each patent with its purpose
(problem, what is it used for) and mechanism (so-
lution, how it works). We acquire multiple mecha-
nism and purpose tags for each patent, as opposed
to a single aggregated tag.

Importantly, patents are written in technical, le-
gal language (“Legalese”). Surprisingly often, they
are missing important commonsense information
(for instance, a patent about airbags that never men-
tions cars or accidents, but rather focuses on the
technical aspects of the invention). Thus, we take
advantage of large-scale language models as well
as patent metadata to annotate the dataset.

Getting mechanisms. To extract mechanism tags
for each patent, we make use of the CPC tags, that
offer a granular breakdown of the technical features
of the invention.

We processed the full set of CPC categories (over
250,000 categories). We discard all CPC tags in
the lowest level of hierarchy level, since they are
too specific for our needs. We clean and preprocess
the titles (see Appendix C.2), and end up with a set
of 8500 CPC tags.

Many CPC tags describe mechanisms, but not all.
Thus, we manually tagged 1500 CPC tags as either

related to mechanism or not. We used this anno-
tated dataset to fine-tune a simple RoBERTa-based
binary classification model (Liu et al., 2019). We
train the model for 500 epochs, using 1e-7 learning
rate. The final model we used achieved an F1 score
of 0.88.

Getting purposes. Driven by its few-shot capabili-
ties, we use GPT3 (Brown et al., 2020) to generate
purpose tags. We adopt an in-context learning ap-
proach, and use the method proposed in Reif et al.
(2021) to construct a prompt with 3 patent descrip-
tions and their purpose tag annotations, followed
by the patent description to be tagged (see Fig-
ure 2 for example tags and Appendix B for prompt
example). Although newer and more advanced
models are available, we found that GPT3 (Bab-
bage) provided the best performance-cost tradeoff
for tagging 500K patents.

4.2 Creating problem and solution nodes

After obtaining the purpose and mechanism tags,
we move on to creating the problem and solution
nodes that serve as our basic building blocks for
the graph.

Creating purpose nodes. Our goal is to cre-
ate problem nodes that cluster together concep-
tually similar purpose tags. To achieve this
goal, we choose to use agglomerative clustering
(Ward Jr, 1963) over Sentence-BERT (Reimers and

30421



Gurevych, 2019) embeddings of the purpose tags.
Agglomerative clustering allows us to control the
similarity threshold, and also does not require spec-
ifying the number of clusters in advance.

However, running agglomerative clustering over
all purpose tags is costly. We follow a common
practice, where coarse-partitioning strategy is used
initially to break the data into manageable chunks,
and a refinement clustering is performed within
each chunk, significantly reducing the computation
(Ma et al., 2018). We use K-means (MacQueen,
1967) to split the tags into loose clusters, and then
run agglomerative clustering with a strict similarity
threshold on each of them, making sure to keep
semantically similar tags in the same cluster.

We use the resulting clusters as the problem
nodes in our graph. To select the parameters for
the agglomerative clustering step, we generate a
small dataset of 30 sentences (that did not appear
in our data) and manually split them into clusters.
We run the agglomerative clustering algorithm with
similarity threshold ranging from 0.05 to 0.4, with
increment of 0.05. We finally choose similarity
threshold = 0.2, since it showed the best tradeoff
between the purity (1.0) and NMI (0.97) metrics.
See Appendix C.3 for full implementation details
and hyperparameter selection.

Creating solution nodes. We wish to create clus-
ters of solutions used to solve similar problems.
These solutions are not necessarily semantically
similar themselves. Therefore, we do not cluster
the mechanism tags directly, but rather induce the
solution clusters from the problem clusters we cre-
ated. We cluster two mechanism tags together if
there exist purpose tags extracted from their cor-
responding patents that were clustered together in
the previous step.

4.3 Adding edges

The final step of creating the FCG is to connect the
problem, solution nodes we obtained in section 4.2.

As described in section 2, edges in FCGs re-
flect either an abstraction relation between problem
nodes or a problem-solution relation.

Problem to solution. We connect a problem node
to a solution node if there is at least one patent that
was assigned a problem tag in the problem node
(i.e., in the corresponding cluster) and a solution
tag in the solution node.

Problem to abstract problem. Intuitively, if a
problem (“protecting an organism”) is more ab-

stract than another (“protecting plants”), the spe-
cific problem entails the more abstract one. Hence,
we use a pretrained NLI model (Laurer et al., 2024)
to identify entailment. As checking for entailment
over all problem nodes is computationally expen-
sive, we run the model over all pairs of problem
nodes from the same loose cluster (Section 4.2).
For each problem node, we select a representative
purpose tag and add a prefix to turn it into a sen-
tence (so it resembles the data the NLI model was
trained on). We add an edge if the entailment score
is above threshold t. See Appendix C.4 for details
about entailment thresholds and prefixes.

