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Abstract

Video understanding is essential for multi-
modal large language models (MLLMs) to in-
teract effectively with users and the real world.
However, analyzing long videos remains a ma-
jor challenge due to the lack of high-quality
video instruction data and effective training
strategies. In this paper, we introduce a simple
yet effective baseline for long-context video
understanding, including dataset construction
and training recipes. We curate a large-scale
video instruction dataset with over 1M samples,
encompassing videos from a few seconds to
several minutes across diverse sources, with-
out any human annotations. Additionally, we
propose a progressive video instruction tuning
strategy that incrementally increases input con-
text length, enabling better utilization of videos
of varying durations. Comprehensive experi-
ments demonstrate that our dataset significantly
outperforms existing video instruction datasets
for fine-tuning MLLMs. Furthermore, our train-
ing approach establishes a strong video MLLM
baseline, surpassing previous open-source mod-
els on video benchmarks and outperforming
proprietary models like GPT-4V and GPT-4o-
mini on VideoMME, even with a compact 7B
model.

1 Introduction

Multimodal Large Language Models (MLLMs)
have made significant strides in understanding im-
age content and generating meaningful responses
based on complex instructions (Liu et al., 2023b;
OpenAI, 2023a). However, to effectively interact
with users in real-world scenarios, handle real-time
production environments, and process vast amounts
of internet-sourced data, these models must de-
velop strong capabilities for comprehending visual
data within extended contexts (Liu et al., 2023b).

† Corresponding author.

Among various types of visual data, video stands
out as a crucial source in both online and physical
domains due to its inherently long-context nature.

Previous efforts in video-centric MLLMs have
explored multiple strategies to adapt image-focused
models for video understanding (Jin et al., 2024).
Some approaches extend single-image features to
multi-frame representations to handle short video
clips (Lin et al., 2023), while others focus on fea-
ture compression techniques to reduce the number
of video tokens required for processing long video
sequences (Li et al., 2023b, 2025).

While these studies have laid a strong foundation
for integrating video understanding into MLLMs,
recent findings (Kim et al., 2024; Zhang et al.,
2024c) suggest that treating video frames as image
grids or individual frames can outperform earlier
video-specific methods in zero-shot video under-
standing benchmarks. This raises questions about
the effectiveness of previous approaches, partic-
ularly in the context of video instruction tuning.
One major limitation contributing to this gap is
the lack of high-quality video instruction datasets.
Compared to text and image datasets, video data
is information-dense, making dataset construction
significantly more expensive as video duration
increases. As a result, publicly available video
instruction datasets, especially for long-duration
videos, remain scarce. This lack of data has, in
turn, limited the exploration of scalable training
strategies for long-video understanding. To build
robust MLLMs with strong long-context video un-
derstanding, it is essential to address both dataset
construction and the design of efficient training
pipelines that can fully utilize long-video data.

In this work, we introduce ProLongVid, a com-
prehensive framework for training video-centric
MLLMs with long-context understanding, encom-
passing both dataset construction and an optimized
training pipeline. To ensure diverse video cover-
age, our dataset includes videos ranging from a few
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seconds to 20 minutes across diverse sources.
We propose a scalable three-stage automated

video instruction annotation pipeline that effec-
tively handles videos of varying lengths. First, we
design a novel temporal video segmentation algo-
rithm that clusters frames based on both visual and
semantic similarities. Then, we leverage GPT-4o to
generate detailed segment-level and video-level de-
scriptions, followed by diverse QA pairs through a
multi-granularity approach that captures both local
details and global temporal relationships.

Additionally, we introduce a progressive in-
struction tuning to better utilize video data of vary-
ing durations. In this strategy, video data is grouped
by length and introduced progressively in multiple
training stages, with the number of input frames
gradually increasing over time. This curriculum-
based approach enables MLLMs to adapt incremen-
tally to longer video contexts. To preserve the orig-
inal visual perception capabilities of MLLMs, we
freeze the visual encoder parameters during train-
ing. Moreover, we find that extending the LLM’s
context length before vision-language training fur-
ther enhances long-video understanding.

Leveraging our instruction dataset and training
pipeline, we extend a strong MLLM trained on
image-only instruction data into a model capa-
ble of understanding long-context videos. Our
ProLongVid-7B achieves state-of-the-art perfor-
mance on multiple video understanding bench-
marks, surpassing previous open-source models.
Notably, despite its smaller model size, it outper-
forms proprietary models like GPT-4V and GPT-
4o-mini on VideoMME, demonstrating the effec-
tiveness of our approach.

In summary, we introduce ProLongVid, a com-
prehensive framework for training video-centric
MLLMs with long-context understanding, integrat-
ing both large-scale dataset construction and an
efficient training pipeline. The key characteristics
of ProLongVid are as follows:

• Large-Scale Video Instruction Dataset: Pro-
LongVid includes over one million video-
instruction samples, covering a diverse range
of topics and durations (from a few seconds
to 20 minutes).

