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Abstract

Visual Document Retrieval (VDR) typically op-
erates as text-to-image retrieval using special-
ized bi-encoders trained to directly embed doc-
ument images. We revisit a zero-shot generate-
and-encode pipeline: a vision—language model
first produces a detailed textual description
of each document image, which is then em-
bedded by a standard text encoder. On the
ViDoRe-v2 benchmark, the method reaches
63.4% nDCG @5, surpassing the strongest spe-
cialised multi-vector visual document encoder.
It also scales better to large collections and
offers broader multilingual coverage. Analy-
sis shows that modern vision—language models
capture complex textual and visual cues with
sufficient granularity to act as a reusable seman-
tic proxy. By offloading modality alignment
to pretrained vision—language models, our ap-
proach removes the need for computationally
intensive text-image contrastive training and
establishes a strong zero-shot baseline for fu-
ture VDR systems. Our code is available for
reproduction at: €) thongnt99/serval

1 Introduction and Related Work

Real-world documents originate from diverse
sources, spanning the public web to private enter-
prise repositories, and appear in many formats, in-
cluding plain text, figures, graphs, and tables. Doc-
ument retrieval bridges human or artificial agents to
the most relevant information, enabling informed
decision-making and knowledge synthesis.

Over several decades the field has been dom-
inated by text-centric retrieval methods. Clas-
sic approaches such as BM25 (Robertson and
Walker, 1994) rely purely on lexical matching
between queries and documents. The recent ad-
vent of deep learning, and especially transformer
architectures such as BERT, has shifted the fo-
cus to context-aware neural retrieval. Today a
rich ecosystem of neural paradigms is available,
from sparse and dense first-stage encoders (Wang
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Figure 1: nDCG@5 for zero-shot Visual Document Re-
trieval using VLMs and text encoders of varying scales.
Despite no task-specific training, our zero-shot method
could compete with end-to-end models explicitly trained
for VDR on large-scale text-(document) image datasets.

et al., 2022, 2024; Formal et al., 2021; Lassance
et al., 2024; Nguyen et al., 2023) to cross-encoders
for re-ranking (Nogueira et al., 2020; MacA-
vaney et al., 2019; Reimers and Gurevych, 2019).
Trained on large human- and machine-annotated
corpora, these models achieve state-of-the-art
performance on in-domain (Bajaj et al., 2016),
out-of-domain (Thakur et al., 2021), and multilin-
gual (Zhang et al., 2023; Enevoldsen et al., 2025;
Zhang et al., 2021) benchmarks.

Text-only retrieval overlooks other important vi-
sual elements embedded in documents (Xu et al.,
2020). Visual Document Retrieval (VDR) tack-
les this gap by jointly encoding textual and visual
elements rendered as images. Ma et al. (2024)
formulate VDR as text-to-image retrieval by ras-
terizing each page, while CoPali introduces a
multi-vector encoder together with the ViDoRe
benchmark (Faysse et al., 2024). To spur further
progress, ViDoRe-v2 (Macé et al., 2025) raises the
bar with human-verified, multilingual queries that
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are substantially more challenging.

To close the modality gap, state-of-the-art VDR
systems typically rely on expensive contrastive
training over high-quality text and visual document
pairs. However, we hypothesize that advanced
vision-language models (VLMs) can bridge this
gap by effectively describing visual elements in
language. Therefore, we reformulate the end-to-
end paradigm and revisit a simple zero-shot alter-
native that decouples the problem into two inde-
pendent sub-tasks: (i) document-description gen-
eration, handled by a VLM, and (ii) text encoding,
handled by a conventional pretrained text encoder.
This modular design enables us to plug in best-in-
class components and leverage the growing number
of high-quality VLMs and text encoders.

For description generation, we exploit recent
VLMs, including Qwen2.5VL (Bai et al., 2025)
and InternVL 3 (Zhu et al., 2025), that excel at vi-
sual understanding. For text encoding we leverage
robust open-source multilingual encoders (Wang
et al., 2022, 2024; Rui Meng, 2024; Junhan Yang,
2025) usually equipped with instruction-following
capabilities (Weller et al., 2024).

Evaluated on the nine ViDoRe-v2 tasks and
MIRACL-VISION benchmark, our zero-shot
generate-and-encode approach matches or even
surpasses state-of-the-art supervised multi-vector
baselines (as shown in Figure 1), despite using no
VDR-specific training data. Our analysis produces
three key insights:

* Recent vision-language models (VLMs) can
accurately describe visual elements embed-
ded in documents—figures, graphs, and tables—
enabling effective visual document retrieval
from their generated descriptions.

* Scaling both VLMs and text encoders im-
proves retrieval performance, but scaling/im-
proving the text encoder yields better gains.
Large (32B / 72B) VLMs paired with strong
text encoders achieve the best scores, while
even 2B—7B models already surpass most su-
pervised end-to-end models on ViDoRe-v2.

* Supervised end-to-end VDR models perform
well on English, but they lag behind on mul-
tilingual and cross-lingual tasks, highlighting
potential room for future improvement.

Because description generation is executed of-
fline during indexing, online latency remains sim-
ilar to end-to-end VDR approaches. Smaller

VLMs (2B-7B) offer an attractive speed—accuracy
trade-off, providing competitive accuracy while re-
ducing offline document preprocessing cost.

2 Zero-shot Visual Document Retrieval
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Figure 2: Zero-shot VDR using VLM-generated docu-
ment descriptions and a pretrained text encoder.

The workflow for our zero-shot VDR approach
is illustrated in Figure 2. First, a vision-language
model (VLM) is used to generate a detailed de-
scription of the visual document. Using the prompt
shown in Prompt 2.1, we instruct the VLM to begin
with an overall summary of the content depicted
in the image, followed by a comprehensive list of
details, including any extracted text and numerical
values. The entire description is generated in a sin-
gle step, bypassing intermediate procedures such
as layout detection or document chunking used in
CoPali (Faysse et al., 2024). An example of a gener-
ated description from InternVL3 is shown in Figure
3. Additional examples covering various complex
document types (e.g., graphs, tables, diagrams) are
provided in the Appendix A.

Prompt. 2.1: Description generation with VLMs

Provide a comprehensive description of the
document in the image in English. Begin
with a summary, then follow with details.
Extract all visible text and numerical values
from the document.

In the second step, any off-the-shelf text encoder
can be used to encode both queries and the gener-
ated document descriptions. The goal of this en-
coder is to bridge the semantic gap between queries
and documents by mapping them into a shared se-
mantic space where relevant pairs are positioned
closely. It is also important for the encoder to sup-
port multilingual and cross-lingual retrieval, as the
evaluation will include non-English data. For large-
scale document collections, document descriptions
and their embeddings can be pre-computed and
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indexed offline in a database.

3 Experimental Setup

We evaluate our zero-shot VDR approach and base-
lines on the ViDoRe-v2 benchmark (Macé et al.,
2025), an enhanced and more challenging succes-
sor to ViDoRe-vl. ViDoRe-v2 comprises nine
VDR tasks spanning four languages (English, Span-
ish, French, and German) and covers a variety
of domains, including business, restaurant, and
medical. It features real-world, complex queries,
for which the best end-to-end supervised VDR
model (Team, 2025) only achieves a moderate
nDCG@5 of 0.62. The document collection in-
cludes both text-centric items (e.g., reports com-
posed primarily of text) and visually rich items
(e.g., slide decks containing tables or graphs).

While Vidore-V2 provides a strong basis for eval-
uating multilingual multimodal retrieval, its col-
lections remain relatively limited in scale and lan-
guage coverage. To complement these experiments,
we further evaluate on MIRACL-VISION (Osmul-
ski et al., 2025), a benchmark that extends MIR-
ACL with vision-language data and offers larger
multilingual collections as well as broader cover-
age of both high- and low-resource languages. This
makes MIRACL-VISION a more realistic testbed
for assessing the generalization ability of retrieval
models beyond the settings captured in Vidore-V2.