We note that the graphs formed by this process
might include cycles, due to mistake or inconsis-
tencies of the NLI model. Moreover, these graphs
might also include redundant edges (if the graph
contains edges (x1, x2), (x2, x3), edge (x1, x3) is
redundant). Therefore, we adopt the method sug-
gested in Sun et al. (2017) to remove cycles while
maintaining the abstraction hierarchy. Then, we
eliminate redundant edges in the graph by keep-
ing only the longest paths between any connected
nodes. The result of this process are K interim
graphs G1, ..., GK (one for each K-mean cluster).

Enhancing connectivity. Some abstract relations
might not be captured by the NLI model. Thus,
our algorithm creates two types of virtual nodes to
enhance the connectivity of problem nodes:

• LLM-based connections. We seek abstrac-
tion relations that were not captured by the
NLI model. For each loose-cluster graph Gi,
we automatically extract a set of candidate
nodes Ni that correspond to relatively gen-
eral problems; the algorithm selects candidate
nodes based on their height in the cluster and
in their path (see Appendix C.5 for details).
We use llama3.1-8b-Instruct (Grattafiori et al.,
2024) to suggest abstractions that capture sev-
eral of these nodes. We create a virtual LLM-
node for each abstraction, and connect it with
the nodes responsible for its creation.

• Verb-based connections. To capture far
analogies in the graph, we choose to abstract
problem nodes by the verb appearing in them
(e.g., protect). We collect lists of synonymous
verbs from WordNet (Fellbaum, 2010), and
create a virtual verb-node for each list of syn-
onyms. Then, we connect each node in the
graph to all verb-nodes containing verbs ap-
pearing in it.

30422



The final step is to try to explicitly im-
prove the connections between the interim graphs
G1, ..., GK , to allow the user to find far analo-
gies. We repeat the process of enhancing connec-
tivity, but this time we focus on pairs of nodes
coming from different sets of candidate nodes,
u ∈ Ni, v ∈ Nj , i ̸= j. See Appendix C.6.

5 MUSE: Sampling inspirations

Given a problem p, we wish to sample inspirations
from the graph. To do so, we first encode the text
describing the problem using Sentence-BERT, and
then find the closest node to it in the graph np using
Faiss-index (Douze et al., 2024). After finding the
anchor node, the next step is to sample inspiration
nodes relevant to this node. The graph provides
an intuitive interpretation of paths between nodes:
For example, one could move up (to a more ab-
stract problem) and then down (to a less abstract
problem), reaching a sibling node (connected by a
shared parent abstraction). Although many types of
paths might produce useful inspirations, we limit
the paths from which we sample inspirations to
focus on the classical analogy-making schema (“v-
structure”), by allowing 1-2 abstraction steps, and
a single concretion step (“up, down” and “up, up,
down”). Exploring the effect of other types of paths
is left for future work.
Sampling nodes from different sources. In Sec-
tion 4.3 we described 3 types of connections be-
tween purpose nodes: NLI-based, verb-based and
LLM-based. We define LLM-nodes (verb-nodes)
as nodes for which at least one of the edges along
the path connecting then with np is LLM-based
(verb-based). NLI-nodes are nodes for which all of
the edges along the path are NLI-based.
Ensuring diversity. Consider all nodes reachable
from the start node np by following paths (“up”,
“down”) or (“up”, “up”, “down”). To ensure the
sampled nodes are both relevant and diverse, we
use MMR (Carbonell and Goldstein, 1998) to select
up to 5 nodes from each path and source (up to 30
nodes total). We refer to this sampling process as
MUSE – an algorithm aimed at helping users come
up with novel ideas.

6 Evaluation

Now that we have built our graph, our goal is to
use it to help users find creative and novel solutions
to their problems. Specifically, we are interested in
the following research questions:

RQ1: Can inspirations from the FCG enhance
users’ ability to come up with original solutions to
problems? If so, what is the best way to communi-
cate the inspirations to users?
RQ2: Which type of trajectories in the FCG pro-
duces more helpful inspirations?

6.1 Experiment design

To answer these questions, we conducted a user
study. Participants were randomly assigned a prob-
lem. After reading the instructions, they were given
15 minutes to come up with as many creative ideas
as they could. Each participant was randomly as-
signed one out of 4 conditions, corresponding to
different ways to display the inspirations (see be-
low). In 3 of the conditions participants received
inspirations drawn from the FCG; in the last condi-
tion no inspirations were given. The subjects that
received inspirations were instructed to identify the
source of inspiration for each ideas (which could
be their own idea or one of the inspirations pro-
vided). The full instructions for the experiment are
provided in Appendix E.

The experiment was carried out on the Prolific
platform (Prolific, 2014). Participants were paid
£3.25. 61 native English-speakers took part in the
experiment, split almost evenly between conditions
(16-15-15-15) and problems (31-30). 53.3% identi-
fied as females, and 46.7% as males. 21.4% were
in the 18-29 age group, while the percentages for
the age groups 30-44, 45-59 and 60+ were 42.9,
28.6 and 7.1, respectively.

