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Abstract

We explore the possibility of semantic net-
works as a diagnostic tool for cognitive de-
cline by using Dutch verbal fluency data to
investigate the relationship between semantic
networks and cognitive health. In psychology,
semantic networks serve as abstract representa-
tions of the semantic memory system. Seman-
tic verbal fluency data can be used to estimate
said networks. Traditionally, this is done by
counting the number of raw items produced by
participants in a verbal fluency task. We used
static and contextual word embedding models
to connect the elicited words through seman-
tic similarity scores, and extracted three net-
work distance metrics. We then tested how
well these metrics predict participants’ cogni-
tive health scores on the Mini-Mental State
Examination (MMSE). While the significant
predictors differed per model, the traditional
number-of-words measure was not significant
in any case. These findings suggest that se-
mantic network metrics may provide a more
sensitive measure of cognitive health than tra-
ditional scoring.

1 Introduction

A universally used neuropsychological method to
assess cognitive state in people with cognitive im-
pairment or disorders is the semantic, or categori-
cal, verbal fluency task (Chi et al., 2014; Maseda
et al., 2014; Quaranta et al., 2019). However, there
is a growing body of studies questioning the granu-
larity of this task’s assessment method (Linz et al.,
2018; March and Pattison, 2006; Shao et al., 2014).
A more granular approach to interpreting the verbal
fluency data is through semantic networks (Chan
et al., 1993; Goiii et al., 2011; Martinez-Nicolas
et al., 2019). Semantic networks serve as abstract
representations of the semantic memory system
and therefore enable valuable insights into higher
cognitive concepts, including cognitive health. The

body of research establishing a link between se-
mantic networks and cognitive health is steadily
growing (Chan et al., 1993; Lerner et al., 2009;
Martinez-Nicolas et al., 2019).

Distributional semantic models are a related
class of semantic memory models: these language
models encode meaning representations, predi-
cated on the hypothesis that the statistical distri-
bution of linguistic items within a given context
significantly influences and defines their semantic
attributes (Landauer and Dumais, 1997). Although
distributional semantic models do not directly rep-
resent semantics, they do represent associations
that reflect word semantic similarity (Hill et al.,
2015; McRae et al., 2012). Such models use word
embeddings to quantify this semantic similarity.
By combining distributional semantic models with
network-based models, it is possible to reinforce
semantic network-based accounts through the ap-
plication of machine learning techniques (Steyvers
and Tenenbaum, 2005; Utsumi, 2015).

As far as we are aware, semantic networks de-
rived from distributional semantic modeling have
never been used to study cognitive health. We
investigate whether semantic networks generated
from verbal fluency data using word embedding
models can function as a reliable diagnostic tool
for assessing cognitive impairment in comparison
to the use of conventional scoring methods. Our
experiment contrasts novel scoring metrics with
traditional scoring to determine which is a better
predictor of cognitive health. By working with
Dutch verbal fluency data, we aim to show that our
approach is useful for mid-resource languages.

2 Background

Verbal fluency tasks are a common component
of standardized assessments used for screening
mild cognitive impairment and evaluating cognitive
state of various populations, including those with

30644

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 30644-30659
November 4-9, 2025 ©2025 Association for Computational Linguistics



schizophrenia (Frith et al., 1995), Alzheimer’s dis-
ease (Clark et al., 2016; Monsch et al., 1992; Troyer
et al., 1998) and Parkinson’s disease (Piatt et al.,
1999; Troyer et al., 1998). Throughout this task,
participants are asked to generate as many items
as possible within a specific category, all within a
fixed time frame. Categories can be semantic, such
as ‘animals’, or phonemic such as ‘words starting
with an @’ (Bousfield and Sedgewick, 1944). The
score is determined by tallying the number of cor-
rectly generated words; with correctly generated
in this context referring to items fitting within the
given category. The verbal fluency task holds its
popularity in neuropsychological assessments for
several reasons: it is relatively brief and taps into
both executive control and semantic memory re-
trieval processes. It is not only effective within
a larger battery of assessments, but even on its
own, the verbal fluency task scores are capable of
separating people with cognitive impairment from
healthy controls (Chi et al., 2014; Clark et al., 2009,
2016; Henry et al., 2004; McDonnell et al., 2020;
Soni et al., 2021).

However, several studies have questioned the
granularity of traditional verbal fluency assessment
methods, which predominantly rely on the raw
count of word responses (March and Pattison, 2006;
Shao et al., 2014). This scoring method overlooks
relationships among responses, neglecting potential
insights into the structure of an individual’s knowl-
edge representations and underlying cognitive pro-
cessing mechanisms (Linz et al., 2018; Troyer et al.,
1997). In other words, the scoring system of the se-
mantic verbal fluency task, which revolves around a
semantic category, does not take any semantic infor-
mation into account. To address this shortcoming,
various qualitative metrics have been introduced to
complement the raw word count.