• Automated and Scalable Annotation: We
employ a three-stage annotation framework
that combines open-source models for tempo-
ral video segmentation and proprietary APIs

for refined caption/instruction generation, en-
suring cost-efficient, high-quality annotations
without human supervision.

• Progressive Instruction Tuning: Our
curriculum-based training pipeline progres-
sively increases input length across multiple
stages, enabling the model to adapt effectively
to varying video durations.

• State-of-the-Art Performance: ProLongVid
establishes a strong video MLLM baseline,
achieving superior performance across multi-
ple benchmarks and outperforming previous
open-source models, as well as proprietary
GPT-4V and GPT-4o-mini on VideoMME.

2 Related Works

MLLMs for Video Understanding. MLLMs have
made significant progress in image-text understand-
ing. However, video understanding remains a more
challenging task due to constraints in data avail-
ability and computational resources. Early video
MLLMs primarily relied on either multi-frame fea-
tures projected through an MLP (Lin et al., 2023;
Luo et al., 2023; Ataallah et al., 2024; Xu et al.,
2024a) or video features resampled via Q-former
architectures (Li et al., 2023a,b, 2024b). Recent
training-free approaches (Kim et al., 2024; Zhang
et al., 2024c; Xu et al., 2024b) have shown that
strong image MLLMs can achieve competitive
video understanding performance without explicit
video instruction tuning, even surpassing some
early video MLLMs. However, most of these
methods can only process a limited number of
frames (e.g., fewer than 32) through sparse sam-
pling, fundamentally constraining their effective-
ness on long video understanding. To address this
limitation, several works have explored video token
compression techniques, such as memory mecha-
nisms (Song et al., 2024) and token merging (Shen
et al., 2024), allowing models to process more
frames within constrained context windows. Our
work builds upon these efforts by extending the
effective visual context length through synthetic
long-video instruction data while maintaining a
simple and scalable video MLLM architecture.
Datasets for Video MLLMs. Due to the scarcity
of human-annotated data, recent multimodal in-
struction datasets have been synthesized using
strong MLLMs. In the image domain, previous
works (Chen et al., 2023a, 2024a) have constructed
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Figure 1: An overview of data generation pipeline in ProLongVid.

high-quality instruction datasets by leveraging the
robust image comprehension capabilities of propri-
etary models such as GPT-4V (OpenAI, 2023b).
However, in the video domain, high-quality video
instruction data remains limited due to the high
cost of video annotation and the inherent diffi-
culty of generating accurate video descriptions.
Early video MLLMs, trained on small-scale, low-
quality data, have demonstrated limited perfor-
mance. While some approaches rely on human-
annotated video QA data (Yu et al., 2019; Xiao
et al., 2021; Patraucean et al., 2023; Mangalam
et al., 2024), these methods face scalability chal-
lenges. More recent works have explored auto-
matic annotation pipelines using proprietary APIs.
LLaVA-Hound (Zhang et al., 2024b) uses GPT-
4V to generate video captions from sparsely sam-
pled frames, while ShareGPT4Video (Chen et al.,
2024b) improves video captioning by analyzing
inter-frame differences. However, these approaches
are mostly limited to relatively short videos. To
advance long-form video understanding, recent
benchmarks (Fu et al., 2024a; Zhou et al., 2024;
Wu et al., 2024) have emerged, focusing on QA
tasks for videos ranging from several minutes to
over an hour in duration. Our work aligns with this
direction but offers notable advantages in dataset
scale, annotation quality, and video duration cover-
age in instruction-tuning scenarios.

3 Dataset Construction

Our instruction data generation pipeline consists of
three stages: semantic video segmentation, dense
video captioning, and instruction generation. We
detail each stage in the following sections.

3.1 Data Collection and Processing
To construct a high-quality video instruction
dataset, we gather videos of varying lengths, do-
mains, and topics from multiple sources. Unlike
some previous instruction datasets, our dataset does
not rely on existing video QA training sets, reduc-
ing the risk of information leakage and preventing
overfitting to the domains of existing benchmarks.
Our sources include short videos from PMV (Han
et al., 2024), SA-V (proposed in SAM-2 (Ravi et al.,
2024)), and VIDAL (Zhu et al., 2023), which orig-
inate from short-video platforms, as well as long-
form videos from the YouTube-8M (Abu-El-Haija
et al., 2016) dataset. To demonstrate the scalabil-
ity of our pipeline for web videos, we avoid using
any pre-existing annotations from these datasets.
Instead, we directly process untrimmed videos
through our annotation pipeline. Unlike prior video
instruction datasets that primarily focus on short
videos, we ensure diversity in video lengths by
sampling across different duration ranges, enabling
research on long video understanding.

