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Abstract

Large language models (LLMs) have shown
remarkable ability in various language tasks,
especially with their emergent in-context learn-
ing capability. Extending LLMs to incorpo-
rate visual inputs, large vision-language mod-
els (LVLMs) have shown impressive perfor-
mance in tasks such as recognition and visual
question answering (VQA). Despite increas-
ing interest in the utility of LLMs in causal
reasoning tasks such as causal discovery and
counterfactual reasoning, there has been rela-
tively little work showcasing the abilities of
LVLMs on visual causal reasoning tasks. We
take this opportunity to formally introduce a
comprehensive causal reasoning benchmark for
multi-modal in-context learning from LVLMs.
Our CausalVLBench encompasses three repre-
sentative tasks: causal structure inference, in-
tervention target prediction, and counterfactual
prediction. We evaluate the ability of state-of-
the-art open-source LVLMs on our causal rea-
soning tasks across three causal representation
learning datasets and demonstrate their funda-
mental strengths and weaknesses. We hope that
our benchmark elucidates the drawbacks of ex-
isting vision-language models and motivates
new directions and paradigms in improving the
visual causal reasoning abilities of LVLMs. We
make our code and data available at https:
//github.com/Akomand/CausalVLBench.

1 Introduction

With a growing emphasis on developing pre-trained
models that emulate human reasoning and thinking
patterns, a wide range of literature has also focused
on assessing these models on complex reasoning
tasks (Nie et al., 2023; Mitchell et al., 2023). As
human intelligence is often hallmarked by causal
reasoning, i.e., the ability to distinguish cause
and effect, researchers have also prioritized eval-
uation of pre-trained models on causal inference
tasks (Zhang et al., 2023a; Kıcıman et al., 2023;

Jin et al., 2023). The evaluation tasks vary among
causal effect inference (Jin et al., 2023), causal
discovery (Jiralerspong et al., 2024; Vashishtha
et al., 2023), and counterfactual reasoning. How-
ever, these works mostly focus on analyzing the
performance of LLMs, and there has been compara-
tively little work in evaluating the causal reasoning
capability of large visio-linguistic systems.

Leveraging breakthroughs in contrastive
language-image pretraining approaches such as
CLIP (Radford et al., 2021), LVLMs have sparked
new research questions about the capabilities
of language models augmented with visual
information. Often constructed by integrating a
CLIP-like vision encoder in the LLM architecture
and aligning the two modalities via projection,
LVLMs have shown tremendous potential in tasks
such as recognition, grounding, and VQA (Li
et al., 2025b). Recently, Zong et al. (2025)
benchmarked LVLMs on diverse tasks with
multi-modal in-context learning (ICL), and
ongoing efforts are being made to incorporate and
improve reasoning in models such as DeepSeek
R1 (Guo et al., 2025) and OpenAI o3. Similar
to causal evaluations on LLMs, it is important to
examine the causal reasoning ability of LVLMs,
as building language and vision agents capable
of reasoning and planning is paramount to the
reliable usage of LLMs and LVLMs in real-world
scenarios (Gkountouras et al., 2025). However, it
is significantly more challenging for AI systems to
learn causal relationships from high-dimensional
data such as images that consist of complex causal
dependencies in physical and dynamical systems
(Scholkopf et al., 2021; Komanduri et al., 2024).

In this work, we investigate the causal reason-
ing capabilities of LVLMs. Previously, Chen et al.
(2024) evaluated the performance of LVLMs on
causally-motivated VQA tasks where the causal
relationships were defined in terms of observable
interactions extracted from the scene graph repre-
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sentation of images. However, their evaluation fo-
cused on scene-specific relations originating from
human-object interactions. In contrast, we focus
on the ability of LVLMs to perform formal visual
causal reasoning with systems described by deter-
ministic causal mechanisms (e.g., light position
causes a change in shadow length in Fig. 2a). We
formulate the visual causal reasoning task as the
ability of LVLMs to disentangle causal variables
and reason about their relationships, a fundamental
goal of causal representation learning (Scholkopf
et al., 2021). We further evaluate visual causal rea-
soning capabilities in LVLMs under zero-shot and
few-shot learning settings. Assessing the causal
reasoning capability of LVLMs in this setting can
have significant implications for building robust AI
systems in diverse domains.

Our contributions are: (1) We formulate causal
reasoning in LVLMs as inferring causal mecha-
nisms from visual cues. (2) We construct a bench-
mark, CausalVLBench, encompassing three rep-
resentative tasks: causal structure inference, in-
tervention target prediction, and counterfactual
prediction to evaluate the visual causal reasoning
capabilities of LVLMs under zero and few shot
settings. (3) We study the effect of prompting with-
out the causal graph, demonstration selection, and
zero-shot chain-of-thought on the performance of
LVLMs. (4) We conduct rigorous empirical evalua-
tions on several LVLMs to assess their performance
in understanding the underlying causal mechanisms
in physical systems. We primarily experiment with
open-source models to maintain transparency and
reproducibility. Our experiments indicate that for-
mal causal reasoning while incorporating text and
image modalities is challenging for current state-of-
the-art LVLMs. We hope our evaluation elucidates
the shortcomings of existing models and motivates
the development of new training paradigms to pro-
mote causal reasoning in large multi-modal mod-
els (Vashishtha et al., 2024; Rajendran et al., 2024).

2 Related Work

Causality and LLMs. Recent studies suggest
that LLMs can answer L1 (observational) ques-
tions to a great degree, but struggle to answer
L2 (interventional) and L3 (counterfactual) ques-
tions (Zhang et al., 2023a). Zečević et al. (2023)
studied the causal reasoning capabilities of large
language models and conjectured that they are
“causal parrots” that may only be learning causal

facts from the training data and are not causally
reasoning. The authors proposed the notion of cor-
relation of causal facts as exploiting a loophole in
Pearl’s Causal Hierarchy Theorem (CHT) to seem-
ingly talk causality. That is, LLMs may simply be
learning correlations about causal facts embedded
in the training distribution.

LLMs have been evaluated on a range of dif-
ferent causal inference tasks. Jin et al. (2023)
developed the CLADDER dataset to test the ability
of LLMs for the causal effect estimation task and
concluded that LLMs perform quite poorly on such
tasks. Several works explore the usability of LLMs
in causal structure learning tasks by utilizing them
as domain experts (Vashishtha et al., 2023; Feder
et al., 2023; Romanou et al., 2023; Cohrs et al.,
2023; Jiralerspong et al., 2024). Another direction
probed the interpretability aspect of LLMs from
the latent space (Rohekar et al., 2023; Park et al.,
2023; Rajendran et al., 2024).

Benchmark Evaluation. Causal evaluation
benchmarks have spanned various domains and
modalities. Recently, there have been several
benchmarks focusing only on the text modality
with tasks including mathematical reasoning
(Wang, 2024), common-sense causality (Miliani
et al., 2025), and causal effect estimation (Jin et al.,
2023). Extending to the vision-language setting,
Chen et al. (2024) evaluate vision-language
models on causal inference tasks. However,
their approach focuses on drawing causality
from scene graphs representing human-object
interactions. Similarly, Li et al. (2025a) propose a
multimodal causal reasoning benchmark but still
focus on high-level causality. Liu et al. (2025)
proposed a benchmark 3D dataset for causal
reasoning tasks and evaluate a few tasks using
closed-source large vision-language models. In
contrast, we focus on causal relationships that
have a physical and deterministic interpretation
(i.e., physical mechanisms) and assess the formal
causal reasoning capabilities of pretrained large
vision-language models on novel tasks beyond
causal structure inference to include intervention
target prediction and counterfactual reasoning.

3 Preliminaries

Causal Inference. Our work primarily relies on
the causality framework by Pearl (2009) that math-
ematically formalizes the reasoning of cause and
effect. The framework consists of a three-level
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hierarchy of causal inference referred to as the Lad-
der of Causation (Pearl and Mackenzie, 2018) or
Pearl’s Causal Hierarchy (PCH) (Bareinboim et al.,
2022).

• Rung 1, or L1, refers to statistical associa-
tions among random variables and involves
reasoning about joint and conditional distribu-
tions. This rung describes questions such as

“How often should I take medication when I am
sick?”

• Rung 2, or L2, enables interventions on vari-
ables to reason about their effects. We can
perform an intervention on a random variable
X via the do operator (i.e., do(X = x)). This
rung describes questions such as “If I take the
medication, will my sickness be cured?”

• Rung 3, or L3, deals with counterfactual rea-
soning (i.e., “what if?” questions) to imagine
alternative scenarios in which the world could
have been different. This rung describes ques-
tions such as “Would my sickness have been
cured if I had taken the medication?”