One advance in verbal fluency data analysis in-
volves the identification of temporal and semantic
clusters within the verbal fluency dataset (cluster-
ing) and the moment of jumping between these
clusters (switching) (Troyer et al., 1997). Typi-
cally, word production in a fluency task follows a
pattern of organized bursts of retrieval of words
within clusters, referred to as temporal clusters,
interrupted by pauses suggesting a lexical search
for transitions among clusters. In effect, consid-
ering the mean size of clusters and the number of
cluster switches offers insights into the strategies
participants employ during word searches (Goii
et al., 2011; Troyer et al., 1998; Ahn et al., 2022;

Lundin et al., 2023). The scoring of the verbal flu-
ency task with these two components has been sub-
stantiated as a more detailed indicator of cognitive
state. Clustering and switching, however, are sensi-
tive to human errors and subjectivity, as the cluster
boundaries are decided by the scorer. To mitigate
this issue, researchers have devised automated scor-
ing methods. These methods encompass not only
the automated analysis of clustering (Konig et al.,
2018; Linz et al., 2017a, 2018; Kim et al., 2019),
including on the basis of distributional semantic
models (Alacam et al., 2022), but also data-driven
assessments of the semantic properties of verbal
fluency data through semantic networks (Martinez-
Nicolas et al., 2019).

2.1 Semantic networks

The concept of semantic networks originates in
network theory, a field that has broadened the un-
derstanding of a wide variety of systems, includ-
ing language and semantics (Borge-Holthoefer and
Arenas, 2010; Cong and Liu, 2014; Ke and Yao,
2008). For specific cognitive concepts like creativ-
ity, these networks have proven to be superior to
traditional methods, effectively eliminating human
errors in assessment (Beaty and Johnson, 2021). A
creativity assessment such as the Alternate Uses
Task (AUT; Benedek et al., 2013) bears a striking
resemblance to the verbal fluency task in measur-
ing associative cognition. AUT measures creativity
by asking individuals to generate as many alterna-
tive uses for a common object or item as possible
within a fixed time frame. This task considers both
the quality and originality of responses when scor-
ing, distinguishing it from fluency tasks that do not
assess response quality (Beaty and Johnson, 2021;
Johnson et al., 2023). Previous work has shown
that individual-level semantic networks can be es-
timated through verbal fluency data (Zemla and
Austerweil, 2017, 2018; Zemla et al., 2016, 2020).

During a semantic association task like the (se-
mantic) verbal fluency task, it is expected that as-
sociations exhibit specific semantic connections or
overlays. The evaluation of the quality or strength
of these connections is a central aspect of seman-
tic networks. Thus, by interpreting fluency data
as a network, the potential for expanding the as-
sessment’s scope becomes evident. Considering
the proven role of semantic networks in assessing
complex cognitive constructs such as creativity, it
is reasonable to expect that they could also provide
more precise insights into cognitive health.
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Semantic networks can be seen as an abstract
representation of the semantic memory system. In
these networks the nodes represent concepts and
the edges represent similarity, co-occurrence, or
strength of associations among semantic or lexi-
cal units (Christensen and Kenett, 2023; Lerner
et al., 2009; Muhammad et al., 2019). According
to the spreading activation model, nodes within a
semantic network represent concepts from seman-
tic memory, and their interconnections depend on
the degree of semantic similarity. Concepts that
are semantically more similar are positioned closer
together and linked with stronger connections than
concepts that are less semantically related. By this
model, when a concept is activated, its mental repre-
sentation spreads to interconnected concepts, grad-
vally diminishing as the distance between them
increases (Kenett et al., 2017). It is the capacity
of semantic networks to mirror the structure of se-
mantic memory that makes them valuable in the
exploration of higher cognitive functions. Seman-
tic networks have been utilized to evaluate different
aspects of cognition, with the majority of studies
focusing on the English language, such as cognitive
aging (Cosgrove et al., 2021; Wulff et al., 2022),
Alzheimer’s disease (Chan et al., 1993; Lerner
et al., 2009; Martinez-Nicolds et al., 2019), cog-
nitive processes (Christensen and Kenett, 2023),
associative abilities (He et al., 2021) and creativity
(He et al., 2021; Kenett and Faust, 2019).

2.2 Distributional semantics

Another important class of lexical representation
models are distributional semantic models: compu-
tational models of human semantic memory (Ut-
sumi, 2015). These models are based on the distri-
butional hypothesis (Landauer and Dumais, 1997),
which posits that the semantics of a word are in-
trinsically linked to its contextual usage. These
language models operationalize meaning by ana-
lyzing the distributional patterns of linguistic items
in large language corpora, extracting associations
between words from statistical regularities and co-
occurrence frequencies (Erk, 2012).

Subsequent word embedding approaches such as
Word2Vec (Mikolov et al., 2013) and BERT (De-
vlin et al., 2019) are based on this paradigm. These
models do not explicitly model semantics, but they
do model associations that correspond to semantic
similarity between words (Hill et al., 2015; McRae
etal., 2012). Language models have been evaluated
on both of these linguistic concepts: association

and similarity. In these models, we quantify seman-
tic similarity by computing the cosine similarity
between vector representations of the two words.
These similarity scores can then be correlated with
human similarity rating datasets. A prominent
association, or relatedness, dataset is WordSim-
353 (Finkelstein et al., 2001), whereas SimLex-
999 (Hill et al., 2015) is a widely used similarity
dataset. These benchmarks are language-specific
and, in this case, both evaluate English language
models. Alternatives such as Multi-Simlex (Vulié
et al., 2020) have been developed for other lan-
guages, and for Dutch, Brans and Bloem’s (2024)
Dutch SimLex-999 was used to evaluate the BERT-
based language models BERTje (de Vries et al.,
2019) and RobBERT (Delobelle et al., 2020). Mod-
els that correlate well with human word pair sim-
ilarity scores can be harnessed for semantically
interpreting language data.

