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Abstract

Visual Document Retrieval (VDR) typically op-
erates as text-to-image retrieval using special-
ized bi-encoders trained to directly embed doc-
ument images. We revisit a zero-shot generate-
and-encode pipeline: a vision–language model
first produces a detailed textual description
of each document image, which is then em-
bedded by a standard text encoder. On the
ViDoRe-v2 benchmark, the method reaches
63.4% nDCG@5, surpassing the strongest spe-
cialised multi-vector visual document encoder.
It also scales better to large collections and
offers broader multilingual coverage. Analy-
sis shows that modern vision–language models
capture complex textual and visual cues with
sufficient granularity to act as a reusable seman-
tic proxy. By offloading modality alignment
to pretrained vision–language models, our ap-
proach removes the need for computationally
intensive text-image contrastive training and
establishes a strong zero-shot baseline for fu-
ture VDR systems. Our code is available for
reproduction at: § thongnt99/serval

1 Introduction and Related Work

Real-world documents originate from diverse
sources, spanning the public web to private enter-
prise repositories, and appear in many formats, in-
cluding plain text, figures, graphs, and tables. Doc-
ument retrieval bridges human or artificial agents to
the most relevant information, enabling informed
decision-making and knowledge synthesis.

Over several decades the field has been dom-
inated by text-centric retrieval methods. Clas-
sic approaches such as BM25 (Robertson and
Walker, 1994) rely purely on lexical matching
between queries and documents. The recent ad-
vent of deep learning, and especially transformer
architectures such as BERT, has shifted the fo-
cus to context-aware neural retrieval. Today a
rich ecosystem of neural paradigms is available,
from sparse and dense first-stage encoders (Wang

Figure 1: nDCG@5 for zero-shot Visual Document Re-
trieval using VLMs and text encoders of varying scales.
Despite no task-specific training, our zero-shot method
could compete with end-to-end models explicitly trained
for VDR on large-scale text-(document) image datasets.

et al., 2022, 2024; Formal et al., 2021; Lassance
et al., 2024; Nguyen et al., 2023) to cross-encoders
for re-ranking (Nogueira et al., 2020; MacA-
vaney et al., 2019; Reimers and Gurevych, 2019).
Trained on large human- and machine-annotated
corpora, these models achieve state-of-the-art
performance on in-domain (Bajaj et al., 2016),
out-of-domain (Thakur et al., 2021), and multilin-
gual (Zhang et al., 2023; Enevoldsen et al., 2025;
Zhang et al., 2021) benchmarks.

Text-only retrieval overlooks other important vi-
sual elements embedded in documents (Xu et al.,
2020). Visual Document Retrieval (VDR) tack-
les this gap by jointly encoding textual and visual
elements rendered as images. Ma et al. (2024)
formulate VDR as text-to-image retrieval by ras-
terizing each page, while CoPali introduces a
multi-vector encoder together with the ViDoRe
benchmark (Faysse et al., 2024). To spur further
progress, ViDoRe-v2 (Macé et al., 2025) raises the
bar with human-verified, multilingual queries that

30807

https://github.com/thongnt99/serval


are substantially more challenging.
To close the modality gap, state-of-the-art VDR

systems typically rely on expensive contrastive
training over high-quality text and visual document
pairs. However, we hypothesize that advanced
vision-language models (VLMs) can bridge this
gap by effectively describing visual elements in
language. Therefore, we reformulate the end-to-
end paradigm and revisit a simple zero-shot alter-
native that decouples the problem into two inde-
pendent sub-tasks: (i) document-description gen-
eration, handled by a VLM, and (ii) text encoding,
handled by a conventional pretrained text encoder.
This modular design enables us to plug in best-in-
class components and leverage the growing number
of high-quality VLMs and text encoders.

For description generation, we exploit recent
VLMs, including Qwen2.5VL (Bai et al., 2025)
and InternVL 3 (Zhu et al., 2025), that excel at vi-
sual understanding. For text encoding we leverage
robust open-source multilingual encoders (Wang
et al., 2022, 2024; Rui Meng, 2024; Junhan Yang,
2025) usually equipped with instruction-following
capabilities (Weller et al., 2024).

Evaluated on the nine ViDoRe-v2 tasks and
MIRACL-VISION benchmark, our zero-shot
generate-and-encode approach matches or even
surpasses state-of-the-art supervised multi-vector
baselines (as shown in Figure 1), despite using no
VDR-specific training data. Our analysis produces
three key insights:

• Recent vision–language models (VLMs) can
accurately describe visual elements embed-
ded in documents–figures, graphs, and tables–
enabling effective visual document retrieval
from their generated descriptions.

• Scaling both VLMs and text encoders im-
proves retrieval performance, but scaling/im-
proving the text encoder yields better gains.
Large (32B / 72B) VLMs paired with strong
text encoders achieve the best scores, while
even 2B–7B models already surpass most su-
pervised end-to-end models on ViDoRe-v2.

• Supervised end-to-end VDR models perform
well on English, but they lag behind on mul-
tilingual and cross-lingual tasks, highlighting
potential room for future improvement.

Because description generation is executed of-
fline during indexing, online latency remains sim-
ilar to end-to-end VDR approaches. Smaller

VLMs (2B–7B) offer an attractive speed–accuracy
trade-off, providing competitive accuracy while re-
ducing offline document preprocessing cost.

2 Zero-shot Visual Document Retrieval
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Figure 2: Zero-shot VDR using VLM-generated docu-
ment descriptions and a pretrained text encoder.

The workflow for our zero-shot VDR approach
is illustrated in Figure 2. First, a vision-language
model (VLM) is used to generate a detailed de-
scription of the visual document. Using the prompt
shown in Prompt 2.1, we instruct the VLM to begin
with an overall summary of the content depicted
in the image, followed by a comprehensive list of
details, including any extracted text and numerical
values. The entire description is generated in a sin-
gle step, bypassing intermediate procedures such
as layout detection or document chunking used in
CoPali (Faysse et al., 2024). An example of a gener-
ated description from InternVL3 is shown in Figure
3. Additional examples covering various complex
document types (e.g., graphs, tables, diagrams) are
provided in the Appendix A.

Prompt. 2.1: Description generation with VLMs

Provide a comprehensive description of the
document in the image in English. Begin
with a summary, then follow with details.
Extract all visible text and numerical values
from the document.

In the second step, any off-the-shelf text encoder
can be used to encode both queries and the gener-
ated document descriptions. The goal of this en-
coder is to bridge the semantic gap between queries
and documents by mapping them into a shared se-
mantic space where relevant pairs are positioned
closely. It is also important for the encoder to sup-
port multilingual and cross-lingual retrieval, as the
evaluation will include non-English data. For large-
scale document collections, document descriptions
and their embeddings can be pre-computed and
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indexed offline in a database.

3 Experimental Setup

We evaluate our zero-shot VDR approach and base-
lines on the ViDoRe-v2 benchmark (Macé et al.,
2025), an enhanced and more challenging succes-
sor to ViDoRe-v1. ViDoRe-v2 comprises nine
VDR tasks spanning four languages (English, Span-
ish, French, and German) and covers a variety
of domains, including business, restaurant, and
medical. It features real-world, complex queries,
for which the best end-to-end supervised VDR
model (Team, 2025) only achieves a moderate
nDCG@5 of 0.62. The document collection in-
cludes both text-centric items (e.g., reports com-
posed primarily of text) and visually rich items
(e.g., slide decks containing tables or graphs).

While Vidore-V2 provides a strong basis for eval-
uating multilingual multimodal retrieval, its col-
lections remain relatively limited in scale and lan-
guage coverage. To complement these experiments,
we further evaluate on MIRACL-VISION (Osmul-
ski et al., 2025), a benchmark that extends MIR-
ACL with vision-language data and offers larger
multilingual collections as well as broader cover-
age of both high- and low-resource languages. This
makes MIRACL-VISION a more realistic testbed
for assessing the generalization ability of retrieval
models beyond the settings captured in Vidore-V2.

To generate document descriptions, we use vari-
ous VLMs, including Qwen2.5VL (7B, 32B, and
72B) (Bai et al., 2025) and InternVL3 (2B and
8B) (Zhu et al., 2025). For all models, we use
quantized versions with Activation-Aware Weight
Quantization and accelerate inference using the
vLLM (Kwon et al., 2023) and LMDeploy (Con-
tributors, 2023) frameworks. We provide statistics
on the token length of the generated descriptions in
Table 1. The average number of tokens generated
by different VLMs is roughly around 500 tokens
per document, with the exception of QwenVL2.5
32B that produces about 1000 tokens/doc.