Reasoning about all of these quantities together
requires the Structural Causal Model (SCM) for-
malism from (Pearl, 2009) as defined below.

Definition 1 A structural causal model (SCM) is
formally defined by a tuple ⟨Z,U, F ⟩, where Z
is the set of n endogenous variables, U is the set
of n exogenous noise variables, and F is a set of
structural equations of the form Zi = fi(Zpai , Ui),
where Zpai are Zi’s causal parents. The condition-
als P (Zi|Zpai) define the conditional distribution
of Zi given its parents. The joint observational
distribution can then be factorized as follows:

P (Z1, . . . , Zn) =
n∏

i=1

P (Zi|Zpai) (1)

The observational (L1), interventional (L2), and
counterfactual (L3) distributions entailed by the
SCM form a hierarchy in the sense that L1 ⊂ L2 ⊂
L3, where each level encodes richer information
that the previous level cannot express.

In-Context Learning. Given a pretrained large
vision-language model Mθ, a text instruction I , and
some support set S = (Xi, Yi) of query examples
X along with the corresponding answer Y (i.e.,

demonstrations), and a test query X∗, the goal of
in-context learning is to estimate the following

pθ(Y
∗|I,X∗, S) (2)

In the context of vision-language models, X takes
the form of images with a text prompt, and the
output Y is generated text.

4 CausalVLBench

In this paper, we study the causal reasoning prob-
lem in the extended setting of large vision-language
models. We propose three main causal reasoning
tasks: causal structure inference, intervention tar-
get prediction, and counterfactual prediction.

Let X = (V,Q) be decomposed into a vision
and text query. Let Z = {Z1, . . . , Zn} be the set
of causal variables that govern the system shown in
the image and also described in the system prompt
I . For all task formulations, we use prompt(·) to
represent a function that converts an input contain-
ing a set of causal variables and/or a causal graph
to a suitable text prompt.

Task 1: Causal Structure Inference. Causal
discovery refers to learning causal structure from
observational or interventional data (Vowels et al.,
2021). In this task, we prompt the LVLM to in-
fer the causal graph from input image(s) and text.
Corresponding to causal discovery with observa-
tional and interventional data, we formulate two
unique settings to evaluate the ability of vision-
language models in deriving causal relationships
from respective contexts.

• Task 1A: Standard Causal Structure Infer-
ence. Given a single image and an instruc-
tional prompt providing a high-level descrip-
tion of the variables of interest in the image,
we prompt the LVLM to infer the causal struc-
ture among the given variables through a se-
ries of Yes/No questions.

• Task 1B: Interleaved Causal Structure In-
ference. Given an image pair and an in-
structional prompt describing the variables,
we prompt the LVLM to infer changes be-
tween the images and provide the causal struc-
ture among the variables through a series of
Yes/No questions. We prompt the LVLM with
image pairs to simulate the interventional data
scenario where the second image shows the re-
sult of an intervention performed on the initial
system depicted in the first image.
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Task 2: Intervention Target Prediction

From the first to the second image, which variable 
changes first?

pendulum 
angle

Task 1B: Interleaved Causal Structure Inference

Does pendulum angle directly cause light position to change?
Does pendulum angle directly cause shadow length to change?

⋮
Does shadow position directly cause pendulum angle to change?

No
Yes
⋮

No

Task 1A: Standard Causal Structure Inference

Does pendulum angle directly cause light position to change?
Does pendulum angle directly cause shadow length to change?

⋮
Does shadow position directly cause pendulum angle to change?

No
Yes
⋮

No

Had pendulum angle been on the right, what 
would be the final values of all variables?

Task 3: Counterfactual Prediction

pendulum angle: right
light position: center
shadow length: medium
shadow position: right

Figure 1: Different causal reasoning tasks including causal structure inference (standard and interleaved), interven-
tion target prediction, and counterfactual prediction.

Formally, given input image V (for single image)
or a pair of images V = {Vbefore, Vafter} (for inter-
leaved), a set of causal variables Z, and LVLM Mθ,
the goal is to infer the causal graph G = (Z,E)
where E is the set of directed edges such that
(Zi → Zj) ∈ E indicates that Zi is a direct cause
of Zj . Now, for each pair (Zi, Zj), where i ̸= j,
we construct a query Qij = prompt(Zi, Zj) corre-
sponding to the question “Does Zi directly cause
Zj to change?” Then, we have the following binary
output from the LVLM:

Ŷij = Mθ(I, V,Qij) (3)

where Ŷij ∈ {Yes, No} and I is the system prompt
for the causal structure inference task containing
the description of causal variables Z. Then, we
can construct an adjacency matrix A with entries
Âij = I[Ŷij ] ∈ {0, 1}. The edge set of the inferred
graph Ĝ = (Z, Ê) can be obtained as

Ê = {(Zi, Zj) ∈ Z × Z | Âij = 1} (4)

Similar to traditional causal discovery algorithms
that rely on observational or interventional data,
our paradigm relies on simple observation or in-
terventional pairs as an inductive bias to identify
the causal structure. Figure 1(a) and (b) show an
example of Task 1A and Task 1B, respectively.

Task 2: Intervention Target Prediction. Recent
work has shown that a learning paradigm with ac-
cess to interventional data can be a sufficient signal
to recover causal relationships from data (Ahuja
et al., 2023; Brehmer et al., 2022; Zhang et al.,
2023b). Inspired by this paradigm, we formulate
the task of inferring the original variable that was
intervened upon given interventional input data.

Formally, given an image pair, depicting before
and after an intervention has affected a system, we
propose the task of predicting the source interven-
tion that caused all changes, often referred to as the
intervention target (Lippe et al., 2022). Suppose
we are given a fixed causal graph G = (Z,E), a
pair of images (Vbefore, Vafter) where a variable from
{Z1, . . . , Zn} was intervened upon, and a query Q
= “From the first to the second image, which vari-
able changes first?”. Then, we have the following
output from the LVLM:

Ŷ = Mθ(I, {Vbefore, Vafter}, Q) (5)

where Ŷ is the predicted intervened target and I
is a system prompt for the intervention target pre-
diction task containing the description of causal
variables Z and their relationships G. This task
requires careful reasoning to ensure that the inten-
tional change was not a downstream causal effect.

Task 3: Counterfactual Prediction. To evaluate
the capability of LVLMs to infer causal mecha-
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Angle Light 
Position

Shadow 
Length

Shadow 
Position

(a) Pendulum

Ball 
Size

Hole
Position

Water 
Level

Water 
Flow

(b) Water Flow

Robot 
Arm

Blue 
Light

Green 
Light

Red 
Light

(c) Causal Circuit

Figure 2: Causal system of all datasets used in evaluations

nisms, an important task is counterfactual reason-
ing. Given an image and a description of the cur-
rent state of all high-level variables of interest that
appear in the image, we prompt an LVLM to in-
fer what the state of all variables would be had a
specific intervention taken place.

Given an image V , a fixed causal graph
G = (Z,E), and initial variable assignments
{z1, . . . , zn}, the goal is to predict the values of all
variables Z1, . . . , Zn had an intervention do(Zi =
z∗i ) been performed. The query can be represented
as Q = prompt({z1, . . . , zn},do(Zi = z∗i )). We
have the following output from the LVLM:

ẑ = Mθ(I, V,Q) (6)

where I is the system prompt for the counterfac-
tual prediction task containing the description of
causal variables Z and their relationships G and
ẑ = {ẑ1, . . . , ẑn} are the LVLM predicted final
counterfactual states.

5 Experiments

In this section, we empirically evaluate state-of-the-
art LVLMs on our proposed tasks. Detailed data
generation mechanisms for each dataset, prompt
templates for each task, and LVLM model descrip-
tions and parameters are all deferred to the Ap-
pendix.

5.1 Datasets
To evaluate formal causal reasoning capabilities
from visual cues, we opt to adapt and evaluate
LVLMs on existing causal representation learn-
ing datasets. Our benchmark consists of three
datasets, each representing a physical system,

adapted to generate data satisfying each task’s re-
quirements. Since the original datasets consist
of continuous-valued ground-truth factors, we dis-
cretize and convert them into textual categories.
The Pendulum dataset (Yang et al., 2021) is a
two-dimensional physical system dataset depict-
ing a pendulum, a light source, and a shadow. The
Water Flow dataset (Yang et al., 2021) is a two-
dimensional physical system dataset depicting a
red ball dropped in a glass filled with water and a
hole on the right side that leaks water. The Causal
Circuit dataset (Brehmer et al., 2022) is a three-
dimensional physical system dataset consisting of a
robot arm interacting with three colored lights. The
causal variables and their relationships for each
dataset are shown in Fig. 2.

