
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 30623–30636
November 4-9, 2025 ©2025 Association for Computational Linguistics

Accelerated Test-Time Scaling with Model-Free Speculative Sampling

Woomin Song1,†, Saket Dingliwal2, Sai Muralidhar Jayanthi2,
Bhavana Ganesh3,‡, Jinwoo Shin1, Aram Galstyan2, Sravan Babu Bodapati2

1KAIST 2Amazon AGI 3AirSignal

Abstract

Language models have demonstrated remark-
able capabilities in reasoning tasks through
test-time scaling techniques like best-of-N sam-
pling and tree search. However, these ap-
proaches often demand substantial computa-
tional resources, creating a critical trade-off
between performance and efficiency. We in-
troduce STAND (STochastic Adaptive N-gram
Drafting), a novel model-free speculative de-
coding approach that exploits the inherent re-
dundancy in reasoning trajectories to achieve
significant acceleration without compromising
accuracy. Our analysis shows that reasoning
paths frequently reuse similar reasoning pat-
terns, enabling efficient model-free token pre-
diction without requiring separate draft mod-
els. By introducing stochastic drafting and
preserving probabilistic information through
a memory-efficient logit-based N-gram mod-
ule, combined with optimized Gumbel-Top-
K sampling and data-driven tree construction,
STAND significantly improves token accep-
tance rates. Extensive evaluations across multi-
ple models and reasoning tasks (AIME-2024,
GPQA-Diamond, and LiveCodeBench) demon-
strate that STAND reduces inference latency by
60-65% compared to standard autoregressive
decoding while maintaining accuracy. Further-
more, STAND consistently outperforms state-
of-the-art speculative decoding methods across
diverse inference patterns, including single-
trajectory decoding, batch decoding, and test-
time tree search. As a model-free approach,
STAND can be applied to any existing language
model without additional training, making it a
powerful plug-and-play solution for accelerat-
ing language model reasoning.

1 Introduction

Test-time scaling has emerged as a prominent
paradigm for enhancing the performance of lan-

† Work done during an internship at Amazon. ‡ Work
done at Amazon.

guage models by allocating additional compu-
tational resources during inference (Snell et al.,
2024). This includes generating long sequences of
thoughts though Large Reasoning Models (LRMs)
(Muennighoff et al., 2025), multi-sampling ap-
proaches like best-of-N sampling and majority vot-
ing that generate multiple independent outputs to
select the most promising one (Wang et al., 2022),
as well as iterative methods like tree search and
sequential refinement that allow models to pro-
gressively improve their reasoning process (Uesato
et al., 2022). While these methods demonstrate
the potential for significant accuracy improvements
through increased computation, they often demand
substantial computational resources due to the large
number of tokens that need to be generated.

Recent research has focused on reducing the
high computational costs of test-time scaling and
reasoning approaches (Sui et al., 2025). Some
work has explored training with length-based re-
wards to generate more concise outputs (Aggarwal
and Welleck, 2025; Qu et al., 2025), while other
approaches use combinations of small and large
models to distribute the workload efficiently (Liao
et al., 2025; Yang et al., 2025). However, these
efficiency-focused methods typically face a fun-
damental trade-off. While they reduce computa-
tional costs, they tend to sacrifice some accuracy
compared to more exhaustive approaches, as us-
ing fewer samples or cutting short the exploration
process often leads to lower performance.

This raises a crucial question: How can we im-
prove the efficiency of test-time scaling and rea-
soning methods without compromising their ac-
curacy? To address this challenge, we turn our
attention to speculative decoding (SD), which of-
fers a promising solution for lossless acceleration
of language model inference. Speculative decoding
accelerates language model inference by using a
smaller "draft" model to predict tokens, which are
then verified by the larger target model (Leviathan

30623

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Total Decoding Time

55.0

57.5

60.0

62.5

65.0

67.5

70.0
M

aj
or

ity
 V

ot
e

Ac
cu

ra
cy

 (%
)

Plain
ANPD
SAM
Recycle
Ours

(a) AIME-2024

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Total Decoding Time

49.0
49.5
50.0
50.5
51.0
51.5
52.0
52.5

M
aj

or
ity

 V
ot

e
Ac

cu
ra

cy
 (%

)

Plain
ANPD
SAM
Recycle
Ours

(b) GPQA-Diamond

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Total Decoding Time

35.0

40.0

45.0

50.0

55.0

Pa
ss

@
k

(%
)

Plain
ANPD
SAM
Recycle
Ours

(c) LiveCodeBench

Figure 1: Scaling curve with speculative decoding. We report the scaling curve describing how the task per-
formance improves with respect to the total decoding time. Keeping simple auto-regressive decoding total time
as 1, we also report the scaling curves for different model-free SD methods. We report the reward-weighted
majority voting accuracy for AIME-2024 and GPQA-Diamond, and pass@k for LiveCodeBench, where k is the
total number of generated sequences generated at a given point. All measurements are made on a single A100 GPU
with DeepSeek-R1-Distill-Qwen-7B.

et al., 2023). With appropriate verification strate-
gies (Chen et al., 2023a), SD can speed up the
auto-regressive decoding process of large language
models while preserving their output distribution.

A key observation in LRMs is the significant rep-
etition of token sequences across different reason-
ing paths. When models are performing chain-of-
thought reasoning (Snell et al., 2024) or exploring
multiple solutions (Wang et al., 2022; Xie et al.,
2024), they frequently reuse similar expressions,
logical deductions, and reasoning patterns.

This redundancy presents an opportunity for
model-free speculative decoding (Saxena, 2023;
Ou et al., 2024). Unlike model-based approaches
that rely on neural networks as drafters (Li et al.,
2024c; Cai et al., 2024), model-free methods can
leverage patterns from previous generations to con-
struct drafts. This makes them particularly well-
suited for exploiting cross-trajectory information.
Our experiments confirm this approach’s effective-
ness, demonstrating improved efficiency as the
number of reasoning trajectories increases.

To fully leverage the power of model-free spec-
ulative decoding for reasoning tasks, we propose
STAND (STochastic Adaptive N-gram Drafting).
Our approach is motivated by two key observa-
tions: First, existing model-free approaches have
primarily focused on greedy decoding, leaving the
potential benefits of sampling largely unexplored.
Second, our experimental analysis demonstrates
that stochastic drafting (i.e. sampling draft tokens
from the draft probability distribution) significantly
improves token acceptance rates. Building on these
insights, STAND introduces three key innovations:

(1) a memory-efficient logit-based N-gram mod-
ule that preserves probabilistic information for bet-
ter stochastic drafting, (2) an optimized sampling
strategy using Gumbel-Top-K for efficient token
selection, and (3) a data-driven approach to draft
tree construction that balances efficiency with effec-
tiveness. Combined, these techniques significantly
enhance the speculative decoding performance in
the context of test-time scaling, where sampling
and diverse trajectory exploration are crucial.

