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Abstract

Recent advancements in large language models
have significantly influenced the field of online
medical consultations. However, critical chal-
lenges remain, such as the generation of hallu-
cinated information and the integration of up-
to-date medical knowledge. To address these is-
sues, we propose Informatics Llama (ILlama),
a novel framework that combines retrieval-
augmented generation (RAG) with a structured
medical knowledge graph. ILlama incorporates
relevant medical knowledge by transforming
subgraphs from a structured medical knowl-
edge graph into text for RAG. By generating
subgraphs from the medical knowledge graph
in advance for RAG, specifically focusing on
diseases and symptoms, ILlama enhances the
accuracy and relevance of its medical reasoning.
This framework enables effective incorporation
of causal relationships between symptoms and
diseases. Also, it delivers context-aware consul-
tations aligned with user queries. Experimental
results on the two medical consultation datasets
demonstrate that ILlama outperforms strong
baselines, achieving a semantic similarity F1
score of 0.884 when compared to ground-truth
consultation answers. Furthermore, qualitative
analysis of ILlama’s responses reveals signifi-
cant improvements in hallucination reduction
and clinical usefulness. These results suggest
that ILlama has strong potential as a reliable
tool for real-world medical consultation envi-
ronments. Our implementation is available at:
https://github.com/suhyeong10/ILlama

1 Introduction

Traditional online medical consultation platforms,
such as HealthCareMagic1 and iCliniq2, rely on

*These authors contributed equally to this work.
†Corresponding author.
1https://www.askadoctor24x7.com
2https://www.icliniq.com

medical professionals to answer patient queries and
provide expert advice. However, due to their de-
pendence on human labor, these systems face limi-
tations in delivering real-time responses, as experts
require significant time to review inquiries and gen-
erate appropriate answers (Cao et al., 2022). To
address this issue, rule-based medical consultation
systems have been introduced (Amato et al., 2017;
Mishra et al., 2023; Rosruen and Samanchuen,
2018; Huang et al., 2018). Nevertheless, these sys-
tems often struggle to handle complex symptoms
and patient-specific queries, as they rely on prede-
fined rules that lack flexibility and adaptability.

Recently, large language model (LLM)-based
consultation systems, such as ChatDoctor (Li et al.,
2023), have emerged as promising alternatives.
These systems typically extract keywords from
user queries to retrieve relevant medical informa-
tion from sources like Wikipedia or custom disease
databases. However, their reliance on potentially
inaccurate keyword extraction may lead to search
failures and hallucinations, failing to capture essen-
tial disease-symptom relationships. While dense
embedding-based retrieval methods (Karpukhin
et al., 2020) can alleviate keyword extraction errors,
they still have limitations in capturing the com-
plex symptom-disease relationships essential for
medical consultations. For example, distinguishing
whether shortness of breath and fatigue arise from a
serious condition like lung cancer or a more benign
cause such as anemia requires an understanding of
such causal relationships.

To overcome these limitations, we propose a
novel framework for real-time medical consulta-
tion, called Informatics Llama (ILlama). ILlama
improves the response quality as measured by
embedding-based evaluation metrics by incorpo-
rating structured medical knowledge. ILlama lever-
ages retrieval-augmented generation (RAG) (Lewis
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et al., 2020b) by incorporating medical knowledge
from a structured knowledge graph (KG) built upon
the unified medical language system (UMLS)3.
Unlike keyword-dependent approaches, ILlama
improves both retrieval efficiency and reliability.
Keyword-extraction methods often misinterpret the
intent of user queries and, in many cases, fail to
return relevant results if relevant medical informa-
tion for the extracted keywords is unavailable. By
employing a KG-based retrieval approach (Luo
et al., 2025), ILlama effectively represents disease-
symptom causal relationships, enhancing the con-
textual relevance and accuracy of diagnostic re-
sponses.

In addition, ILlama tackles two core limitations
prevalent in existing dense embedding-based aug-
mentation systems: (1) the incompleteness of ex-
ternal knowledge representations and (2) the diffi-
culty in aligning user queries with the embedded
knowledge space (Varshney et al., 2023). ILlama
addresses the incompleteness of the KG by con-
structing subgraphs that enrich sparse regions with
semantically related triples. It is also designed to
alleviate the challenge of aligning user queries with
the KG structure by embedding each triple and inte-
grating it into the answer generation process. This
approach enables more accurate semantic match-
ing and enhances the clinical relevance of the gen-
erated responses. Specifically, embedding triples
allows the model to retrieve more precise symptom-
disease associations, reducing factual errors, while
the structured knowledge context provided by the
KG improves the alignment of responses with real-
world clinical reasoning.

To ensure that ILlama performs reliably not
only on known data distributions but also in un-
familiar real-world scenarios, we adopt both in-
distribution and out-of-distribution evaluation pro-
tocols throughout this work. We validate the ef-
fectiveness of ILlama using two medical consulta-
tion datasets with different characteristics. Specif-
ically, we conducted experiments with publicly
available data collected from HealthCareMagic and
iCliniq. For in-distribution evaluation, we use the
HealthCareMagic dataset, which includes separate
training, validation, and test splits. For out-of-
distribution evaluation, we use real-world consul-
tation records from the iCliniq platform, serving
as the test set. ILlama7B, which is based on the

3https://www.nlm.nih.gov/research/umls/index.
html

same base model as ChatDoctor, achieves seman-
tic similarity F1 scores of 0.866 and 0.851 on the
in-distribution and out-of-distribution datasets, re-
spectively, and outperforms all baseline models.
ILlama8B, with a more powerful backbone LLM,
further improves these results, achieving scores of
0.884 and 0.871, respectively. We further validate
the reliability and clinical quality of the generated
responses by a qualitative evaluation.