It is uncommon in the literature to find connec-
tions between distributional semantic models and
network-based models, as they are separate classes
of models rooted in different fields of study (for a
critical review, see Kumar et al., 2022), but a few
studies have used the cosine similarity between
words as a threshold in constructing paths in se-
mantic networks (Steyvers and Tenenbaum, 2005;
Utsumi, 2015). Wang et al. (2025) use a prompt-
based equivalent of the verbal fluency task to study
the semantic networks of LLMs, and Nighojkar
et al. (2022) evaluate to what extent transformer
models can predict human behavior in the verbal
fluency task. The approach has not been used for
diagnostic purposes as far as we are aware.

3 Methods

We aim to test whether semantic networks derived
from verbal fluency data can serve as a robust or
overall greater diagnostic tool for assessing cog-
nitive impairment, relative to the use of the most
commonly employed traditional scoring method:
the overall number of responses.

3.1 Data

We leverage a rich existing dataset, which was orig-
inally collected by Konijnenberg et al. (2018). It
includes verbal fluency data from participants with
mild cognitive impairment, along with their age
and results on the Mini-Mental State Examination
(MMSE; Folstein et al., 1975). The MMSE is one
of the best-known cognitive screenings for provid-
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ing an overall measure of cognitive impairment.

3.1.1 Participants

Participants were recruited as part of the EMIF-AD
PreclinAD study, a project on cognitive impairment
and dementia as a consequence of amyloid pathol-
ogy (Konijnenberg et al., 2018). The subset of their
data that the present study reuses specifically in-
cludes monozygotic twins, recruited through the
Netherlands Twins Register. They invited 517 par-
ticipants, from which 313 were excluded from par-
ticipation (See Appendix A for the exclusion flow
chart). After the application of the same exclusion
criteria as the original study, a total of 204 cogni-
tively normal participants (119 females) between
60 and 94 years old (mean age: 70.8 + 7.8 years
old) remain. All participants gave written informed
consent for participation in the original study.

3.1.2 Procedure

All participants completed a categorical verbal flu-
ency task (semantic category: animals) as part of
a larger battery of neuropsychological tests. They
got the following instruction (translated to English
from Dutch): “You will have two minutes to list as
many animals as possible. Anything is fine as long
as it is an animal. When the time is up, I will say
stop. You may begin.” While administering the test,
the generated items were immediately transcribed
to track the number of items. Along with these
data, we have access to the final scores on the Mini-
Mental State Examination (MMSE), which range
from 0 to 30 (mean score: 28.9 + 1.2). The MMSE
is divided into two sections. The first assesses ori-
entation, memory, and attention (maximum score:
21); the second measures the ability to name, obey
written and verbal instructions, compose a sentence
on the spot, and replicate a challenging polygon
that resembles the Bender-Gestalt Figure (maxi-
mum score: 9) (Folstein et al., 1975).

3.1.3 Preprocessing

We spell-checked the responses, and any irrelevant
responses (intrusions) such as “aardbei” (straw-
berry) and “glas” (glass) were identified and re-
moved. We did however decide to admit duplicate
responses (perseverations). The omission of both
intrusions and perseverations is routine to the ver-
bal fluency assessment (Christensen and Kenett,
2023). However, the omission of perseverations
would skew our metrics since one of them relies
on the direct order of the items and the semantic

similarity between them. Because the task is inher-
ently based on a semantic category, it is the only
restriction that participants get, we did decide to
omit intrusions. If not for the semantic category, it
would be a free association task.

3.2 Models

We use three models to build individual semantic
networks from the verbal fluency data. The first one
is the Dutch contextual embedding model BERTje
(de Vries et al., 2019), a Dutch sibling of BERT
(Devlin et al., 2019). BERT has previously been
used to investigate semantic representations and
associative cognition in English (Johnson et al.,
2023). We include a contextual embedding model
because input layer embeddings of contextualized
embedding models tend to correlate better with
human semantic similarity judgements than static
embedding similarities. Brans and Bloem (2024)
show this for Dutch, but similar observations have
been made for English by Bommasani et al. (2020),
who also find the first layer to correlate best.

Nevertheless, as contextless semantic represen-
tations are traditionally obtained from static word
embedding models, we also include Dutch FastText
(Bojanowski et al., 2017) for comparison. We also
experimented with Word2Vec but found that the
available Dutch pre-trained models did not have
all our target words in their vocabulary. FastText
avoids this issue through its subword tokenization.
Additionally, FastText correlates best with human
similarity judgements (Brans and Bloem, 2024)'.

Lastly, we included the multilingual model
XLMRoBERTa (Conneau et al., 2020), which also
provides contextual embeddings. While it is larger,
it is outperformed by BERTje on Dutch semantic
similarity scoring (Vlantis and Bloem, 2025), as
it has been trained on less Dutch data overall, and
contextless word similarity tasks are unlikely to
benefit from cross-lingual transfer.

Using BERTje and XLMRoberta input layer em-
beddings ensures a fair comparison to FastText, as
FastText does not have access to learned contextual
information, while BERTje and XLMRoBERTza do,
but not when only the input layer is used.

Rather than using cosine similarity as a thresh-
old to construct paths, we connect every node to
every other node and use cosine similarity as a no-
tion of distance that reflects the semantic similarity

'0On Dutch SimLex, we obtained correlations of 0.43 for
Word2Vec, 0.49 for FastText, and 0.28 for GloVe. FastText
therefore served as the strongest static baseline in our study.
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between the words.