To generate document descriptions, we use vari-
ous VLMs, including Qwen2.5VL (7B, 32B, and
72B) (Bai et al., 2025) and InternVL3 (2B and
8B) (Zhu et al., 2025). For all models, we use
quantized versions with Activation-Aware Weight
Quantization and accelerate inference using the
vLLM (Kwon et al., 2023) and LMDeploy (Con-
tributors, 2023) frameworks. We provide statistics
on the token length of the generated descriptions in
Table 1. The average number of tokens generated
by different VLMs is roughly around 500 tokens
per document, with the exception of QwenVL2.5
32B that produces about 1000 tokens/doc.

For text encoders, we experiment with two
families: learned sparse retrieval and dense re-
trieval. For sparse retrieval, we employ Splade-
v3 (Lassance et al., 2024) and the Open Search
sparse model (Geng et al., 2024). For dense re-
trieval, we evaluate a range of multilingual and
instruction-tuned models, including: multilingual-
e5-base, multilingual-e5-large, SFR-Embedding-
Mistral, and inf-retriever-vi. All sparse and dense

Models # tokens per doc
QwenVL2.5-7B 422.62
QwenVL2.5 - 32B 1009.52
QwenVL2.5 -72B 636.03
InternVL3 — 2B 515.53
InternVL3 — 8B 619.13
InternVL3 — 14B 537.11

Table 1: Average number of tokens generated when
producing visual document descriptions.

retrieval checkpoints are publicly available on Hug-
gingFace (Wolf et al., 2020).

We report nDCG@k and Recall@k (R@k) for
k ={1,5,10}, consistent with the evaluation pro-
tocol used in prior ViDoRe benchmarks.

4 Results and Discussion

The main results using our zero-shot approaches
and end-to-end VDR baselines are presented in
Table 2 and visualized in Figure 1. Due to space
limitations, we primarily use nDCG@5 for analy-
sis. Please refer to Appendix C for the complete
results and Appendix B for dataset abbreviations.

Overall, the zero-shot VDR approaches are
shown to be highly competitive with strong su-
pervised single-vector and multi-vector VDR base-
lines (highlighted with a gray background in Ta-
ble 2) that directly embed visual documents. The
state-of-the-art supervised model, ColNomic Em-
bed Multimodal 7B (Team, 2025), achieves an av-
erage nDCG @5 of 62.7. In contrast, our best zero-
shot method, using Qwen2.5VL (32B, 72B)(Bai
et al., 2025) for description generation and INF
7B (Junhan Yang, 2025) for text encoding, achieves
an average score of 63.4, surpassing all supervised
VDR models on the ViDoRe-v2 benchmark. This
result highlights the effectiveness of VLMs in gen-
erating rich descriptions for visual documents and
the capability of text encoders to close the query-
document semantic gap.

The separation of generation and encoding al-
lows us to flexibly plug and play different models
at each stage. We explore a range of generation and
text encoding models at varying scales. For gen-
eration, we experiment with vision-language mod-
els (VLMs) from 2B to 72B parameters, including
Qwen2.5VL (Bai et al., 2025) and InternVL3 (Zhu
et al., 2025). For text encoding, we evaluate both
dense and sparse encoders, from the lightweight
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Figure 3: Example of a document description generated by InternVL3. Beyond simple OCR, the model integrates
textual and visual cues into natural language, bridging the modality gap.

VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM ‘ AVG
ColNomic Embed Multimodal 7B (Team, 2025) 73.9 68.3 61.3 61.6 66.1 64.2 547 573 56.7 62.7
ColNomic Embed Multimodal 3B (Team, 2025) 65.8 68.8 61.0 60.2 63.5 62.5 554  56.6 57.2 61.2
T-Systems ColQwen2.5-3B (Faysse et al., 2024) 72.1 69.3 60.0 54.8 65.3 61.7 512 517 533 59.9
GME Qwen2 7B (Zhang et al., 2024) 65.8 60.7 55.4 62.9 64.0 55.1 56.2 543 56.7 59.0
Voyage Multimodal 3 (Voyage, 2024) 56.1 64.1 59.5 58.8 56.4 51.5 55.0 472 46.2 55.0
splade 108M (Lassance et al., 2024) 64.8 32.1 30.6 56.4 59.8 39.8 338 354 274 422

Qwen2.5VL-7B me5_large 560M (Wang et al., 2024)  64.5 56.5 58.0 52.5 58.6 55.9 559 555 47.8 56.1
~ inf_small 1.5B (Junhan Yang, 2025) 60.2 65.2 64.4 58.1 60.6 57.1 57.1 549 SL.S 58.8

inf 7B (Junhan Yang, 2025) 66.3 72.0 65.0 57.2 64.9 62.2 574 563 54.5 61.8

splade 108M (Lassance et al., 2024) 69.3 53.1 38.5 58.1 63.1 40.8 350 352 29.4 46.9

Qwen2.5VL-32B me5_large 560M (Wang et al., 2024)  68.8 53.8 53.5 49.1 60.6 57.1 520 540 46.2 55.0
~ N inf_small 1.5B (Junhan Yang, 2025) 67.9 68.3 66.4 56.6 60.9 58.6 548 553 50.0 59.9

inf 7B (Junhan Yang, 2025) 70.7 69.7 69.4 59.0 65.1 63.0 59.0 595 55.5 63.4

splade 108B (Lassance et al., 2024) 63.8 16.4 25.8 59.8 62.7 42.1 319 370 30.1 41.1

Qwen2.5VL-72B me5_large 560M (Wang et al., 2024)  66.1 50.8 56.0 52.5 61.6 58.0 50.5 49.0 49.2 54.9
-~ inf_small 1.5B (Junhan Yang, 2025) 67.3 58.8 62.1 62.7 62.6 59.3 51.7 537 52.6 59.0

inf 7B (Junhan Yang, 2025) 68.9 70.7 67.9 60.3 65.5 63.2 582 58.6 57.7 63.4

splade 108M (Lassance et al., 2024) 527 48.1 28.6 58.6 58.6 39.6 284 335 30.0 42.0

InternVL3-2B me5_large 560M (Wang et al., 2024)  61.4 529 42.0 51.4 56.7 54.8 526  50.7 439 51.8
N inf_small 1.5B (Junhan Yang, 2025)  59.8 62.5 54.1 529 59.3 552 472 487 46.2 54.0

inf 7B (Junhan Yang, 2025) 63.3 72.5 62.6 55.0 63.8 60.7 529 521 51.3 59.4

splade 108M (Lassance et al., 2024) 65.6 30.7 31.2 58.0 60.6 40.6 349 382 30.3 433

InternVL3-8B me5_large 560M (Wang et al., 2024)  58.1 38.8 49.6 522 59.8 571 53.1  56.0 475 52.5
N inf_small 1.5B (Junhan Yang, 2025) 63.0 54.4 57.6 58.8 63.4 57.8 50.6 519 52.5 56.7

inf 7B (Junhan Yang, 2025) 66.7 62.9 64.8 57.3 65.5 63.0 576 574 54.6 61.1

splade 108M (Lassance et al., 2024) 68.5 38.0 31.4 53.8 61.0 40.7 369 376 26.1 43.8

InternVL3-14B me5_large 560M (Wang et al., 2024)  67.7 54.3 53.0 52.4 58.3 552 542 551 449 55.0
N inf_small 1.5B (Junhan Yang, 2025) 60.5 60.1 57.3 58.0 62.4 57.6 512 521 51.7 56.8

inf 7B (Junhan Yang, 2025) 67.7 64.7 63.0 58.9 64.7 62.7 524  54.6 56.5 60.6

Table 2: Zeroshot VDR, by encoding generated descriptions with single-vector encoders, performs competitively
with SOTA multi-vector end-to-end VDR approaches (in gray ) on ViDoRe-v2 benchmark. Metric: nDCG@5.