For text encoders, we experiment with two
families: learned sparse retrieval and dense re-
trieval. For sparse retrieval, we employ Splade-
v3 (Lassance et al., 2024) and the Open Search
sparse model (Geng et al., 2024). For dense re-
trieval, we evaluate a range of multilingual and
instruction-tuned models, including: multilingual-
e5-base, multilingual-e5-large, SFR-Embedding-
Mistral, and inf-retriever-v1. All sparse and dense

Models # tokens per doc

QwenVL2.5 – 7B 422.62
QwenVL2.5 – 32B 1009.52
QwenVL2.5 – 72B 636.03
InternVL3 – 2B 515.53
InternVL3 – 8B 619.13
InternVL3 – 14B 537.11

Table 1: Average number of tokens generated when
producing visual document descriptions.

retrieval checkpoints are publicly available on Hug-
gingFace (Wolf et al., 2020).

We report nDCG@k and Recall@k (R@k) for
k = {1, 5, 10}, consistent with the evaluation pro-
tocol used in prior ViDoRe benchmarks.

4 Results and Discussion

The main results using our zero-shot approaches
and end-to-end VDR baselines are presented in
Table 2 and visualized in Figure 1. Due to space
limitations, we primarily use nDCG@5 for analy-
sis. Please refer to Appendix C for the complete
results and Appendix B for dataset abbreviations.

Overall, the zero-shot VDR approaches are
shown to be highly competitive with strong su-
pervised single-vector and multi-vector VDR base-
lines (highlighted with a gray background in Ta-
ble 2) that directly embed visual documents. The
state-of-the-art supervised model, ColNomic Em-
bed Multimodal 7B (Team, 2025), achieves an av-
erage nDCG@5 of 62.7. In contrast, our best zero-
shot method, using Qwen2.5VL (32B, 72B)(Bai
et al., 2025) for description generation and INF
7B (Junhan Yang, 2025) for text encoding, achieves
an average score of 63.4, surpassing all supervised
VDR models on the ViDoRe-v2 benchmark. This
result highlights the effectiveness of VLMs in gen-
erating rich descriptions for visual documents and
the capability of text encoders to close the query-
document semantic gap.

The separation of generation and encoding al-
lows us to flexibly plug and play different models
at each stage. We explore a range of generation and
text encoding models at varying scales. For gen-
eration, we experiment with vision-language mod-
els (VLMs) from 2B to 72B parameters, including
Qwen2.5VL (Bai et al., 2025) and InternVL3 (Zhu
et al., 2025). For text encoding, we evaluate both
dense and sparse encoders, from the lightweight
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How much does structured sparsity speed up NVIDIA’s flagship accelerator?

The image shows performance gains via sparsity on NVIDIA A100 GPUs.
### Summary:
Two A100 GPUs can double their throughput using sparsity. A 2:4 sparsity 
pattern yields this gain.
### Details:
*A100 GPUs: Two units, each at 312 TFLOPs.
*Sparsity: 2:4 pattern with half the elements nonzero for higher efficiency.
*Resulting Performance: Combined throughput rises to 624 TFLOPs 🚀.

m
odality gap

semantic gap Visual document

Figure 3: Example of a document description generated by InternVL3. Beyond simple OCR, the model integrates
textual and visual cues into natural language, bridging the modality gap.

VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM AVG

ColNomic Embed Multimodal 7B (Team, 2025) 73.9 68.3 61.3 61.6 66.1 64.2 54.7 57.3 56.7 62.7
ColNomic Embed Multimodal 3B (Team, 2025) 65.8 68.8 61.0 60.2 63.5 62.5 55.4 56.6 57.2 61.2
T-Systems ColQwen2.5-3B (Faysse et al., 2024) 72.1 69.3 60.0 54.8 65.3 61.7 51.2 51.7 53.3 59.9
GME Qwen2 7B (Zhang et al., 2024) 65.8 60.7 55.4 62.9 64.0 55.1 56.2 54.3 56.7 59.0
Voyage Multimodal 3 (Voyage, 2024) 56.1 64.1 59.5 58.8 56.4 51.5 55.0 47.2 46.2 55.0

Qwen2.5VL-7B

splade 108M (Lassance et al., 2024) 64.8 32.1 30.6 56.4 59.8 39.8 33.8 35.4 27.4 42.2
me5_large 560M (Wang et al., 2024) 64.5 56.5 58.0 52.5 58.6 55.9 55.9 55.5 47.8 56.1
inf_small 1.5B (Junhan Yang, 2025) 60.2 65.2 64.4 58.1 60.6 57.1 57.1 54.9 51.5 58.8
inf 7B (Junhan Yang, 2025) 66.3 72.0 65.0 57.2 64.9 62.2 57.4 56.3 54.5 61.8

Qwen2.5VL-32B

splade 108M (Lassance et al., 2024) 69.3 53.1 38.5 58.1 63.1 40.8 35.0 35.2 29.4 46.9
me5_large 560M (Wang et al., 2024) 68.8 53.8 53.5 49.1 60.6 57.1 52.0 54.0 46.2 55.0
inf_small 1.5B (Junhan Yang, 2025) 67.9 68.3 66.4 56.6 60.9 58.6 54.8 55.3 50.0 59.9
inf 7B (Junhan Yang, 2025) 70.7 69.7 69.4 59.0 65.1 63.0 59.0 59.5 55.5 63.4

Qwen2.5VL-72B

splade 108B (Lassance et al., 2024) 63.8 16.4 25.8 59.8 62.7 42.1 31.9 37.0 30.1 41.1
me5_large 560M (Wang et al., 2024) 66.1 50.8 56.0 52.5 61.6 58.0 50.5 49.0 49.2 54.9
inf_small 1.5B (Junhan Yang, 2025) 67.3 58.8 62.1 62.7 62.6 59.3 51.7 53.7 52.6 59.0
inf 7B (Junhan Yang, 2025) 68.9 70.7 67.9 60.3 65.5 63.2 58.2 58.6 57.7 63.4

InternVL3-2B

splade 108M (Lassance et al., 2024) 52.7 48.1 28.6 58.6 58.6 39.6 28.4 33.5 30.0 42.0
me5_large 560M (Wang et al., 2024) 61.4 52.9 42.0 51.4 56.7 54.8 52.6 50.7 43.9 51.8
inf_small 1.5B (Junhan Yang, 2025) 59.8 62.5 54.1 52.9 59.3 55.2 47.2 48.7 46.2 54.0
inf 7B (Junhan Yang, 2025) 63.3 72.5 62.6 55.0 63.8 60.7 52.9 52.1 51.3 59.4

InternVL3-8B

splade 108M (Lassance et al., 2024) 65.6 30.7 31.2 58.0 60.6 40.6 34.9 38.2 30.3 43.3
me5_large 560M (Wang et al., 2024) 58.1 38.8 49.6 52.2 59.8 57.7 53.1 56.0 47.5 52.5
inf_small 1.5B (Junhan Yang, 2025) 63.0 54.4 57.6 58.8 63.4 57.8 50.6 51.9 52.5 56.7
inf 7B (Junhan Yang, 2025) 66.7 62.9 64.8 57.3 65.5 63.0 57.6 57.4 54.6 61.1

InternVL3-14B

splade 108M (Lassance et al., 2024) 68.5 38.0 31.4 53.8 61.0 40.7 36.9 37.6 26.1 43.8
me5_large 560M (Wang et al., 2024) 67.7 54.3 53.0 52.4 58.3 55.2 54.2 55.1 44.9 55.0
inf_small 1.5B (Junhan Yang, 2025) 60.5 60.1 57.3 58.0 62.4 57.6 51.2 52.1 51.7 56.8
inf 7B (Junhan Yang, 2025) 67.7 64.7 63.0 58.9 64.7 62.7 52.4 54.6 56.5 60.6

Table 2: Zeroshot VDR, by encoding generated descriptions with single-vector encoders, performs competitively
with SOTA multi-vector end-to-end VDR approaches (in gray ) on ViDoRe-v2 benchmark. Metric: nDCG@5.

BERT (Devlin et al., 2019) with 108M parameters
to large 7B-scale encoders. As shown in Figure 1,
scaling both VLMs and text encoders leads to no-
table improvements. With descriptions generated
by Qwen2.5VL-32B, the multilingual M5 encoder
(560M) achieves a moderate nDCG@5 of 55.0,
while replacing M5 with INF-1.5B and INF-7B
yields gains of 8.9% and 15%, respectively. Inter-
estingly, even with the smallest VLM (InternVL3-
2B), the INF-7B encoder achieves strong perfor-
mance (nDCG@5 = 59.4), outperforming most su-
pervised VDR models on ViDoRe-v2. Using larger
VLMs (e.g., 7B or 72B) can further enhance re-
trieval performance by up to 6%, although we find
that scaling the text encoder provides greater bene-
fit than scaling the VLMs.