Problems. We chose 2 everyday problems: “Seal
a leak” and “Cool a room”. The problems were se-
lected from a list of everyday household problems
from ehow.com. We chose these problems since
they are very familiar to the common person, have
well-known existing solutions while still enabling
creative solutions.

Displaying the inspirations. Inspirations are prob-
lems sampled from the graph as described in sec-
tion 5. We define 4 conditions (ways to display
them):

1. Purpose: Showing just the purposes.
2. Purpose + mechanism: Showing purposes +

up to 3 solutions sampled for each purpose.
3. Purpose + mechanism sentence: Same as

condition 2, but we use an LLM (Claude 3.7
Sonnet (Anthropic, 2025)) to turn inspirations
into full sentences.

4. Empty No inspirations.

30423

https://www.ehow.com/


Purp Purp+
mech

Purp+
mech
sent

Empty

Feasible (#) 4.37 3.67 4.8 4.8
Feasible (%) 0.72 0.78 0.83 0.63
Creative (k=2) (#) 3.18 2.6 4.06 3.4
Creative (k=2) (%) 0.58 0.57 0.75 0.49
Novel(k=3) (#) 1.81 1.13 1.86 1.73
Novel(k=3) (%) 0.31 0.26 0.32 0.25

Table 1: For each condition, we report the total number
and ratio (from all solutions) of feasible and creative
solutions produced. We report both the liberal (novelty
threshold k = 2) and strict (k = 3) settings. Although
the empty condition produced the most feasible solu-
tions, other conditions, especially the sentence condi-
tion, produced more novel solutions. All inspiration-
based conditions produced a higher ratio of feasible and
creative solutions than the empty condition.

One example of a problem sampled as inspiration
for the problem “Cool a room” is “Creating a cham-
ber seal mechanism”. A solution sampled for this
problem is “Packing rings”, and the generated sen-
tence is “Packing rings expand under fluid pressure
to create effective chamber seals”. Additional ex-
amples are given in Appendix D.

7 Results

We are interested in the degree to which our ap-
proach helps users to come up with creative solu-
tions to well-known problems. For that, we mea-
sured the quality of the solutions produced by the
participants in the experiment. Expanding upon
Reinig et al. (2007); Hope et al. (2017), we define
creativity as a combination of utility and novelty.
Thus, we first score each solution with a binary
feasibility score representing whether this solution
is feasible and solves the given problem. Feasible
solutions were then tagged with a novelty score (1:
the solution is well-known, 2: uncommon solution,
3: a very novel solution). In the following analysis,
we treat a solution as either creative or not creative,
by applying a novelty threshold k. We report re-
sults for both a liberal setting (k = 2) and a strict
setting (k = 3).

Overall, 3 judges tagged 374 solutions suggested
by the participants. Since this is a non-trivial anno-
tation task, the judges were first calibrated over 10
randomly selected solutions. Then, their agreement
was computed over another set of 10 solutions. The
remaining 354 solutions were randomly split into

Metric
Condition Purpose Purp

+mech

Purp
+mech

sent
% creative (k=2)

from inspired
0.6 0.57 0.73

% creative (k=2)
from non-inspired

0.44 0.47 0.47

% creative (k=3)
from inspired

0.42 0.25 0.37

% creative (k=3)
from non-inspired

0.17 0.2 0.08

Table 2: Percentage of creative solutions from inspired
and non-inspired (=participant indicated this was their
own idea) solutions. For all conditions and novelty
thresholds, the percentage of creative solutions from
inspired-solutions is noticeably higher.

3 and annotated separately by the judges. Agree-
ment between the judges was substantial, with 90%
full agreement (all judges agreed) on the feasibil-
ity scores. Agreement for the novelty score was
high as well, with 66% agreement for the liberal
case, and 88% agreement for the strict case. For all
scores and cases, agreement between at least 2 out
of the 3 judges was 100%.

7.1 RQ1: Effect of inspirations
We assess the degree to which each of the
inspiration-based conditions (purpose, purpose +
mechanism, purpose + mechanism sentence) in-
creased the creativity of the participants. As can
be seen in Table 1, participants in the empty con-
dition (as well as the sentence condition) provided
the highest absolute number of feasible solutions,
perhaps because they did not spend time reading
inspirations. However, the ratio of feasible ideas
(out of all ideas, averaged over all participants) was
higher for the inspiration-based conditions, suggest-
ing that inspirations helped participants produce
higher-quality ideas.

For creativity, we see that for both novelty thresh-
olds k = 2, k = 3, the purpose+mechanism sen-
tence condition produced the highest number of
creative ideas, but participants in all inspiration-
based conditions produced a significantly higher
ratio of creative ideas compared to participants in
the empty condition, again indicating the contribu-
tion of the inspirations.