5.2 Setup
Models. We evaluate a wide range of open-
source LVLMs on the causal structure inference, in-
tervention target prediction, and counterfactual pre-
diction tasks, including LLaVa-Onevision (7B) (Li
et al., 2024), Qwen-VL-Chat (9B) (Bai et al.,
2023), Qwen2.5-VL-Instruct (32B) (Bai et al.,
2025), IDEFICS2 (8B) (Laurençon et al., 2024),
DeepSeek-VL2 (16B, 27B) (Wu et al., 2024),
OpenFlamingo (9B) (Awadalla et al., 2023), Otter-
Llama (9B) (Li et al., 2023), and Gemini 2.0
Flash (Deepmind, 2024). We conduct our experi-
ments on NVIDIA A100 GPUs with 40GB RAM.

Metrics. For all tasks, we use the accuracy met-
ric against the ground truth via exact match as the
evaluation metric. For both the causal structure
inference tasks, we ask a series of Yes/No ques-
tions for each image/pair. We construct a binary
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Table 1: Results for Task 1A: Standard Causal Structure Inference and Task 1B: Interleaved Causal Structure
Inference task under Zero-Shot setting.

Model

Pendulum Water Flow Causal Circuit

Standard Interleaved Standard Interleaved Standard Interleaved

SHD Acc SHD Acc SHD Acc SHD Acc SHD Acc SHD Acc

LLaVA-OneVision-7B 1.20.01 89.90.06 1.70.02 85.20.14 2.80.01 76.30.09 3.00.00 75.00.00 4.40.03 62.40.24 3.20.01 73.40.10
Qwen-VL-Chat-9B 1.00.00 83.10.02 0.90.01 87.90.16 2.00.01 74.70.12 2.90.01 68.10.03 3.00.01 74.50.12 2.90.02 75.70.20
IDEFICS2-8B 0.80.01 93.00.07 0.20.00 98.10.04 1.00.00 91.50.02 3.00.00 75.00.00 5.00.00 57.70.08 5.00.00 58.70.02
Deepseek-VL2-Small-16B 4.00.00 66.60.00 3.70.01 69.10.12 3.00.00 75.00.00 3.00.00 75.00.00 5.00.00 58.30.00 4.90.00 58.80.00
OpenFlamingo-9B 4.00.00 66.60.00 4.00.00 67.60.00 3.00.00 75.00.00 3.00.00 75.00.00 5.00.00 58.30.00 5.00.00 58.30.00
Otter-9B 5.00.00 50.00.00 4.90.01 49.60.12 4.00.00 50.20.00 5.00.00 50.00.03 5.20.02 51.40.18 3.70.00 62.40.20
Deepseek-VL2-27B 4.00.0 66.70.0 4.00.00 66.70.00 3.00.00 75.00.00 3.00.00 75.00.00 5.00.00 58.30.00 5.00.00 58.30.00
Qwen2.5-VL-Instruct-32B 0.00.00 100.00.00 0.00.0 100.00.0 2.90.01 75.10.04 2.30.0 80.10.1 2.90.03 75.50.28 4.60.0 62.10.1

Gemini-2.0-Flash 0.00.0 100.00.0 0.70.0 94.40.0 1.00.0 91.60.0 2.30.0 80.70.0 3.20.0 73.20.0 2.80.0 76.90.0

adjacency matrix according to the predicted model
answers and compute the Structural Hamming Dis-
tance (SHD) with respect to the ground-truth causal
graph. We also report the average exact match ac-
curacy of model predictions. In the intervention
target prediction task, we evaluate the number of
times the model predicted the correct intervention
target variable. For the counterfactual prediction
task, we evaluate the number of times the model
predicted the correct counterfactual states for each
variable intervened upon. We compute the aver-
age performance over all samples in the query set
across 3 random seeds for each shot. We evaluate
Gemini only once due to rate limits.

5.3 Results

We include the results for Task 1A and 1B in Ta-
ble 1, Task 2 in Table 2, and Task 3 in Table 3 for all
three datasets using all models, where the best per-
formance is bold, and the second-best is underlined
in each column. We observe that in-context learn-
ing for causal reasoning tasks is only marginally
effective and, in some cases, can degrade model
performance for the majority of open-source mod-
els. Most models degrade in performance with in-
creasing shots. Qwen2.5-VL, which is much larger,
is an exception to this trend and notably improves
with in-context demonstration examples, but for
only the counterfactual prediction task. Gemini-
2.0-Flash also has the same upward trend for the
few-shot setting. However, all LVLMs struggle
in tasks requiring multi-image inputs, such as the
intervention target prediction task. Although some
models, such as LLaVA-OneVision, were specifi-
cally trained with interleaved multi-image inputs,
they demonstrate subpar performance in complex
reasoning scenarios. In the following, we analyze

our experimental results for each task in more de-
tail, weighing the pros and cons of different models
and observing general trends.

Causal Structure Inference Results. For the
causal structure inference tasks, both standard and
interleaved shown in Table 1, the best performing
models are Qwen2.5-VL, Gemini-2.0-Flash across
all datasets. However, IDEFICS2 and Qwen-VL-
Chat show comparable performance for Pendulum
and Flow. LLaVA-OneVision-7B is generally the
most consistent small open-source model across
all datasets, with its performance bounded between
other smaller and larger models. We also observe
that performance degrades for most models when
provided with paired images for causal structure
inference. Among all models, Qwen2.5-VL and
Gemini predict the true causal graph for the Pendu-
lum dataset with perfect accuracy. We conjecture
this is due to the simple nature of the causal mech-
anism in the Pendulum dataset. However, it is not
clear how this ability scales as the causal graph
increases in size. Our results also indicate that
LVLMs predict the causal graphs for the pendulum
and water flow datasets more accurately compared
to the causal circuit dataset. This is most likely be-
cause, unlike the pendulum and water flow systems,
the causal graph in the causal circuit system is in-
duced and not a naturally occurring phenomenon.
In such cases, providing a pair of images through
the interleaved variant often improves the infer-
ence performance. A more nuanced analysis of the
causal structure inference task, including precision
and recall results to gauge how frequently models
default to “Yes” or “No” answers, and evaluating
whether models can distinguish between direction-
ality and cyclicity, is provided in Appendix C.
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Table 2: Results for Task 2: Intervention Target Prediction task under Zero Shot (ZS) and Few Shot (FS) settings.

Model

Pendulum Water Flow Causal Circuit

ZS FS ZS FS ZS FS

0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 26.21.5 27.51.9 26.31.0 27.10.9 43.10.8 34.12.3 34.11.2 32.71.2 39.40.5 35.00.4 36.10.5 35.90.4
Qwen-VL-Chat-9B 24.90.5 24.81.0 24.31.4 24.71.6 37.80.6 33.11.2 32.90.8 32.10.8 10.40.9 31.00.4 31.81.6 33.02.3
IDEFICS2-8B 29.00.4 24.21.9 24.80.9 24.31.1 34.82.1 35.41.8 33.30.3 33.50.8 10.20.4 30.31.2 31.40.9 29.70.5
Deepseek-VL2-Small-16B 25.51.1 24.40.4 24.00.3 0.00.0 35.80.6 34.40.2 34.30.7 0.00.0 72.91.1 28.11.5 0.20.1 0.00.0
OpenFlamingo-9B 24.80.5 24.70.7 23.71.1 25.20.6 34.21.7 34.51.4 33.01.1 33.10.8 9.80.6 31.61.5 31.92.3 32.31.1
Otter-9B 26.61.9 25.30.3 26.90.4 23.01.2 32.81.1 34.11.0 30.00.9 31.90.9 9.10.7 25.21.4 23.41.4 24.31.4
Deepseek-VL2-27B 31.90.0 30.40.0 24.10.0 - 44.40.0 36.60.0 31.40.0 - 66.10.0 43.70.0 30.30.0 -
Qwen2.5-VL-Instruct-32B 44.30.5 29.50.3 27.42.0 26.21.2 48.40.7 37.21.3 37.30.7 36.60.6 32.11.5 32.50.9 32.01.2 34.60.8

Gemini-2.0-Flash 39.40.0 45.20.0 45.30.0 47.40.0 37.60.0 46.50.0 52.40.0 55.70.0 10.50.0 43.10.0 55.10.0 66.10.0

Table 3: Results for Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS) settings.