Examining dataset-level results reveals contrast-
ing trends between English and non-English cor-

pora. E2E models trained on multilingual data
(e.g., ColNomic or ColQwen-2.5) excel on the
English-only corpora, including RERB (Restau-
rants), SMBTI (Biomedical), and SEME (Eco-
nomics). In contrast, zero-shot approaches, ex-
cept for Splade-v3 (Lassance et al., 2024) trained
exclusively on English, perform better on the mul-
tilingual and cross-lingual retrieval tasks, most no-
tably on SAXAM (Insurance) and SRS (Restau-
rant). These findings underscore the need to further
strengthen the multilingual capabilities of end-to-
end Visual Document Retrieval models.

As the generate-and-encode process is per-
formed offline on the document side, our zero-shot
VDR approach does not add to retrieval latency.
Retrieval latency therefore matches that of any end-
to-end VDR model that has the same size as our
text encoder. Document-side inference is slower
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Model en de ja zh fr yo sw id Avg

colqwen2-v1.0 64.2 60.0 69.7 49.3 68.8 51.2 49.3 53.2 58.2
vdr-2b-multi-v1 67.8 62.1 65.5 59.6 71.9 45.8 45.1 52.5 58.8
gme-qwen2-vl2b-instruct 67.8 63.5 73.1 63.1 68.5 48.8 53.5 54.2 61.6
dse-qwen2-2b-mrl-v1 66.1 62.7 62.3 59.6 71.6 41.8 41.6 48.7 56.8

InternVL-2B + me5-base 61.5 62.2 72.7 60.9 69.9 67.4 63.9 56.7 64.4
InternVL-2B + me5-large 65.5 67.3 77.3 67.0 72.8 74.1 69.0 58.0 68.9
InternVL-2B + inf-small 71.5 71.3 79.8 75.3 81.3 74.1 69.0 62.6 72.1

Table 3: nDCG@10 performance of SERVAL compared with baselines on MIRACL-VISION. (Osmulski et al.,
2025). SERVAL significantly outperforms baselines (in gray) that encode document images directly.

.

because of the description-generation phase, espe-
cially with large 32B or 72B VLMs. Techniques
such as pruning (Sun et al., 2023), quantization
(Lin et al., 2024), and K-V caching (Li et al., 2024)
can accelerate generation and are already imple-
mented in frameworks like vLLM (Kwon et al.,
2023) and LMDeploy (Contributors, 2023).

Most importantly, a lightweight configuration
that pairs a small VLM (InternVL3-2B) with a
small text encoder (INF 1.5B) still achieves an
nDCG@5 of 54.0. This matches the performance
of the supervised Voyage Multimodal 3 (Voyage,
2024), yet requires no task-specific training, high-
lighting the cost-efficient appeal of our zeroshot
generate-and-encode approach.

Table 3 presents results on MIRACL-
VISION (Osmulski et al., 2025), a benchmark with
larger multilingual collections than Vidore-V2
and a broader coverage of languages, including
low-resource ones. This setting tests the scalability
of SERVAL beyond small collections. SERVAL
(InternVL-2B + inf-small) achieves the best aver-
age score of 72.1 nDCG@10, compared to 61.6 for
the strongest baseline (gme-qwen2-vl2b-instruct),
a gain of +10.5 points. The improvements are par-
ticularly pronounced on low-resource languages,
with +25.3 on Yoruba (74.1 vs. 48.8) and +15.5 on
Swahili (69.0 vs. 53.5). These results demonstrate
that SERVAL not only scales effectively to larger
collections but also delivers robust performance
across both high- and low-resource languages.

5 Generation Latency

We provide an analysis of the time taken to gen-
erate a description for a single image with differ-
ent Vision-Language Models in Table 4. We mea-
sured the generation time on a single H100 GPU
using lmdeploy as the inference engine. Small
VLMs (≤14B parameters) take half a second or

Models s/img

QwenVL2.5 – 7B 0.290
QwenVL2.5 – 32B 1.080
QwenVL2.5 – 72B 1.610
InternVL3 – 2B 0.260
InternVL3 – 8B 0.350
InternVL3 – 14B 0.530

Table 4: Average description generation latency when
producing descriptions of visual documents.

less to generate one description, while larger mod-
els (i.e., QwenVL2.5 32B and 72B) require more
than one second per image. This generation step is
not latency-sensitive, as it can be performed offline
and only once per document. It is also feasible to
use lower-end GPUs like A100s, which would only
tolerably increase this offline generation time. The
encoding latency of our approach on generated text
is the same as (or even faster than, as we skip the
vision transformer encoder) that of an end-to-end
supervised VDR encoder.

6 Conclusion

In this work, we revisit zero-shot visual docu-
ment retrieval by pairing a pretrained text encoder
with document descriptions generated by a vi-
sion–language model. Contrary to the findings
of Faysse et al. (2024), we show that this simple
training-free method achieves strong performance
on the recent ViDoRe-v2 and MIRACL-VISION
benchmarks, rivaling state-of-the-art end-to-end
models trained specifically for VDR. Moreover,
our zeroshot generate-and-encode strategy remains
robust even in lightweight, practical settings that
rely on small VLMs and compact text encoders.
We hope this study establishes a strong baseline for
future research on more capable VDR models.
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Limitations

In this work, we focus on VDR with text-only
queries, leaving multimodal query formulations
and downstream applications for future exploration.
Another limitation is that SERVAL depends on
VLM-generated text, which incurs an offline doc-
ument preprocessing overhead and may introduce
translation artifacts or hallucinations. These fac-
tors point to several promising directions for future
work, including support for multimodal queries,
hybrid text–layout representations, and systematic
evaluation of hallucinations.

Ethical Considerations

Our experiments rely exclusively on publicly re-
leased, pretrained vision–language models and text
encoders. Prior work has shown that such models
may encode social and linguistic biases (Hamidieh
et al., 2024; May et al., 2019). Because our study
involves no additional training or fine-tuning, we
do not introduce new biases; however, any biases
present in the underlying models may still influence
our results.
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A Examples of generated descriptions by InternVL3

Bar Chart: Subchondral Bone Formation Comparison

Summary: The image displays a bar chart comparing the percentage
of subchondral bone formation across different treatment groups.
The chart illustrates the results for two conditions: FPG and Condy-
lus. The groups compared are Control, Chondro-Gide® treated, and
Periosteum treated. The results show that the Periosteum group has
the highest subchondral bone percentage, with significant differences
marked with an asterisk. Details Y-Axis: Labeled as "Subchondral
Bone (%)" ranging from 0 to 100. X-Axis: Labeled as "Group of
Treatment," with categories: Control, Chondro-Gide®, and Perios-
teum. Bars: FPG (Filled Black Bars): Control: Approximately 40%

Chondro-Gide®: Approximately 55% Periosteum: Approximately 75% with an asterisk indicating
significance. Condylus (Outlined White Bars): Control: Approximately 50% Chondro-Gide®:
Approximately 50% Periosteum: Approximately 90% with an asterisk indicating significance.
Visible Text and Numerical Values Legend: FPG (filled square) Condylus (outlined square)
X-Axis Labels: Control Chondro-Gide® Periosteum Y-Axis Labels: 0, 20, 40, 60, 80, 100 Aster-
isks: Indicating statistical significance for the Periosteum group in both conditions. Citation: "M
Russlies, et al., Cell and Tiss. Res. 319:133;2005"

Complex Graph: Tesla vs S&P 500 Stock Performance

The image is a financial chart comparing the performance of Tesla
(TSLA) and the S &P 500 over a specified period. It shows the
percentage change in value over time, with Tesla represented by the
blue line and the S &P 500 by the orange line. Key earnings dates
(marked with an "E") are highlighted on the chart. Summary: The
chart illustrates the relative performance of Tesla and the S &P 500
from late 2021 to mid-2022. Tesla shows more volatility compared to
the S &P 500. Both indices experienced declines, with Tesla having
a larger drop. Details: Tesla (TSLA, Blue Line): Starts around 0%
change. Peaks significantly multiple times, showing high volatility.