We were surprised to see that the performance
of purpose+mechanism was low compared to other
inspiration-based conditions. This might indicate

30424



that the relation between mechanisms and purposes
is not always clear, confusing the participants and
increasing the cognitive load, and putting it into a
sentence helps participants.

Since the sentence condition has yielded the
best results, we focus on it, and test its usefulness
in producing creative ideas. We run a statistical
test to compare the ratios of creative ideas per par-
ticipant under the empty and sentence conditions.
We verify normality and equal variances using the
Shapiro-Wilk test and Levene’s test, and run Stu-
dent’s t-test to compare the two conditions. The
results for the liberal case are significant with p =
0.004, but the results for the strict case were not (p
= 0.07), potentially because the number of highly
novel ideas was smaller.

For the inspiration-based conditions, we exam-
ine the reported source of inspiration per idea. The
ratio of creative solutions out of solutions inspired
by the graph was higher than the ratio of creative
solutions out of non-inspired ones (participants’
own ideas) across all conditions (Table 2).

7.2 RQ2: Trajectories
To answer our second research question, we com-
pare the usefulness of the inspirations by their tra-
jectory (NLI, LLM, Verb nodes).

We look at the ratio of feasible and creative so-
lutions out of all solutions inspired by a certain
trajectory type. The results in Table 3 indicate that
both LLM and NLI-based inspirations were able
to produce solutions of higher quality than verb-
based inspired solutions. This might make sense, as
two nodes that only share synonymous verbs might
be very far off. To complement this, we observe
the percent of inspirations from each source that
were used in creative solutions. We find that 38%
of the verb-based inspirations were used in very
creative solutions (novelty threshold = 3), close
to that of the other two sources (44%, 42%). We
conclude that although the LLM and NLI-based
inspirations proved superior in our experiment,
verb-based inspirations are still useful.

7.3 Additional insights

Solution generation over time. We compare the
number of feasible and creative solutions produced
by participants under each condition, as a func-
tion of the time from the start of the experiment
(Figure 3). Participants under the empty condition
produced more feasible (top figure) and creative
ideas (the figure depicts the liberal novelty setting,

Metric

Source
NLI LLM Verb

% Feasible solutions 0.84 0.78 0.73
% Creative solutions (k=2) 0.71 0.67 0.54
% Creative solutions (k=3) 0.39 0.4 0.29

Table 3: Percentages of feasible and creative solutions
per trajectory type (out of all solutions using this tra-
jectory). The results are calculated over both problems
from the experiment. For all metrics and cases, the re-
sults for NLI and LLM-based inspirations are higher
than those of the verb-based inspirations, indicating a
stronger signal for enhancing creative ideation.

but this is true for the strict setting as well). We hy-
pothesized that participants in the empty condition
are not shown inspirations and can immediately
start coming up with ideas, leading to better results
at the beginning of the experiment. However, this
advantage disappears over time, as the subjects in
the other conditions exceed the performance of the
empty-condition participants. We also note that
33.4% of the participants under the empty condi-
tion stated they needed more time to complete the
task, as opposed to 50%, 46.7% and 53.3% of the
participants under the inspiration-based conditions.

Preliminary exploration of SOTA LLMs. De-
spite their tremendous popularity, state-of-the-art
LLMs struggle with creative thinking and problem
solving (Tian et al., 2023; Franceschelli and Mu-
solesi, 2024). We perform a preliminary study to
assess the possibility of using LLMs to find creative
solutions to everyday problems. We ask GPT-4o
(Hurst et al., 2024), a popular SOTA LLM, to gener-
ate original solutions to the same problems given to
the participants in our experiment. We use similar
instructions to those given to participants. Overall,
GPT-4o produced 14 solutions (7 for each prob-
lem), 8 of which deemed feasible by our annotator.
However, further analysis of the solutions showed
that all solutions already appear online, and some
are common, hinting that SOTA LLMs might in-
deed be limited in producing truly novel solutions.

Satisfaction. After completing the task, partic-
ipants were asked to completed a short survey.
When asked whether similar inspirations would
be helpful in the future when tackling a problem,
100% of the participants under the sentence con-
dition answered positively, compared to 75% and
86.7% of participants under the purpose and pur-
pose+mechanism conditions.

30425



Figure 3: Average number of feasible (top) and novel
(bottom) solutions through time passed in the experi-
ment for the different conditions. Participants under
the empty condition (green dash-dotted line) produced
more feasible and novel ideas at the start of the ex-
periment. As time progressed, participants under the
purpose (solid blue) and purpose+mechanism sentence
(dashed green) conditions managed to come up with
more feasible and novel ideas. This aligns with our hy-
pothesis that generating solutions under the inspiration-
based conditions requires additional time.

8 Related Work

Computational methods aimed at augmenting hu-
man creativity and ideation have garnered signif-
icant attention. A prominent avenue focuses on
leveraging analogy as a powerful cognitive mech-
anism for generating novel solutions (Gentner,
1983; Hofstadter, 2001). One significant line of
work involves the creation and utilization of struc-
tured knowledge to identify potential analogies.
For instance, the seminal Structure-Mapping En-
gine (SME) (Falkenhainer et al., 1989) operates on
propositional representations.