Following ShareGPT4Video, our video anno-
tation pipeline aims to automatically generate de-
tailed video captions while we leverage the stronger
model, i.e., GPT-4o, as the video captioner. To en-
sure comprehensive coverage of video content, we
sample frames at 1 frame per second (fps). This
dense sampling rate makes it impractical to use
most existing MLLMs, including GPT-4o, directly.
To address this challenge, we introduce a simple
yet effective video segmentation algorithm that sub-
divides long videos into manageable chunks, allow-
ing us to fully utilize GPT-4o’s capabilities.

3.2 Semantic Video Segmentation
The first step of our annotation pipeline involves
partitioning videos into semantically coherent seg-
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ments of manageable size. This not only allevi-
ates the computational burden of subsequent video
captioning but also simplifies the task, as each seg-
ment contains less information. By reducing the
likelihood of missing fine-grained details or intro-
ducing hallucinations, our segmentation approach
enhances the reliability of video captioning models.
Additionally, it enables the use of smaller, special-
ized captioners, improving scalability.

Given N sampled video frames, our segmen-
tation algorithm considers both visual similarity
and caption similarity to group frames into distinct
semantic clusters. Specifically, set the sampled
frames be I1, I2, . . . , IN . We employ the strong
vision-language model Florence-2 (Xiao et al.,
2024) to generate frame-level captions, denoted
as C1, C2, . . . , CN . This allows us to extract both
frame-level image features f I

1 , f
I
2 , . . . , f

I
N and text

features fC
1 , fC

2 , . . . , fC
N using the Florence (Yuan

et al., 2021) model. We then define the pairwise
similarity between frames Ii and Ij as follows:

si,j =
f I
i · f I

j + f I
i · fC

j

2
+ (2− e||

i−j
N

||),

where i and j denote the frame indices. In this
formulation, the first term combines image-image
and image-text similarity, encouraging visually and
semantically similar frames to be clustered together.
The second term penalizes frames that are tempo-
rally distant, ensuring segmentation remains con-
sistent with video structure. Using this similarity
metric, we apply a standard hierarchical cluster-
ing algorithm, specifically the Agglomerative Clus-
tering implementation from scikit-learn. Em-
pirically, we found that text-text similarity alone
does not produce satisfactory clustering results and
therefore exclude it from the total similarity. While
we use Florence-2 for captioning, other models,
such as BLIP-2 (Li et al., 2023a) or CLIP-like mod-
els (Radford et al., 2021), can also be integrated
into our segmentation framework.

A key advantage of our approach is its control-
lable granularity. By adjusting the clustering dis-
tance threshold δ, we can fine-tune the segment
size or even deliberately over-segment videos for
specific applications. Based on empirical evalua-
tion, we set δ = 0.7, achieving a balance between
segment granularity and semantic coherence.

3.3 Dense Video Captioning
As described earlier, we primarily leverage GPT-
4o to automate dense video captioning. Our video

segmentation method partitions long videos into
manageable chunks, allowing GPT-4o to process
them efficiently. As illustrated in Figure 1, we
employ GPT-4o to generate detailed segment-level
descriptions. These descriptions, along with their
corresponding timestamps, are then sequentially
fed back into GPT-4o to produce an aggregated
video-level dense caption. This process enables
GPT-4o to capture contextual relationships between
segments, ensuring a cohesive and comprehensive
description of the entire video.

For short videos (i.e., those under one minute in
duration), segmentation is unnecessary. Instead, we
directly use GPT-4o to generate a detailed caption
for the entire video in a single pass.

While we primarily use GPT-4o for dense video
captioning, our approach is not exclusively depen-
dent on proprietary models. The segmentation al-
gorithm ensures that the maximum segment length
remains within the context window limitations of
open-source MLLMs. This design enables the
use of open-source alternatives such as Qwen2-
VL (Wang et al., 2024a) for video captioning.

3.4 Instruction Generation

Building on the video descriptions generated in the
previous stage, we use GPT-4o to create diverse
video question-answering (QA) data. The prompts
for QA generation include not only the video de-
scriptions but also task definitions and example
instructions tailored for video understanding. We
define four primary QA task types: (1) Video Sum-
marization: Generating concise summaries of the
video content. (2) General Video QA: Answering
questions about objects, attributes, actions, trajec-
tories, and reasoning based on video details. (3)
Creative Writing: Producing imaginative content
inspired by the video. (4) Temporal Understanding:
Analyzing the sequence of events within the video.

For short videos, we generate QA pairs based on
the global video description, incorporating prompts
aligned with the predefined task types.