Ends with a total decrease of approximately -24.59%. S &P 500 (Orange Line): Starts around 0%
change. Shows less volatility compared to Tesla. Ends with a decrease of approximately -19.27%.
Earnings Dates: Marked with an "E" on specific dates: Wed 26 Jan ’22 Wed 20 Apr ’22 Wed 20 Jul
’22 Wed 19 Oct ’22 Percentage Change Scale: Ranges from -30.00% to 50.00%. Chart Source:
Published on TradingView.com by Investopedia on Oct 17, 2022, at 08:12 UTC-4. Extracted
Text and Numerical Values: "Investopedia published on TradingView.com, Oct 17, 2022 08:12
UTC-4" "TSLA" "S &P 500" Percentage change scale: "-30.00%", "-20.00%", "-10.00%", "0.00%",
"10.00%", "20.00%", "30.00%", "40.00%", "50.00%" Tesla change: "-24.59%" S &P 500 change:
"-19.27%" Dates: "0 Oct ’21" "Wed 26 Jan ’22" "Wed 20 Apr ’22" "Wed 20 Jul ’22" "Sep" "Wed
19 Oct" This chart provides a visual representation of how Tesla’s stock has been more volatile and
has underperformed relative to the S &P 500 over the given period.
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Complex Diagram: Guessing Game Flowchart

Summary The image shows a flowchart on a whiteboard that outlines
a simple guessing game logic. The flowchart starts with generating
a random target number and then prompts the user to guess the
number. It checks if the guess matches the target and provides
feedback accordingly, looping back if the guess is incorrect. Details
The flowchart begins with a "Start" step, followed by generating a
random target number. The user is then prompted to input a guess.
The guess is compared to the target number, and based on whether

they match, different actions are taken: If the guess is correct, it prints "you won!" and ends. If
the guess is incorrect, it prints "wrong guess, try again" and loops back to reading another guess.
Extracted Text and Numerical Values Start target = random() Read guess target == guess True
print "you won!" False print "wrong guess, try again"

Visual Table: Macro Economics

Summary The image dis-
plays a table summarizing
the total assets for differ-
ent regions and corporate
eliminations as of September
28, 2019, and September 29,
2018. The regions listed are
AMER, APAC, and EMEA.

The table provides a comparative view of the total assets for each region and the corporate elimi-
nations over the two years. Details AMER September 28, 2019: $751,990 September 29, 2018:
$645,791 APAC September 28, 2019: $958,744 September 29, 2018: $937,510 EMEA September
28, 2019: $209,541 September 29, 2018: $193,797 Corporate and eliminations September 28, 2019:
$80,608 September 29, 2018: $155,544 Total Assets September 28, 2019: $2,000,883 September
29, 2018: $1,932,642 Extracted Text and Numerical Values Total assets: AMER September 28,
2019: $751,990 September 29, 2018: $645,791 APAC September 28, 2019: $958,744 Septem-
ber 29, 2018: $937,510 EMEA September 28, 2019: $209,541 September 29, 2018: $193,797
Corporate and eliminations September 28, 2019: $80,608 September 29, 2018: $155,544 Total
September 28, 2019: $2,000,883 September 29, 2018: $1,932,642$

B ViDoRe benchmark

The map from copora short names to its full name on HuggingFace is shown in Table 5.

Abbreviation HuggingFace Path

RERB vidore/restaurant_esg_reports_beir
SAXA vidore/synthetic_axa_filtered_v1.0
SAXAM vidore/synthetic_axa_filtered_v1.0_multilingual
SEME vidore/synthetic_economics_macro_economy_2024_filtered_v1.0
SMBTI vidore/synthetic_mit_biomedical_tissue_interactions_unfiltered
SMBTIM vidore/synthetic_mit_biomedical_tissue_interactions_unfiltered_multilingual
SRS vidore/synthetic_rse_restaurant_filtered_v1.0
SRSM vidore/synthetic_rse_restaurant_filtered_v1.0_multilingual
SEMEM vidore/synthetics_economics_macro_economy_2024_filtered_v1.0_multilingual

Table 5: Mapping from dataset abbreviations to their full paths.
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C Detailed Zeroshot VDR Results

The full evaluation results, including all metrics (nDCG@1, nDCG@5, nDCG@10, R@1, R@5, R@10)
are shown in Table 6, Table 7, Table 8, Table 9, Table 10, Table 11 respectively.

VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM AVG

Qwen2.5VL-7B

splade 108M (Lassance et al., 2024) 61.2 33.3 30.6 60.3 57.5 36.2 33.3 30.3 28.4 41.2
open search v1 133M (Geng et al., 2024) 60.6 22.2 30.6 63.8 53.8 36.7 29.8 27.2 31.0 39.5
me5_base 278M (Wang et al., 2024) 36.5 44.4 50.0 60.3 49.4 44.4 40.4 41.7 47.0 46.0
me5_large 560M (Wang et al., 2024) 58.3 44.4 56.9 56.9 54.4 49.8 54.4 55.3 50.9 53.5
inf_small 1.5B (Junhan Yang, 2025) 58.7 61.1 66.7 55.2 58.8 51.7 56.1 50.9 51.3 56.7
inf 7B (Junhan Yang, 2025) 63.5 72.2 70.8 55.2 61.3 59.5 59.6 57.0 54.3 61.5
sfr 7B (Junhan Yang, 2025) 63.5 72.2 69.4 55.2 56.9 53.1 57.9 56.6 48.3 59.2

Qwen2.5VL-32B

splade 108M (Lassance et al., 2024) 66.0 55.6 36.1 70.7 62.5 37.8 29.8 30.7 34.5 47.1
open search v1 133M (Geng et al., 2024) 59.6 27.8 33.3 72.4 62.5 36.9 28.1 28.1 34.5 42.6
me5_base 278M (Wang et al., 2024) 54.5 50.0 55.6 56.9 50.6 42.5 50.9 46.5 45.7 50.3
me5_large 560M (Wang et al., 2024) 64.1 50.0 51.4 53.4 56.9 53.4 52.6 55.7 52.2 54.4
inf_small 1.5B (Junhan Yang, 2025) 60.3 77.8 70.8 56.9 58.8 55.3 45.6 48.7 52.2 58.5
inf 7B (Junhan Yang, 2025) 67.9 72.2 76.4 58.6 60.6 59.8 56.1 57.9 54.3 62.7
sfr 7B (Junhan Yang, 2025) 58.3 72.2 75.0 60.3 61.9 59.1 56.1 56.1 53.4 61.4

Qwen2.5VL-72B

splade 108M (Lassance et al., 2024) 56.4 16.7 25.0 65.5 60.6 39.8 28.1 31.1 31.9 39.5
open search v1 133M (Geng et al., 2024) 58.3 16.7 22.2 70.7 58.1 39.5 29.8 28.5 27.2 39.0
me5_base 278M (Wang et al., 2024) 32.7 44.4 59.7 53.4 54.4 45.0 47.4 44.3 46.1 47.5
me5_large 560M (Wang et al., 2024) 59.6 44.4 55.6 56.9 58.8 53.1 50.9 47.8 53.4 53.4
inf_small 1.5B (Junhan Yang, 2025) 58.3 50.0 62.5 69.0 60.0 53.0 43.9 46.9 54.3 55.3
inf 7B (Junhan Yang, 2025) 67.9 72.2 69.4 62.1 63.1 60.5 56.1 53.9 62.9 63.1
sfr 7B (Junhan Yang, 2025) 62.2 61.1 66.7 58.6 60.0 55.9 56.1 53.9 49.1 58.2

InternVL3-2B

splade 108M (Lassance et al., 2024) 50.6 50.0 29.2 75.9 53.8 35.5 21.1 25.9 33.6 41.7
open search v1 133M (Geng et al., 2024) 41.0 61.1 33.3 74.1 53.1 34.2 19.3 24.1 31.9 41.4
me5_base 278M (Wang et al., 2024) 39.1 55.6 38.9 46.6 41.9 39.4 35.1 31.6 40.5 40.9
me5_large 560M (Wang et al., 2024) 55.8 44.4 43.1 60.3 49.4 48.4 52.6 48.2 45.7 49.8
inf_small 1.5B (Junhan Yang, 2025) 53.8 66.7 58.3 60.3 55.0 49.8 33.3 37.3 47.4 51.3
inf 7B (Junhan Yang, 2025) 61.5 83.3 66.7 56.9 59.4 57.2 45.6 44.7 53.0 58.7
sfr 7B (Junhan Yang, 2025) 59.6 66.7 51.4 51.7 59.4 57.0 56.1 54.4 41.8 55.3