BERT (Devlin et al., 2019) with 108M parameters
to large 7B-scale encoders. As shown in Figure 1,
scaling both VLLMs and text encoders leads to no-
table improvements. With descriptions generated
by Qwen2.5VL-32B, the multilingual M5 encoder
(560M) achieves a moderate nDCG@5 of 55.0,
while replacing M5 with INF-1.5B and INF-7B
yields gains of 8.9% and 15%, respectively. Inter-
estingly, even with the smallest VLM (InternVL3-
2B), the INF-7B encoder achieves strong perfor-
mance (nDCG@5 = 59.4), outperforming most su-
pervised VDR models on ViDoRe-v2. Using larger
VLMs (e.g., 7B or 72B) can further enhance re-
trieval performance by up to 6%, although we find
that scaling the text encoder provides greater bene-
fit than scaling the VL.Ms.

Examining dataset-level results reveals contrast-
ing trends between English and non-English cor-

pora. E2E models trained on multilingual data
(e.g., ColNomic or ColQwen-2.5) excel on the
English-only corpora, including RERB (Restau-
rants), SMBTI (Biomedical), and SEME (Eco-
nomics). In contrast, zero-shot approaches, ex-
cept for Splade-v3 (Lassance et al., 2024) trained
exclusively on English, perform better on the mul-
tilingual and cross-lingual retrieval tasks, most no-
tably on SAXAM (Insurance) and SRS (Restau-
rant). These findings underscore the need to further
strengthen the multilingual capabilities of end-to-
end Visual Document Retrieval models.

As the generate-and-encode process is per-
formed offline on the document side, our zero-shot
VDR approach does not add to retrieval latency.
Retrieval latency therefore matches that of any end-
to-end VDR model that has the same size as our
text encoder. Document-side inference is slower
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Model en

de

ja

zh

fr

Yo

SwW

id

Avg

64.2
67.8
67.8
66.1

colgwen2-v1.0
vdr-2b-multi-v1
gme-qwen2-vI2b-instruct
dse-qwen2-2b-mrl-v1

60.0
62.1
63.5
62.7

69.7
65.5
73.1
62.3

49.3
59.6
63.1
59.6

68.8
71.9
68.5
71.6

512
45.8
48.8
41.8

49.3
45.1
53.5
41.6

532
52.5
542
48.7

58.2
58.8
61.6
56.8

InternVL-2B + me5-base
InternVL-2B + meS5-large
InternVL-2B + inf-small

61.5
65.5
71.5

62.2
67.3
71.3

72.7
71.3
79.8

60.9
67.0
75.3

69.9
72.8
81.3

67.4
74.1
74.1

63.9
69.0
69.0

56.7
58.0
62.6

64.4
68.9
72.1

Table 3: nDCG@ 10 performance of SERVAL compared with baselines on MIRACL-VISION. (Osmulski et al.,
2025). SERVAL significantly outperforms baselines (in gray) that encode document images directly.

because of the description-generation phase, espe-
cially with large 32B or 72B VLMs. Techniques
such as pruning (Sun et al., 2023), quantization
(Lin et al., 2024), and K-V caching (Li et al., 2024)
can accelerate generation and are already imple-
mented in frameworks like vLLM (Kwon et al.,
2023) and LMDeploy (Contributors, 2023).

Most importantly, a lightweight configuration
that pairs a small VLM (InternVL3-2B) with a
small text encoder (INF 1.5B) still achieves an
nDCG@5 of 54.0. This matches the performance
of the supervised Voyage Multimodal 3 (Voyage,
2024), yet requires no task-specific training, high-
lighting the cost-efficient appeal of our zeroshot
generate-and-encode approach.

Table 3 presents results on MIRACL-
VISION (Osmulski et al., 2025), a benchmark with
larger multilingual collections than Vidore-V2
and a broader coverage of languages, including
low-resource ones. This setting tests the scalability
of SERVAL beyond small collections. SERVAL
(InternVL-2B + inf-small) achieves the best aver-
age score of 72.1 nDCG @10, compared to 61.6 for
the strongest baseline (gme-qwen2-vI2b-instruct),
a gain of +10.5 points. The improvements are par-
ticularly pronounced on low-resource languages,
with +25.3 on Yoruba (74.1 vs. 48.8) and +15.5 on
Swabhili (69.0 vs. 53.5). These results demonstrate
that SERVAL not only scales effectively to larger
collections but also delivers robust performance
across both high- and low-resource languages.

5 Generation Latency

We provide an analysis of the time taken to gen-
erate a description for a single image with differ-
ent Vision-Language Models in Table 4. We mea-
sured the generation time on a single H100 GPU
using Imdeploy as the inference engine. Small
VLMs (<£14B parameters) take half a second or

Models sfimg
QwenVL2.5 -7B 0.290
QwenVL2.5-32B 1.080
QwenVL2.5-72B 1.610
InternVL3 - 2B 0.260
InternVL3 - 8B 0.350
InternVL3 — 14B 0.530

Table 4: Average description generation latency when
producing descriptions of visual documents.

less to generate one description, while larger mod-
els (i.e., QwenVL2.5 32B and 72B) require more
than one second per image. This generation step is
not latency-sensitive, as it can be performed offline
and only once per document. It is also feasible to
use lower-end GPUs like A100s, which would only
tolerably increase this offline generation time. The
encoding latency of our approach on generated text
is the same as (or even faster than, as we skip the
vision transformer encoder) that of an end-to-end
supervised VDR encoder.

6 Conclusion

In this work, we revisit zero-shot visual docu-
ment retrieval by pairing a pretrained text encoder
with document descriptions generated by a vi-
sion—-language model. Contrary to the findings
of Faysse et al. (2024), we show that this simple
training-free method achieves strong performance
on the recent ViDoRe-v2 and MIRACL-VISION
benchmarks, rivaling state-of-the-art end-to-end
models trained specifically for VDR. Moreover,
our zeroshot generate-and-encode strategy remains
robust even in lightweight, practical settings that
rely on small VLMs and compact text encoders.
We hope this study establishes a strong baseline for
future research on more capable VDR models.
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Limitations

In this work, we focus on VDR with text-only
queries, leaving multimodal query formulations
and downstream applications for future exploration.
Another limitation is that SERVAL depends on
VLM-generated text, which incurs an offline doc-
ument preprocessing overhead and may introduce
translation artifacts or hallucinations. These fac-
tors point to several promising directions for future
work, including support for multimodal queries,
hybrid text—layout representations, and systematic
evaluation of hallucinations.

Ethical Considerations

Our experiments rely exclusively on publicly re-
leased, pretrained vision—language models and text
encoders. Prior work has shown that such models
may encode social and linguistic biases (Hamidieh
et al., 2024; May et al., 2019). Because our study
involves no additional training or fine-tuning, we
do not introduce new biases; however, any biases
present in the underlying models may still influence
our results.
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A Examples of generated descriptions by InternVL3

Bar Chart: Subchondral Bone Formation Comparison

Summary: The image displays a bar chart comparing the percentage
of subchondral bone formation across different treatment groups.
ol Ooss o The chart illustrates the results for two conditions: FPG and Condy-
lus. The groups compared are Control, Chondro-Gide® treated, and
Periosteum treated. The results show that the Periosteum group has
the highest subchondral bone percentage, with significant differences
P S— marked with an asterisk. Details Y-Axis: Labeled as "Subchondral
GroupofTreatment Bone (%)" ranging from 0 to 100. X-Axis: Labeled as "Group of
Dmmsicammminn) - Tregtment," with categories: Control, Chondro-Gide®, and Perios-
teum. Bars: FPG (Filled Black Bars): Control: Approximately 40%
Chondro-Gide®: Approximately 55% Periosteum: Approximately 75% with an asterisk indicating
significance. Condylus (Outlined White Bars): Control: Approximately 50% Chondro-Gide®:
Approximately 50% Periosteum: Approximately 90% with an asterisk indicating significance.
Visible Text and Numerical Values Legend: FPG (filled square) Condylus (outlined square)
X-Axis Labels: Control Chondro-Gide® Periosteum Y-Axis Labels: 0, 20, 40, 60, 80, 100 Aster-
isks: Indicating statistical significance for the Periosteum group in both conditions. Citation: "M
Russlies, et al., Cell and Tiss. Res. 319:133;2005"