For long videos, we generate both local descrip-
tions for individual segments and a global descrip-
tion for the entire video during the captioning stage.
To enhance the ability of MLLMs to understand
temporal relationships and long-form video con-
tent, we employ three distinct input strategies when
generating QA data:

• Global Video Description: Used to generate
QA pairs for the first three predefined task
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types (summarization, general QA, and cre-
ative writing).

• Local Descriptions of Multiple Segments:
Used to create QA samples that require under-
standing temporal relationships and reasoning
across segments.

• Local Description of a Single Random Seg-
ment: Used to generate general QA focused
on local details, with the global description
providing background context.

This multi-granularity approach ensures that our
instruction data for long videos covers diverse QA
tasks across different temporal scales, improving
the model’s ability to handle both local and global
video understanding.

4 Training Recipe

4.1 Base Model

In this work, we adopt a LLaVA-style architec-
ture (Liu et al., 2023b) as the foundation for build-
ing a video-centric MLLM. The architecture con-
sists of three main components: a Vision Encoder,
an MLP Projector, and an LLM. Specifically, we
utilize SigLIP (Zhai et al., 2023) as the Vision En-
coder, which processes raw images (384×384) into
visual feature maps of size (27×27). These 2D grid
features are then downsampled and reshaped into
a 1D sequence. A two-layer MLP projector maps
these visual features into the embedding space of
the LLM. The resulting visual token sequence, com-
bined with the word embeddings of the query text,
serves as input to the LLM, which generates re-
sponses in an autoregressive manner.

During SFT stage, the visual data primarily com-
prises high-resolution images and video frames.
For high-resolution images, we partition the input
into a grid of a × b crops, preserving its original
aspect ratio. Additionally, we create a global view
by resizing the entire image to (384× 384). Since
SigLIP encodes each image into a (27×27) feature
map, the total token count for a high-resolution
image is 729× (1 + a× b). For video inputs, we
reduce the number of tokens per frame to accom-
modate more frames by representing each frame
as a global view and downsampling its features to
a 12 × 12 feature map. Thus, for a video with T
frames, the total token count is 144× T .

4.2 Training Pipeline

To effectively train our video-centric MLLM, we
propose a structured three-phase training pipeline:
(1) extending the base LLM’s context length, (2)
image-text alignment and instruction tuning, and
(3) progressive video instruction tuning. This care-
fully designed strategy enables our model to pro-
cess long video sequences while maintaining strong
image and video understanding capabilities.
LLM context length extension. The foundation of
our approach lies in extending the base LLM’s long-
context capability. Following (Fu et al., 2024b), we
extend the LLM’s context length to 256K by con-
tinuing pretraining on the SlimPajama (Soboleva
et al., 2023) long-text dataset before multimodal
training. Additionally, we scale the base frequency
of Rotary Position Embeddings (RoPE) (Su et al.,
2024) by a factor of 1,000 (from 1M to 1B) to en-
hance long-range attention. To efficiently support
256K context-length training, we adopt sequence
parallelism (Li et al., 2021) based on ring atten-
tion (Liu et al., 2023a), following (Zhang et al.,
2024a).
Image-text alignment and instruction-tuning.
Building on the extended LLM, we establish strong
image understanding through a three-stage training
process, following (Li et al., 2024a): (1) Image-
Text Alignment: We train only the projector, keep-
ing the vision encoder and LLM frozen, using
image-text paired data. (2) Knowledge-Driven In-
struction Tuning: We finetune all model parame-
ters using high-quality knowledge data. (3) Single-
Image Instruction Tuning: We train the model with
single-image instruction data to enhance its abil-
ity to follow instructions. These phase ensures a
solid foundation for visual understanding before
introducing video comprehension.
Progressive video instruction-tuning. To de-
velop video understanding, we employ a progres-
sive instruction-tuning strategy that fundamentally
differs from previous long-context LLM training
approaches (Chen et al., 2023b; Ding et al., 2023;
Dubey et al., 2024; Gao et al., 2025). While ex-
isting methods focus solely on extending text con-
text length, our approach introduces a dual-scaling
paradigm that simultaneously increases both con-
text length and video duration. This adaptation to
visual sequences presents unique challenges not
addressed by traditional long-context methods, as
video understanding requires modeling both tem-
poral dependencies across frames and spatial rela-
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Dataset Annotation #Video Total Video Length Avg. FPS #Caption #QA

VideoInstruct (Maaz et al., 2024) Human & GPT-3.5 13K 0.4K hr - 13K 100K
LLaVA-Hound (Zhang et al., 2024b) GPT-4V 900K 3K hr 0.008 900K 900K
ShareGPT4Video (Chen et al., 2024b) GPT-4V 40K 0.2K hr 0.15 40K 0
LLaVA-Video (Zhang et al., 2024d) GPT-4o 178K 2Khr 1 178K 1.2M
ProLongVid (Ours) GPT-4o 300K 11K hr 1 300K 1.5M

Table 1: Comparison with previous video instruction datasets.
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Figure 2: The statistics of our instruction datasets. We show the (a) histogram of segment numbers, (b) histogram of
segment duration and (c) histogram of video caption length.
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Figure 3: The video duration and source of our datasets.

tionships within each frame.
Our progressive strategy gradually increases

the model’s temporal context length across three
stages:

• Stage 1: Training with short videos (< 2 min-
utes), sampling 32 frames as MLLM input.