InternVL3-8B

splade 108M (Lassance et al., 2024) 55.1 27.8 27.8 67.2 59.4 37.5 28.1 32.5 32.3 40.9
open search v1 133M (Geng et al., 2024) 52.6 33.3 34.7 62.1 55.6 36.9 35.1 32.5 29.7 41.4
me5_base 278M (Wang et al., 2024) 46.8 55.6 50.0 55.2 50.0 46.7 38.6 41.7 47.4 48.0
me5_large 560M (Wang et al., 2024) 46.8 16.7 43.1 58.6 55.6 54.5 49.1 51.3 51.3 47.4
inf_small 1.5B (Junhan Yang, 2025) 59.9 61.1 55.6 69.0 58.1 50.2 47.4 48.7 59.9 56.6
inf 7B (Junhan Yang, 2025) 65.4 72.2 70.8 67.2 60.6 59.8 57.9 54.8 63.4 63.6
sfr 7B (Junhan Yang, 2025) 55.1 44.4 61.1 55.2 56.9 56.4 54.4 54.8 49.6 54.2

InternVL3-14B

splade 108M (Lassance et al., 2024) 62.2 33.3 27.8 51.7 60.0 37.0 35.1 36.0 24.1 40.8
open search v1 133M (Geng et al., 2024) 54.5 33.3 27.8 51.7 60.0 37.8 24.6 29.8 25.0 38.3
me5_base 278M (Wang et al., 2024) 35.3 55.6 48.6 53.4 48.1 41.6 43.9 39.9 40.9 45.3
me5_large 560M (Wang et al., 2024) 63.5 38.9 44.4 55.2 55.0 51.6 49.1 51.3 48.3 50.8
inf_small 1.5B (Junhan Yang, 2025) 56.4 61.1 56.9 62.1 58.1 50.2 43.9 43.4 55.6 54.2
inf 7B (Junhan Yang, 2025) 61.5 72.2 69.4 60.3 64.4 60.2 50.9 51.3 61.2 61.3
sfr 7B (Junhan Yang, 2025) 64.1 72.2 58.3 48.3 55.0 55.0 57.9 59.2 47.8 57.5

Table 6: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: nDCG@1.
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VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM AVG

Qwen2.5VL-7B

splade 108M (Lassance et al., 2024) 64.8 32.1 30.6 56.4 59.8 39.8 33.8 35.4 27.4 42.2
open search v1 133M (Geng et al., 2024) 61.0 29.0 30.5 59.1 59.7 41.3 33.7 34.8 29.5 42.1
me5_base 278M (Wang et al., 2024) 45.2 48.3 51.7 49.1 53.9 48.2 44.1 44.9 40.7 47.3
me5_large 560M (Wang et al., 2024) 64.5 56.5 58.0 52.5 58.6 55.9 55.9 55.5 47.8 56.1
inf_small 1.5B (Junhan Yang, 2025) 60.2 65.2 64.4 58.1 60.6 57.1 57.1 54.9 51.5 58.8
inf 7B (Junhan Yang, 2025) 66.3 72.0 65.0 57.2 64.9 62.2 57.4 56.3 54.5 61.8
sfr 7B (Junhan Yang, 2025) 65.8 70.3 65.7 53.6 59.8 58.0 56.3 57.9 47.5 59.4

Qwen2.5VL-32B

splade 108M (Lassance et al., 2024) 69.3 53.1 38.5 58.1 63.1 40.8 35.0 35.2 29.4 46.9
open search v1 133M (Geng et al., 2024) 68.0 45.6 39.1 59.7 63.0 41.4 34.2 33.8 28.8 46.0
me5_base 278M (Wang et al., 2024) 59.0 49.9 52.2 50.0 55.5 48.8 51.3 51.9 44.2 51.4
me5_large 560M (Wang et al., 2024) 68.8 53.8 53.5 49.1 60.6 57.1 52.0 54.0 46.2 55.0
inf_small 1.5B (Junhan Yang, 2025) 67.9 68.3 66.4 56.6 60.9 58.6 54.8 55.3 50.0 59.9
inf 7B (Junhan Yang, 2025) 70.7 69.7 69.4 59.0 65.1 63.0 59.0 59.5 55.5 63.4
sfr 7B (Junhan Yang, 2025) 65.7 72.8 72.1 54.4 61.5 59.6 57.9 59.1 47.9 61.2

Qwen2.5VL-72B

splade 108M (Lassance et al., 2024) 63.8 16.4 25.8 59.8 62.7 42.1 31.9 37.0 30.1 41.1
open search v1 133M (Geng et al., 2024) 61.5 20.2 28.1 62.4 61.2 42.4 31.9 35.3 28.9 41.3
me5_base 278M (Wang et al., 2024) 45.6 49.5 55.3 49.6 57.4 48.7 43.7 46.1 42.9 48.8
me5_large 560M (Wang et al., 2024) 66.1 50.8 56.0 52.5 61.6 58.0 50.5 49.0 49.2 54.9
inf_small 1.5B (Junhan Yang, 2025) 67.3 58.8 62.1 62.7 62.6 59.3 51.7 53.7 52.6 59.0
inf 7B (Junhan Yang, 2025) 68.9 70.7 67.9 60.3 65.5 63.2 58.2 58.6 57.7 63.4
sfr 7B (Junhan Yang, 2025) 66.0 66.0 66.8 54.4 62.2 60.4 59.0 58.1 46.9 60.0

InternVL3-2B

splade 108M (Lassance et al., 2024) 52.7 48.1 28.6 58.6 58.6 39.6 28.4 33.5 30.0 42.0
open search v1 133M (Geng et al., 2024) 48.6 59.4 32.4 59.9 58.7 39.3 29.1 31.2 29.9 43.2
me5_base 278M (Wang et al., 2024) 44.0 52.0 36.5 47.1 50.4 46.3 38.6 38.1 39.8 43.6
me5_large 560M (Wang et al., 2024) 61.4 52.9 42.0 51.4 56.7 54.8 52.6 50.7 43.9 51.8
inf_small 1.5B (Junhan Yang, 2025) 59.8 62.5 54.1 52.9 59.3 55.2 47.2 48.7 46.2 54.0
inf 7B (Junhan Yang, 2025) 63.3 72.5 62.6 55.0 63.8 60.7 52.9 52.1 51.3 59.4
sfr 7B (Junhan Yang, 2025) 64.5 68.0 55.8 45.7 62.5 59.9 54.8 55.2 41.3 56.4

InternVL3-8B

splade 108M (Lassance et al., 2024) 65.6 30.7 31.2 58.0 60.6 40.6 34.9 38.2 30.3 43.3
open search v1 133M (Geng et al., 2024) 60.2 32.0 34.0 59.0 59.5 41.0 36.4 37.9 29.5 43.3
me5_base 278M (Wang et al., 2024) 52.0 48.7 50.7 48.8 52.7 49.1 41.9 45.3 41.3 47.8
me5_large 560M (Wang et al., 2024) 58.1 38.8 49.6 52.2 59.8 57.7 53.1 56.0 47.5 52.5
inf_small 1.5B (Junhan Yang, 2025) 63.0 54.4 57.6 58.8 63.4 57.8 50.6 51.9 52.5 56.7
inf 7B (Junhan Yang, 2025) 66.7 62.9 64.8 57.3 65.5 63.0 57.6 57.4 54.6 61.1
sfr 7B (Junhan Yang, 2025) 63.9 57.2 62.0 50.0 62.0 59.5 57.5 57.2 44.9 57.1

InternVL3-14B

splade 108M (Lassance et al., 2024) 68.5 38.0 31.4 53.8 61.0 40.7 36.9 37.6 26.1 43.8
open search v1 133M (Geng et al., 2024) 61.3 39.8 32.7 54.7 60.3 41.1 32.2 34.8 27.0 42.7
me5_base 278M (Wang et al., 2024) 47.7 56.2 52.9 49.7 51.7 46.3 45.2 45.0 40.0 48.3
me5_large 560M (Wang et al., 2024) 67.7 54.3 53.0 52.4 58.3 55.2 54.2 55.1 44.9 55.0
inf_small 1.5B (Junhan Yang, 2025) 60.5 60.1 57.3 58.0 62.4 57.6 51.2 52.1 51.7 56.8
inf 7B (Junhan Yang, 2025) 67.7 64.7 63.0 58.9 64.7 62.7 52.4 54.6 56.5 60.6
sfr 7B (Junhan Yang, 2025) 66.8 69.1 61.5 49.8 61.0 59.8 55.0 57.0 45.0 58.3

Table 7: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: nDCG@5.
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VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM AVG