3.2.1 Extracting embeddings

Each participant’s verbal fluency data is embed-
ded using the three models described above. For
BERTje and XLMRoBERTa4, each item gets trans-
lated into a 768-dimensional embedding vector; for
FastText, this is a 300-dimensional vector. Within
these respective embedding spaces, cosine similar-
ity is a measure of semantic similarity: greater prox-
imity between two embeddings reflects a stronger
semantic similarity (Linz et al., 2017a).

BERTje and XLMRoBERTz2 are contextual em-
bedding models. In the case of a fluency task, how-
ever, the participant’s responses are divorced from
their context, since participants respond with sin-
gle words. Taking this into account, we use only
input layer embeddings, which do not add any con-
textual information to the embedding (Ethayarajh,
2019). This is similar to static embeddings, but the
input token embeddings benefit from being jointly
trained with a model that is larger and has more
effective training objectives than traditional static
embedding models. All models benefit from sub-
word tokenization. If our items are split up by
tokenization, we construct an embedding by av-
eraging the embeddings of the word’s subtokens
(mean pooling). We implemented the same pro-
cedure for items consisting of multiple words, e.g.
“bruine beer” (brown bear), “Vlaamse gaai” (jay).

3.3 Analysis

Each participant’s vector space that holds all the
embedded items (the embedding space) can be in-
terpreted as a semantic network in the sense that
all the items can be connected through cosine simi-
larity scores. The embedded items (words) can be
seen as the nodes or objects, while the edges rep-
resent the semantic similarity between them. The
way we are considering individual semantic net-
works based on one verbal fluency task is identical
to cluster analysis on just one cluster: our network
does not have weighted nodes or directed edges and
can therefore be seen as one cluster in which all the
items are connected through semantic similarity.
Because of this, cluster analysis techniques can be
applied to our data, specifically, intracluster dis-
tances (distances between objects belonging to the
same cluster) are of interest to the current analysis.
Some of these metrics were inspired by Oortwijn
et al.’s (2021) use of cluster analysis methods for
target terms in embedding models.

We do not perform any automatic clustering of
the items. While the traditional analysis of the
verbal fluency task involves manual clustering by
annotators as explained in Section 2, we presume
that cosine distances between individual items al-
ready quantifies semantic similarity at a more fine-
grained level. Furthermore, automatic clustering
would add a non-deterministic step, more hyper-
parameters, and a need to evaluate the quality of
the clusters. To explore different aspects of the
participant’s network quality, we considered the
following four metrics:

Number of words The total number of gener-
ated items in the verbal fluency task. This is how
the verbal fluency task is classically scored and its
relation to MMSE scores has been investigated in
previous research (Linz et al., 2017b).

Path length The sum of the similarity scores be-
tween every sequential embedding pair. Follow-
ing the order in which the participant generated
the items, we sum all cosine similarity scores be-
tween the successive pairs. Path length is one of
the main measures of networks, though one must
bear in mind that in our case this score does not
represent the number of steps needed to get from
one word in the network to another (Kenett et al.,
2017), but rather the cosine similarity between two
words. Therefore, a higher path length reflects
a greater semantic similarity between successive
words, which is the opposite direction of the usual
distance-based interpretation. As it is common to
measure the amount of semantic clustering in a
verbal fluency task, this is somewhat represented
by this metric: words within the same semantic
cluster will have a higher semantic similarity. This
metric bears some similarity to that of forward flow
in creativity research (Gray et al., 2019).

Average diameter distance The average dis-
tance between all words generated by the partici-
pant. This is an intracluster distance from the field
of cluster analysis (Bolshakova and Azuaje, 2003).
It is defined as follows, where .S is a semantic net-
work; d(z, y) defines the distance between any two
items, x and y, in S; and |S| represents the number
of items in network S.

z,yeS
x#y
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Centroid diameter distance The centroid diam-
eter distance is described as twice the average dis-
tance between all items and the centroid of that
participant’s network. To determine the centroid of
each participant’s cluster, we calculated the mean
of the normalized embedding vectors for each par-
ticipant. This too is an intracluster distance de-
rived from the field of cluster analysis (Bolshakova
and Azuaje, 2003). In the equations below, S is
a semantic network; d(x,v) defines the distance
between any item x in S and the centroid v; and
|S| represents the number of items included in S.

Ac(S) = 2 (Zezfl'(“)) @)

where

1
@:sz 3)

We compare these four metrics and apply a data-
driven approach to determine which variables best
predict cognitive health. We expect measures indi-
cating a broader semantic network to be related to
higher scores on the MMSE cognitive battery.

3.3.1 Statistics

We employ Generalized Additive Models (GAMs)
to investigate the impact of the aforementioned
metrics on the MMSE scores. The data analyses
were performed using R (v4.1.2; R Core Team,
2021). We made use of the gam() function from
the mgev R package (1.8.42; Wood, 2011). GAMs
offer a means of capturing non-linear associations
by estimating a curve based on penalized smooth-
ing splines. This creates possibilities for curves
in the model fit where a non-linear relationship
more accurately describes the variance within the
observed data.