Subchondral Bone (%)
a o«
& 8

N
=3

o

Complex Graph: Tesla vs S&P 500 Stock Performance

The image is a financial chart comparing the performance of Tesla
(TSLA) and the S &P 500 over a specified period. It shows the
percentage change in value over time, with Tesla represented by the
blue line and the S &P 500 by the orange line. Key earnings dates
(marked with an "E") are highlighted on the chart. Summary: The
chart illustrates the relative performance of Tesla and the S &P 500
from late 2021 to mid-2022. Tesla shows more volatility compared to
the S &P 500. Both indices experienced declines, with Tesla having
a larger drop. Details: Tesla (TSLA, Blue Line): Starts around 0%
change. Peaks significantly multiple times, showing high volatility.
Ends with a total decrease of approximately -24.59%. S &P 500 (Orange Line): Starts around 0%
change. Shows less volatility compared to Tesla. Ends with a decrease of approximately -19.27%.
Earnings Dates: Marked with an "E" on specific dates: Wed 26 Jan *22 Wed 20 Apr *22 Wed 20 Jul
’22 Wed 19 Oct ’22 Percentage Change Scale: Ranges from -30.00% to 50.00%. Chart Source:
Published on TradingView.com by Investopedia on Oct 17, 2022, at 08:12 UTC-4. Extracted
Text and Numerical Values: "Investopedia published on TradingView.com, Oct 17, 2022 08:12
UTC-4" "TSLA" "S &P 500" Percentage change scale: "-30.00%", "-20.00%", "-10.00%", "0.00%",
"10.00%", "20.00%", "30.00%", "40.00%", "50.00%" Tesla change: "-24.59%" S &P 500 change:
"-19.27%" Dates: "0 Oct *21" "Wed 26 Jan *22" "Wed 20 Apr *22" "Wed 20 Jul *22" "Sep" "Wed
19 Oct" This chart provides a visual representation of how Tesla’s stock has been more volatile and
has underperformed relative to the S &P 500 over the given period.
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Complex Diagram: Guessing Game Flowchart

Summary The image shows a flowchart on a whiteboard that outlines
a simple guessing game logic. The flowchart starts with generating
a random target number and then prompts the user to guess the
number. It checks if the guess matches the target and provides
feedback accordingly, looping back if the guess is incorrect. Details
The flowchart begins with a "Start" step, followed by generating a
random target number. The user is then prompted to input a guess.
The guess is compared to the target number, and based on whether
they match, different actions are taken: If the guess is correct, it prints "you won!" and ends. If
the guess is incorrect, it prints "wrong guess, try again" and loops back to reading another guess.
Extracted Text and Numerical Values Start target = random() Read guess target == guess True
print "you won!" False print "wrong guess, try again"

Visual Table: Macro Economics

September 28, September 29, Summary The lmage dlS-

: 29 Al plays a table summarizing
Total assets: .
IMER $ L0 § 645791 the total assets for differ-
LU 93844 Sa7510 ent regions and corporate
EMEA 209,541 193,797 L. K
o R 50,608 155,544 eliminations as of September
§ 2000883 § 1932642 28, 2019, and September 29,

2018. The regions listed are

AMER, APAC, and EMEA.
The table provides a comparative view of the total assets for each region and the corporate elimi-
nations over the two years. Details AMER September 28, 2019: $751,990 September 29, 2018:
$645,791 APAC September 28, 2019: $958,744 September 29, 2018: $937,510 EMEA September
28,2019: $209,541 September 29, 2018: $193,797 Corporate and eliminations September 28, 2019:
$80,608 September 29, 2018: $155,544 Total Assets September 28, 2019: $2,000,883 September
29, 2018: $1,932,642 Extracted Text and Numerical Values Total assets: AMER September 28,
2019: $751,990 September 29, 2018: $645,791 APAC September 28, 2019: $958,744 Septem-
ber 29, 2018: $937,510 EMEA September 28, 2019: $209,541 September 29, 2018: $193,797
Corporate and eliminations September 28, 2019: $80,608 September 29, 2018: $155,544 Total
September 28, 2019: $2,000,883 September 29, 2018: $1,932,6423

B ViDoRe benchmark

The map from copora short names to its full name on HuggingFace is shown in Table 5.

Abbreviation HuggingFace Path

RERB vidore/restaurant_esg_reports_beir

SAXA vidore/synthetic_axa_filtered_v1.0

SAXAM vidore/synthetic_axa_filtered_v1.0_multilingual

SEME vidore/synthetic_economics_macro_economy_2024_filtered_v1.0

SMBTI vidore/synthetic_mit_biomedical_tissue_interactions_unfiltered

SMBTIM vidore/synthetic_mit_biomedical_tissue_interactions_unfiltered_multilingual
SRS vidore/synthetic_rse_restaurant_filtered_v1.0

SRSM vidore/synthetic_rse_restaurant_filtered_v1.0_multilingual

SEMEM vidore/synthetics_economics_macro_economy_2024_filtered_v1.0_multilingual

Table 5: Mapping from dataset abbreviations to their full paths.
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C Detailed Zeroshot VDR Results

The full evaluation results, including all metrics (nDCG@ 1, nDCG@5, nDCG@10, R@1, R@5, R@10)
are shown in Table 6, Table 7, Table 8, Table 9, Table 10, Table 11 respectively.

VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM ‘ AVG
splade 108M (Lassance et al., 2024) 61.2 333 30.6 60.3 57.5 36.2 333 303 284 412
open search vl 133M (Geng et al., 2024)  60.6 222 30.6 63.8 53.8 36.7 29.8 272 31.0 39.5
me5_base 278M (Wang et al., 2024) 36.5 444 50.0 60.3 494 44.4 404 417 47.0 46.0
Qwen2.5VL-7B  me5_large S560M (Wang et al., 2024) 58.3 44 .4 56.9 56.9 54.4 49.8 544 553 50.9 535
inf_small 1.5B (Junhan Yang, 2025) 58.7 61.1 66.7 552 58.8 51.7 56.1 50.9 51.3 56.7
inf 7B (Junhan Yang, 2025) 63.5 722 70.8 552 61.3 59.5 59.6  57.0 54.3 61.5
sfr 7B (Junhan Yang, 2025) 63.5 722 69.4 552 56.9 53.1 579  56.6 48.3 59.2
splade 108M (Lassance et al., 2024) 66.0 55.6 36.1 70.7 62.5 37.8 29.8  30.7 34.5 47.1
open search vl 133M (Geng et al., 2024)  59.6 27.8 333 72.4 62.5 36.9 28.1  28.1 345 42.6
me5_base 278M (Wang et al., 2024) 54.5 50.0 55.6 56.9 50.6 42.5 509 465 45.7 50.3
Qwen2.5VL-32B  me5_large 560M (Wang et al., 2024) 64.1 50.0 514 534 56.9 53.4 526 557 522 54.4
inf_small 1.5B (Junhan Yang, 2025) 60.3 71.8 70.8 56.9 58.8 55.3 45.6 487 522 58.5
inf 7B (Junhan Yang, 2025) 67.9 722 76.4 58.6 60.6 59.8 56.1 579 54.3 62.7
sfr 7B (Junhan Yang, 2025) 583 722 750 603 619 59.1 561 56.1 534 | 614
splade 108M (Lassance et al., 2024) 56.4 16.7 25.0 65.5 60.6 39.8 28.1  31.1 319 395
open search vl 133M (Geng et al., 2024)  58.3 16.7 222 70.7 58.1 39.5 298 28.5 27.2 39.0
me5_base 278M (Wang et al., 2024) 32.7 44.4 59.7 534 54.4 45.0 474 443 46.1 47.5
Qwen2.5VL-72B  me5_large 560M (Wang et al., 2024) 59.6 44.4 55.6 56.9 58.8 53.1 509 478 534 534
inf_small 1.5B (Junhan Yang, 2025) 58.3 50.0 62.5 69.0 60.0 53.0 439 469 54.3 553
inf 7B (Junhan Yang, 2025) 67.9 722 69.4 62.1 63.1 60.5 56.1 539 62.9 63.1
sfr 7B (Junhan Yang, 2025) 62.2 61.1 66.7 58.6 60.0 559 56.1 539 49.1 58.2
splade 108M (Lassance et al., 2024) 50.6 50.0 29.2 759 53.8 355 21.1 259 33.6 41.7
open search vl 133M (Geng et al., 2024)  41.0 61.1 33.3 74.1 53.1 342 193 241 319 414
me5_base 278M (Wang et al., 2024) 39.1 55.6 38.9 46.6 41.9 39.4 35.1 31.6 40.5 40.9
InternVL3-2B me5_large 560M (Wang et al., 2024) 55.8 44.4 43.1 60.3 494 484 526 482 45.7 49.8
inf_small 1.5B (Junhan Yang, 2025) 53.8 66.7 58.3 60.3 55.0 49.8 333 373 474 51.3
inf 7B (Junhan Yang, 2025) 61.5 833 66.7 56.9 59.4 57.2 456 447 53.0 58.7
sfr 7B (Junhan Yang, 2025) 59.6 66.7 514 51.7 59.4 57.0 56.1 544 41.8 553
splade 108M (Lassance et al., 2024) 55.1 27.8 27.8 67.2 59.4 375 28.1 325 323 40.9
open search vl 133M (Geng et al., 2024)  52.6 333 34.7 62.1 55.6 36.9 35.1 325 29.7 414
me5_base 278M (Wang et al., 2024) 46.8 55.6 50.0 552 50.0 46.7 38.6 417 474 48.0
InternVL3-8B me5_large 560M (Wang et al., 2024) 46.8 16.7 43.1 58.6 55.6 54.5 49.1 513 513 474
inf_small 1.5B (Junhan Yang, 2025) 59.9 61.1 55.6 69.0 58.1 50.2 474 487 59.9 56.6
inf 7B (Junhan Yang, 2025) 65.4 722 70.8 67.2 60.6 59.8 579 548 63.4 63.6
sfr 7B (Junhan Yang, 2025) 55.1 44.4 61.1 552 56.9 56.4 544 548 49.6 542
splade 108M (Lassance et al., 2024) 62.2 333 27.8 51.7 60.0 37.0 351 36.0 24.1 40.8
open search vl 133M (Geng et al., 2024)  54.5 333 278 51.7 60.0 37.8 246 298 25.0 383
me5_base 278M (Wang et al., 2024) 353 55.6 48.6 53.4 48.1 41.6 439 399 40.9 453
InternVL3-14B  me5_large 560M (Wang et al., 2024) 63.5 389 444 552 55.0 51.6 49.1 513 483 50.8
inf_small 1.5B (Junhan Yang, 2025) 56.4 61.1 56.9 62.1 58.1 50.2 439 434 55.6 542
inf 7B (Junhan Yang, 2025) 61.5 722 69.4 60.3 64.4 60.2 509 513 61.2 61.3
sfr 7B (Junhan Yang, 2025) 64.1 72.2 583 48.3 55.0 55.0 579 592 47.8 57.5