In summary, our contributions are three-fold:

• We propose ILlama, a framework that en-
hances the effectiveness of medical consul-
tations by leveraging RAG with structured
UMLS-based KG.

• ILlama utilizes subgraphs from a UMLS-
based KG, which are transformed into docu-
ment form, combined with vector search tech-
niques, enabling precise retrieval and integra-
tion of medically relevant knowledge into the
answer generation process.

• Our framework achieves state-of-the-art per-
formance across multiple datasets, with the
best results observed on the HealthCareMagic
dataset, significantly improving the reliability
and usefulness of automated medical consul-
tation systems.

2 Related Works

2.1 Early Medical Consultation Systems

Early systems (Amato et al., 2017; Mishra et al.,
2023; Rosruen and Samanchuen, 2018; Huang
et al., 2018) used rule-based approaches for simple
Q&A interactions, easing the burden on health-
care professionals but failing to handle complex
symptoms and disease interactions. To overcome
this, medical-specialized models using natural lan-
guage processing technologies (Lee et al., 2020;
Yuan et al., 2022; Lu et al., 2022) were developed,
yet challenges in incorporating structured medical
knowledge and understanding causal relationships
between symptoms and diseases remain. LLMs
such as GPT-4 (Achiam et al., 2023) have catalyzed
the development of models capable of sophis-
ticated medical consultations (Thirunavukarasu
et al., 2023; Li et al., 2024; Toma et al., 2023; Chen
et al., 2023; Luo et al., 2022; Yang et al., 2024),
although persistent challenges remain, including
hallucinations and the incorporation of up-to-date
medical information (Vaishya et al., 2023; Hadi
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et al., 2024). To mitigate these issues, we incor-
porate a UMLS-based KG that enables accurate
identification of disease relationships and contex-
tual information retrieval, thereby supporting more
clinically relevant and context-aware consultations.

2.2 Knowledge Graph-Enhanced LLMs in
Medical Consulting

To address the limitations of LLMs, such as hallu-
cinations, lack of timely medical knowledge, and
insufficient adaptability to patient-specific contexts
(Pal et al., 2023), recent research has explored the
integration of real-world knowledge to enhance per-
formance in medical applications. Among these
approaches, the combination of LLMs with KGs
has demonstrated effectiveness in incorporating ex-
ternal information (Goldsack et al., 2023). For
example, KG-enhanced models have been used
for diagnosis prediction (Gao et al., 2025), graph-
augmented medical dialogues (Varshney et al.,
2023), and factual medical question answering
(Guo et al., 2022; Martino et al., 2023). While prior
methods serialize the entire graph or all neighbor-
ing nodes into lengthy text inputs without filtering
noisy information, our approach selects only a one-
hop subgraph centered on a compressed triple via
Triple2Seq (Bi et al., 2024), resulting in a much
shorter input averaging 130 tokens (Li et al., 2025).
ILlama introduces subgraph-based retrieval and se-
mantic reranking to improve knowledge relevance
and integration, offering more accurate and context-
sensitive medical consultations.

3 Method

The proposed framework consists of three main
components: Retriever, Reranker, and Generator.
Medical knowledge from the KG is first segmented
into subgraphs and transformed into documents in
natural language form, which serve as input across
all stages. Section 3.1 describes how the Retriever
identifies subgraphs semantically relevant to the in-
put query. Section 3.2 presents the Reranker, which
employs a cross-encoder (Reimers and Gurevych,
2019) to rerank the retrieved documents in natural
language form. Section 3.3 explains how the Gen-
erator uses the top-ranked documents to generate
the final response. The overall process is illustrated
in Figure 1.

3.1 Retriever: Enhancing Medical Knowledge
In medical consultations, it is essential to provide
accurate, context-aware information without hallu-

cinations. Our framework requires comprehensive
medical knowledge, particularly regarding causal
relationships between symptoms and diseases. To
achieve this, we incorporate a KG based on UMLS,
which enables the language model to effectively
capture these relationships and allows targeted re-
trieval of relevant medical facts from the KG. This
ensures that responses are both precise and contex-
tually appropriate to the user’s query.

3.1.1 Triple-Centric Knowledge Structuring
for Medical Reasoning

To represent medical knowledge, we adopt the
Triple2Seq method to segment the UMLS-based
KG into coherent subgraphs. A subgraph contains
medical concept nodes (e.g., diseases, symptoms,
treatments) connected by relationship edges (e.g.,
"has symptom", "treated by"). Triple2Seq dynam-
ically selects a subgraph by identifying a central
triple and including only its one-hop neighbors.
This structure is linearized into a sequence for effi-
cient language model integration while minimizing
noise.

Each subgraph Tg is composed of a center triple
Tc (e.g., Lung Cancer-has symptom-Fatigue), rep-
resenting a core medical concept, and a set of neigh-
boring context triples TN (e.g., Lung Cancer-has
causes-Smoking) that provide additional medical
facts related to the center triple:

Tg = Tc ∪ TN . (1)

TN includes all triples connected to the center
triple via its neighboring nodes in the KG and is
defined as:

TN = {Ti | Ti ∈ N}, (2)

where N denotes the set of nodes that are directly
linked to the center concept in the graph. For ex-
ample, if the center triple corresponds to a disease
such as lung cancer, the context triples may include
related symptoms (e.g., shortness of breath and fa-
tigue), diagnostic procedures (e.g., chest X-ray), or
causes (e.g., smoking or air pollution). By organiz-
ing knowledge in this localized and relation-centric
manner, the model is guided to focus on medically
relevant and causally connected concepts, thereby
enhancing the contextual consistency of the gen-
erated responses. Furthermore, this structure en-
ables more accurate and context-aware diagnosis
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Figure 1: Overall architecture for medical query answering using contextualized subgraphs from the UMLS-based
KG. These subgraphs are encoded and stored in a vector database, then combined with the user query to generate
the final response using the Llama model.

and consultation based on the patient’s reported
symptoms, ultimately improving the reliability and
practicality of medical dialogue systems.