Model

Pendulum Water Flow Causal Circuit

ZS FS ZS FS ZS FS

0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 84.10.8 83.00.7 83.60.5 83.50.5 83.40.4 84.00.3 84.50.7 85.00.6 94.90.2 96.00.2 96.70.2 96.90.2
Qwen-VL-Chat-9B 80.10.9 81.50.6 80.11.1 73.41.1 83.40.3 82.30.2 82.60.4 81.20.3 74.40.3 94.70.1 94.40.0 94.90.1
IDEFICS2-8B 38.80.5 79.30.6 80.20.4 80.30.5 71.00.3 82.70.7 83.70.3 84.10.3 58.10.3 92.20.5 95.40.3 96.80.1
Deepseek-VL2-Small-16B 77.90.6 20.40.4 0.00.0 0.00.0 51.40.3 71.30.6 2.60.4 0.00.0 41.61.0 64.90.4 21.80.4 0.00.0
OpenFlamingo-9B 22.41.1 82.60.8 81.80.8 81.70.8 33.01.1 80.60.6 81.10.7 83.90.5 3.90.3 87.90.1 93.20.3 88.90.3
Otter-9B 22.60.5 13.40.3 1.70.2 0.40.1 34.00.3 32.00.6 25.40.3 6.20.2 43.80.3 53.30.4 37.70.1 6.30.2
Deepseek-VL2-27B 61.10.0 83.50.0 83.70.0 - 83.00.0 83.00.0 83.20.0 - 94.20.0 94.00.0 94.80.0 -
Qwen2.5-VL-Instruct-32B 81.80.5 85.10.5 85.50.8 87.40.8 79.90.4 82.60.1 84.40.4 86.70.7 99.10.1 98.80.1 98.60.1 98.40.0

Gemini-2.0-Flash 83.40.0 84.90.0 85.00.0 86.50.0 80.30.0 84.30.0 86.50.0 88.30.0 97.00.0 97.40.0 97.20.0 97.40.0

Intervention Target Prediction Results. The in-
tervention target prediction task is progressively
more difficult. Conditioned on the given causal
structure, the model is required to reason about the
intervened variable that caused the change between
the first and second image. In Table 2, the best-
performing models are DeepseekVL2, Qwen2.5-
VL, and Gemini-2.0-Flash. Among these models,
Gemini demonstrates the best trend in improving in-
tervention target prediction with an increasing num-
ber of shots. For the causal circuit dataset, originat-
ing from an induced causal graph, DeepseekVL2-
Small and DeepSeekVL2 have notable zero-shot
performance. We attribute this to the reasoning-
focused training paradigm of DeepSeekVL2, which
is better suited for reasoning with a concrete set of
rules. However, for open-source models, provid-
ing few-shot examples generally degrades model
performance. Similar to the causal structure infer-
ence task, the most consistently performing model
is LLaVA-OneVision-7B. Looking more closely at
model predictions, we observe that several mod-
els tend to predict one variable more than others
during zero-shot inference. For instance, in the pen-

dulum dataset, some models predict light position
for most test queries. We conjecture this is due to
the light being the most noticeable object in the
image. Note that the frequently predicted variable
may vary across models.

Counterfactual Prediction Results. The coun-
terfactual prediction task involves predicting exact
discretized values of each causal variable had a
given intervention occurred. Ideally, interventions
on variables should propagate to accurate values
for descendants and should not change the values
for ancestors. We evaluate this task across differ-
ent levels of granularity. First, we compute model
correctness as the average accuracy over all vari-
ables. However, this metric can easily be inflated
as the model can achieve some level of correctness
by simply predicting the initial input states. As
a result, we observe seemingly favorable perfor-
mance in Table 3. Therefore, to understand how
interventions on each variable affect utility, we
show the per-variable breakdown for each dataset
in Appendix C. We observe that most models attain
better results when the intervention is performed on
variables with no descendants, but struggle with ac-
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Table 4: Selected results for Task 2: Intervention Target Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings without causal graph.

Model

Pendulum Water Flow Causal Circuit

ZS FS ZS FS ZS FS

0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 26.21.5 26.71.8 26.20.5 26.40.7 39.61.1 34.02.2 34.00.7 32.61.5 39.31.2 35.20.1 36.20.3 35.80.5
Qwen2.5-VL-Instruct-32B 44.42.4 34.82.4 29.81.5 26.81.3 54.62.0 39.22.9 35.40.4 31.21.4 18.81.1 28.00.7 30.80.3 38.20.9
Gemini-Flash-2.0 35.60.0 46.40.0 49.50.0 48.20.0 37.40.0 46.70.0 50.60.0 53.60.0 18.80.0 75.80.0 81.80.0 81.40.0

Table 5: Selected results for the Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings without causal graph.

Model

Pendulum Water Flow Causal Circuit

ZS FS ZS FS ZS FS

0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 83.50.8 83.00.9 83.30.7 83.20.7 82.40.3 83.50.2 83.70.5 84.80.2 94.00.1 95.90.1 96.40.2 96.70.2
Qwen2.5-VL-Instruct-32B 79.00.4 83.70.8 85.20.7 87.50.8 82.20.6 84.40.2 85.30.5 86.90.8 94.90.1 95.40.1 96.50.1 97.30.0
Gemini-Flash-2.0 74.80.0 81.50.0 83.20.0 86.90.0 76.60.0 83.60.0 85.30.0 88.00.0 82.90.0 93.00.0 93.60.0 94.60.0

curately propagating causal changes to descendants.
Generally, LLaVA-OneVision-7B, Deepseek-VL2,
Qwen2.5-VL, and Gemini-2.0-Flash have the best
performance. We also look at interventions on vari-
ables with at least one descendant and compute the
average accuracy of the correct prediction of down-
stream variables. We find that most models achieve
notably lower performance as they are not able
to correctly predict propagated descendant values.
Nonetheless, most models improve in their ability
to correctly predict descendant variable values as
we increase the number of shots.

5.4 Additional Analysis

Inference without Causal Graph. We investi-
gate the ability of LVLMs to reason about causal
concepts when ground-truth causal relationships
are not provided in the input. We evaluate the per-
formance of the top-performing models for Tasks
2 and 3. The results in Table 4 and Table 5 demon-
strate that model performance generally degrades,
albeit marginally in some cases, when the causal
relationships are not provided. We note that the
Pendulum and Flow datasets follow natural phys-
ical laws, whereas the Causal Circuit dataset has
an induced causal graph. If the causal system is de-
rived from physical laws, the model is more likely
to be familiar with the governing causal mechanism.
In datasets with induced causal graphs, it may be
beneficial to provide the causal relationships as ad-
ditional context. However, contrary to intuition, we
find that excluding the causal structure information

significantly improves the intervention target pre-
diction performance of Gemini-2.0-Flash on the
causal circuit dataset.

Balanced Demonstration Selection. In this ex-
periment, we evaluate the influence of the demon-
stration selection strategy on model predictions by
implementing a balanced selection technique com-
pared to the random selection used in prior experi-
ments. We assess the method on the intervention
target prediction task as it is flexible enough to in-
corporate the strategy. Specifically, we construct
a demonstration set such that each causal variable
appears as an intervention target. The balanced
demonstrations ensure that the model can contextu-
alize the influence of all possible interventions on
the given system. The results from this experiment
are shown in Table 6. Compared to the random
selection strategy, we observe that providing in-
tervention examples representative of each causal
variable does not improve prediction performance.
Also, some open-source models, such as Qwen2.5,
rely heavily on the first demonstration example.
Our findings demonstrate that open-source mod-
els still struggle to make reliable inferences from
few-shot examples in reasoning tasks.

Chain-of-Thought Prompting (CoT). A com-
mon technique to improve the reasoning ability of
LLMs/LVLMs is chain-of-thought (CoT) prompt-
ing (Wei et al., 2022; Kojima et al., 2022). Here
we study how chain-of-thought prompting affects
predictive accuracy in zero-shot inference. We con-
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Table 6: Selected results for Task 2: Intervention Target Prediction under Balanced Selection with causal
graph.

Model Pendulum Water Flow Causal Circuit

4-shot 8-shot 3-shot 6-shot 4-shot 8-shot

LLaVA-OneVision-7B 26.50.0 26.50.0 31.60.0 31.20.0 36.40.0 36.40.0
Qwen2.5-VL-Instruct-32B 32.50.0 25.30.0 45.30.0 36.50.0 40.40.0 14.80.0
Gemini-Flash-2.0 46.20.0 44.30.0 43.20.0 55.30.0 48.10.0 41.60.0

Table 7: Selected results for all tasks under Zero-Shot Chain of Thought (CoT) setting.