Table 6: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: nDCG@1.
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VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM | AVG

splade 108M (Lassance et al., 2024) 64.8 32.1 30.6 56.4 59.8 39.8 33.8 354 274 422
open search vl 133M (Geng et al., 2024)  61.0 29.0 30.5 59.1 59.7 41.3 337 348 29.5 42.1
me5_base 278M (Wang et al., 2024) 45.2 48.3 51.7 49.1 539 48.2 44.1 449 40.7 473
Qwen2.5VL-7B  me5_large 560M (Wang et al., 2024) 64.5 56.5 58.0 52.5 58.6 559 559 555 47.8 56.1
inf_small 1.5B (Junhan Yang, 2025) 60.2 65.2 64.4 58.1 60.6 57.1 57.1 549 515 58.8
inf 7B (Junhan Yang, 2025) 66.3 72.0 65.0 572 64.9 62.2 574 563 54.5 61.8
sfr 7B (Junhan Yang, 2025) 65.8 70.3 65.7 53.6 59.8 58.0 563 579 475 59.4
splade 108M (Lassance et al., 2024) 69.3 53.1 38.5 58.1 63.1 40.8 350 352 294 46.9
open search vl 133M (Geng et al., 2024)  68.0 45.6 39.1 59.7 63.0 414 342 338 28.8 46.0
me5_base 278M (Wang et al., 2024) 59.0 49.9 522 50.0 55.5 48.8 51.3 519 442 514
Qwen2.5VL-32B  me5_large S60M (Wang et al., 2024) 68.8 53.8 535 49.1 60.6 57.1 520 540 46.2 55.0
inf_small 1.5B (Junhan Yang, 2025) 67.9 68.3 66.4 56.6 60.9 58.6 548 553 50.0 59.9
inf 7B (Junhan Yang, 2025) 70.7 69.7 69.4 59.0 65.1 63.0 59.0 595 55.5 63.4
sfr 7B (Junhan Yang, 2025) 65.7 72.8 72.1 54.4 61.5 59.6 579  59.1 479 61.2
splade 108M (Lassance et al., 2024) 63.8 16.4 25.8 59.8 62.7 42.1 319 370 30.1 41.1
open search vl 133M (Geng et al., 2024)  61.5 20.2 28.1 62.4 61.2 42.4 319 353 289 41.3
me5_base 278M (Wang et al., 2024) 45.6 49.5 553 49.6 574 48.7 437  46.1 429 48.8
Qwen2.5VL-72B  me5_large 560M (Wang et al., 2024) 66.1 50.8 56.0 525 61.6 58.0 505  49.0 49.2 549
inf_small 1.5B (Junhan Yang, 2025) 67.3 58.8 62.1 62.7 62.6 59.3 51.7 537 52.6 59.0
inf 7B (Junhan Yang, 2025) 68.9 70.7 67.9 60.3 65.5 63.2 582 586 57.7 63.4
sfr 7B (Junhan Yang, 2025) 66.0 66.0 66.8 54.4 62.2 60.4 59.0 58.1 46.9 60.0
splade 108M (Lassance et al., 2024) 52.7 48.1 28.6 58.6 58.6 39.6 284 335 30.0 42.0
open search vl 133M (Geng et al., 2024)  48.6 59.4 324 59.9 58.7 39.3 29.1 312 29.9 432
me5_base 278M (Wang et al., 2024) 44.0 52.0 36.5 47.1 50.4 463 386 381 39.8 43.6
InternVL3-2B me5_large 560M (Wang et al., 2024) 61.4 529 42.0 514 56.7 54.8 526 507 43.9 51.8
inf_small 1.5B (Junhan Yang, 2025) 59.8 62.5 54.1 529 59.3 552 472 487 46.2 54.0
inf 7B (Junhan Yang, 2025) 63.3 725 62.6 55.0 63.8 60.7 529 521 51.3 59.4
sfr 7B (Junhan Yang, 2025) 64.5 68.0 55.8 45.7 62.5 59.9 54.8 552 41.3 56.4
splade 108M (Lassance et al., 2024) 65.6 30.7 31.2 58.0 60.6 40.6 349 382 30.3 43.3
open search vl 133M (Geng et al., 2024)  60.2 32.0 34.0 59.0 59.5 41.0 364 379 29.5 433
me5_base 278M (Wang et al., 2024) 52.0 48.7 50.7 48.8 52.7 49.1 419 453 41.3 47.8
InternVL3-8B me5_large 560M (Wang et al., 2024) 58.1 38.8 49.6 522 59.8 57.7 53.1 56.0 47.5 52.5
inf_small 1.5B (Junhan Yang, 2025) 63.0 544 57.6 58.8 63.4 57.8 506 519 525 56.7
inf 7B (Junhan Yang, 2025) 66.7 62.9 64.8 573 65.5 63.0 576 574 54.6 61.1
sfr 7B (Junhan Yang, 2025) 63.9 572 62.0 50.0 62.0 59.5 575 572 449 57.1
splade 108M (Lassance et al., 2024) 68.5 38.0 31.4 53.8 61.0 40.7 369 37.6 26.1 43.8
open search vl 133M (Geng et al., 2024)  61.3 39.8 32.7 54.7 60.3 41.1 322 348 27.0 427
me5_base 278M (Wang et al., 2024) 47.7 56.2 529 49.7 51.7 46.3 452 450 40.0 48.3
InternVL3-14B me5_large 560M (Wang et al., 2024) 67.7 543 53.0 524 58.3 55.2 542 551 44.9 55.0
inf_small 1.5B (Junhan Yang, 2025) 60.5 60.1 573 58.0 62.4 57.6 512 521 51.7 56.8
inf 7B (Junhan Yang, 2025) 67.7 64.7 63.0 58.9 64.7 62.7 524 546 56.5 60.6
sfr 7B (Junhan Yang, 2025) 66.8 69.1 61.5 49.8 61.0 59.8 550 57.0 45.0 58.3