3.1.2 Subgraph-to-Text Transformation
The UMLS-based KG represents relation-
ships between medical concepts using a sub-
ject–predicate–object triple structure, which
closely resembles the structure of natural language
sentences. Leveraging this property, we convert
each triple into a natural sentence. This transfor-
mation reconstructs the structural relationships in
the graph into a coherent narrative, allowing the
model to intuitively understand the meaning and
connections between medical entities. As a result,
the graph-based knowledge is naturally integrated
into the text generation process, enabling the
model to learn richer contextual information.

We further define subgraphs consisting of a cen-
ter triple and its related neighboring triples. All
triples within each subgraph are converted into nat-
ural sentences and aggregated into a single doc-
ument, forming a semantically coherent and log-
ically structured unit of knowledge. A detailed
example of this subgraph-to-document transforma-
tion, including the rule-based sentence structure
and the resulting document format, is provided in
Appendix B.

3.1.3 Pseudo Query Generation for
Fine-Tuning Medical Search System

In our framework, document-form subgraph en-
coder and reranker models pre-trained on general
domain data are not sufficient to accurately re-
trieve medical information grounded in a UMLS-
based KG. To improve their ability to understand
and retrieve UMLS-specific representations, these

models should be fine-tuned on domain-specific
data. However, manually constructing high-quality
query-document pairs is impractical and costly. To
address this, we propose an automated pipeline
based on frozen Llama3.18B (Dubey et al., 2024)
models that generates and filters training data with-
out human supervision. The pipeline consists of
two core components: a pseudo query generator,
which produces queries reflecting key contents
of each document, and an evaluator, which fil-
ters these queries based on two criteria, patient
centeredness ([Patient/notPatient]) and docu-
ment relevance ([Relevant/Irrelevant]).

As illustrated in Figure 2, the system generates
multiple candidate queries per document, evalu-
ates them, and filters those that meet the training
standards. Although the evaluator operates in a
zero-shot setting without parameter updates, it con-
sistently selects high-quality query-document pairs
and generalizes well across unseen pairs. These
filtered pairs are subsequently used to fine-tune
the document-form subgraph encoder and reranker
models, contributing to improved retrieval accu-
racy and consistency. Details on the objective func-
tions used for each encoder and reranker models
are provided in Appendix C. Furthermore, while
our pipeline focuses on medical consultation docu-
ments in this study, it can be easily adapted to other
domains by adjusting the evaluation criteria.

3.1.4 Document Embedding and Vector
Retrieval

We fine-tuned the bge-large-en-v1.5 (Xiao et al.,
2024) model to generate embeddings for docu-
ments derived from the subgraph, optimizing its
ability to capture semantic nuances. Details of
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Figure 2: Overview of training data generation process for the document-form subgraph encoder and reranker.
A fixed query generator creates questions that a patient is likely to ask, and an evaluator checks if they match a
patient-like style and are relevant to the document. If they don’t meet the criteria, they are regenerated. The final
data trains bge-large-en v1.5 and bge-reranker-large, enhancing the model’s ability to understand and process
patient-oriented queries.

the fine-tuning process are provided in Appendix
C.1 for reference. These embeddings are stored
in a vector database using FAISS (Johnson et al.,
2019), which is optimized for large-scale similarity
searches. By integrating maximum inner product
search (Shrivastava and Li, 2014), we efficiently
retrieve relevant documents, ensuring low-latency
and high-precision results, crucial for real-time ap-
plications like conversational agents.

3.2 Reranker: Filtering for Exact Knowledge
To enhance the accuracy of retrieved documents,
we employ a reranking process using the fine-tuned
bge-reranker-large4 model. The cross-encoder
jointly encodes the user query and candidate docu-
ments to capture fine-grained interactions and as-
signs relevance scores. We then reorder candidates
to prioritize contextually appropriate knowledge for
generation, injecting precise and clinically relevant
evidence into the final answer. This compensates
for the retriever’s limited precision and is crucial
in medical settings to ensure reliability and safety.
In practice, we keep the top 10 documents after
reranking and discard low-confidence items with
a calibrated score threshold, which yields consis-
tent gains in precision and reduces hallucinations.
Detailed training procedures and loss functions are
provided in Appendix C.2.

3.3 Generator: Generating Patient-Centered
Medical Consultation

In the final stage, we generate medically accurate
and context-aware responses using reranked doc-

4https://huggingface.co/BAAI/
bge-reranker-large

uments. We fine-tune Llama27B (Touvron et al.,
2023) and Llama3.18B on real medical consultation
data, allowing the model to learn associations be-
tween patient queries and retrieved knowledge. Un-
like methods that rely solely on synthetic prompts,
our framework uses actual consultation records
with retrieved documents integrated during fine-
tuning. This helps the model better understand
semantic relationships between queries and sup-
porting knowledge, grounding its generation in
clinically relevant context. As a result, ILlama can
deliver more accurate and tailored responses while
reducing hallucinations and speculative content.

4 Experiments

4.1 Datasets

We use two types of data in ILlama, namely a
UMLS-based KG and real-world medical consulta-
tion records. The KG provides structured clinical
relationships that support precise retrieval, while
the consultation data enables response generation
grounded in authentic patient–doctor interactions.
Detailed descriptions of each dataset are provided
in the following subsections.