Model
Pendulum Water Flow Causal Circuit

1A 1B 2 3 1A 1B 2 3 1A 1B 2 3

Qwen2.5-VL-Instruct-32B 98.70.3 87.40.2 36.50.0 81.60.6 84.00.1 74.90.6 33.00.0 80.60.2 66.30.4 59.20.0 54.80.0 98.50.2
Gemini-Flash-2.0 98.10.0 87.50.0 39.70.0 83.70.0 92.30.0 83.80.0 40.40.0 80.40.0 70.70.0 72.40.0 9.10.0 96.10.0

struct a CoT prompt for each task as follows: We
prompt the model to obtain a reasoning chain about
the objects in the images(s). Then, we augment the
input with the generated response and prompt the
model again for the final prediction. The results of
this study are shown in Table 7. Evidently, zero-
shot CoT prompting improves model performance
in some cases. For instance, the intervention target
prediction accuracy of the Qwen2.5-VL increases
significantly on the Causal Circuit dataset. Simi-
larly, CoT improves the performance of Gemini on
the Pendulum and Flow datasets. However, Gemini
underperforms on the Causal Circuit dataset with
CoT. Possibly, adding a lengthy reasoning chain to
the input takes up the model context length, nega-
tively affecting predictive performance. Based on
these observations, it is inconclusive whether zero-
shot chain-of-thought prompting can truly improve
causal reasoning in open-source models.

6 Conclusion

In this paper, we introduce CausalVLBench, a
benchmark for evaluating the visual causal reason-
ing capability of large vision-language models. We
formulate three different tasks: causal structure
inference, intervention target prediction, and coun-
terfactual prediction, and rigorously evaluate the
performance of open-source LVLMs under zero-
shot and few-shot settings. Furthermore, we ob-
serve the effect of removing causal relationships
from the prompt, chain-of-thought prompting, and
balanced demonstration selection on model per-
formance. Our results indicate that larger models
with more parameters are necessary for effective
visual causal reasoning from in-context learning,
and smaller open-source models exhibit poor per-

formance and still need further optimization for
few-shot learning. Furthermore, our observations
serve as motivation to consider causal reasoning as
a core element of new training paradigms.
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Limitations

In this work, we construct a comprehensive bench-
mark to evaluate visual causal reasoning capabil-
ities of large vision-language models. To ensure
reproducibility and transparency, we run our eval-
uations primarily on open-weight LVLMs and in-
clude one closed-source model. Due to resource
constraints, we do not evaluate on closed models
such as GPT and Claude and encourage future eval-
uations with these proprietary models.

Our benchmark is largely designed to gauge the
causal reasoning abilities of existing LVLMs on
common datasets from causal representation learn-
ing. We focus on systems with four-variable causal
graphs for the purposes of our work. We observe
that LVLMs struggle on even simple causal graphs
and leave evaluations on more complex causal sys-
tems, including temporal systems, for future work.

Ethical Considerations

Due to the increasing use of large foundation mod-
els in real-world applications, it is paramount to
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study their reasoning capabilities to develop more
robust and reliable AI systems. In this work, we
focus on benchmarking large vision-language mod-
els on formal causal reasoning. The datasets used
in this paper are publicly available. Our use of pub-
licly available LVLMs and the proprietary Gemini-
2.0-Flash adhere to the associated licenses. We
hope that our benchmark inspires the development
of new training paradigms with an emphasis on
causal reasoning.
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Appendices

A Implementation Details

A.1 Model Configurations

We briefly discuss each model benchmarked in this
evaluation below and provide configuration details
for all models in Table 8, including the number of
image tokens, context length, and architecture.

OpenFlamingo-9B. OpenFlamingo-
9B (Awadalla et al., 2023) is an auto-regressive
open-source vision-language model that allows
the mapping of interleaved images and text to
textual outputs. The 9B version of the model uses
a CLIP ViT/14 as the vision encoder, a Perceiver
resampler to extract patch features, and MPT-7B as
the language model with a cross-attention module
every 4th layer. The pre-training data includes
the LAION-2B and MMC4 datasets, along with
synthetic image-text sequences generated by
ChatGPT.

Otter-LLaMA-9B. Otter-LLaMA-9B (Li et al.,
2023) is an in-context instruction-tuned vision-
language model based on OpenFlamingo’s imple-
mentation. This framework uses an OpenFlamingo
base model with CLIP ViT/14 as the vision encoder
and LLaMA-7B as the language model. Otter VLM
is obtained by fine-tuning the Perceiver resampler

module, cross-attention layers, and input/output
embeddings of a pre-trained OpenFlamingo model
on the MIMIC-IT dataset. The model and its pre-
trained weights are publicly available.

Qwen-VL-Chat-9B. Qwen-VL-Chat-9B (Bai
et al., 2023) is an open-source instruction fine-
tuned vision-language model that adds multi-modal
and multilingual capabilities to Qwen-7B language
model. The model uses CLIP ViT-bigG/14 as the vi-
sion encoder, and implements a single-layer cross-
attention in the vision-language adapter. Training
includes three stages of learning from image-text
sequences, interleaved and multi-task data, and in-
struction tuning data, respectively. Pre-training and
fine-tuning data comprise LAION, COCO, GQA,
VGQA, GRIT, and Visual Genome, among others.

IDEFICS2-8B. IDEFICS2-8B (Laurençon et al.,
2024) is a fully auto-regressive vision-language
model that incorporates SigLIP-SO400M as the vi-
sion component, Mistral-7B-v0.1 as the language
module and a projection+pooling module to obtain
visual tokens. The model is trained over three kinds
of data, including image-text pairs from LAION
COCO, interleaved image-text documents from
OBELICS, and PDF documents from m OCR-IDL,
PDFA, and RenderedText. The model and its pre-
trained weights are publicly available.

LLaVA-OneVision-7B. LLaVA-OneVision-
7B (Li et al., 2024) is an open, large multi-modal
model trained for single-image, multi-image, and
video tasks. The model architecture consists of
Qwen-2 and SigLIP with a 2-layer MLP as the
projector to transform image features into the text
embedding space. LLaVA-OneVision is trained
through three phases, namely language-image
alignment, high-quality knowledge learning,
and visual instruction tuning on single-image,
multi-image, and video datasets.

DeepseekVL2. DeepseekVL2 (Wu et al., 2024)
is a collection of open-source vision-language mod-
els which employs a mixture-of-experts model for
pre-training. Both the 16B and 27B models em-
ploy SigLIP-SO400M-384 as the vision encoder,
DeepSeekMoE as the mixture-of-experts language
model, and a two-layer MLP as the vision-language
adaptor for projecting visual tokens into the lan-
guage model’s embedding space. The 27B model
additionally incorporates an expert bias correction
step with a global bias term. The models are pre-
trained on interleaved image-text, image caption-
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ing, optical character recognition, VQA, visual
grounding, and grounded conversation datasets.
The models are additionally fine-tuned on Super-
vised Fine-tuning (SFT) QA pairs encompassing
alignment, understanding, reasoning, logic, conver-
sation, and code generation.

Qwen2.5-VL-Instruct-32B. Qwen2.5-VL-
Instruct-32B (Bai et al., 2025) integrates Qwen
2.5 LLM as the language model and a redesigned
ViT as the vision encoder to allow multi-modal
input processing, including images and videos,
and multi-step reasoning. The architecture also
includes an MLP-based vision-language merger
to obtain spatially adjacent patch features. The
pre-training data is composed of multi-modal
data such as image captions, optical character
recognition, visual knowledge, academic questions,
image/video localization, document parsing, agent-
based interaction, and interleaved image-text pairs,
and the post-training alignment is performed with
single-turn and multi-turn instruction fine-tuning
data. Model weights are publicly available.

Gemini-2.0-Flash. Gemini-2.0-Flash (Deep-
mind, 2024) is a closed-source vision-language
model incorporating cross-modal attention layers
to facilitate input processing from multiple
modalities. The model is pre-trained on text
corpora including books, research articles, and text
crawled from the web, image-text pairs, temporal
datasets, and multilingual audio datasets. The
model is further fine-tuned on domain-specific
datasets. Details about model architectures and
datasets used are not publicly available.