• Stage 2: Incorporating medium-length videos
(2-5 minutes), sampling 128 frames.

• Stage 3: Extending to long videos (5-20 min-
utes), sampling 192 frames.

This progressive approach scales the visual context
length to 28K tokens while ensuring stable training
dynamics. The extended 256K context length from
Phase 1 enables temporal extrapolation during in-
ference, allowing the model to process even longer
video sequences than those seen during training.

5 Experiments

5.1 Dataset Statistics
Overview. We curate a diverse and well-balanced
dataset by selecting data from multiple sources,

comprising 300K videos and 1.5M question-
answering examples. The dataset distribution is
illustrated in Fig. 2 and Fig. 3. Fig. 2(a) visual-
izes how long videos are divided into smaller seg-
ments, with most videos split into 1 to 20 segments,
though some extend up to 80 segments. Fig. 2(b)
presents the duration distribution of these segments,
which range from 0 to 370 seconds, with the ma-
jority being under 100 seconds, aligning with typ-
ical short video lengths. Fig. 2(c) shows the cor-
relation between video length and caption length,
where longer videos tend to have more detailed
captions. Additionally, Fig. 3(a) illustrates the over-
all video duration distribution, with most videos
falling within the 0-2 minute range, while a subset
exceeds 5 minutes, enhancing the model’s ability to
process long videos. Fig. 3(b) depicts the dataset’s
source distribution, with the majority of videos
sourced from YouTube-8M and VIDAL, ensuring
a broad and diverse range of content categories.

Dataset Comparison. Tab. 1 compares our dataset
with existing benchmarks, highlighting key dis-
tinctions. We employ GPT-4o for high-quality an-
notations, ensuring precise and contextually rich
labels. Our dataset size of 300K videos is compa-
rable to existing datasets, but we stand out with the
highest FPS, enabling finer-grained visual content
understanding. The total duration of our dataset
is 11K hours, with 5-20min long videos account-
ing for 6.5Khr. This composition clearly positions
our dataset as long-video focused, transcending the
previous minute-level video data. Notably, the re-
cent LLaVA-Video only annotates videos within
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Dataset Samples
Frame VideoMME (w/o subtitles)

Train Test Short Medium Long Overall

Image SFT - - 32 68.8 54.4 49.7 57.6

VideoInstruct 100K 32 32 69.2 57.6 50.0 58.9
LLaVA-Hound 255K 32 32 69.6 56.4 49.3 58.4
LLaVA-Hound 900K 32 32 71.3 58.4 50.6 60.1
LLaVA-Video 1.2M 128 128 74.1 61.0 50.8 62.0

ProLongVid-stage1 800K 32 32 72.8 59.1 48.4 60.1

ProLongVid-stage2 1.2M 128
128 75.0 64.2 51.4 63.6

256 74.3 64.0 54.2 64.2

ProLongVid-stage3 1.5M 192
192 75.4 63.0 52.9 63.8

256 75.2 64.0 54.8 64.7

Table 2: Comparison with previous video instruction datasets on VideoMME benchmark (without using subtitles).
“Image SFT” is the start image MLLM for all datasets.

3 minutes. Moreover, our dataset includes 1.5M
annotated question-answer pairs, significantly en-
riching the research community and driving further
advancements in video understanding.

5.2 Implementation Details

Architecture and training. We use SigLIP (Zhai
et al., 2023) as the vision encoder and Qwen2.5-
Instruct (Yang et al., 2024) as the LLM in our exper-
iments. After extending the LLM’s context length,
we train the entire MLLM using both image-text
pairs and single-image instruction data. All image
training data are sourced from the open subset of
the LLaVA-OneVision (Li et al., 2024a) dataset,
without incorporating multi-image data. After this
stage, we freeze the vision encoder and perform
progressive video instruction tuning to enhance
video understanding.
Benchmark and evaluation. We evaluate
our model on VideoMME (Fu et al., 2024a),
MLVU (Zhou et al., 2024), LongVideoBench (Wu
et al., 2024), and TempCompass (Liu et al., 2024b).
While TempCompass is a short video benchmark,
VideoMME, MLVU, and LongVideoBench focus
on long videos. Videos in VideoMME are split into
short, medium, and long videos based on duration,
and we mainly use VideoMME for ablation study.