To ensure robust generalizability of our model,
efforts were made to prevent overfitting. This
method optimizes the trade-off between the
model’s ability to fit the data and its complexity,
or “wiggliness” (Wood, 2011). A smooth curve
depicts a more fundamental, straight-line function,
whereas a “wiggly” curve denotes a more com-
plicated one. To compensate for the amount of
“wiggliness”, a penalty is added since a greater
distortion of the curve corresponds to an increas-
ing likelihood of overfitting. Non-linearity is thus
only introduced if the variance explained by a wig-
gly line outweighs the penalty that comes with it
(Wood, 2020). The crucial metric used to check

the complexity is the effective degrees of freedom
(edf), which serves as an indicator of whether the
predictor variable has a non-linear (edf > 1) or lin-
ear (edf = 1) relation with the dependent variable.

We distinguish between a first and second level
analysis. With the first-level analysis, we employ
a variable selection procedure with two goals: (1)
to optimize our model enhancing its predictive ac-
curacy by determining which available variables
were the most influential predictors; (2) to address
whether the traditional scoring method (i.e., tally-
ing number of words) is a better predictor of the
MMSE-scores than the metrics derived from se-
mantic networks. We did this by incorporating the
double penalty approach into our GAMs (Marra
and Wood, 2011). This is a variable selection
method that is data-driven and uses an empirical
Bayes procedure to identify any predictor variables
that do not have a significant effect on the outcome
variable. The variables were all included at the first
runtime and added all at once (so not incremen-
tally). The outcome of this showed which metrics
were significantly contributing to the MMSE scores.
Subsequently, we run GAMs for our second-level
analysis, in which we incorporated only the signifi-
cant predictors from the first-level analysis.

Thus, in our first-level analysis, we fitted GAMs
with MMSE scores as the outcome variable and
all metrics as predictors: number of words, path
length, average diameter distance, and centroid di-
ameter distance. Because age is a known predictor
of MMSE, we included it as an additional predic-
tor in control analyses. We have not included any
participant-level effect as we only have one seman-
tic network per participant, hence there is no in-
teraction between participants’ answers. A model
would not have any basis to decide whether to at-
tribute participant-level variance to the semantic
network-derived variable or to the control variable.
We chose to perform inferential statistics with fit-
ted models rather than predictive modeling because
our dataset is rather small for prediction.

Specifically, we conducted a power analysis for a
linear regression with four predictors (comparable
to our models), assuming a significance level of
a = 0.05 and desired power = 0.80. For a medium
effect size (f? = 0.15), the required sample size is
80. With N = 204, our study is well powered to
detect such effects. However, in a typical 70/15/15
train-validation-test split, only 30 data points would
remain for testing, which is insufficient even to
detect a large effect size (2 = 0.35).
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4 Results

Before evaluating the metrics, we first report de-
scriptive statistics of all models and evaluation met-
rics to provide an overview of their performance
characteristics. Across all participants, the av-
erage number of generated words is 36.4 words
(SD = 8.6). Descriptive statistics for model-
derived metrics are summarized in Table 1. To
facilitate comparability across models, descriptive
statistics were computed on normalized values. For
each metric and per model, values were normalized
to the range [0, 1], with the smallest value for each
metric mapped to 0 and the largest mapped to 1.

Noticeable is that FastText and BERTje exhibit
similar means on average diameter distance and
path length, while XLM-RoBERTa stands out with
a higher centroid diameter distance. Overall, this
shows that the metrics are broadly comparable
across models after normalization, while highlight-
ing the differences between models’ embedding
spaces as well (e.g., density).

Model Avg dist Path length  Centroid dist
BERTje 0.304 (0.283) 0.462(0.268) 0.680 (0.215)
FastText 0.296 (0.332) 0.460 (0.222) 0.490 (0.212)
XLM-R 0218 (0.251) 0.426 (0.325) 0.720 (0.186)

Table 1: Normalized descriptive statistics (mean and
standard deviation) for each model and across metrics.

4.1 Analyses including age

In the first round of our first-level analyses, for
each model, GAMs included age, number of words,
average diameter distance, path length, and cen-
troid diameter distance. This showed a significant,
non-linear negative relationship between age and
MMSE for all three models (p < 0.05). That is,
MMSE scores decrease with age, as expected. Due
to this strong relationship, the effects of our critical
metrics are reduced. Regardless, some still remain
present. For instance, in FastText, the second-level
GAM including age, average diameter distance,
and path length shows that average diameter dis-
tance remains highly significant (p < .001), while
path length is marginal (p = 0.09). Comparing this
three-predictor model to one with age alone reveals
that age explains 9.4% of variance, whereas the
full model explains 19.6%. These results indicate
that while age accounts for a substantial portion
of MMSE variance, our metrics capture additional
variance beyond age. For this reason, the following,
second round of analyses focus on the effects of
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Figure 1: Effects of number of words on the MMSE-
scores in the first-level analysis of BERTje. GAMs
with 95% confidence interval (blue color) illustrates a
small effect. The y-axis shows partial effects (for 1 of 4
variables) thus the values are not whole numbers.

the metrics without including age. Full results of
models including age are provided in Appendix C.

4.2 Analyses excluding age

Starting with BERTje-derived scores, the results of
our analysis showed that the average diameter dis-
tance scores, path length, and notably also the word
count did not significantly affect the MMSE scores
(all p-values > .071; MAE = 0.86). Figure 1
shows the predicted partial effects of the traditional
number of words metric, which is not statistically
significant. As a result, our second-level analysis
only includes the centroid diameter distance.