Our extensive evaluations demonstrate STAND’s
effectiveness across diverse reasoning tasks (math,
science, and coding) and model scales. As high-
lighted in Figure 1, STAND’s benefits become
more pronounced as the number of reasoning trajec-
tories increases. With best-of-16 sampling for opti-
mal accuracy, STAND reduces inference latency by
60–65% compared to standard autoregressive de-
coding while maintaining performance. Moreover,
STAND outperforms state-of-the-art speculative
decoding methods by 14–28% in throughput, estab-
lishing an efficient drafting strategy for reasoning
tasks.

Furthermore, STAND consistently achieves the
best throughput across multiple inference patterns,
reducing the inference latency by 58% in single-
trajectory decoding, 30% in batch decoding, and
61% in test-time tree search, compared to standard
autoregressive decoding. As a model-free specu-
lative decoding approach, STAND accomplishes
all these achievements without requiring any addi-
tional drafter model, or fine-tuning the target model,
being able to be used in plug-and-play manner to
any existing LRMs.

30624

2 Related Works

Test-time scaling and efficiency. Test-Time
Scaling (TTS) has emerged as a prominent strategy
to enhance problem-solving capabilities during in-
ference without model retraining (Snell et al., 2024;
Muennighoff et al., 2025; Wang et al., 2022; Ue-
sato et al., 2022; Xie et al., 2024). Generating long
chain-of-thoughts or sampling multiple sequences
have consistently showcased higher accuracy in
many complex tasks like math, science and coding
(Wei et al., 2022; Cobbe et al., 2021; Chen et al.,
2023b). However, the computational cost of TTS
remains a critical bottleneck for their practical use.
Recent work has explored optimizing inference us-
ing adaptive thinking lengths, cascading models
of different sizes, length penalties during training,
and budget-constrained decoding (Aggarwal and
Welleck, 2025; Qu et al., 2025; Liao et al., 2025;
Li et al., 2024b; Wan et al., 2024), yet the funda-
mental trade-off between accuracy gains and costs
persists. Our method aims to accelerate reasoning
while ensuring no performance degradation.

Speculative decoding. SD have been shown to
accelerate Large Language Model (LLM) inference
without any loss in the accuracy (Leviathan et al.,
2023). The approach typically involves a smaller
"draft" model proposing candidate token sequences
for parallel verification by the larger "target" model.
If the tokens align with the target model’s output
distribution, they are "accepted", resulting in more
than one token being produced in a single forward
pass of the LLM. Various compute-efficient draft-
ing strategies have been proposed in the literature to
increase the chances of acceptance. Neural draft ar-
chitectures have evolved from simple, smaller LMs
(Leviathan et al., 2023; Choi et al., 2025) to sophis-
ticated self-drafting approaches (Cai et al., 2024;
Li et al., 2024d; Cheng et al., 2024)). Although
the use of light-weight model-free drafters based
on n-grams (Li et al., 2024a; Somasundaram et al.,
2024; Hu et al., 2024; Oliaro et al., 2024; Geva
et al., 2023; Ou et al., 2024; Saxena, 2023) has
been explored previously for generic tasks, we re-
visit them in the context of LRMs. While these ap-
proaches limit themselves to deterministic n-gram
based lookups as draft sequences, we highlight
the significance of stochastic drafting with logit
information of previously generated n-grams for
reasoning in our proposed method. To further boost
SD performance, tree drafting was proposed where
multiple draft token predictions are organized in

a tree structure, enabling efficient parallel verifi-
cation through a specialized tree attention mask
(Miao et al., 2023; Li et al., 2024d). Methods like
Eagle-2 (Li et al., 2024c) even used dynamic tree
layout choices for SD. Extending these existing
methods, we additionally propose a computation-
ally efficient data-driven offline tree optimization
method for our lightweight model-free drafting
method for LRMs.

Other approaches in literature that tie SD with
LRMs include Speculative Thinking (Hu et al.,
2025), SpecReason (Pan et al., 2025), Reward-
guided SD (Liao et al., 2025). However, they do not
maintain the lossless nature of SD and hence can
also be used in combination with our work. A con-
temporary work (Li et al., 2025) have explored the
importance of model-free n-gram based drafting for
multi-sample inference, but did not showcase any
practical speedup. We extend their findings with
our novel model-free stochastic drafting, and show-
case a comparative analysis with existing methods
through our extensive experimentation.

3 Motivation

3.1 N-gram overlap analysis

2 4 6 8 10 12 14 16
Number of Reasoning Trajectories

40

50

60

70

80

90

100

N-
Gr

am
 O

ve
rla

p
(%

)

2-Gram
3-Gram
4-Gram
5-Gram

Figure 2: N-gram overlaps across reasoning tra-
jectories. We report the N-gram overlaps across dif-
ferent number of reasoning trajectories, generated by
DeepSeek-R1-Distill-Qwen-7B on AIME-2024. The
overlap is defined as the percentage of the N-grams that
appear twice or more in the k reasoning trajectories,
counting duplicates multiple times. We observe high
n-gram overlaps across reasoning paths, presenting an
opportunity for faster drafting.

To assess the degree of redundancy in reason-
ing trajectories, we conducted a comprehensive
analysis of n-gram overlap patterns across multiple
solutions generated by the DeepSeek-R1-Distill-

30625

Qwen-7B model on the AIME-2024 dataset. Fig-
ure 2 illustrates our findings, depicting the overlap
rates for n-grams ranging from bigrams to 5-grams
across varying numbers of reasoning trajectories.

The results reveal a substantial level of repeti-
tion in token sequences. Notably, we observed
that up to 97% of bigrams and 80% of 4-grams re-
cur across 16 distinct reasoning trajectories. Even
when considering only two trajectories, over 90%
of bigrams are repeated. This high degree of over-
lap suggests a significant probability that any given
n-gram generated by the model has likely appeared
in a previous trajectory.

These findings present a compelling opportunity
for the development of an efficient drafting strat-
egy. By leveraging this inherent redundancy, we
can implement a straightforward approach where
previously generated n-grams are proposed as draft
sequences, potentially leading to significant im-
provements in computational efficiency without
compromising the chance of acceptance of the gen-
erated draft. This presents a key motivation for our
proposed method STAND.

3.2 Effectiveness of stochastic drafting

AIME GPQA LiveCodeBench
55

60

65

70

75

Ac
ce

pt
an

ce
 P

ro
ba

bi
lit

y
(%

) Deterministic
Stochastic

Figure 3: Deterministic vs. stochastic drafting. We
report the acceptance probability of a token, given a
draft tree with depth 1 and width 3. Measurements are
done using DeepSeek-R1-Distill-Qwen-7B model, and
the draft tree is constructed using the N-gram module
in STAND.

In contrast to traditional generation approaches
that rely on greedy decoding, LRMs typically em-
ploy sampling-based generation strategies to pro-
duce multiple diverse solution trajectories, mak-
ing the choice of drafting strategy particularly cru-
cial. In speculative sampling (Chen et al., 2023a),
given a target distribution p(x) and draft distribu-
tion q(x), the speculative sampling procedure op-
erates by first sampling x ∼ q(x). The sampled
token is accepted if q(x) ≤ p(x). Otherwise, when

q(x) > p(x), the token is rejected with probability
1− p(x)

q(x) and resampled from an adjusted distribu-
tion p′(x) = norm(max(0, p(x) − q(x))). This
procedure guarantees that the final output distribu-
tion matches the target distribution p(x), for any
drafting distribution q(x).