Harnessing analogies to navigate between ideas
has been explored in design-by-analogy works. Re-
cent works (Sarica et al., 2020; Luo et al., 2021)

offered to retrieve inspirations from patent data, but
focused on semantic similarity, not structural simi-
larity or functional relations. Murphy et al. (2014)
did try to encode some functionality information,
but this was based on shallow keyword embedding,
without taking abstraction into account.

More directly relevant to functional thinking are
approaches that explicitly encode functional knowl-
edge. The Functional Basis (Hirtz et al., 2002;
Stone and Wood, 1999) provides a standardized
vocabulary for describing the functions and flows
within a system. This framework has been used to
develop tools for concept generation, but the vocab-
ularies are often small and restricted, and do not
offer the expressivity of our approach.

While analogy and abstraction are still consid-
ered hard tasks for machines (Mitchell, 2021),
LLMs have shown emergent capabilities of ana-
logical reasoning (Webb et al., 2023; Zhou et al.,
2025). This raises exciting possibilities for future
work.

9 Conclusions and future work

In this work we propose a method to build Func-
tional Concept Graphs – representations that en-
able navigation across interconnected functional
elements, facilitating abstraction and reframing of
problems, and the discovery of analogical inspira-
tions. Unlike previous attempts, our approach can
scale to large datasets and results in richer, better-
connected and less noisy graphs, whose edges ex-
plicitly encode abstraction relations. We also intro-
duce MUSE, an algorithm that, given an FCG and
a target problem, produces inspirations that could
help users creatively solve the problem.

We demonstrate our method by computing an
FCG on 500K patents, which we release for further
research. We conduct a user study to evaluate the
usefulness of MUSE. Our results indicate that our
inspirations resulted in more creative ideas, both in
terms of absolute number (up to 19% more creative
solutions when using inspirations) and ratio (49%
creative ideas without inspirations opposed to 75%
in the sentence condition).

In this work, we suggested a simple way of sam-
pling inspirations from the graph. In the future, we
plan to explore more sophisticated sampling meth-
ods. One immediate option is to sample far-off
analogies as inspirations.

Another interesting research direction is using
the inspiration graph to enhance creativity in SOTA

30426



AI agents. Our initial inspection in Section 7.3
demonstrates that current SOTA LLMs struggle
generating truly never-before-seen solutions. We
hypothesize that enriching these models in either
the training or inference phases would help enhanc-
ing their creative problem-solving ability.

We hope our work would inspire further research
on enhancing creative ideation by automatically
finding structured representations for navigating
the design space and finding analogies in large,
complex idea repositories.

10 Ethical considerations

Experiment. Our used study was approved by an
institutional ethics committee. We do not save any
personal information for any of the participants
apart from the Prolific ID, which we discard after
completing the analysis. Ideas generated by the
subjects remain their own, and we make no com-
mercial use of any of them. Prior to starting the
experiment, participants agreed to privacy and data
collection terms which were fully described in a
consent form.
Usage of AI agents. We did not use any AI agents
the writing process of this paper. For coding, we
occasionally used Claude 3.7 Sonnet, and verified
the output code. The parts of our pipeline that in-
clude the usage of LLMs were explicitly described
in Section 4.
Reliance on automatic creativity. Our work pro-
poses an automatic assistance to enhance creativity,
thus reducing the burden of trying to break the cre-
ative fixation for the users. In case our method
becomes popular, one might rely on it in creative
problem-solving tasks. This raises the potential
risk of over-reliance on automatic creativity tools
and creating biases.

11 Limitations

In this work, we opted to use patents extracted
from the US patents database, and use these patents
to draw inspirations from existing solutions. One
limitation of our method is that we might miss out
on many relevant products and ideas that do not
exist in the database. Specifically, users using our
solution cannot be inspired by patents not written
in English and registered in the US, as they are not
part of our dataset. This might introduce a bias
and fixate the users to draw analogies from certain
types of solutions, ignoring solutions from different
cultures.

Similarly, all participants in our user-based study
were native English speakers. We did not test
how our tool helps ideation for non-native English
speakers.

Another limitation of our work is the reliance
on CPC tags to collect the mechanism tags. When
generalizing to new domains, we would need alter-
native methods for collecting mechanism tags.

Acknowledgements

This work was supported by the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(grant no. 852686, SIAM). We also thank the
anonymous reviewers for their constructive com-
ments.

References
Anthropic. 2025. Claude 3.7 sonnet. Accessed: 2025-

04-01.

Steven Bird. 2006. Nltk: the natural language toolkit.
In Proceedings of the COLING/ACL 2006 interactive
presentation sessions, pages 69–72.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 335–336.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng,
Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé
Jégou. 2024. The faiss library. arXiv preprint
arXiv:2401.08281.