The second-level analysis model reveals that the
centroid diameter distance derived from BERTje
is as a highly significant positive predictor of the
MMSE scores (p-value < .001; edf = 1.001; MAE
= 0.88). These results are illustrated in Figure 2.
With the estimated degrees of freedom close to 1,
this relationship is linear. Additionally, it tells us
the centroid diameter term is not overly smoothed.
To assess the model fit, we utilized the gam.check()
function from the mgcv package in R. This function
confirmed full convergence of the model and indi-
cated that the Hessian matrix is positive definite,
suggesting good stability (k/ = 9; k-index = 0.94;
p-value = .2). It also verifies that the number of
basis functions (k) for the centroid diameter term
is appropriate for this model. The k-index being
close to 1 suggests that the model is effectively us-
ing the degrees of freedom available, indicating a
good balance between fit and complexity. Addition-
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Figure 2: Effects of centroid diameter distance on the
MMSE-scores in the second-level analysis of BERTje.
GAMs with 95% confidence interval (blue color) illus-
trates a significant effect.

ally, a p-value greater than 0.05 indicates that the
residuals align well with the model assumptions.

For FastText, the first-level analysis indicates a
significant effect of path length and average diam-
eter distance on the MMSE scores (both p-values
< .005; MAE = 0.87). Both of these came out
significant in the second-level analysis as well (p-
values < .01; edf = 1.00; MAE = 0.88). See
Figure 5 in the appendix for a visualization.

Lastly, for XLMRoBERTa3, our first-level analy-
sis showed that both path length and centroid diam-
eter distance affect the MMSE scores significantly
(both p-values < .05; MAE = 0.86). The second-
level analysis, where the model included these two
predictors (MAE = 0.86), showed a highly signif-
icant correlation between MMSE-score and path
length highly significant (p < .001; edf = 1.00),
while centroid diameter did not (p= .099; edf
= 2.58). Figures 7 and 6 illustrate this result and
can be found in the appendix.

4.3 Case studies

To gain some qualitative insights, we highlight
three participants (full details in Appendix D). Par-
ticipant 337 scored lowest on average pairwise dis-
tance but highest on centroid diameter in BERTje;
FastText shows similar extremes. Their fluency
output shows tightly connected clusters of animals
(e.g., insects, fish, mammals), with small within-
cluster distances but large between-cluster separa-
tion, illustrating how metrics can diverge depend-
ing on whether they emphasize local or global struc-

ture. Participant 341 produced 50 words, below the
maximum of 62, yet displayed higher path length
(across all models) than participants with a higher
word count. This suggests that path length is not
simply a function of verbosity, but also reflects
semantic spread across categories. By contrast, par-
ticipant 365 produced only 24 words and scored
lower (on all models) than participants with a lower
word count. Here, shorter output and frequent
switches between categories resulted in lower sim-
ilarity scores and thus lower path length. These
examples demonstrate both (i) that the metrics cap-
ture distinct aspects of semantic structure and (ii)
that the embedding geometry differs across models.

5 Discussion

The (semantic) verbal fluency task is a popular di-
agnostic tool to determine cognitive decline. In the
present study, we contrasted the canonically used
scoring system based on the number of responses
with automated scoring metrics derived from con-
textual word embeddings by means of semantic
network analysis. This incorporates the notion of
semantic similarity into the metrics. Our second
goal was to test whether these semantic networks
computed from Dutch verbal fluency data can be
effectively applied to assess cognitive state.

Our first analyses showed that age is strongly cor-
related to MMSE-score in all three models and ex-
plains 9.4% of the variance by itself. Because age
accounts for a substantial portion of MMSE vari-
ance, we conducted a second round of analyses ex-
cluding age. In these analyses, we observed similar
predictive power among the three models for their
derived metrics: for the second-level model, the
mean absolute error (MAE) was 0.88 for BERTje
and FastText and 0.86 for XLMRoBERTa. It ap-
pears that the choice of model is not too important,
with a slight preference for the monolingual models
that also perform better at semantic similarity scor-
ing in general. But interestingly, these fits were
achieved with different metrics: centroid diame-
ter distance, average diameter distance, and path
length. The number of words metric, the tradi-
tional approach, was not a significant predictor in
any configuration.

To explain these differences between model re-
sults, we note that centroid diameter distance and
average diameter distance are often highly corre-
lated. With BERTje embeddings, this correlation is
0.96. This indicates that they capture similar under-
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laying aspects of the semantic relations in the data.
Therefore, it is likely that the GAMs cannot decide
between the two metrics due to multicollinearity,
and either one would work. This would explain
why all our second-level models include either met-
ric, but none include both. Path length comes out
significant in both FastText and XLMRoberta, but
not in BERTje. We believe this to be due to differ-
ences in scaling and density of the different vector
spaces. This is also illustrated by the case stud-
ies we discussed, as there can be large differences
between models within the same metric.

Overall, we have found that the highly correlated
metrics of centroid diameter distance and average
diameter distance, and path length are the most ef-
fective predictors of MMSE scores, which index
cognitive health. Intuitively, these first two metrics
describe the average broadness of the cluster, while
path length takes the semantic content of the gen-
erated words into account. Our proposed metrics
are automated, consistently determined scores of
the semantic verbal fluency task that are signifi-
cantly more accurate in predicting MMSE scores
than the traditional scoring, which did not reach
significance in any of our models. This suggests
that semantic networks offer a more accurate way
of scoring the verbal fluency task than mere tal-
lying of correct responses. Second, it confirms a
relationship between semantic networks and the
cognitive state for the Dutch language.