B Data Generation

B.1 Dataset Descriptions
Pendulum. The Pendulum dataset (Yang et al.,
2021) is a synthetic dataset that consists of 7K
images with resolution 96× 96× 4 generated by
4 ground-truth causal variables: u1 = pendulum
angle, u2 = light position, u3 = shadow length,
and u4 = shadow position, which are continuous
values. Each causal variable is determined from
the following process with nonlinear functions.

u1 ∼ U(−45, 45); θ = u1 ∗
π

200

u2 ∼ U(60, 145); ϕ = u2 ∗
π

200

u3 = max(3,
∣∣∣9.5 cos θ

tanϕ
+ 9.5 sin θ

∣∣∣)

u4 =
−11 + 4.75 cos θ

tanϕ
+ (10 + 4.75 sin θ)

Water Flow. The Flow dataset (Yang et al., 2021)
is a synthetic dataset that consists of 8K images
with resolution 96× 96× 4 generated by 4 ground-
truth causal variables: u1 = ball radius, u2 = hole
position, u3 = water level, and u4 = water flow,
which are continuous values. Each causal variable
is determined by the following nonlinear physical
mechanisms.

u1 =
r

30
, r ∈ {5, 6, . . . , 34}

u2 =
hole
3

, hole ∈ {6, 7, . . . , 14}

u3 = u31 +
hraw

10
, hraw ∈ {10, 11, . . . , 39}

u4 =
√
2 · 0.98 · hw · (u3 − 0.5)

Causal Circuit. The Causal Circuit dataset is a
new dataset created by (Brehmer et al., 2022) to
explore research in causal representation learning.
The dataset consists of 512 × 512 × 3 resolution
images generated by 4 ground-truth latent causal
variables: robot arm position, red light intensity,
green light intensity, and blue light intensity. The
images show a robot arm interacting with a system
of buttons and lights. The data is rendered using an
open-source physics engine. The original dataset
consists of pairs of images before and after an in-
tervention has taken place. The data is generated
according to the following process:

vR = 0.2 + 0.6 ∗ clip(u2 + u3 + bR, 0, 1)

vG = 0.2 + 0.6 ∗ bG
vB = 0.2 + 0.6 ∗ bB
u4 ∼ Beta(5vR, 5 ∗ (1− vR))

u3 ∼ Beta(5vG, 5 ∗ (1− vG))

u2 ∼ Beta(5vB, 5 ∗ (1− vB))

u1 ∼ U(0, 1)

where bR, bG, and bB are the pressed state of but-
tons that depends on how far the button is touched
from the center, u1 is the robot arm position, and
u2, u3, and u4 are the intensities of the blue, green,
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and red lights, respectively. From this generative
process, we selectively choose only images for
which the causal graph is satisfied (the robot arm’s
position and the downstream effects). For exam-
ple, the robot arm appearing over the green button,
green button lit up, and red button lit up is consis-
tent with the assumption that the robot arm position
causes changes in which buttons light up according
to the causal graph. The filtered dataset consists of
roughly 5K samples.

B.2 Dataset Construction

Utilizing these original datasets as a base, we con-
struct new datasets for our LVLM tasks. Specifi-
cally, for the interleaved tasks, we generate image
pairs of pendulum and flow systems before and
after an intervention. For the intervention target
prediction task, our dataset consists of image pairs
and a question about which variable was the in-
tervention target. For the counterfactual task, we
discretize the continuous numerical values of each
variable into a text description and embed them into
a natural language prompt. We split each dataset
into 40% support set and 60% query set. Of the
query set, we randomly sample 1000 examples for
each run during inference.

C Additional Results

Precision/Recall for Causal Structure Inference
For a more nuanced analysis, we report precision
and recall scores on the causal structure inference
tasks in Table 9. We observe that smaller mod-
els, such as Llava-OneVision have lower preci-
sion scores suggesting a tendency to stick with
the "Yes" answer. Consistent with our main results,
we also observe that these models perform signif-
icantly worse on precision/recall for the Causal
Circuit dataset which consists of a more unintuitive
causal structure. Furthermore, specifically for the
Causal Circuit dataset, models such as IDEFICS
(and Qwen2.5-VL for Interleaved) seem to answer
"No" at a much higher rate than other models, as
shown by the low recall scores. Generally, Gemini-
2.0-Flash outperforms other models on precision
and recall, suggesting its robustness across steps.

Directionality vs. Cyclicity. For the causal
structure inference task, we additionally evaluate
whether LVLMs can distinguish unidirectionality
and acyclicity, shown in Table 10. For instance,
A → B → C → A satisfies unidirectionality by
violates acyclicity. On the other hand, all acyclic

graphs are by definition unidirectional. To inves-
tigate this phenomenon, we compute two metrics,
bidirectionality (b) and cyclicity (c) as follows:

b =
number of bidirectional predictions

k
(7)

c = Tr(eA◦A)− n (8)

where k is the total number of unique variable pairs
such that (X, Y) and (Y, X) are counted as the
same, A is the adjacency matrix, n is the number
of nodes, and the cyclicity score c implies A is a
directed acyclic graph (DAG) and c > 0 indicates
cycles (Zheng et al., 2018). From our results in the
table below, we find that there are many more bidi-
rectional and cyclic predictions for some models
than others and that models predicting more edges
as bidirectional also predict cycles at a higher rate.
This indicates that the models do not distinguish
between directionality and acyclicity.

Per-variable results for Counterfactual Predic-
tion. Furthermore, in Table 11, Table 12, and
Table 13, we report the accuracy for samples with
the same intervention target to understand how ac-
curately the model predicts all counterfactual states
for each variable intervened on separately. We also
show results for variables that have at least one de-
scendant and the trend for all models in Fig. 3. We
observe that most models seem to perform poorly
in predicting the accurate counterfactual state, of-
ten obtaining around 50%-60% in accuracy.

D Prompt Templates

We provide the prompt templates for standard
causal structure inference (Fig. 4), interleaved
causal structure inference (Fig. 5), intervention tar-
get prediction (Fig. 6), counterfactual prediction
(Fig. 7), and chain-of-thought reasoning (Fig. 8,
Fig. 9, and Fig. 10).
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Table 8: Configurations of models used in CausalVLBench.

Model Connection Module Image Tokens Context Length (Train) Context Length (Test)

OpenFlamingo-9B Perceiver 64 2048 2048
Otter-LLaMA-9B Perceiver 64 2048 2048
Qwen-VL-Chat-9B Cross-Attention 256 2048 8192
IDEFICS2-8B MLP 64 - 32K
LLaVA-OneVision-7B MLP AnyRes - 128K
DeepSeekVL2-16B/27B MLP AnyRes 4096 128K
Qwen2.5-VL-Instruct-32B Cross-Attention 256 2048 8192
Gemini-2.0-Flash Cross-Attention N/A N/A 1M

Table 9: Precision and Recall Results for Task 1A: Standard Causal Structure Inference and Task 1B:
Interleaved Causal Structure Inference task under Zero-Shot setting for selected models

Model

Pendulum Water Flow Causal Circuit

Standard Interleaved Standard Interleaved Standard Interleaved

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

LLaVA-OneVision-7B 77.20.0 100.00.0 69.80.2 100.00.0 51.60.1 100.00.0 50.00.0 66.70.0 58.30.8 29.90.6 85.20.4 44.40.1
IDEFICS2-8B 100.00.00 78.90.08 95.50.11 100.00.00 74.70.03 100.00.03 50.00.00 66.70.00 3.90.05 1.50.02 4.20.24 0.90.04
Qwen2.5-VL-Instruct-32B 100.00.00 100.00.00 100.00.00 99.90.02 50.20.05 100.00.00 58.40.39 59.00.66 99.20.28 41.30.68 42.00.99 8.90.24

Gemini-2.0-Flash 100.000.00 100.000.00 96.80.00 82.40.00 74.80.00 100.00.00 69.90.00 52.00.00 100.00.00 35.60.00 99.00.00 47.80.00

Table 10: Bidirectionality vs. Cyclicity scores for Task 1A: Standard Causal Structure Inference

Model Pendulum Water Flow Causal Circuit

Bidirectionality Cyclicity Bidirectionality Cyclicity Bidirectionality Cyclicity

LLaVA-OneVision-7B 0.0020.000 0.0130.001 0.1670.000 1.0860.000 0.1590.001 1.0530.004
Qwen-VL-Chat-9B 0.1670.000 1.0860.000 0.0000.000 0.0000.000 0.0000.000 0.0020.001
IDEFICS2-8B 0.0000.000 0.0000.000 0.1670.000 1.0860.000 0.0110.000 0.0740.001
Deepseek-VL2-Small-16B 0.0000.000 0.0000.000 0.0000.000 0.0000.000 0.0000.000 0.0000.000
OpenFlamingo-9B 0.0000.000 0.0000.000 0.0000.000 0.0000.000 0.0000.000 0.0000.000
Otter-9B 0.0000.000 0.0000.000 0.3340.000 2.9660.006 0.0570.003 0.4530.028
Deepseek-VL2-27B 0.0000.000 0.0000.000 0.0000.000 0.0000.000 0.0000.000 0.0000.000
Qwen2.5-VL-Instruct-32B 0.0000.000 0.0000.000 0.1670.000 1.0860.000 0.0000.000 0.0000.000
Gemini-Flash-2.0 0.0000.000 0.0000.000 0.0020.000 0.0110.000 0.0000.000 0.0000.000
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Table 11: Per-variable results for Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings for Pendulum dataset with causal graph.