Brian Falkenhainer, Kenneth D Forbus, and Dedre Gen-
tner. 1989. The structure-mapping engine: Algo-
rithm and examples. Artificial intelligence, 41(1):1–
63.

Christiane Fellbaum. 2010. Wordnet. In Theory and ap-
plications of ontology: computer applications, pages
231–243. Springer.

Giorgio Franceschelli and Mirco Musolesi. 2024. On
the creativity of large language models. AI & SOCI-
ETY, pages 1–11.

30427

https://www.anthropic.com/claude/sonnet


Dedre Gentner. 1983. Structure-mapping: A theoretical
framework for analogy. Cognitive science, 7(2):155–
170.

Mary L Gick and Keith J Holyoak. 1980. Analogical
problem solving. Cognitive psychology, 12(3):306–
355.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Julie Hirtz, Robert B Stone, Daniel A McAdams, Simon
Szykman, and Kristin L Wood. 2002. A functional
basis for engineering design: reconciling and evolv-
ing previous efforts. Research in engineering Design,
13:65–82.

Douglas R Hofstadter. 2001. Analogy as the core of
cognition. The analogical mind: Perspectives from
cognitive science, pages 499–538.

Keith J Holyoak and Paul Thagard. 1996. Mental leaps:
Analogy in creative thought. MIT press.

Tom Hope, Joel Chan, Aniket Kittur, and Dafna Sha-
haf. 2017. Accelerating innovation through analogy
mining.

Tom Hope, Ronen Tamari, Hyeonsu Kang, Daniel Her-
shcovich, Joel Chan, Aniket Kittur, and Dafna Shahaf.
2022. Scaling creative inspiration with fine-grained
functional aspects of ideas.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

David G Jansson and Steven M Smith. 1991. Design
fixation. Design studies, 12(1):3–11.

Moritz Laurer, Wouter Van Atteveldt, Andreu Casas,
and Kasper Welbers. 2024. Less annotating, more
classifying: Addressing the data scarcity issue of su-
pervised machine learning with deep transfer learning
and bert-nli. Political Analysis, 32(1):84–100.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Jianxi Luo, Serhad Sarica, and Kristin L Wood. 2021.
Guiding data-driven design ideation by knowledge
distance. Knowledge-Based Systems, 218:106873.

Jingjing Ma, Xiangming Jiang, and Maoguo Gong.
2018. Two-phase clustering algorithm with density
exploring distance measure. CAAI Transactions on
Intelligence Technology, 3(1):59–64.

James MacQueen. 1967. Some methods for classifica-
tion and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1:
Statistics, volume 5, pages 281–298. University of
California press.

Melanie Mitchell. 2021. Abstraction and analogy-
making in artificial intelligence. Annals of the New
York Academy of Sciences, 1505(1):79–101.

Jeremy Murphy, Katherine Fu, Kevin Otto, Maria Yang,
Dan Jensen, and Kristin Wood. 2014. Function based
design-by-analogy: a functional vector approach to
analogical search. Journal of Mechanical Design,
136(10):101102.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Prolific. 2014. Prolific. Accessed: 2025-04-10.

A Terry Purcell and John S Gero. 1996. Design and
other types of fixation. Design studies, 17(4):363–
383.

Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen,
Chris Callison-Burch, and Jason Wei. 2021. A recipe
for arbitrary text style transfer with large language
models.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Bruce A Reinig, Robert O Briggs, and Jay F Nunamaker.
2007. On the measurement of ideation quality. Jour-
nal of Management Information Systems, 23(4):143–
161.

Serhad Sarica, Jianxi Luo, and Kristin L Wood. 2020.
Technet: Technology semantic network based on
patent data. Expert Systems with Applications,
142:112995.

Robert B Stone and Kristin L Wood. 1999. Develop-
ment of a functional basis for design. In International
Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference,
volume 19739, pages 261–275. American Society of
Mechanical Engineers.

Jiankai Sun, Deepak Ajwani, Patrick K Nicholson,
Alessandra Sala, and Srinivasan Parthasarathy. 2017.
Breaking cycles in noisy hierarchies. In Proceedings
of the 2017 ACM on Web Science Conference, pages
151–160.

30428

https://www.prolific.com


Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ro-
nan Le Bras, Raja Marjieh, Nanyun Peng, Yejin Choi,
Thomas L Griffiths, and Faeze Brahman. 2023. Mac-
gyver: Are large language models creative problem
solvers? arXiv preprint arXiv:2311.09682.

Andrew Toole, Christina Jones, and Sarvothaman Mad-
havan. 2021. Patentsview: An open data platform to
advance science and technology policy.

Joe H Ward Jr. 1963. Hierarchical grouping to opti-
mize an objective function. Journal of the American
statistical association, 58(301):236–244.

Taylor Webb, Keith J Holyoak, and Hongjing Lu. 2023.
Emergent analogical reasoning in large language
models. Nature Human Behaviour, 7(9):1526–1541.