5.3 Main Experiments

Progressive training pipeline. We propose a three-
stage progressive video instruction tuning approach
based on a strong image MLLM baseline. As
shown in Tab. 2, while the initial image MLLM
already achieves strong zero-shot video understand-
ing performance, our three-stage tuning consis-

tently leads to significant improvements at each
stage, particularly for long-video tasks after long-
video training. Specifically, compared to the image
MLLM baseline, our model achieves an overall
improvement of 6.2% on VideoMME after three-
stage training, with gains of 6.6%, 8.6%, and 3.2%
on short, medium, and long video tasks, respec-
tively. Furthermore, when increasing the number
of training frames to 192, our model generalizes
effectively to an even larger number of frames dur-
ing inference. Notably, when using 256 frames at
inference, the model’s performance on VideoMME
improves by 0.9% compared to 192 frames, with
a particularly strong 1.9% improvement on long-
video tasks.
Comparison with previous datasets. We com-
pare widely used video instruction datasets gen-
erated through automated or semi-automated an-
notation processes. Specifically, for the LLaVA-
Hound dataset, we experiment with two settings:
one using the same combination of 240K QA sam-
ples and 15K captions as in (Zhang et al., 2024b),
and another using the full set of 900K QA sam-
ples for training. In our experiments, we use the
same image MLLM baseline (through the first two
training phases) as the starting point for video in-
struction tuning. Results from video understand-
ing benchmarks indicate that the earlier dataset,
VideoInstruct, produces lower-quality data due to
weaker visual information extraction techniques
and the GPT API used at the time, leading to mod-
els with limited instruction-following capabilities.
With 255K samples, LLaVA-Hound achieves simi-
lar results to VideoInstruct on VideoMME. How-
ever, scaling up the dataset size to 900K further
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Model MLVU(M-Avg) LongVideoBench(val) Tempcompass(mc) VideoMME(wo/w sub)

Proprietary Models
GPT-4V (OpenAI, 2023b) 49.2 59.1 - 59.9/63.3
GPT-4o-mini (OpenAI, 2024) - 56.5 - 64.8/68.9
GPT-4o (OpenAI, 2024) 64.6 66.7 70.9 71.9/77.2

Open-sourced Models
Video-LLaVA-7B (Lin et al., 2023) 47.3 39.1 45.6 39.9/41.6
VideoChat2-HD-7B (Li et al., 2024b) 47.9 - - 45.3/55.7
LongVA-7B (Zhang et al., 2024a) 56.3 - 56.1 52.6/54.3
InternVL2-8B (Chen et al., 2024c) 64.0 54.6 65.6 56.3/59.3
LLaVA-Onevision-7B (Li et al., 2024a) 64.7 56.4 64.8 58.2/61.5
MiniCPM-V-2.6-8B (Yao et al., 2024) - 54.9 63.0 60.9/63.7
Qwen2-VL-7B (Wang et al., 2024a) - 55.6 68.5 63.3/69.0

ProLongVid-7B 70.6 60.0 66.3 64.7/70.7

Table 3: Comparison with state-of-the-art methods on video understanding benchmarks.

improves performance, highlighting the benefits of
larger instruction datasets. In contrast, our model,
trained on only a short-video subset of the Pro-
LongVid dataset (videos under 2 minutes), out-
performs both VideoInstruct and LLaVA-Hound-
255K while achieving comparable performance
to LLaVA-Hound-900K. Although LLaVA-Video
also uses strong GPT-4o for annotation, our model
surpasses it at stage 2 with a similar total amount of
training data. Moreover, after progressive training
on longer videos, our model not only achieves con-
sistent and significant improvements over the im-
age MLLM baseline but also substantially outper-
forms video MLLMs trained on previous datasets.
These results demonstrate the effectiveness of our
dataset and training approach.

Comparison with state-of-the-art. In Tab. 3,
we compare our model with previous MLLMs
on several video understanding benchmarks. On
VideoMME, our model consistently outperforms
prior open-source models. Notably, when incor-
porating video subtitles as input, our 7B model
surpasses GPT-4o-mini by 1.8%. On MLVU, Pro-
LongVid achieves an accuracy of 70.6%, signifi-
cantly outperforming both proprietary models like
GPT-4V and GPT-4o, as well as leading open-
source models such as LLaVA-OneVision-7B. Sim-
ilarly, on LongVideoBench, our model achieves
60.0% accuracy, surpassing GPT-4V, GPT-4o-mini,
and other open-source competitors. These results
highlight the significant impact of scaling up both
video length in the instruction dataset and the vi-
sual context length during training and inference.
We hope this work serves as a strong baseline for
future research in video understanding.

Model Short Medium Long Overall

Image baseline 63.8 49.0 46.2 53.0

Multi-stage 70.8 59.2 50.0 60.0

Mixed data 69.7 57.9 48.8 58.8

Table 4: Comparison between progressive training and
one-stage data-mixed training. We use Qwen2.5-3B as
LLM here.