The fact that we did not find evidence for an
effect of the traditional scoring method is of course
an interesting observation, as this method is widely
used. However, it is worth mentioning that the
verbal fluency task is a small part of the MMSE
battery, and thus any metric based on this task can-
not be expected to fully account for MMSE scores.
A previous study by Linz et al. (2017b) found
that the semantic verbal fluency task (with the tra-
ditional word count metric) can predict MMSE
scores. They incorporated multiple computed fea-
tures in their regression models, among others word
count, statistical clustering and switching, word
frequency, and the vocal feature pause length. An
interesting follow-up to the present research would
be to examine the combination of metrics in the
present study in an expanded multifactorial regres-
sion model incorporating these factors as controls.

Our findings point towards a reevaluation of how
we assess the verbal fluency task. Especially since
it is such a widely used test, improving its accuracy
will be beneficial. As a screening for Alzheimer’s

disease, the semantic verbal fluency task is already
an attractive alternative to the MMSE (Chi et al.,
2014). Adding automated and more accurate scor-
ing to the mix makes it an even more appealing
screening method. Furthermore, analyzing ver-
bal fluency data through semantic networks could
broaden the understanding of our semantic mem-
ory system and enhance our knowledge of handling
tasks like categorical listing. This could be a good
opportunity since there are many existing verbal
fluency datasets to be reanalyzed.

Given the promising results of this approach, it
would be interesting to further explore language
model-derived metrics for the verbal fluency task.
While we worked with Dutch data, for English
there is a wider range of state-of-the-art models
available to explore. The fact that we observed
these findings for Dutch also opens up possibility of
making a cross-linguistic comparison of semantic
networks. Lastly, our semantic network-based met-
rics could also be applied to other use cases, such
as quantifying language acquisition rather than cog-
nitive decline.

6 Conclusion

We explored the possible utility of semantic net-
works in evaluating cognitive health by examin-
ing this relationship in the Dutch language and
reported the following findings: (a) Measurements
of semantic networks, constructed from distribu-
tional semantic models, outperform the conven-
tional method of counting words alone. This ap-
proach can circumvent human error and judgment
in the semantic verbal fluency task. Therefore, this
study lays a foundation for improving diagnostic
tools using computational methods; (b) There is a
confirmed relationship between semantic networks
and cognitive health for the Dutch language. To
the best of our knowledge, this is the first study
to test the relationship between semantic networks
and cognitive state for Dutch. With evidence that
semantic networks indeed relate to cognition for
the Dutch language, this research paves the way
for investigating Dutch semantic networks in other
linguistic contexts. Moreover, this is the first study
to use distributional semantic models to create se-
mantic networks in this manner, thus providing an
original contribution to research on linking the two.
This suggests that distributional semantic models
provide a new method for exploring the properties
and structures of semantic networks.
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7 Limitations

The presented results should be considered in the
context of this study’s limitations. As we have
made use of language models to determine the se-
mantic similarity of word pairs, our results are only
as good as these models’ semantic representations.
In other words: if the word embedding represen-
tations are of poor quality, our metrics will also
be less accurate, as we take the language model as
an accurate model of word similarity (in healthy
patients, standard language). We made use of static
embeddings and layer O input embeddings since
these hold no contextual information, just like our
input data is generated without any context. How-
ever, the verbal fluency task is mildly contextual,
as participants are asked to stick to a prompt. As
BERTje and XLMRoBERTa can include such con-
textual information in layers later on, some relevant
associations might be lacking in layer 0. These
layer O static embeddings may be too abstract —
especially for words that tend to differ in meaning
depending on the context. Contextual information
could thus be helpful even in word-level tasks.

Chronis and Erk (2020) addressed this by tuning
models to identify the meaning of words. Their
results confirm that static embeddings are unable to
simultaneously surface every component of lexical
semantic meaning and their embeddings preserve
contextual information that is essential for some
word-level tasks. They show that similarity esti-
mation benefits from this contextual knowledge.
Their research concerns English language models,
but since the present study is centered around a
word-level task and uses static embeddings, our
results might improve with this same type of tun-
ing for Dutch language models, or by providing
the context of the verbal fluency task prompt and
extracting contextual embeddings. Including the
order of word generation might be another way to
provide context.

Another limitation of the approach is that ex-
tracting embeddings from a large-ish model is far
more resource-intensive than the previous metric
of counting responses, and not available for very
low-resourced languages. Lastly, our dataset has
an average MMSE-score of 28.9. This is relatively
high and indicates limited cognitive impairment in
this study — indeed, the participants were consid-
ered healthy patients by Konijnenberg et al. (2018).
Data on a more impaired population would enable
a more granular test of our metrics.
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A Inclusion requirements

Twins invited by letter for PreclinAD study

[GESW)) Could not be reached (n=10)

Presence of major psychiatric
disorder (n=8)

Excluded for
participation

n=313]
( ) History/Presence of neurological

disorder /cognitive decline (n=31)

MRI contraindication (n=32)

Other health exclusions (n=31)

Enrolledin PreclinAD study
(n=204 (39%))

Amyloid data available
(n=199)

Unwillingto participate (n=201)

Figure 3: Inclusion flow chart for Amsterdam par-
ticipants of the EMIF-AD PreclinAD study (Konij-
nenberg et al., 2018).