Qwen2.5VL-7B

splade 108M (Lassance et al., 2024) 68.0 32.3 31.4 56.4 63.3 43.3 40.1 41.0 28.8 44.9
open search v1 133M (Geng et al., 2024) 65.4 30.9 31.5 55.6 62.5 44.1 37.9 38.4 28.9 43.9
me5_base 278M (Wang et al., 2024) 50.1 49.5 51.6 48.7 56.7 51.4 50.4 50.2 40.1 49.9
me5_large 560M (Wang et al., 2024) 68.1 56.6 58.1 50.1 63.6 60.1 59.5 59.6 46.1 58.0
inf_small 1.5B (Junhan Yang, 2025) 65.4 63.6 64.3 54.6 65.2 61.0 60.5 59.3 50.0 60.4
inf 7B (Junhan Yang, 2025) 68.4 70.1 65.8 54.9 68.0 65.5 60.9 59.5 53.1 62.9
sfr 7B (Junhan Yang, 2025) 68.1 69.6 67.4 50.8 63.2 61.3 60.7 62.4 46.7 61.1

Qwen2.5VL-32B

splade 108M (Lassance et al., 2024) 74.2 54.7 41.8 57.4 66.0 44.4 41.0 41.0 30.0 50.1
open search v1 133M (Geng et al., 2024) 71.7 50.5 42.8 58.8 65.8 45.1 40.6 39.3 30.0 49.4
me5_base 278M (Wang et al., 2024) 61.6 51.2 53.8 47.5 59.5 53.1 56.3 55.4 41.6 53.3
me5_large 560M (Wang et al., 2024) 71.5 55.2 55.0 47.6 64.2 60.7 56.8 57.9 45.0 57.1
inf_small 1.5B (Junhan Yang, 2025) 69.6 68.3 65.6 55.7 64.7 61.9 58.2 60.0 49.0 61.5
inf 7B (Junhan Yang, 2025) 73.9 69.9 69.2 55.4 68.0 66.3 64.5 64.7 52.9 65.0
sfr 7B (Junhan Yang, 2025) 68.0 70.4 71.3 51.2 65.0 63.1 62.5 63.4 46.9 62.4

Qwen2.5VL-72B

splade 108M (Lassance et al., 2024) 68.1 19.3 28.8 56.2 66.0 45.4 38.3 42.0 30.7 43.9
open search v1 133M (Geng et al., 2024) 66.5 24.5 31.1 59.3 64.7 45.4 39.5 40.1 29.6 44.5
me5_base 278M (Wang et al., 2024) 48.5 51.7 56.4 49.0 61.0 52.8 49.6 50.9 41.7 51.3
me5_large 560M (Wang et al., 2024) 68.1 52.6 57.1 51.6 64.9 61.6 55.1 54.2 47.9 57.0
inf_small 1.5B (Junhan Yang, 2025) 69.0 59.2 61.5 59.5 65.8 62.4 56.6 59.3 51.2 60.5
inf 7B (Junhan Yang, 2025) 70.8 70.8 66.9 58.2 68.5 66.8 63.4 63.6 56.1 65.0
sfr 7B (Junhan Yang, 2025) 70.2 66.6 66.5 52.6 67.1 63.7 61.9 62.9 46.8 62.0

InternVL3-2B

splade 108M (Lassance et al., 2024) 59.0 51.5 29.6 58.6 62.8 43.3 35.6 39.9 30.7 45.7
open search v1 133M (Geng et al., 2024) 54.2 60.0 33.1 58.4 62.4 43.1 35.0 37.2 30.4 46.0
me5_base 278M (Wang et al., 2024) 47.7 53.6 39.2 46.0 54.7 50.0 42.4 42.3 39.3 46.1
me5_large 560M (Wang et al., 2024) 65.5 55.4 45.5 48.4 60.6 58.4 54.1 53.4 43.0 53.8
inf_small 1.5B (Junhan Yang, 2025) 61.7 61.4 54.9 53.4 63.1 58.6 51.8 53.7 47.1 56.2
inf 7B (Junhan Yang, 2025) 68.3 72.7 63.7 54.2 67.2 64.4 56.6 55.8 51.2 61.6
sfr 7B (Junhan Yang, 2025) 66.4 65.3 55.5 43.9 66.1 63.3 59.1 59.9 41.2 57.9

InternVL3-8B

splade 108M (Lassance et al., 2024) 67.3 32.0 33.3 56.0 64.1 44.1 40.1 43.5 31.0 45.7
open search v1 133M (Geng et al., 2024) 65.0 37.3 36.1 55.3 63.0 44.4 42.2 43.7 29.3 46.3
me5_base 278M (Wang et al., 2024) 57.6 49.5 51.0 47.1 57.2 52.7 48.9 50.4 40.2 50.5
me5_large 560M (Wang et al., 2024) 62.9 41.0 51.8 49.0 63.3 60.9 58.5 60.5 45.3 54.8
inf_small 1.5B (Junhan Yang, 2025) 66.0 54.4 58.2 57.3 65.9 60.7 56.2 57.3 51.2 58.6
inf 7B (Junhan Yang, 2025) 70.5 65.4 64.0 56.4 68.4 66.5 61.6 61.7 53.6 63.1
sfr 7B (Junhan Yang, 2025) 68.1 58.8 63.0 48.0 64.6 63.4 61.1 62.1 43.9 59.2

InternVL3-14B

splade 108M (Lassance et al., 2024) 70.6 41.8 34.0 53.4 64.5 44.2 41.8 42.8 28.0 46.8
open search v1 133M (Geng et al., 2024) 64.4 45.6 35.9 55.0 63.9 44.7 37.6 40.4 28.6 46.2
me5_base 278M (Wang et al., 2024) 53.4 58.8 56.1 46.6 55.4 50.1 49.2 49.3 39.7 50.9
me5_large 560M (Wang et al., 2024) 70.8 56.1 54.6 50.3 62.1 59.0 58.3 59.1 44.1 57.2
inf_small 1.5B (Junhan Yang, 2025) 63.1 61.2 58.9 57.3 66.0 61.4 56.0 56.7 50.9 59.1
inf 7B (Junhan Yang, 2025) 70.1 65.5 64.7 56.0 68.0 66.2 58.1 59.5 54.2 62.5
sfr 7B (Junhan Yang, 2025) 69.0 67.1 62.9 48.1 64.3 63.0 60.3 62.5 45.0 60.3

Table 8: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: nDCG@10.
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VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM AVG

Qwen2.5VL-7B

splade 108M (Lassance et al., 2024) 41.6 12.0 12.6 10.0 33.7 21.9 15.5 14.6 3.7 18.4
open search v1 133M (Geng et al., 2024) 40.8 10.6 12.7 11.0 33.3 22.3 13.7 12.9 4.2 18.0
me5_base 278M (Wang et al., 2024) 24.3 23.1 26.2 6.9 30.3 26.1 20.9 20.7 4.8 20.4
me5_large 560M (Wang et al., 2024) 44.3 24.1 27.7 7.6 32.9 30.2 27.6 27.8 7.5 25.5
inf_small 1.5B (Junhan Yang, 2025) 41.3 25.6 31.0 5.9 36.1 32.5 27.7 24.1 7.5 25.8
inf 7B (Junhan Yang, 2025) 45.1 36.8 35.2 5.8 38.5 36.5 26.5 25.3 8.2 28.7
sfr 7B (Junhan Yang, 2025) 43.7 31.8 33.6 7.1 32.0 29.8 25.2 25.1 6.1 26.0

Qwen2.5VL-32B

splade 108M (Lassance et al., 2024) 45.0 28.5 18.0 11.1 36.6 23.7 13.8 13.8 4.3 21.6
open search v1 133M (Geng et al., 2024) 42.1 16.2 17.7 11.4 36.7 22.9 14.2 13.5 4.4 19.9
me5_base 278M (Wang et al., 2024) 38.5 29.6 27.4 6.5 32.3 27.1 21.9 20.4 5.3 23.2
me5_large 560M (Wang et al., 2024) 44.8 28.7 30.1 6.7 34.5 31.7 25.4 27.1 6.0 26.1
inf_small 1.5B (Junhan Yang, 2025) 43.2 37.4 34.9 6.3 34.6 33.7 23.6 25.3 5.0 27.1
inf 7B (Junhan Yang, 2025) 51.5 36.8 39.5 7.3 37.6 36.9 28.7 28.8 6.7 30.4
sfr 7B (Junhan Yang, 2025) 42.0 36.7 39.3 10.3 35.3 34.2 24.9 24.7 9.2 28.5