Model
Pendulum Angle Light Position Shadow Length Shadow Position

ZS FS ZS FS ZS FS ZS FS

Shots 0 2 4 8 0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 71.27 70.25 70.77 70.87 65.33 66.73 67.99 69.05 100.00 99.49 99.52 99.87 100.00 95.49 97.03 94.92
Qwen-VL-Chat-9B 65.96 68.12 68.08 62.29 68.17 68.51 66.16 55.77 88.18 96.90 96.90 86.84 98.98 93.75 90.57 90.03
IDEFICS2-8B 44.96 68.06 69.37 68.88 33.96 64.18 66.62 66.36 35.49 97.93 96.93 98.13 41.02 88.16 88.51 87.84
Deepseek-VL2-Small-16B 67.84 13.08 0.00 0.00 59.27 21.38 0.00 0.00 99.49 27.25 0.00 0.00 84.89 19.45 0.00 0.00
OpenFlamingo-9B 0.00 70.98 70.25 68.96 7.36 64.24 65.76 67.09 70.58 99.87 97.83 99.31 9.64 96.00 93.43 91.36
Otter-9B 36.49 7.92 0.07 0.07 25.79 15.38 1.41 0.03 7.23 6.14 0.00 0.07 20.25 24.14 5.27 1.30
Deepseek-VL2-27B 71.54 71.84 72.04 0.99 64.72 64.91 65.00 1.70 86.00 100.00 100.00 2.18 21.37 99.90 100.00 3.42
Qwen2.5-VL-Instruct-32B 64.74 70.31 69.88 73.82 65.24 71.64 73.14 76.94 100.00 100.00 99.97 100.00 98.63 99.73 100.00 100.00

Gemini-2.0-Flash 69.66 68.87 69.76 71.44 72.92 72.55 72.17 76.13 100.00 100.00 100.00 100.00 92.53 100.00 99.90 100.00

Table 12: Per-variable results for Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings for Water Flow dataset with causal graph.

Model
Ball Size Hole Position Water Level

ZS FS ZS FS ZS FS

Shots 0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 79.52 81.03 80.17 80.44 85.92 85.32 85.60 87.54 85.01 85.77 86.89 87.30
Qwen-VL-Chat-9B 80.19 80.34 79.89 78.74 82.55 81.77 82.50 81.06 87.44 84.93 85.51 84.04
IDEFICS2-8B 65.38 79.40 79.25 79.46 72.68 84.26 84.92 85.65 75.00 85.08 87.33 87.51
Deepseek-VL2-Small-16B 44.88 71.03 7.78 0.00 34.71 60.58 0.20 0.03 74.90 82.20 0.23 0.00
OpenFlamingo-9B 20.44 77.60 76.75 80.66 46.84 82.09 82.82 85.34 31.74 82.48 83.66 86.51
Otter-9B 39.05 41.50 38.33 4.88 17.64 17.23 12.58 2.15 45.36 37.07 24.88 11.30
Deepseek-VL2-27B 81.63 79.85 79.85 0.00 84.16 85.56 86.49 0.00 83.49 84.05 83.57 0.00
Qwen2.5-VL-Instruct-32B 61.53 69.09 72.83 77.83 87.22 88.49 88.83 90.01 91.63 90.73 91.99 92.57

Gemini-2.0-Flash 67.62 75.00 78.21 81.90 85.71 88.74 90.30 90.92 89.58 90.54 92.15 93.19

Table 13: Per-variable results for Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings for Causal Circuit dataset with causal graph.

Model
Robot Arm Green Light Blue Light Red Light

ZS FS ZS FS ZS FS ZS FS

Shots 0 2 4 8 0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 87.22 97.25 99.73 99.46 93.60 93.81 94.51 95.10 92.84 93.48 94.36 95.00 99.55 99.14 99.43 99.34
Qwen-VL-Chat-9B 88.60 98.25 98.17 91.46 68.83 93.00 92.61 95.03 68.54 91.76 90.72 91.16 80.05 97.76 97.91 98.75
IDEFICS2-8B 59.33 94.24 98.64 98.45 51.87 87.76 92.46 94.66 45.75 89.24 92.75 95.10 73.42 96.80 98.74 99.34
Deepseek-VL2-Small-16B 28.18 66.41 28.15 0.00 58.91 70.68 24.69 0.00 58.14 70.58 24.09 0.06 17.60 54.82 16.17 0.05
OpenFlamingo-9B 0.00 89.85 84.51 89.60 0.00 90.72 95.13 87.84 14.26 84.38 91.96 89.58 0.00 88.03 94.90 89.62
Otter-9B 40.06 55.36 55.66 30.49 57.09 60.33 26.91 0.65 53.80 51.01 19.40 0.00 26.55 48.84 56.71 9.12
Deepseek-VL2-27B 94.54 81.32 81.90 1.44 88.96 92.84 93.11 3.80 92.61 93.73 94.24 1.98 99.78 98.38 99.93 0.74
Qwen2.5-VL-Instruct-32B 93.53 91.43 89.89 90.23 99.48 99.42 99.36 99.30 99.31 99.22 98.96 98.17 100.00 100.00 100.00 100.00

Gemini-2.0-Flash 91.09 91.38 92.24 92.53 98.41 97.79 97.00 97.08 93.99 96.22 96.05 96.56 99.78 99.71 99.48 99.56
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(a) Average Counterfactual Prediction accuracy for pendulum interventions with at least one descendant.
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(b) Average Counterfactual Prediction accuracy for water flow interventions with at least one descendant.
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(c) Average Counterfactual Prediction accuracy for causal circuit interventions with at least one descendant.

Figure 3: Accuracy vs. Shot Count in Counterfactual Inference Tasks across Pendulum, Water Flow, and Causal
Circuit datasets for intervened variables with at least one descendant.
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Standard Causal Structure Inference - Pendulum
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup with a light source, a pendulum, and the pendulum’s shadow. The scene contains
four variables that are causally related: pendulum angle, light position, shadow length, and shadow position. Given an im-
age and a question about two variables, A and B, your task is to determine whether A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Standard Causal Structure Inference - Water Flow
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup with water in a glass and a hole on the right side of the glass from where the water is
flowing. There is also a red ball inside the glass that affects the water level in the glass and the water flow from the hole. The
scene contains four variables that are causally related: ball size, water level, hole position, and water flow. Given an im-
age and a question about two variables, A and B, your task is to determine whether A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Standard Causal Structure Inference - Causal Circuit
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup showing a robotic arm positioned over a circular arc with three buttons (red, green,
blue) and the resulting lighting in the scene. The scene contains four variables that are causally related: robot arm, green
light, blue light, and red light. Given an image and a question about two variables, A and B, your task is to determine whether
A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Figure 4: Prompt templates for Task 1A: Standard Causal Structure Inference task

Interleaved Causal Structure Inference - Pendulum
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
two images: the first image shows a physical setup with a light source, a pendulum, and the pendulum’s shadow. The scene
contains four variables that are causally related: pendulum angle, light position, shadow length, and shadow position. The
second image shows the same setup after one of these variables is initially changed and other variables may have changed as
a downstream effect. Given a pair of images and a question about two variables, A and B, your task is to determine whether
A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Interleaved Causal Structure Inference - Water Flow
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
two images: the first image shows a physical setup with water in a glass, a hole on the right side of the glass from where the
water is flowing, and a red ball inside the glass. The scene contains four variables that are causally related: ball size, hole
position, water level, and water flow. The second image shows the same setup after one of these variables is initially changed
and other variables may have changed as a downstream effect. Given a pair of images and a question about two variables, A
and B, your task is to determine whether A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Interleaved Causal Structure Inference - Causal Circuit
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You are given two
images of a robotic scene. The first image shows a robotic arm positioned over a circular arc with three buttons (red, green,
blue) and the resulting lighting in the scene. The scene contains four variables that are causally related: robot arm, green
light, blue light, and red light. The second image shows the same setup after one of these variables is initially changed and
other variables may have changed as a downstream effect. Given a pair of images and a question about two variables, A and
B, your task is to determine whether A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Figure 5: Prompt templates for Task 1B: Interleaved Causal Structure Inference task
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Intervention Target Prediction - Pendulum
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
two images: the first image shows a physical setup with a light source, a pendulum, and the pendulum’s shadow. The second
image shows the same setup after a change has occurred. The scene contains four variables: pendulum angle, light position,
shadow length, and shadow position. These variables are causally related as follows:

(1) If the pendulum angle changes, it causes both the shadow length and shadow position to change. It does
NOT cause the light position to change.
(2) If the light position changes, it causes both the shadow length and shadow position to change. It does NOT cause the
pendulum angle to change.
(3) A change in shadow length does NOT cause any other variable to change.
(4) A change in shadow position does NOT cause any other variable to change.

Your task is to compare the two images, identify the first variable that changed, and use the causal rules above to
determine which variable is the likely root cause of any other changes. Respond with only one of the following variable
names, exactly as written: pendulum angle, light position, shadow length, or shadow position.