Ben Zhou, Sarthak Jain, Yi Zhang, Qiang Ning, Shuai
Wang, Yassine Benajiba, and Dan Roth. 2025. Self-
supervised analogical learning using language mod-
els. arXiv preprint arXiv:2502.00996.

A Annotated patent example

See figure 4 for a full example of an annotated
patent.

Figure 4: Example of an annotated patent. The patent
title is associated with purpose and mechanism tags,
demonstrating the problems and solutions offered in it.

B Annotation prompt example

See figure 5 for a prompt and output example for
annotating

C Implementation details

C.1 General implementation details
All code for this project was written in python-3.10.
The attached Git repository contains all code, de-
pendencies and commands required to create the

inspiration graph, sampling from it, running the
experiment and analyzing the results. All packages
and datasets used in this work were used solely for
academic work, with accordance to their license.
All data statistics, model and hyper-parameter
choices are described in their corresponding sec-
tions. To create the inspiration graph, we used a
single A5000 GPU (24GB) for 4 hours. We mostly
used it to run the NLI and llama3.1-8b-Instruct
models described in section 4.3. In order to speed
up the agglomerative clustering process described
in section 4.2, we used 8 32GB-CPUs that ran in
parallel for 3 days.

C.2 Getting mechanism tags from CPC tags

Prior to training the mechanism classifier described
in section 4.1, we process each one of the CPC
titles text. first, if it contains more than one text
span, we split it so each CPC id may be indicated
by multiple titles in our final tags set. This split
to multiple text spans may result in a single patent
having multiple tags, which are not all necessarily
related to it. To deal with this, for each patent we
measure the cosine similarity between its title and
the CPC tags title’s Sentence BERT embeddings,
and select only the most relevant one.

C.3 Clustering implementation details

For all clustering purposes, we used the algo-
rithms implemented in Scikit-learn (Pedregosa
et al., 2011) used under BSD License. Loose clus-
tering with K-means. As explained in section
4.3, the loose clustering step is meant to reduce
the number of nodes which we aggressively cluster
with agglomerative clustering. We choose to use
K-means with K = 10000.

Aggressive clustering. In order to select the param-
eters for the agglomerative clustering step, we rub
agglomerative clustering on the evaluation dataset
mentioned in section 4.2 with similarity thresholds
{i · 0.05 | i ∈ {1, 2, . . . , 8}}. We use cosine simi-
larity as the metric for clustering, complete linkage
and the default values for all other parameters. Fig-
ure 6 shows the NMI and purity measures across
the tested distance thresholds.

C.4 Abstraction with entailment

In order to check whether a problem node entails
another, we randomly select a representative pur-
pose tag from each node. We experiment with 2
prefix options – “I want” and “The patent provides”.

30429



For the NLI model, we use a fine-tuned version of
Deberta-V3-large (304M parameters) (He et al.,
2021), offered in Laurer et al. (2024). In order to
choose the entailment threshold, we tag the clusters
generated in section C.3, and tag all abstraction re-
lations between them. We test different values for
the entailment threshold t and prefix, settling on
t = 0.5 and prefix = “I want” since it achieved the
highest recall (0.65) and precision (0.9) rates.

C.5 Enhancing connectivity with LLM-based
connections and verb-based connections

We extracted verbs using NLTK (Bird, 2006), used
under Apache License Version 2.0. As we men-
tioned in section 4.3, we enhance the connectivity
of the graph by creating additional LLM-based
nodes created from a set of candidate nodes. We
first discuss the process of choosing these nodes.
Let hmax be the maximal height of a node in the
loose cluster graph. We choose candidate nodes
as all nodes whose height is at least hmax − 3 and
distance from the highest node in their path is 2. Af-
ter selecting the candidate nodes, we use K-means
with K = 5 to split these nodes into 5 clusters. We
prompt llama3.1-8b-instruct to select (if possible) a
subset of the nodes from each cluster that can be ab-
stracted together, and find an abstraction for them.
As an additional validation step, for each such clus-
ter ci, we find the furthest cluster cj by computing
the minimum cosine similarity between all nodes.
We add to ci to 2 nodes which are most dissimilar
to nodes from cj . If any of these nodes were se-
lected alongside original nodes from ci during the
abstraction process, we discard the abstraction.

C.6 Connecting the interim graphs

Similar to the process of enhancing the graph con-
nectivity using LLM-based nodes described in sec-
tion 4.3, in order to connect the different interim
graph we first select a set of candidate nodes for
each loose cluster. We select the same candidate
nodes as those described in section C.5. In order
to connect these nodes with NLI-based nodes, we
perform the same process described in section 4.3,
over pairs of nodes coming from different candidate
node sets. For the LLM-based enhancements, we
replicate the same process described in section C.5.

D Inspiration examples

Figure 7 shows an example of 5 inspirations pre-
sented in each condition in our experiment.

E Experiment instructions

The full instructions for our experiment are pro-
vided in figure 8.