Table 7: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: nDCG@5.
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VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM | AVG

splade 108M (Lassance et al., 2024) 68.0 323 31.4 56.4 63.3 43.3 40.1 410 28.8 449
open search vl 133M (Geng et al., 2024)  65.4 30.9 31.5 55.6 62.5 44.1 379 384 289 439
me5_base 278M (Wang et al., 2024) 50.1 49.5 51.6 48.7 56.7 51.4 504 502 40.1 49.9
Qwen2.5VL-7B  me5_large 560M (Wang et al., 2024) 68.1 56.6 58.1 50.1 63.6 60.1 59.5  59.6 46.1 58.0
inf_small 1.5B (Junhan Yang, 2025) 65.4 63.6 64.3 54.6 65.2 61.0 60.5 593 50.0 60.4
inf 7B (Junhan Yang, 2025) 68.4 70.1 65.8 54.9 68.0 65.5 609 595 53.1 62.9
sfr 7B (Junhan Yang, 2025) 68.1 69.6 67.4 50.8 63.2 61.3 60.7 624 46.7 61.1
splade 108M (Lassance et al., 2024) 74.2 54.7 41.8 574 66.0 444 410 410 30.0 50.1
open search vl 133M (Geng et al., 2024)  71.7 50.5 42.8 58.8 65.8 45.1 40.6 393 30.0 494
me5_base 278M (Wang et al., 2024) 61.6 512 53.8 47.5 59.5 53.1 56.3 554 41.6 533
Qwen2.5VL-32B  me5_large S60M (Wang et al., 2024) 71.5 552 55.0 47.6 64.2 60.7 56.8 579 45.0 57.1
inf_small 1.5B (Junhan Yang, 2025) 69.6 68.3 65.6 55.7 64.7 61.9 582 60.0 49.0 61.5
inf 7B (Junhan Yang, 2025) 73.9 69.9 69.2 554 68.0 66.3 645 647 529 65.0
sfr 7B (Junhan Yang, 2025) 68.0 70.4 713 512 65.0 63.1 625 634 46.9 62.4
splade 108M (Lassance et al., 2024) 68.1 19.3 28.8 56.2 66.0 454 383 420 30.7 439
open search vl 133M (Geng et al., 2024)  66.5 245 31.1 59.3 64.7 454 395 40.1 29.6 44.5
me5_base 278M (Wang et al., 2024) 48.5 51.7 56.4 49.0 61.0 52.8 49.6 509 41.7 51.3
Qwen2.5VL-72B  me5_large S60M (Wang et al., 2024) 68.1 52.6 57.1 51.6 64.9 61.6 55.1 542 479 57.0
inf_small 1.5B (Junhan Yang, 2025) 69.0 59.2 61.5 59.5 65.8 624 56.6 59.3 512 60.5
inf 7B (Junhan Yang, 2025) 70.8 70.8 66.9 582 68.5 66.8 634 636 56.1 65.0
sfr 7B (Junhan Yang, 2025) 70.2 66.6 66.5 52.6 67.1 63.7 619 629 46.8 62.0
splade 108M (Lassance et al., 2024) 59.0 51.5 29.6 58.6 62.8 433 356 399 30.7 45.7
open search vl 133M (Geng et al., 2024)  54.2 60.0 33.1 58.4 62.4 43.1 350 372 30.4 46.0
me5_base 278M (Wang et al., 2024) 47.7 53.6 39.2 46.0 54.7 50.0 424 423 39.3 46.1
InternVL3-2B me5_large 560M (Wang et al., 2024) 65.5 554 45.5 48.4 60.6 584 54.1 534 43.0 53.8
inf_small 1.5B (Junhan Yang, 2025) 61.7 61.4 54.9 53.4 63.1 58.6 51.8 537 47.1 56.2
inf 7B (Junhan Yang, 2025) 68.3 72.7 63.7 542 67.2 64.4 56.6 558 512 61.6
sfr 7B (Junhan Yang, 2025) 66.4 65.3 55.5 439 66.1 63.3 59.1 599 41.2 579
splade 108M (Lassance et al., 2024) 67.3 32.0 333 56.0 64.1 44.1 40.1 435 31.0 457
open search vl 133M (Geng et al., 2024)  65.0 373 36.1 55.3 63.0 44.4 422 437 29.3 46.3
me5_base 278M (Wang et al., 2024) 57.6 49.5 51.0 47.1 57.2 52.7 489 504 40.2 50.5
InternVL3-8B me5_large 560M (Wang et al., 2024) 62.9 41.0 51.8 49.0 63.3 60.9 585 605 45.3 54.8
inf_small 1.5B (Junhan Yang, 2025) 66.0 544 58.2 57.3 65.9 60.7 562 573 512 58.6
inf 7B (Junhan Yang, 2025) 70.5 65.4 64.0 56.4 68.4 66.5 61.6 61.7 53.6 63.1
sfr 7B (Junhan Yang, 2025) 68.1 58.8 63.0 48.0 64.6 63.4 61.1  62.1 439 59.2
splade 108M (Lassance et al., 2024) 70.6 41.8 34.0 53.4 64.5 44.2 41.8 428 28.0 46.8
open search vl 133M (Geng et al., 2024)  64.4 45.6 359 55.0 63.9 44.7 376 404 28.6 46.2
me5_base 278M (Wang et al., 2024) 534 58.8 56.1 46.6 55.4 50.1 492 493 39.7 50.9
InternVL3-14B me5_large 560M (Wang et al., 2024) 70.8 56.1 54.6 50.3 62.1 59.0 583  59.1 44.1 572
inf_small 1.5B (Junhan Yang, 2025) 63.1 61.2 58.9 573 66.0 61.4 56.0 56.7 50.9 59.1
inf 7B (Junhan Yang, 2025) 70.1 65.5 64.7 56.0 68.0 66.2 58.1 595 542 62.5
sfr 7B (Junhan Yang, 2025) 69.0 67.1 62.9 48.1 64.3 63.0 60.3 625 45.0 60.3

Table 8: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: nDCG@10.