Extension Frame Short Medium Long Overall

None
192 73.1 62.8 52.8 62.9

256 72.6 62.2 52.2 62.3

Pretrain
192 75.4 63.0 52.9 63.8

256 75.2 64.0 54.8 64.7

Table 5: Ablation on the extension of LLM context
length. We start training on Qwen2.5-7B with or with-
out the extension and evaluate MLLMs on VideoMME.
“Frame” means the number of frames at inference.

5.4 Ablation Study

Multi-Stage vs. One-Stage Training. Most previ-
ous works have used a fixed number of frames for
training video MLLMs. In contrast, we introduce
a progressive training strategy, where the number
of training frames gradually increases over three
stages. Each stage follows a complete learning rate
schedule, including a warm-up phase. We compare
this progressive strategy to a data-mixed training
approach, where all three subsets are combined
into a single training stage. As shown in Tab. 4, our
results demonstrate that the multi-stage progressive
training strategy significantly outperforms the data-
mixed method on video understanding benchmarks,
highlighting the effectiveness of gradual context
expansion during training.
Ablation on Context Length Extension. We con-
duct an ablation study to investigate the impact
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of context length extension in LLM pretraining
on video understanding capabilities. As shown in
Tab. 5, our experiments reveal a key insight: extend-
ing the effective visual context length is a funda-
mental prerequisite for long-video understanding.
Specifically, without increasing the LLM’s context
length, we observe performance degradation when
scaling up visual tokens to 36K (256 frames) at in-
ference. This performance gap persists both within
and beyond the 32K context window, indicating
that the model struggles to maintain coherent un-
derstanding over extended temporal spans. These
findings empirically validate our hypothesis that
extending the LLM’s context capacity is essential
for effectively processing long videos.

6 Conclusion

In this work, we present ProLongVid, an innovative
framework for training video-centric MLLMs with
long-context capabilities. Our framework encom-
passes both dataset construction and a progressive
training pipeline, leveraging diverse videos with
varying durations sourced from multiple platforms.
To generate high-quality training data, we intro-
duce an automated video instruction annotation
framework that employs a two-stage process to
segment videos and generate video captions and in-
struction data. Our training pipeline progressively
incorporates video data of different lengths across
multiple stages, effectively enhancing the ability
of existing MLLMs to understand videos across
various temporal scales. Finally, our 7B model
achieves state-of-the-art performance across multi-
ple video benchmarks, surpassing previous open-
source models. We hope this work serves as a
simple yet effective baseline for future research on
long-context video understanding.

Limitations

Despite the promising results, our work has sev-
eral limitations. First, due to computational re-
source constraints and limitations of current train-
ing frameworks, it is difficult to further scale up the
maximum number of input frames during training
(e.g., to 1K frames) without significantly compress-
ing the number of visual tokens per frame. This
restriction may limit the model’s ability to pro-
cess extremely long videos. We plan to address
this challenge in future work by exploring more
efficient training strategies and extending our train-
ing context length. Second, since we only utilize

open-source data for multimodal image-language
training, our base image MLLM’s capabilities may
be inferior to some proprietary models that have
access to larger and more diverse training datasets.
This limitation could potentially impact the overall
performance of our video MLLMs.
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A The License and Intended Use For
Artifacts

Here we list the license and intended use for the
artifacts (datasets and benchmarks) in this paper.

• PMV is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0) License.
The data is released for non-commercial re-
search purposes only.

• SA-V is intended to be used for computer vi-
sion research for the purposes permitted under
the CC by 4.0 license.

• VIDAL is released under the CC-BY-NC 4.0
license.

• Youtube-8M is released under a Creative
Commons Attribution 4.0 International (CC
BY 4.0) license.

• HD-VILA is released under a Research Use
of Data Agreement v1.0.

• VideoMME is only used for academic re-
search.

• MLVU is under the CC-BY-NC-SA-4.0 li-
cense.

• TempCompass is under CC BY-NC 4.0 Li-
cense and is intended for academic research
only.

• LongVideoBench follows CC-BY-NC-SA
4.0 license and is intended for non-
commercial use only.

Our proposed ProLongVid dataset is constructed
based on open-source video data, and is intended
for non-commercial research purposes only.

B Analysis of Computational Efficiency

Our three-stage progressive training approach
demonstrates superior computational efficiency
compared to single-stage training when using the
same training data. We utilize 32, 128, and 192
frames as model inputs for videos of 0-2, 2-5, and
5-20 minutes, respectively. Our analysis reveals
two key advantages of the three-stage method:
Elimination of GPU synchronization overhead:
In single-stage training, batches frequently con-
tain samples with varying input lengths, leading to

significant computational time differences across
GPU processes. Therefore, GPU processes han-
dling short videos must wait for those processing
long videos to complete before synchronizing gra-
dients. This synchronization bottleneck introduces
computational overhead that is avoided in our de-
coupled three-stage training method.