30430



Prompt input and output example for annotating a product description

Prompt:

Example 1:
Method and device for precise invasive procedures.This invention relates generally to the field of invasive
medical procedures, and specifically to accurate monitoring of invasive procedures with an imaging
system . A method for inserting an invasive tool, including: attaching a frame to a human body adjacent
to a portion of the body; acquiring an image of the body; determining a trajectory of the tool on the
image; calculating points of intersection between the trajectory and two sheet which are adapted to be
inserted into the frame; perforating the sheets at the calculated points; placing the sheet within the frame;
and inserting the invasive tool through the perforations.
The purpose of the patent is to monitor invasive procedures.

Example 2:
Hair style device. This invention relates to devices which attach to the hand of a user ,which devices
simultaneously blow-dry and style hair on mammals. A hair-styling device containing a hand attachment
and a source for heated air under pressure connected to the hand attachment.
The purpose of the patent is to blow dry and style hair

Example 3:
Swivel wheel mount. This invention relates to a child’s stroller (a bassinet , a baby buggy or similar
device used to support or transport a person) with wheels which swivel. Disclosed is a stroller including
a frame member, a swivel mount adapted to receive the frame member, a swivel latch adapted to be
received in the swivel mount, a suspension housing including a swivel latch receiving portion, the
suspension housing adapted to be attached to the swivel mount, a swivel pin adapted to be received in the
frame member, the swivel mount, and the suspension housing, and at least one wheel pivotally attached
to the frame member.
The purpose of the patent is to provide a stroller with a swivel wheel

Your input:
Modular engine, such as a jet engine, with a speed reduction gear. The present invention relates to an
aircraft propulsion engine, such as a turbojet engine, a multi-flow turbofan, in particular with a high
dilution ratio, or a turboprop engine, having a front power transmission shaft, driven by a turbine rotor by
means of a speed reduction gear. The present invention relates to an engine (1) with a modular structure
comprising a plurality of coaxial modules (A, B, C) with, at one end, a first module (A) comprising a
power transmission shaft (3) and a speed reduction gear (7), said power transmission shaft being driven
via the speed reduction gear (7) by a turbine shaft (2) secured to one (C) of said coaxial modules that is
separate from the first module, the speed reduction gear comprising a drive means (8 and 9) fixed to the
turbine shaft (2) and to a journal (13) of a shaft of a low-pressure compressor rotor (1 a), characterized in
that it comprises a first nut (16) for fastening the drive means to the journal and a second nut (14) for
fastening the drive means to the turbine shaft.
What is the purpose of the patent? What is the context of the patent?

Output example:
The purpose of the patent is to provide a method for reducing the speed of a jet engine.

Figure 5: An example of the prompt we use to annotate patent descriptions with purpose tags, followed by an
output example. The in-context prompt consists of 3 examples for annotated patent descriptions, followed by the
description to be tagged.

30431



Figure 6: Purity (green dots) and NMI (red X) results
for the different similarity thresholds. We see that the
best results for both metrics are produced by choosing
distance threshold = 0.2.

30432



Examples for inspirations provided in the experiment
Condition 1: Purpose

1. Possible inspiration: Think of a method and apparatus for cooling a work piece

2. Possible inspiration: Think of a system for cooling a person

3. Possible inspiration: Think of a water cooled door

4. Possible inspiration: Think of a computer cooling assembly

5. Possible inspiration: Think of a cooling bed system

Condition 2: Purpose + Mechanism

1. Possible inspiration: Think of a method and apparatus for cooling a work piece Related concepts:

• Heat-exchange apparatus

2. Possible inspiration: Think of a system for cooling a person Related concepts:

• Air-humidification

3. Possible inspiration: Think of a water cooled door Related concepts:

• Combustion engines

4. Possible inspiration: Think of a computer cooling assembly Related concepts:

• Vehicle cooling systems

5. Possible inspiration: Think of a cooling bed system Related concepts:

• Therapeutic cooling beds

Condition 3: Purpose + Mechanism sentence

1. Possible inspiration: Think of a method and apparatus for cooling a work piece Related concepts:

• Heat-exchange apparatus without direct contact enables precise workpiece cooling

2. Possible inspiration: Think of a system for cooling a person Related concepts:

• Air-humidification enhances evaporative cooling effects for personal comfort

3. Possible inspiration: Think of a water cooled door Related concepts:

• Combustion engines employ water cooling technologies for component protection

4. Possible inspiration: Think of a computer cooling assembly Related concepts:

• Vehicle cooling systems inform compact computer cooling assembly design

5. Possible inspiration: Think of a cooling bed system Related concepts:

• Medical science applications incorporate therapeutic cooling beds for patient care

Figure 7: Examples for inspirations sampled for the problem “Cool a room”. We provide 5 examples for each
condition. For clarity, we show the same problem and solution nodes sampled in each condition.

30433



Figure 8: The full instructions for our experiment

30434