HealthCareMagic iCliniq
# dialogues 112,165 1,380
# tokens 27,475,545 313,735
Avg. # tokens per dialogue 245.01 227.34
Max # tokens per dialogue 2,544 1,001
Min # tokens per dialogue 78 60

Table 1: Statistics of the datasets used for training, vali-
dation, and testing, showing the distribution of dialogues
and token counts.
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Category In-Distribution Out-of-Distribution
Model F1 METEOR BLEU-4 ROUGE-2 Top-1 Hit Rate Avg NLI Score F1 METEOR BLEU-4 ROUGE-2 Top-1 Hit Rate Avg NLI Score

Baselines without Retrieval

BARTLarge 0.837 0.059 0.0 0.038 0.010 0.361 0.838 0.063 0.0 0.023 0.006 0.318
T5Large 0.840 0.061 0.0 0.031 0.012 0.376 0.843 0.069 0.0 0.020 0.007 0.330
Llama27B w/ LoRA 0.838 0.192 0.031 0.052 0.017 0.515 0.838 0.201 0.029 0.050 0.006 0.392
Llama3.18B w/ LoRA 0.844 0.230 0.061 0.074 0.214 0.552 0.841 0.222 0.029 0.048 0.062 0.460
Gemma227B 0.842 0.207 0.027 0.043 0.219 0.521 0.846 0.213 0.026 0.042 0.037 0.441

Baselines without Fine-Tuning

GPT-4o 0.836 0.215 0.013 0.035 0.315 0.489 0.836 0.218 0.014 0.039 0.001 0.345
Gemma29B 0.836 0.180 0.016 0.036 0.027 0.407 0.841 0.201 0.022 0.040 0.016 0.383
Yi1.59B 0.832 0.168 0.015 0.034 0.032 0.431 0.835 0.188 0.021 0.038 0.019 0.395
Falcon37B 0.839 0.135 0.008 0.025 0.011 0.508 0.844 0.156 0.012 0.028 0.007 0.400
DeepSeek-R18B 0.832 0.175 0.012 0.028 0.015 0.362 0.837 0.191 0.014 0.030 0.001 0.349
MedGemma4B 0.845 0.213 0.013 0.033 0.059 0.463 0.841 0.196 0.015 0.031 0.025 0.413

Baselines with Fine-Tuning & Retrieval

Llama27B w/ LoRA 0.837 0.191 0.029 0.050 0.109 0.535 0.839 0.203 0.029 0.050 0.044 0.428
Llama3.18B w/ LoRA 0.786 0.222 0.010 0.024 0.205 0.541 0.789 0.199 0.006 0.019 0.054 0.445
MedRAG 0.829 0.179 0.025 0.047 0.168 0.514 0.811 0.176 0.024 0.038 0.058 0.457
ChatDoctor 0.846 0.218 0.008 0.022 0.262 0.569 0.845 0.211 0.035 0.045 0.088 0.478

Ours

ILlama7B 0.866 0.203 0.037 0.058 0.258 0.582 0.851 0.213 0.041 0.048 0.153 0.540
ILlama8B 0.884 0.231 0.063 0.075 0.793 0.633 0.871 0.222 0.030 0.049 0.800 0.503
IGemma27B 0.897 0.245 0.077 0.081 0.816 0.661 0.881 0.234 0.052 0.056 0.822 0.587

Table 2: Performance comparison across baselines categorized into three groups: without retrieval, without fine-
tuning, and with fine-tuning & retrieval. Metrics include F1 score, METEOR, BLEU, ROUGE, and MinosEval-based
Top-1 Hit Rate and Avg NLI Score for both in-distribution and out-of-distribution datasets. The highlighted row
represents our proposed method, demonstrating superior performance across most metrics.

4.1.1 Datasets for Medical Retrieval
We construct our KG using the 2024 release of the
UMLS Metathesaurus5, which comprises approx-
imately 20K entities, 22 relation types, and 250K
triples. This structured resource provides a seman-
tic backbone for our RAG framework, enabling
precise retrieval and integration of clinically rele-
vant knowledge. Grounding generation in this KG
enhances factual accuracy, reduces hallucinations,
and supports context-aware medical responses.

4.1.2 Datasets for Medical Consultation
To evaluate the performance of ILlama, we used
medical consultation records from two real-world
platforms: HealthCareMagic and iCliniq. The
HealthCareMagic dataset, specifically collected
for medical question answering tasks, consists of
single-turn interactions where each patient query
is paired with a response from a licensed medical
professional. We split this dataset into training, val-
idation, and in-distribution test sets using an 8:1:1
ratio. In contrast, the iCliniq dataset, which follows
a similar single-turn format, was used exclusively
as an out-of-distribution test set. This separation
allows us to evaluate the model’s generalization
performance on unseen queries from a different
source, minimizing the risk of data leakage and en-
suring a fair comparison. Both datasets are publicly
available for academic research and have been de-

5https://www.nlm.nih.gov/research/umls/
licensedcontent/umlsknowledgesources.html

identified to protect user privacy. As these records
often include patient-reported details such as age
and symptoms, the model implicitly learns to adapt
responses to clinical contexts during fine-tuning.
Detailed dataset statistics are provided in Table 1.

4.2 Metrics

We evaluated our model using semantic and quanti-
tative metrics to assess the accuracy and contextual
appropriateness of generated responses. For seman-
tic evaluation, we adopted BERTScore (Zhang*
et al., 2020) with RoBERTaLarge (Liu et al., 2019),
which measure contextual similarity using deep em-
beddings. This approach is particularly suitable for
handling the nuances of medical language where
lexical overlap is often limited (Hanna and Bojar,
2021). We report the F1 score from BERTScore as
our primary semantic similarity metric.