Qwen2.5VL-72B

splade 108M (Lassance et al., 2024) 37.5 2.2 9.0 8.8 36.8 24.8 14.3 14.0 3.9 16.8
open search v1 133M (Geng et al., 2024) 39.5 2.7 7.8 9.7 35.3 24.7 13.1 12.9 2.8 16.5
me5_base 278M (Wang et al., 2024) 19.8 23.8 30.2 5.3 34.3 27.2 19.4 17.7 5.1 20.3
me5_large 560M (Wang et al., 2024) 41.8 20.7 26.2 9.4 34.6 30.9 24.1 21.4 9.9 24.3
inf_small 1.5B (Junhan Yang, 2025) 42.5 21.9 28.6 13.4 37.8 33.2 21.5 23.2 7.7 25.5
inf 7B (Junhan Yang, 2025) 50.0 31.6 33.7 11.2 39.3 37.0 26.8 24.3 10.5 29.4
sfr 7B (Junhan Yang, 2025) 43.0 25.6 28.5 10.8 35.7 32.4 25.6 26.3 7.6 26.2

InternVL3-2B

splade 108M (Lassance et al., 2024) 32.1 23.8 12.0 14.8 33.8 22.9 8.4 10.6 5.8 18.3
open search v1 133M (Geng et al., 2024) 29.7 35.6 15.3 13.4 33.5 21.9 7.3 10.3 5.0 19.1
me5_base 278M (Wang et al., 2024) 28.2 29.4 20.2 5.5 27.5 25.5 17.4 14.4 4.4 19.2
me5_large 560M (Wang et al., 2024) 39.9 19.2 20.5 5.9 31.3 30.3 26.5 24.3 5.1 22.6
inf_small 1.5B (Junhan Yang, 2025) 39.1 30.2 26.8 9.5 33.9 30.7 16.2 19.1 8.1 23.7
inf 7B (Junhan Yang, 2025) 46.6 42.7 33.3 11.1 37.3 35.6 22.6 22.0 11.2 29.2
sfr 7B (Junhan Yang, 2025) 45.3 23.9 20.7 5.6 35.0 33.7 24.6 24.1 4.8 24.2

InternVL3-8B

splade 108M (Lassance et al., 2024) 37.9 8.2 9.9 9.2 37.2 23.7 14.6 15.4 3.7 17.8
open search v1 133M (Geng et al., 2024) 35.8 9.6 12.7 7.3 34.2 22.9 17.3 15.6 3.1 17.6
me5_base 278M (Wang et al., 2024) 36.4 29.2 22.4 6.2 32.5 29.4 18.9 19.7 6.6 22.4
me5_large 560M (Wang et al., 2024) 32.5 9.3 22.1 6.5 33.0 32.4 23.7 26.0 6.0 21.3
inf_small 1.5B (Junhan Yang, 2025) 45.0 24.6 25.6 12.2 36.4 30.8 21.2 22.6 10.2 25.4
inf 7B (Junhan Yang, 2025) 47.4 31.8 31.4 9.9 37.7 37.3 24.9 25.2 10.0 28.4
sfr 7B (Junhan Yang, 2025) 37.2 22.4 29.9 7.0 33.1 33.1 22.6 22.8 6.2 23.8

InternVL3-14B

splade 108M (Lassance et al., 2024) 43.5 11.2 9.8 6.6 36.5 23.6 17.0 15.6 2.6 18.5
open search v1 133M (Geng et al., 2024) 37.9 11.7 11.1 7.2 36.3 23.2 12.1 13.2 2.7 17.3
me5_base 278M (Wang et al., 2024) 23.5 38.1 27.6 6.4 28.4 24.8 19.1 17.8 5.4 21.2
me5_large 560M (Wang et al., 2024) 42.0 21.4 21.2 8.3 31.4 29.9 25.8 26.0 7.3 23.7
inf_small 1.5B (Junhan Yang, 2025) 38.4 29.7 26.8 10.1 36.0 31.6 20.7 21.1 8.2 24.7
inf 7B (Junhan Yang, 2025) 42.6 36.0 34.6 6.9 38.4 36.9 21.0 22.5 8.5 27.5
sfr 7B (Junhan Yang, 2025) 45.1 31.8 26.2 4.8 32.2 32.0 26.0 27.6 6.1 25.8

Table 9: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: Recall@1.
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VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM AVG

Qwen2.5VL-7B

splade 108M (Lassance et al., 2024) 69.2 26.3 27.1 30.2 61.4 43.0 35.6 38.2 13.4 38.3
open search v1 133M (Geng et al., 2024) 63.2 30.5 29.2 31.3 63.5 45.6 38.4 38.4 15.6 39.5
me5_base 278M (Wang et al., 2024) 52.2 49.9 50.9 25.6 57.3 51.8 44.9 46.6 20.8 44.4
me5_large 560M (Wang et al., 2024) 69.3 58.8 57.3 27.0 62.1 59.6 56.4 55.6 24.5 52.3
inf_small 1.5B (Junhan Yang, 2025) 60.8 62.0 57.3 32.7 61.6 59.9 57.9 57.5 27.1 53.0
inf 7B (Junhan Yang, 2025) 69.2 64.8 56.1 31.0 67.1 64.2 58.5 57.9 29.2 55.3
sfr 7B (Junhan Yang, 2025) 68.7 63.7 58.7 28.6 63.0 61.9 56.5 59.9 24.5 54.0

Qwen2.5VL-32B

splade 108M (Lassance et al., 2024) 74.9 48.1 36.0 30.3 65.6 44.2 39.8 37.7 15.1 43.5
open search v1 133M (Geng et al., 2024) 75.9 51.9 38.5 30.5 65.5 45.2 37.9 36.0 14.8 44.0
me5_base 278M (Wang et al., 2024) 63.9 48.2 50.4 27.0 59.5 53.1 53.9 55.0 23.9 48.3
me5_large 560M (Wang et al., 2024) 73.1 56.1 52.5 25.6 63.1 60.9 53.0 55.0 23.4 51.4
inf_small 1.5B (Junhan Yang, 2025) 73.5 60.7 58.2 31.4 62.6 61.0 57.4 58.1 27.0 54.4
inf 7B (Junhan Yang, 2025) 70.9 63.5 60.6 33.4 67.1 64.6 60.7 61.2 30.6 56.9
sfr 7B (Junhan Yang, 2025) 69.0 66.1 63.7 28.5 62.6 61.0 58.8 61.5 24.3 55.0

Qwen2.5VL-72B

splade 108M (Lassance et al., 2024) 73.0 11.1 23.1 31.4 64.1 45.3 36.1 39.4 15.7 37.7
open search v1 133M (Geng et al., 2024) 68.3 17.6 27.1 32.2 63.2 46.1 36.9 39.3 16.6 38.6
me5_base 278M (Wang et al., 2024) 55.6 54.3 53.4 27.6 59.9 51.3 43.2 47.9 24.0 46.4
me5_large 560M (Wang et al., 2024) 70.6 50.9 53.8 27.3 64.6 62.3 48.6 49.0 26.5 50.4
inf_small 1.5B (Junhan Yang, 2025) 73.1 60.1 57.1 32.1 64.2 62.8 55.4 56.3 26.9 54.2
inf 7B (Junhan Yang, 2025) 70.5 64.6 60.8 33.0 67.6 65.7 58.1 60.9 29.9 56.8
sfr 7B (Junhan Yang, 2025) 70.0 65.7 63.1 29.1 63.9 64.3 58.8 58.9 24.1 55.3

InternVL3-2B

splade 108M (Lassance et al., 2024) 58.0 50.8 28.8 29.2 61.2 42.7 31.9 37.9 15.7 39.6
open search v1 133M (Geng et al., 2024) 54.5 56.9 32.1 31.3 62.4 42.9 34.9 34.8 17.0 40.8
me5_base 278M (Wang et al., 2024) 51.4 48.1 33.6 24.7 54.9 51.0 41.1 41.5 21.3 40.8
me5_large 560M (Wang et al., 2024) 65.5 55.8 40.9 26.4 61.1 59.1 50.3 51.0 23.1 48.1
inf_small 1.5B (Junhan Yang, 2025) 63.1 58.9 48.8 28.1 61.8 58.4 53.5 53.5 25.0 50.1
inf 7B (Junhan Yang, 2025) 64.2 63.6 57.0 29.6 66.3 63.3 55.5 55.9 26.7 53.6
sfr 7B (Junhan Yang, 2025) 68.0 64.3 55.4 23.1 64.7 62.4 55.1 55.5 21.2 52.2

