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Abstract

Multimodal large language models (MLLMs)
have shown impressive capabilities in docu-
ment understanding, a rapidly growing research
area with significant industrial demand. As a
multimodal task, document understanding re-
quires models to possess both perceptual and
cognitive abilities. However, due to different
types of annotation noise in training, current
MLLMs often face conflicts between percep-
tion and cognition. Taking a document VQA
task (cognition) as an example, an MLLM
might generate answers that do not match the
corresponding visual content identified by its
OCR (perception). This conflict suggests that
the MLLM might struggle to establish an in-
trinsic connection between the information it
“sees” and what it “understands”. Such conflicts
challenge the intuitive notion that cognition is
consistent with perception, hindering the per-
formance and explainability of MLLMs. In
this paper, we define the conflicts between cog-
nition and perception as Cognition and Per-
ception (C&P) knowledge conflicts, a form
of multimodal knowledge conflicts, and sys-
tematically assess them with a focus on doc-
ument understanding. Our analysis reveals
that even GPT-4o, a leading MLLM, achieves
only 75.26% C&P consistency. To mitigate the
C&P knowledge conflicts, we propose a novel
method called Multimodal Knowledge Consis-
tency Fine-tuning. Our method reduces C&P
knowledge conflicts across all tested MLLMs
and enhances their performance in both cogni-
tive and perceptual tasks.

1 Introduction

In recent years, multimodal large language mod-
els (MLLMs) (OpenAI, 2023; Team et al., 2023;

* Equal contribution.
† Corresponding author.

OpenAI, 2024; Chen et al., 2024b; Bai et al., 2025;
Ye et al., 2024; Li et al., 2024a) have witnessed
rapid development and have demonstrated remark-
able capabilities across a wide range of multimodal
tasks (Antol et al., 2015; Mathew et al., 2021; Hos-
sain et al., 2019). Of particular note is their ap-
plication in document understanding (Cui et al.,
2021; Xu et al., 2020, 2021; Huang et al., 2022;
Luo et al., 2023), an area of high academic and in-
dustrial value, where significant progress has been
made (Zhang et al., 2023a; Ye et al., 2023a,b; Luo
et al., 2024; Wang et al., 2023; Hu et al., 2024).

As a multimodal task, document understanding
requires models to accurately perceive visual con-
tent (perception, e.g., OCR) and then generate co-
herent responses (cognition, e.g., VQA) based on
that perception. However, current MLLMs train
perception and cognition using different sources
of annotation (Bai et al., 2024; Hu et al., 2024).
Perception typically relies on external OCR en-
gines, while cognition often depends on human-
annotated or LLM-generated data (Mathew et al.,
2021; Van Landeghem et al., 2023). This discrep-
ancy leads to different noise profiles, creating con-
flicts between perception and cognition. As shown
in Figure 1, GPT-4o (OpenAI, 2024) recognizes
the text in a certain region of an image as “Doral”
but responds to a related VQA question with the
text “Doraf”. This conflict suggests that GPT-4o
struggles to establish a consistent connection be-
tween what it “sees” and what it “understands”.
Statistical analysis further underscores this issue,
as Figure 2 demonstrates that leading MLLMs like
GPT-4o achieve only 75.26% consistency between
perception and cognition (Section 3).

In this paper, we define intrinsic conflicts be-
tween cognitive knowledge and perceptual knowl-
edge within MLLMs, which result in inconsisten-
cies in responses related to cognition and percep-
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Perception (P)

Cognition (C)

What is the text within the
red box ?

Doral

What is the “BRM Permit 
Holder’s Name”?

Doraf

Doral? Doraf?
My eye and my 
mind have some
disagreements :(

Figure 1: GPT-4o generates a VQA (cognition) answer that conflicts with the corresponding visual content identified
by its OCR (perception). We refer to these multimodal knowledge conflicts in MLLMs as Cognition and Perception
(C&P) knowledge conflicts.

tion, as Cognition and Perception (C&P) knowl-
edge conflicts (Section 2.1). These conflicts under-
mine the explainability of MLLMs, as they chal-
lenge the intuitive notion that cognition is consis-
tent with perception. Unlike previous research on
multimodal knowledge conflicts (e.g., hallucina-
tion) (Zhai et al., 2024; Li et al., 2023; Guan et al.,
2024; Liu et al., 2023), which focuses solely on
conflicts within either cognition or perception, we
highlight, for the first time, the conflicts that arise
between the two.