One can choose the drafting strategy to be de-
terministic or stochastic. In the former, q(x) is
treated as a one-hot vector where q(xdraft) = 1 for
the most probable token xdraft and q(x) = 0 for all
other x. For speculative sampling, this means the
drafted token is accepted with p(xdraft), which can
be particularly low when the target model is un-
certain about its prediction. In contrast, stochastic
drafting generates drafts through sampling from a
probability distribution. Aligning this draft distri-
bution with the target can significantly boost the
chances of acceptance.

In generic greedy decoding setups where this
choice does not matter, existing model-free SD
methods (Ou et al., 2024; Hu et al., 2024; Saxena,
2023) do not store any probability distribution with
the n-gram lookup-based drafters. Eagle-2 (Li et al.,
2024c) also uses deterministic drafting for better
compatibility with their dynamic tree construction
logic. However, for LRMs where sampling plays
a key role in generation, we showcase that this
choice plays a pivotal role in acceptance probabil-
ity of the draft sequence. As shown in Figure 3,
this fundamental difference leads to 5%, 7% and
8% higher acceptance probabilities for stochastic
drafting compared to deterministic drafting across
different reasoning tasks i.e. AIME, GPQA and
LiveCodeBench respectively. These experimen-
tal findings motivated us to find effective ways
to compute draft model probabilities in STAND,
that aligns well with the probability distributions
of LRMs from which the multiple trajectories are
sampled.

4 STAND

In this section, we present the details of STAND. In
Section 4.1, we propose a memory- and compute-
efficient approach to construct the logit-based N-
gram module. Then in Section 4.2, we illustrate
how to use the N-gram module as a drafter for
stochastic sampling, together with several optimiza-
tion techniques that further improve performance.

30626

Drafting with Logit-Based Adaptive N-Gram Module Data-Driven Draft Tree Optimization

0.7

0.3 0.2

0.1 0.00.3 0.2

0.7

0.3

0.1 0.00.3 0.2

0.2

Prepare a large tree

Perform SD on
real data

Track per-node
acceptance probability

Select the best nodes Optimized draft tree

LLM

Logit 1 Logit 2

I am

am Bob

Token-Based N-gram
(Baselines)

Lookup Table

I am Bob

Lookup Table

I am Logit 2
Logit-Based N-gram

(Ours)

Deterministic drafting

Stochastic drafting

I amInput:

I amInput:

Output:

Output:

Bob

Logit 2

Bob

Mary

Tom

0.5

0.5

Figure 4: Overview of STAND. (Left) The N-gram module stores logits instead of discrete tokens, enabling
stochastic drafting. When the language model generates “I am Bob”, we store the probability distribution over the
next token rather than just the sampled token. (Right) Data-driven draft tree optimization: We start with an initial
large draft tree, measure node-wise acceptance rates during speculative decoding on real data, and prune to retain
the most successful paths.

4.1 Logit-based adaptive N-gram module

Traditional N-gram modules for speculative decod-
ing typically store pairs of N-grams and their cor-
responding next tokens (Ou et al., 2024). We im-
prove this approach by instead storing the logit
distribution from which the next token is sampled.
This modification preserves the rich probabilistic
information of potential next tokens, enabling more
sophisticated stochastic drafting strategies. While
existing methods like Token Recycle partially uti-
lize logit information by storing top-k token IDs,
they discard valuable probability information that
are crucial for stochastic drafting. Like previous
works (Saxena, 2023; Ou et al., 2024), we maintain
separate lookup tables from unigrams to 4-grams.

Efficient logit approximation. To address the
memory overhead associated with storing full logit
distributions, particularly for models with large
vocabularies, we implement a compressed repre-
sentation scheme. Our approach maintains only the
top-k indices and their corresponding probabilities.
When encountering repeated n-grams, we merge
distributions by treating non-stored indices as hav-
ing zero probability and computing a weighted av-
erage: for an n-gram seen k times previously, the
existing distribution (representing the mean of k
occurrences) is weighted by k/(k+1) and the new
distribution by 1/(k+1). The resulting averaged dis-
tribution is then truncated to retain only the top-10
most probable tokens, ensuring constant memory
usage while preserving the most relevant probabil-
ity information for future speculation.

4.2 Drafting with STAND
Stochastic tree drafting. For each position in
the draft tree, we predict the next tokens using a
multi-level N-gram approach. Following previous
works (Saxena, 2023; Ou et al., 2024), we search
for matching N-grams in decreasing order of length,
from 4-grams down to unigrams, using the first suc-
cessful match. This lookup returns the top-10 can-
didate tokens and their corresponding probabilities
from our stored distributions. Based on the number
of children required at each tree node, we sample k
tokens without replacement from these candidates.
These sampled tokens then undergo standard specu-
lative sampling verification to ensure draft quality.

Gumbel-Top-K sampling. For efficient stochas-
tic drafting, we replace traditional sequential sam-
pling with a parallel sampling approach based on
the Gumbel-Top-K trick (Kool et al., 2019). For
each candidate token’s log probability ϕi, we add
Gumbel noise to create a perturbed distribution:

ϕ′
i = ϕi − log(− logUi), Ui ∼ Uniform(0, 1)

Taking the top-k indices from these perturbed val-
ues ϕ′

i effectively samples k tokens without replace-
ment in parallel, significantly reducing sampling
latency compared to sequential methods.

To further optimize performance, we pre-
compute and cache the Gumbel noise terms rather
than generating them during drafting. This cached
noise is periodically refreshed when depleted, ef-
fectively separating the sampling overhead from
drafting. These optimizations further enhance the
performance of our stochastic drafting approach.

30627

Draft tree optimization. Tree-based speculative
decoding typically uses either dynamic trees con-
structed during inference or static trees built us-
ing heuristics. While dynamic trees offer context-
adaptability, they add computational overhead.
Conversely, static trees are computationally effi-
cient but may underperform if constructed through
heuristics alone.

We address this limitation through a data-driven
approach to static tree construction. Our method be-
gins by initializing a large tree with 625 nodes and
performing speculative decoding on 30 data sam-
ples. During this process, we track which nodes
are frequently part of successful speculation paths.
We then select the top-80 most effective nodes and
reorganize them into a compact tree structure. This
empirical approach maintains the computational
efficiency of static trees while ensuring the tree
structure is optimized based on real-world perfor-
mance data.

5 Experiments

This section highlights the effectiveness of STAND
through extensive experiments. In Section 5.1,
we showcase that STAND can significantly speed
up generation in multi-trajectory inference. Sec-
tion 5.2, we highlight that STAND can also be used
in single-trajectory inference. In Section 5.3, we
extend our evaluations to more diverse inference
patterns, namely batch decoding and test-time tree
search. Finally in Section 5.4, we perform an ab-
lation study of the components that make STAND
effective, followed by an additional analysis of the
optimized tree structure.