In addition to semantic evaluation, we employed
lexical metrics including ROUGE-2 (Lin, 2004),
BLEU-4 (Papineni et al., 2002), and METEOR
to evaluate lexical accuracy, fluency, and coher-
ence. METEOR considers synonymy, stemming,
and paraphrasing for sentence-level similarity as-
sessment. To address the limitations of traditional
metrics for open-ended medical consultation tasks,
we adopt MinosEval (Fan et al., 2025), a frame-
work for evaluating medical question answering.
For non-factoid queries, we use Top-1 Hit Rate
where GPT-4o ranks all model responses, with
a model receiving a hit if ranked first. For fac-
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Hello, doctor. I attended a wedding last week, and since then, I've been experiencing persistent coughing and fever. Recently, I've also noticed a loss of taste. Could
this be COVID-19? If it is COVID-19, what should I do?

ChatDoctor

Hello! Welcome to Chat Doctor! Cough and fever
after attending a wedding may not be due to
coronavirus infection. It can be due to allergic
reaction or viral upper respiratory tract infection.
You need to consult your family physician for
clinical examination and investigations like chest x-
ray, blood tests, sputum culture etc. In case of virus
infection, you will need antibiotics along with
supportive treatment. Hope this information was
helpful. Thanks and regards.

ILlama7B

No, it is not likely to be due to COVID 19. The
symptoms you have mentioned are more suggestive
of acute upper respiratory tract infection (URTI). It
may be due to viral or bacterial infection. I would
advise you to consult a physician and get yourself
examined. You may need a course of antibiotics and
anti-inflammatory.  Take plenty of fluids. Hope I
have answered your question. If you have any
further questions, I will be happy to help. Wish you
good health. Take care. Regards.

ILlama8B

Thanks for your question. I can understand your
concern. By your history and description, possibility
of viral upper respiratory tract infection (URI) is
more likely. But better to get done clinical
examination of respiratory system and chest x-ray to
rule out lung infection. If chest x-ray is normal then
no need to worry about lung infection. Viral URI is
self limiting. So don't worry, it will subside in 5-7
days. Avoid stress and tension, be relaxed and calm.
Do warm water gargles 5-6 times a day. Avoid hot
and spicy food. Avoid smoking and alcohol if you
have.
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Figure 3: Comparison of responses from ChatDoctor, ILlama7B, and ILlama8B regarding COVID-19 symptoms.
Highlighted sections indicate usefulness, ambiguity, hallucinations, and grammatical errors.
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Figure 4: Out-of-distribution evaluation on the iCliniq
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evaluated as non-hallucinated, grammatically correct,
or helpful for ILlama8B, ILlama7B, and ChatDoctor.

toid queries, we employ Average NLI Score us-
ing a ClinicalBERTBase (Huang et al., 2019) NLI
model fine-tuned on MedNLI to evaluate whether
responses entail, contradict, or are neutral to clin-
ical key points in reference answers. This frame-
work enables assessment of the model’s ability to
deliver precise, fluent, and contextually relevant
medical responses across different question types.

4.3 Baselines

Baselines without Retrieval These models rely
solely on fine-tuned capabilities on domain-specific
data, without any retrieval mechanism. We exam-
ine BARTLarge (Lewis et al., 2020a), T5Large (Raffel
et al., 2020), Llama27B w/ LoRA (Hu et al., 2022),
Llama3.18B w/ LoRA, and Gemma227B w/ LoRA
(Team et al., 2024).

Baselines without Fine-Tuning Models in this
category use a retrieval mechanism but are not
fine-tuned on domain-specific data. These base-
lines enhance their performance by leveraging
the PubMed dataset (Xiong et al., 2024) for re-
trieval of pertinent biomedical literature, which
provides a rich source of domain-specific informa-

tion without the need for additional fine-tuning.
These include Gemma29B, Yi1.59B (Young et al.,
2024), Falcon37B (Team, 2024), DeepSeek-R18B
(DeepSeek-AI et al., 2025), and MedGemma4B
(Sellergren et al., 2025).

Baselines with Fine-Tuning & Retrieval This
category includes models that undergo fine-tuning
on domain-specific data and use retrieval. Mod-
els include Llama27B w/ LoRA (Hu et al., 2022),
Llama3.18B w/ LoRA, MedRAG(Zhao et al.,
2025), and ChatDoctor, although ChatDoctor and
MedRAG do not use PubMed for retrieval.

4.4 Result

As shown in Table 2, ILlama consistently outper-
formed the baselines across both in-distribution
and out-of-distribution evaluations. In the in-
distribution setting, ILlama8B achieved the best
F1 score of 0.884, METEOR of 0.231, and excep-
tional MinosEval performance with Top-1 Hit Rate
of 0.793 and Avg NLI Score of 0.633, surpass-
ing all baseline models. Notably, ILlama7B also
showed strong performance (F1 score: 0.866, ME-
TEOR: 0.203), outperforming ChatDoctor across
all major metrics. Our method also consistently
outperforms MedRAG, as MedRAG is tailored for
clinical decision support using structured EHR data,
which may not align well with open-domain pa-
tient consultation tasks that our system is optimized
for. To assess applicability beyond smaller back-
bones, we further instantiated our framework with
Gemma227B, which yielded additional gains, in-
dicating that the proposed pipeline continues to
benefit from increased model capacity.

In the out-of-distribution setting, ILlama
maintained robust generalization performance.
ILlama8B achieved an F1 score of 0.871, ME-
TEOR of 0.222, and Top-1 Hit Rate of 0.800,
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Figure 5: ILlama and ChatDoctor performance comparison in search latency, answer latency, end-to-end latency
and throughput.

with minimal performance drop compared to its
in-distribution results. This demonstrates ILlama’s
ability to adapt to unseen queries and linguistic
variations from different data sources. The inte-
gration of embedding-based vector retrieval and a
structured medical KG played a key role in improv-
ing factual consistency while minimizing halluci-
nations. As in the in-distribution results, the frame-
work also scales to larger backbones with further
improvements under distribution shift. Overall, IL-
lama achieved state-of-the-art performance across
traditional and MinosEval-based metrics, validat-
ing its reliability and generalization in real-world
medical consultation scenarios.