Training Method Stage 1 Stage 2 Stage 3 Overall

Single-stage - - - 3598h
Three-stage (Ours) 272h 661h 767h 1700h

Table 6: GPU hour comparison between single-stage
training and three-stage progressive training.

Optimized memory and training configuration:
The three-stage method enables stage-specific op-
timization of training configuration. For the first
stage with short videos, we can utilize faster train-
ing settings with higher memory consumption (e.g.,
DeepSpeed Zero-1) due to lower per-sample to-
ken counts and memory requirements. For sub-
sequent stages, we use memory-efficient settings
(e.g., DeepSpeed Zero-3) to prevent out-of-memory
errors. In contrast, single-stage training must adopt
the most conservative configuration (Zero-3) based
on the maximum input length, resulting in subopti-
mal overall training efficiency.

We conduct GPU hour comparison between
three-stage and single-stage training. All exper-
iments are conducted on 32 MI300X GPUs. Our
results show that three-stage progressive training
achieves shorter training times while maintaining
model performance, as demonstrated in Table 6.

C Comparison with More Works on
VideoMME

In Tab 7, we compare our model with previous
MLLMs and concurrent works on VideoMME,
which includes short, medium, and long video un-
derstanding tasks. Our model consistently outper-
forms prior open-source models in terms of accu-
racy across all three subtasks, as well as overall
accuracy. Notably, our 7B model surpasses several
proprietary models, including GPT-4V and Claude
3.5 Sonnet, and even achieves competitive results
against the recently released GPT-4o-mini.

D Ablations on Video Segmentation

Our analysis reveals that semantic-based temporal
segmentation outperforms fixed-length segmenta-
tion for long-video dense captioning. Visual infor-
mation density varies substantially across tempo-
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Model Frame
VideoMME (w/o subtitles)

Short Medium Long Overall

Proprietary Models
GPT-4V (OpenAI, 2023b) 10 70.5 55.8 53.5 59.9
Claude 3.5 Sonnet (Anthropic, 2024) 20 71.0 57.4 51.2 60.0
GPT-4o-mini (OpenAI, 2024) 250 72.5 63.1 58.6 64.8

Open-sourced Models
Video-LLaVA-7B (Lin et al., 2023) 8 45.3 38.0 36.2 39.9
ST-LLM (Liu et al., 2025) 64 45.7 36.8 31.3 37.9
ShareGPT4Video (Chen et al., 2024b) 16 48.3 36.3 35.0 39.9
Chat-UniVi-V1.5 (Jin et al., 2024) 64 45.7 40.3 35.8 40.6
LongLLaVA-9B (Wang et al., 2024b) 128/256 52.4 42.2 36.4 43.7
VideoLLaMA2-7B (Cheng et al., 2024) 16 56.0 45.4 42.1 47.9
LLaVA-NeXT-7B (Liu et al., 2024a) 32 58.0 47.0 43.4 49.5
LongVA-7B (Zhang et al., 2024a) 128 61.1 50.4 46.2 52.6
LLaVA-Onevision-7B (Li et al., 2024a) 32 - - - 58.2
LongVILA-7B (Xue et al., 2024) 256 69.0 58.3 53.0 60.1
LongVITA-1M-14B (Shen et al., 2025) 256 68.6 59.7 53.8 60.7

ProLongVid-7B 256 75.2 64.0 54.8 64.7

Table 7: Comparison with state-of-the-art methods on VideoMME (without using subtitles).

Segmentation Short Medium Long Overall

Fixed-length 72.2 63.1 50.7 62.0
Semantic-based (Ours) 73.4 63.2 51.9 62.8

Table 8: Comparison of video segmentation methods on
VideoMME.

ral dimensions in long videos. When we segment
videos into semantically coherent segments, we
naturally obtain segments of varying lengths that
align with meaningful event boundaries. In con-
trast, fixed-length segmentation often splits seman-
tically coherent events, creating artificial bound-
aries that lead to substantial semantic redundancy
between adjacent segment captions.

For quantitative evaluation, we conduct abla-
tions using 20K videos sampled from 2-5 min
videos. We construct a dataset using fixed-length
segmentation with 10-second intervals for compar-
ison. Our results in Tab 8 show that models trained
on data generated through our semantic-based seg-
mentation method consistently achieve better per-
formance on VideoMME compared to those trained
on fixed-length segmentation data.

E Other Details about Training Data

Our data is released in https://github.com/
ruiwang2021/ProLongVid. Due to the limitations
of the paper format, we place some long video case
studies from our training data in our open-source
repository.
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