Experimental setup and baselines. Through-
out the experiments, we evaluate the effective-
ness of our approach on diverse tasks, including
math reasoning (AIME-2024), STEM QA (GPQA-
Diamond), and coding (LiveCodeBench). We per-
form evaluations across different model scales, in-
cluding DeepSeek-R1-Distill-Qwen-7B and 14B.
For all tasks, we generate maximum 32k tokens for
the 7B model, and 24k tokens for the 14B model.
All sampling is done with temperature 0.6. All
measurements are done on a single A100 GPU,
with 30 samples per task for efficient experiments.

For model-free baselines, we compare STAND
against Prompt Lookup Decoding (PLD, (Sax-
ena, 2023)), Adaptive N-gram Parallel Decoding
(ANPD, (Ou et al., 2024)), Token Recycle (Recy-
cle, (Luo et al., 2024)), SAM-Decoding (SAM, (Hu

et al., 2024)) and a combination of SAM decoding
and Token Recycle, also proposed in the SAM pa-
per. For Static SAM (which is a component of
SAM that uses a pre-constructed suffix automation
from a datastore), we construct the datastore using
4k samples from the OpenThoughts-114k (Team,
2025) dataset. For all methods involving static draft
trees, we apply our tree optimization algorithm us-
ing 30 samples from the AIME-2024 dataset unless
otherwise stated. We also compare against Eagle-2,
as a representative model-based baseline. To en-
able long context inference, we trained all Eagle
models using OpenThoughts-114k dataset, where
long samples exceeding 32k tokens were truncated.

To ensure fair comparison, we conducted all
experiments on a unified codebase, adapted from
Spec-Bench (Xia et al., 2024). In this implemen-
tation, all components such as model forwarding
and draft verification are shared, and the only dif-
ferences lie in the drafting algorithms themselves.
Furthermore, the draft length was fixed at 80 tokens
for all methods, including our proposed approach
and the baselines.

Evaluation metrics. We adopt throughput and
acceptance length as our main evaluation metrics.
Throughput measures the number of tokens gen-
erated per second, computed as the total number
of generated tokens divided by the total drafting
time. The acceptance length quantifies the aver-
age number of tokens generated per speculation
step. For both metrics, higher values indicate better
performance.

5.1 Evaluation on multi-trajectory decoding

In Figure 1 and Table 1, we evaluate STAND’s
performance in multi-trajectory inference, where
we generate multiple candidate answers by sequen-
tially producing k independent reasoning traces and
then aggregate the results.

As shown in Figure 1, STAND significantly im-
proves decoding efficiency, achieving equivalent
performance to plain decoding in less than 40%
the time. Table 1 provides detailed throughput
and acceptance length comparisons across meth-
ods. STAND not only achieves the highest through-
put but also maintains longer acceptance lengths
compared to baselines. Importantly, both metrics
improve as we increase the number of trajectories,
making STAND’s speedup advantage more pro-
nounced with increased compute scaling.

Notably, Token Recycle’s performance remains

30628

Table 1: Speculative decoding performance in multi-trajectory reasoning. We report the average throughput
(T) and acceptance length (A) for multi-trajectory test-time scaling scenarios, with different number of reasoning
trajectories per problem. We evaluate each model on AIME-2024 (AIME), GPQA-Diamond (GPQA), and Live-
CodeBench (LCB). Best results are shown in bold.

4 Trajectories 8 Trajectories 16 Trajectories

AIME GPQA LCB Avg. AIME GPQA LCB Avg. AIME GPQA LCB Avg.

DeepSeek-R1-Distill-Qwen-7B

Plain T 26.63 31.34 27.75 28.57 26.63 31.34 27.75 28.57 26.63 31.34 27.75 28.57

Eagle-2 T 29.91 31.69 27.61 29.74 29.91 31.69 27.61 29.74 29.91 31.69 27.61 29.74
(x1.12) (x1.01) (x0.99) (x1.04) (x1.12) (x1.01) (x0.99) (x1.04) (x1.12) (x1.01) (x0.99) (x1.04)

A 2.21 1.99 2.13 2.11 2.21 1.99 2.13 2.11 2.21 1.99 2.13 2.11

PLD T 43.93 50.49 44.01 46.14 44.95 53.04 45.08 47.69 46.60 53.47 46.02 48.70
(x1.65) (x1.61) (x1.59) (x1.61) (x1.69) (x1.69) (x1.62) (x1.67) (x1.75) (x1.71) (x1.66) (x1.70)

A 1.78 1.81 1.73 1.77 1.84 1.89 1.79 1.84 1.89 1.96 1.85 1.90

ANPD T 45.52 57.39 46.30 49.74 46.40 58.97 47.86 51.08 47.06 60.25 48.81 52.04
(x1.71) (x1.83) (x1.67) (x1.74) (x1.74) (x1.88) (x1.72) (x1.79) (x1.77) (x1.92) (x1.76) (x1.82)

A 1.89 1.97 1.88 1.91 1.92 2.03 1.91 1.95 1.96 2.11 1.96 2.01

SAM T 44.35 53.21 45.63 47.73 45.64 55.47 47.24 49.45 47.64 57.53 48.92 51.36
(x1.67) (x1.70) (x1.64) (x1.67) (x1.71) (x1.77) (x1.70) (x1.73) (x1.79) (x1.84) (x1.76) (x1.80)

A 1.81 1.87 1.85 1.84 1.89 1.96 1.89 1.91 1.97 2.03 1.95 1.98

Recycle T 61.38 71.51 60.62 64.50 61.70 71.55 60.93 64.73 60.86 71.23 61.36 64.48
(x2.30) (x2.28) (x2.18) (x2.26) (x2.32) (x2.28) (x2.20) (x2.27) (x2.29) (x2.27) (x2.21) (x2.26)

A 2.76 2.73 2.73 2.74 2.77 2.73 2.73 2.74 2.77 2.73 2.74 2.75

SAM+Recycle T 61.11 70.43 62.20 64.58 60.66 69.98 63.41 64.68 60.63 69.85 63.39 64.62
(x2.29) (x2.25) (x2.24) (x2.26) (x2.28) (x2.23) (x2.29) (x2.26) (x2.28) (x2.23) (x2.28) (x2.26)

A 2.71 2.73 2.68 2.71 2.69 2.74 2.69 2.71 2.68 2.71 2.67 2.69

STAND (Ours) T 64.99 83.47 69.70 72.72 66.88 87.02 71.83 75.24 69.15 91.17 74.14 78.15
(x2.44) (x2.66) (x2.51) (x2.55) (x2.51) (x2.78) (x2.59) (x2.63) (x2.60) (x2.91) (x2.67) (x2.74)