5 Analysis

5.1 Qualitative Analysis of Outputs

As shown in Figure 3, we present a qualitative com-
parison of ChatDoctor, ILlama7B, and ILlama8B in
response to a COVID-19 related query, alongside
the underlying reasoning represented through con-
textualized subgraphs extracted from the UMLS-
based KG. While ChatDoctor exhibited frequent
hallucinations, such as recommending antibiotics
for viral infections, ILlama7B demonstrated im-
proved clinical reasoning but still included unneces-
sary suggestions. ILlama8B provided the most bal-
anced response, delivering accurate medical guid-
ance and appropriate follow-up steps. These evalu-
ations were conducted using the OpenAI o1 model6

(Liu et al., 2023). The prompts used for this assess-
ment are provided in Appendix D. The reasoning
process is grounded in causal and diagnostic rela-
tionships (e.g., Viral Infection–URI–Cough/Fever
or Chest X-Ray to rule out Lung Infection), cap-
tured within the subgraph structure.

We also conduct a standardized evaluation by
assessing all model outputs on the iCliniq out-of-

6https://openai.com/o1/

distribution set using the same OpenAI o1–based
judging protocol. Figure 4 presents aggregate pro-
portions for non-hallucination, grammar, and help-
fulness. For ChatDoctor, the judge frequently flags
hallucinations and reports lower helpfulness, sug-
gesting brittle grounding under distribution shift.
In contrast, ILlama8B closely aligns with clinically
appropriate phrasing and attains the highest non-
hallucination and helpfulness rates.

5.2 Latency Analysis in Real-Time Medical
Consultation Systems

In Figure 5, we present a comparison of latency
and throughput between ILlama and ChatDoctor.
ILlama consistently demonstrates lower latency
across search, answer, and end-to-end processing.
For example, ILlama’s end-to-end latency ranges
from approximately 5,538 to 6,507 ms, whereas
ChatDoctor’s ranges from around 6,921 to over
26,491 ms. This gap stems from ChatDoctor’s
reliance on LLM-based keyword extraction fol-
lowed by live API calls to external sources such
as Wikipedia, which markedly inflate the answer-
latency portion of the overall response time. In con-
trast, ILlama uses preindexed graph-based retrieval
with documents averaging around 130 tokens, en-
abling higher throughput with reduced delay.

Recall@10 mRR@10 nDCG@10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

e

0.696

0.394

0.490

0.769

0.449

0.568

Retriever only
w/ Reranker

Figure 6: Retrieval performance comparison between
retriever-only and retriever with reranker, evaluated on
Recall@10, mRR@10, and nDCG@10.
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5.3 Ablation Study

Retrieval Performance Analysis As shown in
Figure 6, we compared the retriever alone with
the retriever–reranker pipeline using Recall@10,
mRR@10, and nDCG@10, which are commonly
used to assess the effectiveness of retrievers in
RAG-based open-domain question answering (Jin
et al., 2023). The retriever already provided strong
coverage, demonstrating the effectiveness of our
document-form subgraph and vector search ap-
proach. The reranker further enhanced the ranking
quality while maintaining high recall, confirming
their complementary roles and directly addressing
the need for retrieval evaluation.

Component and Knowledge Contributions Ta-
ble 3 shows that the reranker consistently improves
final F1 scores, while structured knowledge from
UMLS provides clear advantages over unstructured
PubMed text. The reranker’s gains are moder-
ate, likely because the retriever already performs
strongly; however, in the biomedical domain its
role lies in refining rankings to promote clinically
meaningful subgraphs and ensure contextual preci-
sion, suggesting that even small improvements can
yield more reliable outputs.

Model Retriever Reranker F1

ILlama8B & UMLS ✓ ✓ 0.884
ILlama8B & UMLS ✓ ✗ 0.857
ILlama8B & PubMed ✓ ✓ 0.786
ILlama8B & PubMed ✓ ✗ 0.765
ILlama8B & None ✗ ✗ 0.844

Table 3: Component and knowledge-source ablation on
F1 score.

Full-Graph vs. Subgraph Search. We com-
pared subgraph-based retrieval using Triple2Seq
with a full-graph approach. As shown in Figure
7, the subgraph method yields more accurate re-
sponses. Unlike full-graph retrieval, which often
introduces loosely connected or irrelevant nodes,
subgraph retrieval focuses on a central medical con-
cept and its related neighbors. This targeted con-
text improves factual accuracy and reduces noise,
which is especially critical in the medical domain.

6 Conclusion

In this study, we proposed ILlama, a retrieval-
augmented medical consultation framework that
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Figure 7: F1 score comparison between subgraph and
full graph reasoning.

integrates structured KGs and cross-encoder rerank-
ing to reduce hallucinations. Experiments demon-
strate strong performance across accuracy, latency,
and contextual relevance, highlighting the promise
of structured medical knowledge in LLMs for scal-
able healthcare applications.

Limitations

Although ILlama improves the accuracy of medical
consultations and reduces hallucinations by lever-
aging a UMLS-based KG and embedding-based
retrieval, several limitations remain. First, the cov-
erage of the KG and datasets is narrow, focusing
on specific diseases and linguistic patterns, which
limits generalizability to broader clinical domains
and multilingual contexts. Expanding training data
with more diverse medical cases would improve
robustness. Second, the KG may not reflect the
latest clinical updates such as emerging diseases,
treatments, or revised guidelines, and without real-
time synchronization the model risks producing
outdated responses. Third, while ILlama shows
strong performance on metrics like F1 score, ME-
TEOR, and MinosEval, these do not fully capture
clinical safety or decision-making validity, under-
scoring the need for automated or simulated clinical
evaluations. Finally, reliance on large-scale models
restricts deployment in resource-limited settings;
developing lightweight and multilingual variants
could enable broader adoption in global healthcare.