30819



VLM Text Encoder RERB SAXA SAXAM SEME SMBTI SMBTIM SRS SRSM SEMEM | AVG

splade 108M (Lassance et al., 2024) 41.6 12.0 12.6 10.0 33.7 21.9 155 146 3.7 18.4
open search vl 133M (Geng et al., 2024)  40.8 10.6 12.7 11.0 333 223 13.7 129 42 18.0
me5_base 278M (Wang et al., 2024) 243 23.1 26.2 6.9 30.3 26.1 209 207 4.8 20.4
Qwen2.5VL-7B me5_large 560M (Wang et al., 2024) 443 24.1 277 7.6 329 30.2 276 278 15 255
inf_small 1.5B (Junhan Yang, 2025) 41.3 25.6 31.0 59 36.1 325 277 241 15 258
inf 7B (Junhan Yang, 2025) 45.1 36.8 352 58 38.5 36.5 265 253 8.2 28.7
sfr 7B (Junhan Yang, 2025) 43.7 31.8 33.6 7.1 32.0 29.8 252 251 6.1 26.0
splade 108M (Lassance et al., 2024) 45.0 28.5 18.0 11.1 36.6 23.7 13.8 138 43 21.6
open search vl 133M (Geng et al., 2024)  42.1 16.2 17.7 11.4 36.7 229 142 135 4.4 19.9
me5_base 278M (Wang et al., 2024) 38.5 29.6 274 6.5 323 27.1 219 204 53 232
Qwen2.5VL-32B  me5_large S60M (Wang et al., 2024) 44.8 28.7 30.1 6.7 345 31.7 254 271 6.0 26.1
inf_small 1.5B (Junhan Yang, 2025) 432 374 349 6.3 34.6 33.7 236 253 5.0 27.1
inf 7B (Junhan Yang, 2025) 51.5 36.8 39.5 7.3 37.6 36.9 28.7 288 6.7 30.4
sfr 7B (Junhan Yang, 2025) 420 36.7 39.3 10.3 353 34.2 249 247 9.2 285
splade 108M (Lassance et al., 2024) 37.5 22 9.0 8.8 36.8 24.8 143 14.0 39 16.8
open search vl 133M (Geng et al., 2024) ~ 39.5 2.7 7.8 9.7 353 247 13.1 129 2.8 16.5
me5_base 278M (Wang et al., 2024) 19.8 23.8 30.2 53 343 27.2 194 177 5.1 20.3
Qwen2.5VL-72B  me5_large S60M (Wang et al., 2024) 41.8 20.7 26.2 9.4 34.6 30.9 24.1 214 9.9 243
inf_small 1.5B (Junhan Yang, 2025) 42.5 219 28.6 13.4 37.8 332 215 232 7.7 255
inf 7B (Junhan Yang, 2025) 50.0 31.6 33.7 11.2 39.3 37.0 268 243 10.5 29.4
sfr 7B (Junhan Yang, 2025) 43.0 25.6 28.5 10.8 35.7 32.4 256 263 7.6 26.2
splade 108M (Lassance et al., 2024) 32.1 23.8 12.0 14.8 33.8 229 8.4 10.6 5.8 18.3
open search vl 133M (Geng et al., 2024)  29.7 35.6 15.3 134 335 21.9 73 10.3 5.0 19.1
me5_base 278M (Wang et al., 2024) 28.2 29.4 20.2 55 27.5 25.5 174 144 4.4 19.2
InternVL3-2B me5_large 560M (Wang et al., 2024) 39.9 19.2 20.5 59 31.3 30.3 265 243 5.1 22.6
inf_small 1.5B (Junhan Yang, 2025) 39.1 30.2 26.8 9.5 33.9 30.7 162 19.1 8.1 23.7
inf 7B (Junhan Yang, 2025) 46.6 42.7 333 11.1 37.3 35.6 226 220 11.2 29.2
sfr 7B (Junhan Yang, 2025) 453 239 20.7 5.6 35.0 33.7 246 241 4.8 242
splade 108M (Lassance et al., 2024) 37.9 8.2 9.9 9.2 37.2 23.7 146 154 3.7 17.8
open search vl 133M (Geng et al., 2024)  35.8 9.6 12.7 7.3 342 229 173 15.6 3.1 17.6
me5_base 278M (Wang et al., 2024) 36.4 29.2 22.4 6.2 325 29.4 189  19.7 6.6 22.4
InternVL3-8B me5_large 560M (Wang et al., 2024) 325 9.3 22.1 6.5 33.0 32.4 237 260 6.0 21.3
inf_small 1.5B (Junhan Yang, 2025) 45.0 24.6 25.6 122 36.4 30.8 212 226 10.2 254
inf 7B (Junhan Yang, 2025) 474 31.8 314 9.9 37.7 37.3 249 252 10.0 28.4
sfr 7B (Junhan Yang, 2025) 37.2 22.4 29.9 7.0 33.1 33.1 226 228 6.2 23.8
splade 108M (Lassance et al., 2024) 43.5 11.2 9.8 6.6 36.5 23.6 17.0  15.6 2.6 18.5
open search vl 133M (Geng et al., 2024)  37.9 11.7 11.1 7.2 36.3 232 12.1 132 2.7 17.3
me5_base 278M (Wang et al., 2024) 23.5 38.1 27.6 6.4 28.4 24.8 19.1 17.8 54 21.2
InternVL3-14B me5_large 560M (Wang et al., 2024) 42.0 21.4 21.2 8.3 314 29.9 258 260 73 23.7
inf_small 1.5B (Junhan Yang, 2025) 384 29.7 26.8 10.1 36.0 31.6 207 211 8.2 24.7
inf 7B (Junhan Yang, 2025) 42.6 36.0 34.6 6.9 384 36.9 21.0 225 8.5 275
sfr 7B (Junhan Yang, 2025) 45.1 31.8 26.2 4.8 322 32.0 260 276 6.1 258

Table 9: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: Recall@1.
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splade 108M (Lassance et al., 2024) 69.2 26.3 27.1 30.2 61.4 43.0 356 382 13.4 383
open search vl 133M (Geng et al., 2024)  63.2 30.5 29.2 31.3 63.5 45.6 384 384 15.6 395
me5_base 278M (Wang et al., 2024) 522 49.9 50.9 25.6 57.3 51.8 449  46.6 20.8 444
Qwen2.5VL-7B  me5_large 560M (Wang et al., 2024) 69.3 58.8 57.3 27.0 62.1 59.6 564  55.6 245 523
inf_small 1.5B (Junhan Yang, 2025) 60.8 62.0 57.3 327 61.6 59.9 579 575 27.1 53.0
inf 7B (Junhan Yang, 2025) 69.2 64.8 56.1 31.0 67.1 64.2 585 579 292 553
sfr 7B (Junhan Yang, 2025) 68.7 63.7 58.7 28.6 63.0 61.9 56.5 599 24.5 54.0
splade 108M (Lassance et al., 2024) 74.9 48.1 36.0 30.3 65.6 44.2 39.8 377 15.1 435
open search vl 133M (Geng et al., 2024) 759 51.9 38.5 30.5 65.5 452 379 360 14.8 44.0
me5_base 278M (Wang et al., 2024) 63.9 482 50.4 27.0 59.5 53.1 539 550 239 483
Qwen2.5VL-32B  me5_large S60M (Wang et al., 2024) 73.1 56.1 52.5 25.6 63.1 60.9 53.0 550 234 51.4
inf_small 1.5B (Junhan Yang, 2025) 73.5 60.7 582 314 62.6 61.0 574 581 27.0 54.4
inf 7B (Junhan Yang, 2025) 70.9 63.5 60.6 334 67.1 64.6 60.7 61.2 30.6 56.9
sfr 7B (Junhan Yang, 2025) 69.0 66.1 63.7 285 62.6 61.0 588 615 24.3 55.0
splade 108M (Lassance et al., 2024) 73.0 11.1 23.1 314 64.1 453 36.1 394 15.7 37.7
open search vl 133M (Geng et al., 2024) ~ 68.3 17.6 27.1 322 63.2 46.1 369 393 16.6 38.6
me5_base 278M (Wang et al., 2024) 55.6 543 534 27.6 59.9 51.3 432 479 24.0 46.4
Qwen2.5VL-72B  me5_large S60M (Wang et al., 2024) 70.6 50.9 53.8 273 64.6 62.3 48.6 49.0 26.5 50.4
inf_small 1.5B (Junhan Yang, 2025) 73.1 60.1 57.1 32.1 64.2 62.8 554 563 269 542
inf 7B (Junhan Yang, 2025) 70.5 64.6 60.8 33.0 67.6 65.7 581 609 29.9 56.8
sfr 7B (Junhan Yang, 2025) 70.0 65.7 63.1 29.1 63.9 64.3 58.8 589 24.1 55.3
splade 108M (Lassance et al., 2024) 58.0 50.8 28.8 29.2 61.2 427 319 379 15.7 39.6
open search vl 133M (Geng et al., 2024)  54.5 56.9 32.1 313 62.4 429 349 348 17.0 40.8
me5_base 278M (Wang et al., 2024) 51.4 48.1 33.6 24.7 54.9 51.0 41.1 415 213 40.8
InternVL3-2B me5_large 560M (Wang et al., 2024) 65.5 55.8 40.9 26.4 61.1 59.1 503 510 23.1 48.1
inf_small 1.5B (Junhan Yang, 2025) 63.1 58.9 48.8 28.1 61.8 58.4 535 535 25.0 50.1
inf 7B (Junhan Yang, 2025) 64.2 63.6 57.0 29.6 66.3 63.3 555 559 26.7 53.6
sfr 7B (Junhan Yang, 2025) 68.0 64.3 554 23.1 64.7 62.4 55.1 555 212 522
splade 108M (Lassance et al., 2024) 76.5 30.1 30.4 30.0 61.7 435 393 418 15.6 41.0
open search vl 133M (Geng et al., 2024)  68.3 282 32.6 31.6 62.5 44.8 395 419 14.9 40.5
me5_base 278M (Wang et al., 2024) 57.5 45.1 51.8 274 54.8 51.6 42.8 483 23.5 44.8
InternVL3-8B me5_large 560M (Wang et al., 2024) 66.3 43.4 49.4 27.0 63.5 60.7 58.7 59.8 239 50.3
inf_small 1.5B (Junhan Yang, 2025) 65.0 479 52.8 30.4 66.6 62.7 539 549 27.1 51.3
inf 7B (Junhan Yang, 2025) 69.9 56.1 58.7 2717 67.8 64.8 60.3  59.7 27.1 54.7
sfr 7B (Junhan Yang, 2025) 69.6 614 579 24.8 66.5 62.4 61.7  60.0 224 54.1
splade 108M (Lassance et al., 2024) 75.3 40.4 32.4 29.3 62.3 43.7 39.1 38.6 14.1 41.7
open search vl 133M (Geng et al., 2024)  69.6 39.9 32.7 30.1 61.8 44.6 365 374 14.1 40.7
me5_base 278M (Wang et al., 2024) 579 53.7 54.6 27.6 559 51.0 477 481 232 46.6
InternVL3-14B me5_large 560M (Wang et al., 2024) 72.8 58.4 55.5 26.6 61.8 59.2 554  58.1 224 522
inf_small 1.5B (Junhan Yang, 2025) 66.1 59.3 56.0 29.8 64.1 61.4 56.3 565 26.5 529
inf 7B (Junhan Yang, 2025) 73.6 58.8 55.8 329 66.8 64.9 549 567 29.7 549
sfr 7B (Junhan Yang, 2025) 69.2 64.1 60.0 28.6 64.6 63.5 543  55.6 23.7 53.7