A 3.21 3.48 3.30 3.33 3.35 3.70 3.47 3.51 3.46 3.90 3.64 3.67

DeepSeek-R1-Distill-Qwen-14B

Plain T 17.76 18.16 17.43 17.78 17.76 18.16 17.43 17.78 17.76 18.16 17.43 17.78

Eagle-2 T 25.38 24.86 21.89 24.04 25.38 24.86 21.89 24.04 25.38 24.86 21.89 24.04
(x1.43) (x1.37) (x1.26) (x1.35) (x1.43) (x1.37) (x1.26) (x1.35) (x1.43) (x1.37) (x1.26) (x1.35)

A 2.72 2.44 2.51 2.56 2.72 2.44 2.51 2.56 2.72 2.44 2.51 2.56

PLD T 24.37 26.6 23.36 24.78 25.44 27.36 23.96 25.59 26.35 28.43 24.97 26.58
(x1.37) (x1.46) (x1.34) (x1.39) (x1.43) (x1.51) (x1.37) (x1.44) (x1.48) (x1.57) (x1.43) (x1.49)

A 1.74 1.82 1.74 1.77 1.84 1.91 1.81 1.85 1.92 2.00 1.88 1.93

ANPD T 25.74 28.21 24.78 26.24 26.12 29.51 25.63 27.09 26.49 30.62 26.32 27.81
(x1.45) (x1.55) (x1.42) (x1.48) (x1.47) (x1.63) (x1.47) (x1.52) (x1.49) (x1.69) (x1.51) (x1.56)

A 1.87 1.97 1.87 1.90 1.91 2.04 1.93 1.96 1.96 2.13 1.99 2.03

SAM T 25.22 28.03 24.41 25.89 26.11 29.39 25.37 26.96 27.25 30.59 26.67 28.17
(x1.42) (x1.54) (x1.40) (x1.46) (x1.47) (x1.62) (x1.46) (x1.52) (x1.53) (x1.68) (x1.53) (x1.58)

A 1.78 1.85 1.79 1.81 1.88 1.95 1.87 1.90 1.98 2.06 1.96 2.00

Recycle T 34.97 38.99 34.05 36.00 35.06 38.89 33.98 35.98 35.31 38.81 33.96 36.03
(x1.97) (x2.15) (x1.95) (x2.02) (x1.97) (x2.14) (x1.95) (x2.02) (x1.99) (x2.14) (x1.95) (x2.03)

A 2.78 2.73 2.72 2.74 2.77 2.73 2.72 2.74 2.77 2.74 2.72 2.74

SAM+Recycle T 34.81 38.24 34.15 35.73 35.16 38.57 34.19 35.97 35.53 38.99 34.31 36.28
(x1.96) (x2.11) (x1.96) (x2.01) (x1.98) (x2.12) (x1.96) (x2.02) (x2.00) (x2.15) (x1.97) (x2.04)

A 2.70 2.71 2.65 2.69 2.71 2.71 2.66 2.69 2.72 2.71 2.65 2.69

STAND (Ours) T 37.56 43.71 38.71 39.99 39.13 46.81 40.45 42.13 40.76 49.11 42.72 44.20
(x2.11) (x2.41) (x2.22) (x2.25) (x2.20) (x2.58) (x2.32) (x2.37) (x2.30) (x2.70) (x2.45) (x2.49)

A 3.16 3.42 3.29 3.29 3.28 3.63 3.47 3.46 3.42 3.86 3.65 3.64

flat despite increasing trajectories, unlike other
model-free approaches. This limitation likely
comes from its lookup table update strategy, which
replaces rather than aggregates information from
new trajectories. While this approach may offer
some drafting speed benefits, STAND’s superior
and scaling-dependent performance suggests that
aggregating historical information is more benefi-
cial than harmful for test-time scaling.

5.2 Evaluation on single-trajectory decoding

While STAND is primarily designed to leverage
information across multiple reasoning trajecto-
ries, we also evaluate its performance on single-
trajectory generation, where the model only pro-
duces one long reasoning chain. As shown in Ta-
ble 2, STAND achieves both the highest acceptance
length and throughput in most scenarios, demon-
strating its effectiveness even when generating in-
dividual solutions.

30629

Table 2: Single-trajectory evaluations. We report the
throughput (T) and acceptance length (A) for generating
a single sequence with DeepSeek-R1-Distill-Qwen-7B
and 14B. Best results are shown in bold.

AIME GPQA LCB Avg.

DeepSeek-R1-Distill-Qwen-7B

Plain T 26.63 31.34 27.75 28.57

Eagle-2 T 29.91 31.69 27.61 29.74
(x1.12) (x1.01) (x0.99) (x1.04)

A 2.21 1.99 2.13 2.11

PLD T 44.34 42.84 43.40 43.53
(x1.67) (x1.37) (x1.56) (x1.52)

A 1.72 1.64 1.59 1.65

ANPD T 46.18 54.05 44.79 48.34
(x1.73) (x1.72) (x1.61) (x1.69)

A 1.88 1.82 1.80 1.83

SAM T 40.85 48.45 42.92 44.07
(x1.53) (x1.55) (x1.55) (x1.54)

A 1.69 1.69 1.80 1.73

Recycle T 60.61 71.00 60.12 63.91
(x2.28) (x2.27) (x2.17) (x2.24)

A 2.73 2.71 2.73 2.72

SAM+Recycle T 61.15 71.51 62.78 65.15
(x2.30) (x2.28) (x2.26) (x2.28)

A 2.70 2.81 2.69 2.73

STAND (Ours) T 61.79 75.39 66.41 67.86
(x2.32) (x2.41) (x2.39) (x2.38)

A 3.07 3.05 3.01 3.04

DeepSeek-R1-Distill-Qwen-14B

Plain T 17.76 18.16 17.43 17.78

Eagle-2 T 25.38 24.86 21.89 24.04
(x1.43) (x1.37) (x1.26) (x1.35)

A 2.72 2.44 2.51 2.56

PLD T 21.82 24.97 21.76 22.85
(x1.23) (x1.38) (x1.25) (x1.28)

A 1.61 1.64 1.58 1.61

ANPD T 25.60 26.40 23.16 25.05
(x1.44) (x1.45) (x1.33) (x1.41)

A 1.76 1.79 1.76 1.77

SAM T 23.26 25.38 22.36 23.67
(x1.31) (x1.40) (x1.28) (x1.33)

A 1.63 1.65 1.63 1.64

Recycle T 33.71 38.91 33.85 35.49
(x1.90) (x2.14) (x1.94) (x2.00)

A 2.77 2.73 2.71 2.74

SAM+Recycle T 34.35 37.53 34.45 35.44
(x1.93) (x2.07) (x1.98) (x1.99)

A 2.67 2.72 2.70 2.70

STAND (Ours) T 34.52 38.71 34.86 36.03
(x1.94) (x2.13) (x2.00) (x2.03)

A 2.91 3.00 2.93 2.95

5.3 Evaluation on diverse inference patterns

We extend our evaluation to more diverse and prac-
tical inference patterns, focusing on batch decoding
and test-time tree search. In the batch decoding
setup, multiple reasoning traces are generated si-
multaneously, and the N-gram drafters can only

Table 3: Batch decoding evaluations. We report the
throughput (T) and acceptance length (A) for batch de-
coding with DeepSeek-R1-Distill-Qwen-7B. Both spec-
ulative decoding approaches use trees optimized with
OpenThoughts-114k. Best results are shown in bold.