Query: <image><image> From the first to the second image, which variable changes first?

Intervention Target Prediction - Water Flow
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
two images. The first image shows a physical setup with water in a glass and a hole on the right side of the glass from where
the water is flowing. There is also a red ball inside the glass that affects the water level in the glass and the water flow from
the hole. The second image shows the same setup after a change has occurred. The scene contains four variables: ball size,
water level, hole position, and water flow. These variables are causally related as follows:

(1) If the ball size changes, it causes the water level to change and affects water flow. It does NOT cause hole
position to change.
(2) If the water level changes, it causes the water flow to change. It does NOT cause ball size and hole position to change.
(3) If the hole position changes, it causes water flow to change. It does NOT cause ball size or water level to change.

Your task is to compare the two images, identify the first variable that changed, and use the causal rules above to
determine which variable is the likely root cause of any other changes. Respond with only one of the following variable
names, exactly as written: ball size, water level, hole position.

Query: <image><image> From the first to the second image, which variable changes first?

Intervention Target Prediction - Causal Circuit
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You are given two
images of a robotic scene: a before image and an after image. Each image shows a robotic arm positioned over a circular arc
with three buttons (red, green, blue) and the resulting lighting in the scene. The scene contains four variables: robot arm,
green light, blue light, and red light. These variables are causally related as follows:

(1) Changing the arm position causes one button to be pressed, which directly affects the corresponding light
(red, green, or blue).
(2) Turning on the green or blue light can indirectly activate the Red light.
(3) Changing any light does not affect the arm position.

Your task is to compare the two images, identify the first variable that changed, and use the causal rules above to
determine which variable is the likely root cause of any other changes. Respond with only one of the following variable
names, exactly as written: robot arm, green light, blue light, red light.

Query: <image><image> From the first to the second image, which variable changes first?

Figure 6: Prompt templates for Task 2: Intervention Target Prediction task
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Counterfactual Prediction - Pendulum
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup with a light source, a pendulum, and the pendulum’s shadow. The scene contains four
variables: pendulum angle, light position, shadow length, and shadow position. The pendulum angle can be one of the
following values: left, center, right. The light position can be one of the following values: right, center, left. The shadow
length can be one of the following values: short, medium, long. The shadow position can be one of the following values: left,
center, right. These variables are causally related as follows:

(1) If the pendulum angle changes, it causes both the shadow length and shadow position to change. It does
NOT cause the light position to change.
(2) If the light position changes, it causes both the shadow length and shadow position to change. It does NOT cause the
pendulum angle to change.
(3) A change in shadow length does NOT cause any other variable to change.
(4) A change in shadow position does NOT cause any other variable to change.

Given an image and a variable that will change, your task is to determine what the final values of all four vari-
ables would be had the variable been changed to the specified value.
Query: <image> <image> In the given image, the values of the variables are given as pendulum angle: {}, light position: {},
shadow length: {}, shadow position: {}

If the [intervened variable] had been changed from x to y, what would be the final values of all variables? An-
swer concisely with the specific values that each variable will take.

Counterfactual Prediction - Water Flow
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup with water in a glass and a hole on the right side of the glass from where the water is
flowing. There is also a red ball inside the glass that affects the water level in the glass and the water flow from the hole. The
scene contains four variables: ball size, water level, hole position, and water flow. The ball size can be one of the following
values: small, medium, large. The hole position can be one of the following values: bottom, middle, top. The water level can
be one of the following values: low, medium, high. The water flow can be one of the following values: left, middle, right. For
water level, left refers to close to the glass and right refers to far from the glass. These variables are causally related as follows:

(1) If the ball size changes, it causes the water level to change and affects water flow. It does NOT cause hole
position to change.
(2) If the water level changes, it causes the water flow to change. It does NOT cause ball size and hole position to change.
(3) If the hole position changes, it causes water flow to change. It does NOT cause ball size or water level to change.

Given an image and a variable that will change, your task is to determine what the final values of all four vari-
ables would be had the variable been changed to the specified value.
Query: <image> In the given image, the values of the variables are given as ball size: {}, hole position: {}, water level: {},
water flow: {}

If the [intervened variable] had been changed from x to y, what would be the final values of all variables? An-
swer concisely with the specific values that each variable will take.

Counterfactual Prediction - Causal Circuit
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup showing a robotic arm positioned over a circular arc with three buttons (red, green,
blue) and the resulting lighting in the scene. The scene contains four variables: robot arm, green light, blue light, and red
light. The robot arm can be one of the following values: touching red light, touching blue light, touching green light, or not
touching any light. The red light can be one of the following values: on or off. The green light can be one of the following
values: on or off. The blue light can be one of the following values: on or off. These variables are causally related as follows:

(1) Changing the arm position causes one button to be pressed, which directly affects the corresponding light
(red, green, or blue).
(2) Turning on the green or blue light can indirectly activate the Red light.
(3) Changing any light does not affect the arm position.

Given an image and a variable that will change, your task is to determine what the final values of all four vari-
ables would be had the variable been changed to the specified value.
Query: <image> In the given image, the values of the variables are given as red light: {}, green light: {}, blue light: {},
robot arm: {}

If the [intervened variable] had been changed from x to y, what would be the final values of all variables? An-
swer concisely with the specific values that each variable will take.

Figure 7: Prompt templates for Task 3: Counterfactual Prediction task
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Standard Causal Structure Inference CoT Prompt
Let’s think step by step. First, analyze the location of all objects in the image. Then, determine the relationships between the
variables. Give reasoning rationales.

Interleaved Causal Structure Inference CoT Prompt
Let’s think step by step. First, analyze the location of all objects in the first image. Second, analyze the location of all objects
in the second image. Then, determine which variables have been changed according to the rules provided. Finally, determine
the relationships between the variables. Give reasoning rationales.

Intervention Target Prediction CoT Prompt
Let’s think step by step. First, analyze the location of all objects in the first image. Second, analyze the location of all objects
in the second image. Then, determine which variables have been changed according to the rules provided. Give reasoning
rationales.

Counterfactual Prediction CoT Prompt
Let’s think step by step. First, analyze the location of all objects in the image. Then, determine how each variable would
change based on the desired manipulation according to the rules provided. Give reasoning rationales.

Figure 8: Chain-of-Thought Prompt templates

User: [Task Description][CoT Prompt]
LVLM: [Reasoning Chain]
User: [Task Description][CoT Prompt][Reasoning Chain][Query]
LVLM: [Prediction]

Figure 9: Chain-of-Thought prompting strategy

Standard Causal Structure Inference - Pendulum
1. **Object Locations:** The image shows a light source at the top, a pendulum consisting of a line and a circle in the
middle, and the pendulum’s shadow at the bottom.
2. **Variable Relationships:** * **Pendulum Angle -> Shadow Length:** The angle of the pendulum directly influences the
length of its shadow. A larger pendulum angle will generally result in a longer shadow (depending on the light’s position).
* **Pendulum Angle -> Shadow Position:** Similarly, the pendulum angle affects the position of the shadow. As the
pendulum swings, the shadow’s location shifts.
* **Light Position -> Shadow Length:** The position of the light source also plays a role. If the light is directly overhead,
the shadow will be short. If the light is at an angle, the shadow will be longer.
* **Light Position -> Shadow Position:** The light position also influences where the shadow falls.
Based on these relationships, the pendulum angle does cause the shadow length.

Intervention Target Prediction - Pendulum
In the first image, the pendulum angle is at a certain position, the light position is fixed, and the shadow has a particular
length and position. In the second image, the pendulum angle is at the same position, the light position is also the same, the
shadow length is the same, but the shadow position is different. Since the pendulum angle and light position are unchanged,
the change in shadow position cannot be attributed to them. According to rule (4), a change in shadow position does not
cause any other variable to change. Therefore, the initial change must have been in the shadow position.

Counterfactual Prediction - Pendulum
Here’s a step-by-step analysis:
**1. Initial State:**
* **Pendulum Angle:** left
* **Light Position:** left
* **Shadow Length:** short
* **Shadow Position:** right
**2. Desired Manipulation:**
We want to change the light position to ‘right’.
**3. Causal Reasoning:**
* The rule (2) says that if the light position changes, it causes both the shadow length and shadow position to change. It does
NOT cause the pendulum angle to change.
* Given that the light moves from left to right, the shadow position will move from right to left.
* Given that the light moves from left to right, the shadow length will become long.
**4. Predicted Final State:**
* **Pendulum Angle:** left (unchanged)
* **Light Position:** right
* **Shadow Length:** long
* **Shadow Position:** left

Figure 10: Gemini-2.0-Flash intermediate Chain-of-Thought Reasoning Traces for Causal Structure Inference,
Intervention Target Prediction, and Counterfactual Prediction tasks
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