Table 10: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: Recall@5.
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splade 108M (Lassance et al., 2024) 77.1 30.9 329 44.7 72.6 524 50.7 534 23.7 48.7
open search vl 133M (Geng et al., 2024)  74.9 36.1 355 424 72.0 534 49.8 489 235 48.5
me5_base 278M (Wang et al., 2024) 64.5 582 572 39.7 66.9 62.4 634 63.0 324 56.4
Qwen2.5VL-7B  me5_large 560M (Wang et al., 2024) 71.5 64.4 64.5 38.4 76.2 722 68.7  69.1 355 63.0
inf_small 1.5B (Junhan Yang, 2025) 75.3 67.8 66.3 442 75.9 72.0 70.1  72.0 395 64.8
inf 7B (Junhan Yang, 2025) 74.9 71.1 67.0 45.0 77.1 74.8 715 699 423 65.9
sfr 7B (Junhan Yang, 2025) 76.3 72.6 72.7 39.6 73.7 72.5 73.0 763 37.0 66.0
splade 108M (Lassance et al., 2024) 88.1 59.7 49.9 44.6 74.8 54.0 55.7 53.6 242 56.1
open search vl 133M (Geng et al., 2024)  86.2 66.8 53.0 45.5 73.8 55.2 56.5 520 253 57.1
me5_base 278M (Wang et al., 2024) 71.0 573 60.1 37.6 71.0 65.0 69.5 67.0 335 59.1
Qwen2.5VL-32B  me5_large S60M (Wang et al., 2024) 80.4 62.9 59.9 37.2 73.8 71.6 67.1 67.3 355 61.7
inf_small 1.5B (Junhan Yang, 2025) 78.2 70.6 66.4 455 74.3 71.3 704 734 39.5 65.5
inf 7B (Junhan Yang, 2025) 79.9 71.6 69.0 442 76.7 752 774 774 42.0 68.2
sfr 7B (Junhan Yang, 2025) 76.3 71.5 72.6 38.8 74.0 724 740 764 35.6 65.7
splade 108M (Lassance et al., 2024) 83.8 23.1 34.6 42.8 74.5 54.6 514 545 25.8 49.5
open search vl 133M (Geng et al., 2024)  80.3 32.8 38.8 45.0 73.8 54.6 554 533 254 51.0
me5_base 278M (Wang et al., 2024) 64.2 61.1 59.9 40.4 70.8 63.6 62.6 63.1 347 57.8
Qwen2.5VL-72B  me5_large S60M (Wang et al., 2024) 71.3 63.8 63.2 38.6 74.5 73.0 65.0 654 36.6 61.9
inf_small 1.5B (Junhan Yang, 2025) 78.7 69.5 65.2 44.8 74.3 72.8 70.7 733 40.0 65.5
inf 7B (Junhan Yang, 2025) 76.3 74.4 67.6 454 774 76.7 76.7  78.0 43.8 68.5
sfr 7B (Junhan Yang, 2025) 82.7 74.3 71.4 40.4 78.2 74.7 715 758 37.0 67.3
splade 108M (Lassance et al., 2024) 73.1 62.5 35.0 442 73.0 52.7 514  56.1 24.6 525
open search vl 133M (Geng et al., 2024)  67.9 65.0 37.7 43.7 72.0 53.0 51,1 513 252 51.9
me5_base 278M (Wang et al., 2024) 61.6 60.0 442 37.1 66.9 61.4 508 522 328 519
InternVL3-2B me5_large 560M (Wang et al., 2024) 76.0 67.2 543 37.7 71.9 69.2 584 615 34.6 59.0
inf_small 1.5B (Junhan Yang, 2025) 68.8 64.7 58.3 429 73.6 69.5 679  69.1 38.8 61.5
inf 7B (Junhan Yang, 2025) 76.7 729 67.5 432 71.3 74.7 68.5 68.6 399 65.5
sfr 7B (Junhan Yang, 2025) 73.9 72.0 63.1 34.9 76.1 73.2 69.7 718 32.6 63.0
splade 108M (Lassance et al., 2024) 81.0 36.9 41.6 44.7 72.3 53.3 529 57.0 26.1 51.7
open search vl 133M (Geng et al., 2024)  80.4 48.7 44.0 429 73.3 54.2 553 578 243 53.5
me5_base 278M (Wang et al., 2024) 71.6 50.8 58.4 39.5 66.9 61.9 63.7  63.6 335 56.6
InternVL3-8B me5_large 560M (Wang et al., 2024) 79.0 524 61.1 37.1 74.2 71.0 740 732 345 61.8
inf_small 1.5B (Junhan Yang, 2025) 72.8 58.8 63.0 43.8 75.5 71.7 699 709 39.8 62.9
inf 7B (Junhan Yang, 2025) 81.3 712 67.4 444 71.5 75.7 745 745 41.4 67.5
sfr 7B (Junhan Yang, 2025) 82.4 71.5 68.0 36.0 75.3 74.1 744 767 342 65.8
splade 108M (Lassance et al., 2024) 80.9 56.3 44.4 452 72.7 532 509 538 249 53.6
open search vl 133M (Geng et al., 2024)  77.5 62.9 47.0 453 723 54.1 50.5 535 249 542
me5_base 278M (Wang et al., 2024) 72.8 60.8 65.8 36.8 66.1 61.6 60.0 60.8 33.1 57.5
InternVL3-14B me5_large 560M (Wang et al., 2024) 82.7 66.7 65.2 38.7 72.5 69.9 68.8  70.6 34.1 63.2
inf_small 1.5B (Junhan Yang, 2025) 74.0 68.7 674 45.1 75.1 72.6 71.8 710 40.2 65.1
inf 7B (Junhan Yang, 2025) 80.1 68.9 69.1 45.0 76.9 75.6 727 124 427 67.0
sfr 7B (Junhan Yang, 2025) 71.0 69.7 70.2 39.8 75.3 73.8 71.0 733 36.7 65.2

Table 11: Zeroshot VDR performance on ViDoRe-v2 benchmark. Metric: Recall@ 10.
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