B Detailed result graphs
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Figure 4: Effects of average diameter distance and
path length on the MMSE-scores in the second-level
analysis of FastText.
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Figure 5: Effects of average diameter distance and
path length on the MMSE-scores in the second-level
analysis of FastText.
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Figure 6: Effects of path length on the MMSE-scores
in the second-level analysis of XLMRoBERTa.
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Figure 7: Effects of path length and centroid diame-
ter distance on the MMSE-scores in the second-level
analysis of XLMRoBERTa.



C Details analyses including age

First- and second-level GAMs results for BERTje,
FastText, and XLMRoberta. 1st-level models in-

D Details case studies

clude all predictors; 2nd-level models include only

predictors significant at the Ist level. Estimated

Table 5: Normalized metrics for each model and word
lists for selected participants.

degrees of freedom (edf) are only included for the
final model (2nd-level).

Nr . Path Centroid
ID MMSE words Model Avg dist length dist

BERTje 0 0.34 1
. 337 28 40 FastText 0 0.39 0.80
Table 2: First- and second-level GAMs results for XLM-R 044 0.56 0.58

BERTje. MAE (mean absolute error) for 1st-level model
= (.85, for 2nd-level model = 0.81.

Words: aap (monkey), beer (bear), koala (koala), gorilla (gorilla), ijsbeer
(polar bear), giraffe (giraffe), stinkdier (skunk), mier (ant), vlieg (fly), tor
(beetle), duizendpoot (millipede), zeerob (seal), dolfijn (dolphin), tong
(sole [fish]), schar (plaice), ooievaar (stork), oorwurm (earwig), tijger
(tiger), slang (snake), panter (panther), boa (boa constrictor), eekhoorn

Predictor AnalySiS p-value edf (squirrel), hert (deer), eland (elk/moose), zebra (zebra), paard (horse), gnoe
(gnu/wildebeest), emoe (emu), hinde (doe/female deer), bij (bee), wesp
Age Ist < 0.005 (wasp), haring (herring), makreel (mackerel), orka (orca/killer whale),
Nr words Ist =01 walvis (whale), snoek (pike), baars (perch), krab (crab), garnaal (shrimp),
Avg dist Ist < 0.005 zeeaal (sea eel)
Centoig ist 15 <005 BERTe 050 072 0.6
) ) 341 30 50 FastText 040 0.81 0.51
Age 2nd < 0.005 3.96 XLM-R 048 0.80 0.55
AVg dist 2nd = 0.09 5.09 Words: leeuw (lion), tijger (tiger), paard (horse), kat (cat), civetkat (civet
Centroid dist 2nd =04 1.00 cat), poolvos (arctic fox), olifant (elephant), giraffe (giraffe), neushoorn

Variance explained: Age-only = 9.4%, Full 2nd-level

model =20.9%

Table 3: First- and second-level GAMs results for Fast-
Text. MAE (mean absolute error) for 1st-level model =
0.87, for 2nd-level model = 0.82.

(rhinoceros), krokodil (crocodile), neushoorn (rhinoceros), panda (panda),
ijsbeer (polar bear), grizzlybeer (grizzly bear), bruine beer (brown bear),
hond (dog), kat (cat), cavia (guinea pig), haan (rooster), kip (chicken), pony
(pony), paard (horse), koe (cow), lama (llama), kameel (camel), kanarie
(canary), grasparkiet (budgerigar), kolibrie (hummingbird), kabeljauw
(cod), haring (herring), zalm (salmon), sprot (sprat), tonijn (tuna), koolvis
(coalfish), inktvis (squid), garnaal (shrimp), haring (herring), makreel
(mackerel), vos (fox), slang (snake), goudvis (goldfish), rat (rat), rog (ray),
haai (shark), dolfijn (dolphin), walvis (whale), hamerhaai (hammerhead
shark), witte haai (great white shark), forel (trout), parkiet (parakeet)

BERTje 0.27 0.22 0.60
365 29 24 FastText 0.65 0.21 0.27
Predictor Analysis p-value edf XLM-R 0.17 0.14 0.81
ords: vis (fish), aap (monkey), egel (hedgehog), konijn (rabbit), olifant
Age Lst < 0.005 gles;am), glond)(doZ)(, kat (th)), rﬁug((mogsquil%))), insejct ((insect;, olifant
Nr words Ist =0.7 (elephant), giraffe (giraffe), eend (duck), vogel (bird), mus (sparrow),
AVg dist 1st < 0.005 parkiet (parakeet), lijster (l}l‘lrush): nijlgans (Egyptian goose),‘ _mier (aqt),
Path length 1st < 0.05 :ert ((}t?f:r), leetL;w (l}on), tijger (tiger), panter (panther), konijn (rabbit),
Centroid dist  Ist =05 ermelijn (stoavermine)
Age 2nd < 0.005 5.40
Avg dist 2nd < 0.005 1.00
Path length 2nd = 0.09 2.79

Variance explained: Age-only = 9.4%, Full 2nd-level

model = 19.6%

Table 4: First- and second-level GAMs results for XLM-
Roberta. MAE (mean absolute error) for 1st-level model
= (.86, for 2nd-level model = 0.85.

Predictor Analysis p-value edf
Age Ist < 0.01

Nr words Ist < 0.01

Avg dist Ist =0.07

Path length Ist =0.1

Centroid dist Ist = 0.06

Age 2nd < 0.05 3.64
Nr words 2nd < 0.005 1.00

Variance explained: Age-only = 9.4%, Full 2nd-level
model = 12.9%
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