InternVL3-8B

splade 108M (Lassance et al., 2024) 76.5 30.1 30.4 30.0 61.7 43.5 39.3 41.8 15.6 41.0
open search v1 133M (Geng et al., 2024) 68.3 28.2 32.6 31.6 62.5 44.8 39.5 41.9 14.9 40.5
me5_base 278M (Wang et al., 2024) 57.5 45.1 51.8 27.4 54.8 51.6 42.8 48.3 23.5 44.8
me5_large 560M (Wang et al., 2024) 66.3 43.4 49.4 27.0 63.5 60.7 58.7 59.8 23.9 50.3
inf_small 1.5B (Junhan Yang, 2025) 65.0 47.9 52.8 30.4 66.6 62.7 53.9 54.9 27.1 51.3
inf 7B (Junhan Yang, 2025) 69.9 56.1 58.7 27.7 67.8 64.8 60.3 59.7 27.1 54.7
sfr 7B (Junhan Yang, 2025) 69.6 61.4 57.9 24.8 66.5 62.4 61.7 60.0 22.4 54.1

InternVL3-14B

splade 108M (Lassance et al., 2024) 75.3 40.4 32.4 29.3 62.3 43.7 39.1 38.6 14.1 41.7
open search v1 133M (Geng et al., 2024) 69.6 39.9 32.7 30.1 61.8 44.6 36.5 37.4 14.1 40.7
me5_base 278M (Wang et al., 2024) 57.9 53.7 54.6 27.6 55.9 51.0 47.7 48.1 23.2 46.6
me5_large 560M (Wang et al., 2024) 72.8 58.4 55.5 26.6 61.8 59.2 55.4 58.1 22.4 52.2
inf_small 1.5B (Junhan Yang, 2025) 66.1 59.3 56.0 29.8 64.1 61.4 56.3 56.5 26.5 52.9
inf 7B (Junhan Yang, 2025) 73.6 58.8 55.8 32.9 66.8 64.9 54.9 56.7 29.7 54.9
sfr 7B (Junhan Yang, 2025) 69.2 64.1 60.0 28.6 64.6 63.5 54.3 55.6 23.7 53.7

Table 10: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: Recall@5.
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VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM AVG

Qwen2.5VL-7B

splade 108M (Lassance et al., 2024) 77.1 30.9 32.9 44.7 72.6 52.4 50.7 53.4 23.7 48.7
open search v1 133M (Geng et al., 2024) 74.9 36.1 35.5 42.4 72.0 53.4 49.8 48.9 23.5 48.5
me5_base 278M (Wang et al., 2024) 64.5 58.2 57.2 39.7 66.9 62.4 63.4 63.0 32.4 56.4
me5_large 560M (Wang et al., 2024) 77.5 64.4 64.5 38.4 76.2 72.2 68.7 69.1 35.5 63.0
inf_small 1.5B (Junhan Yang, 2025) 75.3 67.8 66.3 44.2 75.9 72.0 70.1 72.0 39.5 64.8
inf 7B (Junhan Yang, 2025) 74.9 71.1 67.0 45.0 77.1 74.8 71.5 69.9 42.3 65.9
sfr 7B (Junhan Yang, 2025) 76.3 72.6 72.7 39.6 73.7 72.5 73.0 76.3 37.0 66.0

Qwen2.5VL-32B

splade 108M (Lassance et al., 2024) 88.1 59.7 49.9 44.6 74.8 54.0 55.7 53.6 24.2 56.1
open search v1 133M (Geng et al., 2024) 86.2 66.8 53.0 45.5 73.8 55.2 56.5 52.0 25.3 57.1
me5_base 278M (Wang et al., 2024) 71.0 57.3 60.1 37.6 71.0 65.0 69.5 67.0 33.5 59.1
me5_large 560M (Wang et al., 2024) 80.4 62.9 59.9 37.2 73.8 71.6 67.1 67.3 35.5 61.7
inf_small 1.5B (Junhan Yang, 2025) 78.2 70.6 66.4 45.5 74.3 71.3 70.4 73.4 39.5 65.5
inf 7B (Junhan Yang, 2025) 79.9 71.6 69.0 44.2 76.7 75.2 77.4 77.4 42.0 68.2
sfr 7B (Junhan Yang, 2025) 76.3 71.5 72.6 38.8 74.0 72.4 74.0 76.4 35.6 65.7

Qwen2.5VL-72B

splade 108M (Lassance et al., 2024) 83.8 23.1 34.6 42.8 74.5 54.6 51.4 54.5 25.8 49.5
open search v1 133M (Geng et al., 2024) 80.3 32.8 38.8 45.0 73.8 54.6 55.4 53.3 25.4 51.0
me5_base 278M (Wang et al., 2024) 64.2 61.1 59.9 40.4 70.8 63.6 62.6 63.1 34.7 57.8
me5_large 560M (Wang et al., 2024) 77.3 63.8 63.2 38.6 74.5 73.0 65.0 65.4 36.6 61.9
inf_small 1.5B (Junhan Yang, 2025) 78.7 69.5 65.2 44.8 74.3 72.8 70.7 73.3 40.0 65.5
inf 7B (Junhan Yang, 2025) 76.3 74.4 67.6 45.4 77.4 76.7 76.7 78.0 43.8 68.5
sfr 7B (Junhan Yang, 2025) 82.7 74.3 71.4 40.4 78.2 74.7 71.5 75.8 37.0 67.3

InternVL3-2B

splade 108M (Lassance et al., 2024) 73.1 62.5 35.0 44.2 73.0 52.7 51.4 56.1 24.6 52.5
open search v1 133M (Geng et al., 2024) 67.9 65.0 37.7 43.7 72.0 53.0 51.1 51.3 25.2 51.9
me5_base 278M (Wang et al., 2024) 61.6 60.0 44.2 37.1 66.9 61.4 50.8 52.2 32.8 51.9
me5_large 560M (Wang et al., 2024) 76.0 67.2 54.3 37.7 71.9 69.2 58.4 61.5 34.6 59.0
inf_small 1.5B (Junhan Yang, 2025) 68.8 64.7 58.3 42.9 73.6 69.5 67.9 69.1 38.8 61.5
inf 7B (Junhan Yang, 2025) 76.7 72.9 67.5 43.2 77.3 74.7 68.5 68.6 39.9 65.5
sfr 7B (Junhan Yang, 2025) 73.9 72.0 63.1 34.9 76.1 73.2 69.7 71.8 32.6 63.0

InternVL3-8B

splade 108M (Lassance et al., 2024) 81.0 36.9 41.6 44.7 72.3 53.3 52.9 57.0 26.1 51.7
open search v1 133M (Geng et al., 2024) 80.4 48.7 44.0 42.9 73.3 54.2 55.3 57.8 24.3 53.5
me5_base 278M (Wang et al., 2024) 71.6 50.8 58.4 39.5 66.9 61.9 63.7 63.6 33.5 56.6
me5_large 560M (Wang et al., 2024) 79.0 52.4 61.1 37.1 74.2 71.0 74.0 73.2 34.5 61.8
inf_small 1.5B (Junhan Yang, 2025) 72.8 58.8 63.0 43.8 75.5 71.7 69.9 70.9 39.8 62.9
inf 7B (Junhan Yang, 2025) 81.3 71.2 67.4 44.4 77.5 75.7 74.5 74.5 41.4 67.5
sfr 7B (Junhan Yang, 2025) 82.4 71.5 68.0 36.0 75.3 74.1 74.4 76.7 34.2 65.8

InternVL3-14B

splade 108M (Lassance et al., 2024) 80.9 56.3 44.4 45.2 72.7 53.2 50.9 53.8 24.9 53.6
open search v1 133M (Geng et al., 2024) 77.5 62.9 47.0 45.3 72.3 54.1 50.5 53.5 24.9 54.2
me5_base 278M (Wang et al., 2024) 72.8 60.8 65.8 36.8 66.1 61.6 60.0 60.8 33.1 57.5
me5_large 560M (Wang et al., 2024) 82.7 66.7 65.2 38.7 72.5 69.9 68.8 70.6 34.1 63.2
inf_small 1.5B (Junhan Yang, 2025) 74.0 68.7 67.4 45.1 75.1 72.6 71.8 71.0 40.2 65.1
inf 7B (Junhan Yang, 2025) 80.1 68.9 69.1 45.0 76.9 75.6 72.7 72.4 42.7 67.0
sfr 7B (Junhan Yang, 2025) 77.0 69.7 70.2 39.8 75.3 73.8 71.0 73.3 36.7 65.2

Table 11: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: Recall@10.
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