Ethical Considerations

While ILlama aims to enhance medical consulta-
tions by reducing hallucinations, it may occasion-
ally provide incorrect diagnoses that could lead
to serious consequences; therefore, users should
always seek guidance from qualified healthcare
professionals, with AI models serving only as sup-
plementary resources.
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A Implementation Details

This study fine-tuned a medical domain-specific
model using LoRA with a configuration of r = 16,
lora_alpha = 16, and lora_dropout = 0. The
learning rate started at 2× 10−5, with 10% of the
total steps dedicated to warmup. A linear sched-
uler was used for adjusting the learning rate during
training. The model was trained for 3 epochs, and
the maximum sequence length was set to 4,096 for
handling complex queries, and the training was con-
ducted on two NVIDIA RTX A6000 48GB GPUs.

For retrieval, 50 documents were fetched using
maximum inner product search from the FAISS
vector store. The top 10 documents from this set
were selected for final use after reranking. This
approach improved the model’s ability to address
medical queries by leveraging dense retrieval meth-
ods, enhancing both retrieval accuracy and re-
sponse quality.

B Example Document from UMLS
Subgraph

The UMLS is a comprehensive biomedical knowl-
edge base that integrates over a million con-
cepts and multi-million relationships from more
than 100 controlled vocabularies (including MeSH,
SNOMED CT, RxNorm, ICD-10, etc.), along with
an accompanying semantic network and lexical
tools to ensure interoperability and accurate con-
cept mapping. UMLS is updated regularly, which
aligns well with common retraining cycles. There-
fore, instead of frequently retraining the language
model, it is more efficient to update the KG, en-
abling practical and timely integration of new med-
ical information.

Table 4 presents an example of subgraph-to-text
conversion used in our system. The subgraph is
constructed around the central triple (Lung cancer
– has symptom – fatigue) from the UMLS-based
KG. All triples connected to the central node are
included and expressed as simple natural language
sentences using a rule-based template. Each rela-
tion type (e.g., has symptom, diagnosed by, treated
by) is mapped to a consistent sentence pattern, such
as “X has symptom Y” or “X can be diagnosed by
Y.” This consistency facilitates automatic transfor-
mation and retrieval in downstream components.
The resulting document serves as a structured and
semantically coherent unit of medical knowledge
for training and inference.

C Implementation details of retriever and
reranker

C.1 Document-form Subgraph Encoder
We fine-tuned the bge-large-en-v1.5 model to gen-
erate embeddings for documents derived from the
subgraph, optimizing its ability to capture seman-
tic nuances. The model was trained for 10 epochs
with a batch size of 32, using the AdamW optimizer
with a learning rate of 1 × 10−5. The encoder is
trained with the InfoNCE loss (Oord et al., 2018),
which is a contrastive learning objective widely
used in self-supervised learning. Given a set of
N random samples X = {x1, . . . , xN} containing
one positive sample xt+k from the true conditional
distribution p(xt+k | ct) and N − 1 negative sam-
ples drawn from a proposal distribution p(xt+k),
the loss is formulated as:

LN = −EX


log fk(xt+k, ct)∑

xj∈X
fk(xj , ct)


 ,

where fk(x, ct) denotes a scoring function (e.g., a
dot product or similarity function) that estimates
the compatibility between context ct and future
sample x. Optimizing this loss leads fk(xt+k, ct)
to approximate the density ratio:

fk(xt+k, ct) ∝
p(xt+k | ct)
p(xt+k)

.

C.2 Reranker
To compensate for the retriever’s limited precision
in selecting the most relevant subgraph, we employ
a cross-encoder reranker that jointly encodes the
input query and each retrieved candidate to assess
their semantic relevance. The reranker computes a
relevance score for each query–subgraph pair and
reorders the top-50 candidates returned by the re-
triever. The 10 highest-ranked subgraphs are then
selected as the final knowledge inputs to the gener-
ator. This additional reranking step is particularly
important in the medical domain, where selecting
the most contextually appropriate knowledge is
critical for ensuring the reliability and safety of the
generated output.

The reranker model adopts a cross-encoder ar-
chitecture and is fine-tuned with a binary cross-
entropy loss. The reranker is trained to assign high
scores to gold subgraphs and low scores to irrel-
evant ones. Positive training examples are con-
structed from gold query–subgraph pairs, and neg-
atives are sampled from the remaining retriever
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outputs. This pairwise labeling allows the model
to effectively learn fine-grained distinctions in con-
textual relevance. Given a query–document pair
(q, d) and a binary label y ∈ {0, 1} indicating rele-
vance, the model predicts a scalar relevance score
ŷ = sigmoid(s(q, d)), and the loss is computed as:

LBCE = − [y log ŷ + (1− y) log(1− ŷ)]

This objective encourages the model to produce
high scores for relevant documents and low scores
for irrelevant ones, improving the quality of the
final ranking.

D Evaluation Prompt Design

To support the qualitative evaluation of model out-
puts, we designed three structured prompts target-
ing hallucination detection, grammatical correct-
ness, and patient helpfulness. These prompts were
used with the OpenAI o1 model to evaluate re-
sponses generated by ILlama. Table 6 presents the
full text of each prompt. Each includes clear task
instructions, placeholders for the model-generated
response, and, in the helpfulness case, the original
patient question. The prompts instruct the model to
make a binary decision and identify specific parts
of the response when relevant.