AIME GPQA LCB Avg.

Batch Size 4

Plain T 89.04 88.32 92.64 90.00

Recycle T 90.51 98.41 89.55 92.82
(x1.02) (x1.11) (x0.97) (x1.03)

A 1.77 1.83 1.72 1.77

STAND (Ours) T 127.58 134.64 122.09 128.10
(x1.43) (x1.52) (x1.32) (x1.42)

A 2.57 2.74 2.57 2.63

Batch Size 8

Plain T 111.62 106.23 114.73 110.86

Recycle T 99.18 105.69 99.2 101.36
(x0.89) (x0.99) (x0.86) (x0.91)

A 1.66 1.75 1.63 1.68

STAND (Ours) T 148.08 154.68 149.41 150.72
(x1.33) (x1.46) (x1.30) (x1.36)

A 2.70 2.86 2.69 2.75

Table 4: Test-time tree search evaluations. We re-
port the throughput (T) and acceptance length (A)
for performing Diverse Verifier Tree Search (DVTS)
with DeepSeek-R1-Distill-Qwen-7B. Both specula-
tive decoding approaches use trees optimized with
OpenThoughts-114k. Best results are shown in bold.

AIME GPQA LCB Avg.

Plain T 33.35 33.12 32.22 32.90

Recycle T 71.52 70.64 69.47 70.54
(x2.14) (x2.13) (x2.16) (x2.14)

A 2.73 2.69 2.74 2.72

STAND (Ours) T 82.62 86.93 80.97 83.51
(x2.48) (x2.62) (x2.51) (x2.54)

A 3.55 3.71 3.51 3.59

leverage the content produced up to the current
decoding step. As shown in Table 3, STAND con-
sistently achieves significant speedups even with a
batch size of 8, whereas Token Recycle provides
only marginal improvements at batch size 4 and
even degrades performance at batch size 8.

Test-time tree search represents another widely
used pattern for scaling inference, where the model
generates multiple candidate reasoning steps and
dynamically selects among them. In Table 4, we
evaluate STAND within the Diverse Verifier Tree
Search (DVTS, (Beeching et al., 2024)) frame-
work. As the results show, STAND consistently
outperforms Token Recycle, achieving an average
speedup of 2.54×.

30630

Table 5: Effect of Stochastic Drafting. We report the
throughput (T) and acceptance length (A) for generating
4 sequences with DeepSeek-R1-Distill-Qwen-7B.

AIME GPQA LCB Avg.

Plain T 26.63 31.34 27.75 28.57

Deterministic T 62.13 73.67 63.44 66.41
(x2.33) (x2.35) (x2.29) (x2.32)

A 2.94 2.98 2.90 2.94

Stochastic T 63.44 81.20 65.90 70.18
(x2.38) (x2.59) (x2.37) (x2.46)

A 3.24 3.56 3.29 3.36

+ Gumbel-Top-K T 64.99 83.47 69.70 72.72
(x2.44) (x2.66) (x2.51) (x2.55)

A 3.21 3.48 3.30 3.33

Table 6: Effect of tree optimization. Comparison of
throughput and acceptance length when generating 4
sequences with DeepSeek-R1-Distill-Qwen-7B on two
datasets: AIME-2024 and GPQA-Diamond. We com-
pare two types of static trees: the heuristic trees from
Token Recycle and our data-optimized trees, optimized
on AIME-2024. Best results are shown in bold.

AIME GPQA (OOD)
Heuristic Optimized Heuristic Optimized

Throughput 59.96 64.99 77.32 83.47
Acc. Lens 3.17 3.21 3.35 3.48

5.4 Ablations and analysis
We evaluate key components of STAND through
ablation studies and further analysis. Our abla-
tion studies examine the impact of stochastic draft-
ing and the Gumbel-Top-K optimization trick, fol-
lowed by an investigation of our tree optimization
approach. We then analyze the structural charac-
teristics of the optimized trees to better understand
the patterns that emerge from our method.

Effect of stochastic drafting. In Table 5, we
compare three drafting approaches: deterministic
drafting, basic stochastic drafting (using PyTorch’s
multinomial sampling), and our optimized stochas-
tic drafting with Gumbel-Top-K. For fair com-
parison, we separately perform tree optimization
for determinisic drafting and stochastic drafting.
Stochastic drafting consistently achieves higher
acceptance lengths across all tasks, resulting in
improved throughput compared to deterministic
drafting. Our Gumbel-Top-K optimization further
improves performance by maintaining similar ac-
ceptance lengths while significantly reducing la-
tency, leading to even higher throughput.

Effect of tree optimization. In Table 6, we
showcase the effectiveness of our tree optimiza-

tion technique. We compare the performance of
a heuristic tree originally used by Token Recy-
cle (Luo et al., 2024) with our tree, optimized on
the AIME-2024 dataset. The results demonstrates
that the optimized tree improves performance on
both AIME-2024 and GPQA-Diamond, showcas-
ing that the optimization not only works within
the same dataset, but also generatlizes to out-of-
domain (OOD) tasks.

1 2 3 4 5 6 7 8 9 10 11 12 13
Tree Depth

0

5

10

15

20

25

Nu
m

be
r o

f N
od

es

Recycle
Ours

Figure 5: Structure of the Optimized Tree. We report
the number of nodes at specific tree depths for draft
trees optimized for each Token Recycle and STAND.
Both trees are optimized on AIME-2024 dataset with
DeepSeek-R1-Distill-Qwen-7B.

Tree structure analysis. We analyze how dif-
ferent drafting approaches lead to different opti-
mal tree structures by comparing trees optimized
for STAND versus Token Recycle. As shown in
Figure 5, the tree optimized for STAND reaches
greater depths, extending to 13 levels compared to
7 levels in the Token Recycle-optimized tree. This
difference likely stems from STAND’s higher ac-
ceptance rate, which favors deeper, narrower tree
structures under the same tree size budget.

A distinctive feature of STAND’s optimized tree
is its long tail structure, with single nodes at depths
8 through 13. This pattern suggests the presence
of occasional long, deterministic sequences, possi-
bly arising from consistent patterns found across
multiple reasoning trajectories.

6 Conclusion

In this work, we introduced STAND, a model-free
speculative decoding approach that accelerates lan-
guage model reasoning while maintaining accuracy.
By utilizing reasoning trajectory redundancy and
historical logit information, STAND significantly
improves throughput over standard auto-regressive
decoding and existing alternatives, offering an effi-
cient solution for scaling AI reasoning systems.

30631

Limitations

While STAND demonstrates strong performance
across diverse inference patterns, all measurements
were conducted using the HuggingFace implemen-
tation, which is less optimized than popular serving
frameworks such as vLLM or SGLang. Although
we expect the benefits of STAND to extend to these
optimized frameworks, this has not yet been veri-
fied. In addition, the current N-gram lookup oper-
ation is implemented in Python, which may intro-
duce a slowdown. Latency could be further reduced
with a more optimized implementation of the N-
gram module.

Acknowledgements

For WS and JS: This work was supported by In-
stitute for Information & communications Tech-
nology Promotion(IITP) grant funded by the
Korea government(MSIT) (No.RS-2019-II190075
Artificial Intelligence Graduate School Program
(KAIST); No. RS-2024-00509279, Global AI Fron-
tier Lab). This work was also supported by the
NIPA(National IT Industry Promotion Agency),
through the Ministry of Science and ICT (Hyper-
scale AI flagship project).

References
Pranjal Aggarwal and Sean Welleck. 2025. L1:

Controlling how long a reasoning model thinks
with reinforcement learning. arXiv preprint
arXiv:2503.04697.

Edward Beeching, Lewis Tunstall, and Sasha
Rush. 2024. Open models. https:
//huggingface.co/spaces/HuggingFaceH4/
blogpost-scaling-test-time-compute. Hug-
ging Face Blog, Accessed: 2025-09-20.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023a. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Ke-
fan Xiao, Pengcheng Yin, Sushant Prakash, Charles
Sutton, Xuezhi Wang, and Denny Zhou. 2023b. Uni-
versal self-consistency for large language model gen-
eration. arXiv preprint arXiv:2311.17311.

Yunfei Cheng, Aonan Zhang, Xuanyu Zhang, Chong
Wang, and Yi Wang. 2024. Recurrent drafter for
fast speculative decoding in large language models.
arXiv preprint arXiv:2403.09919.

Daewon Choi, Seunghyuk Oh, Saket Dingliwal, Jihoon
Tack, Kyuyoung Kim, Woomin Song, Seojin Kim,
Insu Han, Jinwoo Shin, Aram Galstyan, and 1 oth-
ers. 2025. Mamba drafters for speculative decoding.
arXiv preprint arXiv:2506.01206.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Mor Geva, Tal Schuster, Jonathan Berant, and Omer
Levy. 2023. Token recycling: Making llms
faster and more data-efficient. arXiv preprint
arXiv:2310.02548.

Yunhai Hu, Zining Liu, Zhenyuan Dong, Tianfan Peng,
Bradley McDanel, and Sai Qian Zhang. 2025. Spec-
ulative decoding and beyond: An in-depth survey of
techniques. arXiv preprint arXiv:2502.19732.

Yuxuan Hu, Ke Wang, Xiaokang Zhang, Fanjin Zhang,
Cuiping Li, Hong Chen, and Jing Zhang. 2024. Sam
decoding: Speculative decoding via suffix automaton.
arXiv preprint arXiv:2411.10666.

Langlin Huang, Chengsong Huang, Jixuan Leng,
Di Huang, and Jiaxin Huang. 2025. Poss: Position
specialist generates better draft for speculative decod-
ing. arXiv preprint arXiv:2506.03566.

Wouter Kool, Herke Van Hoof, and Max Welling. 2019.
Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without
replacement. In International Conference on Ma-
chine Learning, pages 3499–3508. PMLR.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen,
Jimmy Lin, Scott Yih, and Victoria Lin. 2024a. Near-
est neighbor speculative decoding for llm generation
and attribution. Advances in Neural Information Pro-
cessing Systems, 37:80987–81015.

Yiwei Li, Jiayi Shi, Shaoxiong Feng, Peiwen Yuan,
Xinglin Wang, Yueqi Zhang, Ji Zhang, Chuyi Tan,
Boyuan Pan, Yao Hu, and Kan Li. 2025. Speculative
decoding for multi-sample inference. arXiv preprint
arXiv:2503.05330.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,
Xinglin Wang, Bin Sun, Heda Wang, and Kan Li.
2024b. Escape sky-high cost: Early-stopping self-
consistency for multi-step reasoning. arXiv preprint
arXiv:2401.10480.

30632

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024c. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint
arXiv:2406.16858.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024d. Eagle: Speculative sampling re-
quires rethinking feature uncertainty. arXiv preprint
arXiv:2401.15077.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li,
Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. 2025. Reward-guided speculative
decoding for efficient llm reasoning. arXiv preprint
arXiv:2501.19324.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming
Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. 2024. Turning trash into treasure:
Accelerating inference of large language models with
token recycling. arXiv preprint arXiv:2408.08696.

Xiang Miao, Gabriele Oliaro, Zhen Zhang, Xinyun
Cheng, Zeyu Wang, Zheng Zhang, Ruijie Yan, Alvin
Zhu, Lei Yang, Xipeng Shi, and 1 others. 2023.
Specinfer: Accelerating generative large language
model serving with tree-based speculative inference
and verification. arXiv preprint arXiv:2305.09781.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Gabriele Oliaro, Zhihao Jia, Daniel Campos, and Aurick
Qiao. 2024. Suffixdecoding: A model-free approach
to speeding up large language model inference. arXiv
preprint arXiv:2411.04975.

Jie Ou, Yueming Chen, and Wenhong Tian. 2024.
Lossless acceleration of large language model via
adaptive n-gram parallel decoding. arXiv preprint
arXiv:2404.08698.

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro,
Zhihao Jia, and Ravi Netravali. 2025. Specreason:
Fast and accurate inference-time compute via specu-
lative reasoning. arXiv preprint arXiv:2504.07891.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur,
Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. 2025. Optimizing
test-time compute via meta reinforcement fine-tuning.
arXiv preprint arXiv:2503.07572.

Apoorv Saxena. 2023. Prompt lookup decoding.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Shwetha Somasundaram, Anirudh Phukan, and Apoorv
Saxena. 2024. Pld+: Accelerating llm inference by
leveraging language model artifacts. arXiv preprint
arXiv:2412.01447.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-
drew Wen, Shaochen Zhong, Hanjie Chen, and 1
others. 2025. Stop overthinking: A survey on ef-
ficient reasoning for large language models. arXiv
preprint arXiv:2503.16419.

OpenThoughts Team. 2025. Open Thoughts.
https://open-thoughts.ai.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li.
2024. Dynamic self-consistency: Leveraging reason-
ing paths for efficient llm sampling. arXiv preprint
arXiv:2408.17017.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed H. Chi, and Denny Zhou. 2022. Self-consistency
improves chain of thought reasoning in language
models. ArXiv, abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
7655–7671, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. 2024. Monte carlo tree search boosts
reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451.

Wang Yang, Xiang Yue, Vipin Chaudhary, and Xiao-
tian Han. 2025. Speculative thinking: Enhancing
small-model reasoning with large model guidance at
inference time. arXiv preprint arXiv:2504.12329.