The hallucination prompt assesses whether a re-
sponse contains fabricated or unsupported informa-
tion. The grammatical prompt checks for language
correctness. The helpfulness prompt determines
whether the response includes content that would
be useful to a patient, based on the given question.
Evaluations were conducted in a zero-shot setting,
and the prompt design aimed to guide the model
toward accurate and consistent judgments without
fine-tuning. This allowed for scalable and focused
assessment of clinical response quality.

E Algorithm

E.1 ILlama Algorithm
This algorithm, as shown in Algorithm 1, retrieves
and reranks relevant documents for context-aware
medical consultations. It combines FAISS search
results, reranks them with a cross encoder, and
generates a contextually accurate response using
Llama, maintaining optimal performance and accu-
racy throughout the process.

E.2 Pseudo Query Generation Algorithm
This algorithm, as shown in Algorithm 2, generates
patient-style queries and evaluates them to obtain

(q, d) pairs for training the encoder and reranker if
the conditions are met. Based on the input prompt
and documents derived from the KG, the pseudo
query generator (Llama3.18B) creates a query. The
evaluator (Llama3.18B) then checks if the gener-
ated query meets the "patient-style" and "relevant"
conditions. If the conditions are satisfied, the (q, d)
pairs are stored for document-form subgraph en-
coder and reranker training; otherwise, the query is
regenerated, and the evaluation process is repeated.
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Subject Relation Object Document-form subgraph

Lung Cancer has symptom Fatigue Lung cancer has symptom fatigue.
Lung Cancer has symptom Shortness of Breath Lung cancer has symptom shortness of breath.
Shortness of Breath is symptom of Anemia Shortness of breath is symptom of anemia.
Fatigue is symptom of Anemia Fatigue is symptom of anemia.
Lung Cancer has symptom Chronic Cough Lung cancer has symptom chronic cough.
Lung Cancer diagnosed by Chest X-Ray Lung cancer can be diagnosed by chest X-ray.
Lung Cancer has cause Smoking Lung cancer has cause smoking.
Lung Cancer has cause Air Pollution Lung cancer has cause air pollution.
Lung Cancer treated by Surgery Lung cancer is treated by surgery.
Surgery isa lobectomy Surgery is a lobectomy.

Table 4: Example of subgraph-to-text conversion for a document centered on the triple (Lung cancer – has symptom
– fatigue).

Prompting Category Input Prompt
ILlama’s prompt You are a medical assistant specializing in providing expert consultations

for medical inquiries.Your role is to deliver accurate, user-friendly
medical information, clarify symptoms, explain potential
medical conditions, and recommend next steps with empathy
and professionalism. When formulating your response,
to ensure clarity and accuracy, user-friendly answer in your response.

### Context
{context}

### Input
{query}

### Response

Table 5: Prompt used for ILlama inference
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Algorithm 1 ILlama Algorithm for Medical Query Answering

1: Input:
q: User query
KG: UMLS-based KG
DB: FAISS vector database (Encoded Subgraph Documents)
T2S: Triple2Seq
QE: Query Encoder
CE: Cross Encoder
Llama: Llama Model

2: Output: Final response r
3: Step 1: UMLS-based KG Processing
4: KGsub ← T2S.split(KG)
5: Dsub ← Convert Gsub to text-based documents
6: Store Dsub in FAISS Vector Database
7: Step 2: Query Encoding
8: qemb ← QE.encode(q)
9: Step 3: Retrieval & Reranking from Vector DB

10: Dtop50 ← DB.retrieve(qemb, k = 50)
11: for each document d in Dtop50 do
12: sd ← CE.score(q, d)
13: end for
14: Dtop10 ← Select top-10 documents based on sd
15: Step 4: Response Generation
16: input← q +Dtop10

17: r ← Llama.generate(input)
18: Return r

Algorithm 2 Patient-Style Pseudo Query Generation and Evaluation

1: Input:
p: Prompt for query generation
d: Graph Document (Derived from KG)
QG: Query Generator (Llama3.18B)
Eval: Evaluator (Llama3.18B)

2: Output: (q, d) pairs for training Encoder and Reranker
3: Step 1: Generate Query
4: q ← QG.generate(p, d)
5: Step 2: Evaluate Query
6: (s1, s2)← Eval.check(q, d)
7: if s1 == Patient-Style and s2 == Relevant then
8: Store (q, d) for training Encoder and Reranker
9: else

10: Regenerate q using QG
11: Repeat from Step 2
12: end if
13: Return (q, d) pairs
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Prompting Category Input Prompt
Hallucination Evaluation The following is a response generated by a model.

Carefully read the response and evaluate whether it contains
hallucinations based on logical consistency and factual accuracy.
A hallucination refers to information that is fabricated
or unsupported by evidence.

### Instructions
- If a hallucination is found, pinpoint the exact part.
- If no hallucination is found, respond with "No hallucination."

### Model Response:
{model response}

### Evaluation:
Grammatical Error Evaluation The following is a response generated by a model. Carefully read

the response and identify any grammatical errors.

### Instructions
- If grammatical errors are found, pinpoint the exact part.
- If no grammatical errors are found, respond with
"No grammatical errors."

### Model Response:
{model response}

### Evaluation:
Helpful Information for
Patients Evaluation The following is a patient’s question and a response generated by a

model. Carefully read the response and identify any words or phrases
that could be helpful to the patient.

### Instructions
- Pinpoint the exact words or phrases in the model’s response
that are relevant to the patient’s question.
- If no helpful information is found, respond with
"No helpful information."

### Patient’s Question:
{question}

### Model Response:
{model response}

### Evaluation:

Table 6: Prompt for evaluation ILlama
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