30633

https://github.com/apoorvumang/prompt-lookup-decoding/
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:247595263
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456
https://doi.org/10.18653/v1/2024.findings-acl.456

A Experimental Details

A.1 Initial tree for optimization

1 2 3 4 5 6 7 8 9 1011121314151617181920
Tree Depth

0

50

100

150

Nu
m

be
r o

f N
od

es

Big Tree

Figure 6: Structure of the initial tree. We report the
number of nodes at specific tree depths for the initial
tree used for tree optimization.

To initialize data-driven tree optimization, we
heuristically applied predefined rules that assign
the number of child nodes based on node depth and
position. In particular, leftmost nodes at each level
receive more children, as they are more likely to
yield higher acceptance probabilities. The pseu-
docode for this initialization is shown in Algo-
rithm 1.

As illustrated in Figure 6, the resulting tree has
a maximum depth of 20 and 625 total nodes.

A.2 Experiment Details
For the batch decoding experiments, we modified
the single-batch inference code to sequentially con-
struct draft trees for all sequences in a batch, and
then verify them in parallel. This design choice
was made because, unlike model-based drafters
that benefit substantially from forwarding multi-
ple samples in parallel (even during the drafting
stage), N-gram–based drafters inherently rely on
sequential memory lookups. For the DVTS experi-
ments, we adopted the self-evaluation strategy from
SpecReason (Pan et al., 2025) to determine which
reasoning step to accept.

B Further discussions

B.1 Effect of tree optimization dataset
In this section, we analyze the impact of the dataset
used for tree optimization. To evaluate this effect,
we optimized the draft tree on the OpenThoughts-
114k dataset and then evaluated STAND on AIME-
2024, rather than optimizing directly on AIME-
2024. As shown in Table 9, STAND maintains
high throughput and acceptance length under both

configurations, in some cases even outperforming
the tree optimized on AIME-2024. These results
suggest that STAND is robust to the choice of ini-
tialization dataset.

B.2 Remarks on Eagle-2 performance

Table 7: Eagle-2 acceptance lengths. We report the
acceptance lengths of the Eagle-2 model across different
context lengths, using DeepSeek-R1-Distill-Qwen-14B.

Input Length 0-2k 2k-4k 4k-8k 8k-16k 16k-32k

AIME-2024 2.89 2.79 2.68 2.61 2.47
GPQA-Diamond 2.60 2.50 2.38 2.31 2.28
LiveCodeBench 2.76 2.66 2.50 2.38 2.14

Somewhat surprisingly, we observed lower ac-
ceptance lengths for Eagle-2 compared to those
originally reported in the paper. One potential ex-
planation is the long-context setup used in our eval-
uation. Whereas most prior Eagle-2 benchmarks
focused on short inputs (fewer than 2k tokens), our
experiments trained Eagle drafters to handle up
to 32k tokens in order to support long-form rea-
soning. This broader context window may reduce
acceptance length as a trade-off.

We also observed that acceptance lengths tend
to degrade with longer inputs, as shown in Table 7,
which provides another possible explanation for
the lower average acceptance lengths in our experi-
ments.

B.3 Performance on non-reasoning model

Table 8: Non-reasoning model evaluation. We report
the throughput (T) and acceptance length (A) for gen-
erating multiple sequences with Qwen2.5-7B-Instruct
with batch decoding.

Batch Size AIME (T / A) GPQA (T / A)

Plain 4 96.64 / – 130.00 / –
Recycle 4 115.75 / 2.06 133.53 / 1.99
STAND (Ours) 4 152.59 / 2.65 152.07 / 2.39

Plain 8 119.32 / – 166.05 / –
Recycle 8 134.40 / 1.95 155.41 / 1.94
STAND (Ours) 8 187.43 / 2.82 198.09 / 2.62

While our analysis in the main text focused
on reasoning models, namely the DeepSeek-R1-
Distill-Qwen family, STAND can also be applied
to test-time scaling with non-reasoning models. As
shown in Table 8, STAND significantly outper-
forms Token Recycle in both throughput and accep-
tance length at batch sizes 4 and 8 with Qwen2.5-
7B-Instruct.

30634

Algorithm 1 Initial Tree Construction

1: Initialize active_list← {root_node}
2: Initialize children_list← ∅
3: num_nodes← 1
4: for depth = 0 to 19 do
5: for each node in active_list with index i do
6: if node.depth = 0 then
7: n_children← 8
8: else if node.depth = 1 then
9: n_children← max(8− 2 · node.order, 1)

10: else if node.depth = 2 then
11: n_children← max

(
⌈ |node.parent.children|−1

node.order·0.7+1 ⌉, 2
)

12: else if node.depth = 3 then
13: n_children← max

(
⌈ |node.parent.children|−1

node.order·0.7+1 ⌉, 2
)

14: else
15: n_children← max

(
⌈ |node.parent.children|−1

node.order·0.7+1 ⌉, 0
)

16: end if
17: if i = 0 then
18: n_children← max(n_children, 3)
19: end if
20: for i_child = 0 to n_children− 1 do
21: Create new child_node with:
22: id = num_nodes,
23: depth = node.depth+ 1,
24: order = i_child,
25: parent = node
26: num_nodes← num_nodes+ 1
27: Append child_node to node.children and children_list
28: end for
29: end for
30: active_list← children_list
31: children_list← ∅
32: end for

Table 9: Effect of tree optimization dataset. We report the average throughput (T) and acceptance length (A) for
the best baseline and STAND with trees optimized from AIME-2025 and OpenThoughts-114k. We evaluate each
model on AIME-2024.

Single Trajectory 4 Trajectories 8 Trajectories 16 Trajectories

T A T A T A T A

DeepSeek-R1-Distill-Qwen-7B

Best Baseline 61.15 2.73 61.38 2.76 61.70 2.77 60.86 2.77
STAND w/ AIME Tree 61.79 3.07 64.99 3.21 66.88 3.35 69.15 3.46
STAND w/ OpenThoughts Tree 62.75 3.04 65.33 3.24 68.58 3.35 70.63 3.49

DeepSeek-R1-Distill-Qwen-14B

Best Baseline 34.35 2.77 34.97 2.78 35.16 2.71 35.53 2.72
STAND w/ AIME Tree 34.52 2.91 37.56 3.16 39.13 3.28 40.76 3.42
STAND w/ OpenThoughts Tree 35.26 2.87 37.41 3.10 39.22 3.26 41.38 3.41

30635

B.4 Effect of tree depth on speed-up
Prior work on model-based speculative decoding
has investigated the trade-off between tree depth
and speed-up. For example, POSS (Huang et al.,
2025) reports that deeper draft trees can increase
acceptance length, but at the cost of higher drafting
latency, since each additional depth requires an
extra forward pass of the draft model. This trade-
off directly affects the overall speed-up ratio in
model-based methods such as Eagle-2.

By contrast, STAND uses a static, pre-computed
tree and performs efficient dictionary lookups
rather than model forward passes. As it sequen-
tially performs the dictionary lookup for each tree
node, the drafting time does not necessarily in-
crease with the tree depth. Even if lookup times
increase slightly, the cost remains negligible com-
pared to model-based approaches, thanks to the
efficiency of dictionary lookups.

30636