We systematically evaluate C&P knowledge con-
flicts in the five current MLLMs (Section 3), focus-
ing on document understanding. For documents,
the primary perception task is the recognition of op-
tical characters, while the primary cognitive task is
the comprehension of text content. Therefore, we
select OCR as the perceptual task and document-
related VQA as the cognitive task. To ensure the
validity of our evaluation, we eliminate potential
confounding factors, such as model failures in fol-
lowing instructions. The experimental results re-
veal substantial C&P knowledge conflict in current
MLLMs, highlighting the need to resolve these
conflicts. To address this, we introduce a novel
method called Multimodal Knowledge Consistency
Fine-tuning. This method aims to strengthen the
connection between cognitive and perceptual tasks
through two key components (Section 4). First,
a special token called C&P Link Token is intro-
duced as a prompt prefix and suffix to connect
cognitive and perceptual knowledge. Second, we
design a C&P Connector that guides the model to
cross-verify cognitive knowledge using perceptual
knowledge.

Comprehensive experiments are conducted on
three open-source MLLMs across two series and
two parameter sizes. The results indicate that

multimodal knowledge consistency fine-tuning im-
proves C&P consistency (Section 5.2). Notably,
our method also enhances MLLM performance in
both cognitive and perceptual tasks (Section 5.3).
This suggests that reducing C&P knowledge con-
flicts allows the model to better integrate percep-
tual and cognitive knowledge, thereby improving
its overall capabilities.

Our main contributions are as follows:

• To the best of our knowledge, we are the first
to identify and introduce the concept of Cog-
nition and Perception knowledge conflicts, a
form of multimodal knowledge conflicts, in
MLLMs.

• A systematic evaluation is conducted on cur-
rent MLLMs to assess the Cognition and Per-
ception knowledge conflicts in document un-
derstanding, showing that such conflicts are
commonly present in current MLLMs.

• A novel method called Multimodal Knowl-
edge Consistency Fine-tuning is introduced to
mitigate the C&P knowledge conflicts in cur-
rent MLLMs. Extensive experiments on five
public document understanding benchmarks
in three MLLMs demonstrate the effective-
ness of the proposed method.

2 Problem Statement

2.1 The Definition of Cognition and
Perception Knowledge Conflicts

For a given MLLM f(·), an image xI , and a pair
of queries consisting of a cognitive query xC and
a perceptual query xP , we denote the ground truth
for this pair as GT . The MLLM’s responses for
cognitive and perceptual tasks are represented as
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yC = f(xC , xI) and yP = f(xP , xI), respec-
tively.

In the training process of current MLLMs, an-
notations for perceptual tasks (e.g., OCR) and cog-
nitive tasks (e.g., VQA) are often derived from
different sources. For example, in the widely used
DocVQA dataset (Mathew et al., 2021), OCR an-
notations are generated by commercial OCR solu-
tions, while VQA annotations are crowd-sourced.
Differences in annotation origins introduce discrep-
ancies in noise and content, resulting in inconsis-
tent bias that creates conflicts between cognitive
and perceptual knowledge, referred to as Cognition
and Perception (C&P) knowledge conflicts. Such
conflicts manifest when yC and yP are inconsistent,
i.e., δ(yC , yP ) = 0. It is important to note that
C&P knowledge conflicts do not consider whether
yC = GT or yP = GT . To quantify the severity
of these conflicts, we introduce C&P consistency.
Let N denote the number of query pairs, with the
C&P consistency calculated as follows:

C&P Consistency =

∑N
i=1 δ(yCi , yPi)

N
. (1)

In this paper, we focus on document understand-
ing and follow common practice (Fu et al., 2024;
Chen et al., 2024a) by using OCR as a representa-
tive perceptual task and VQA as a representative
cognitive task. Specifically, given a text GT within
xI bounded by Box, xC is a VQA query using
GT as the answer, and xP is an OCR query op-
erating solely within Box. In practice, Box may
contain additional text besides GT . Consequently,
C&P knowledge conflicts occur when yP does not
fully contain yC . The δ(yC , yP ) can be specifically
defined as follows:

δ(yC , yP ) =

{
1, if yC ⊆ yP

0, if yC ⊈ yP
. (2)

Furthermore, performance gaps may cause mod-
els to exhibit C&P inconsistency. For example,
MLLMs may fail to comprehend VQA questions.
Therefore, we introduce an auxiliary metric, called
“Idealized C&P Consistency,” which evaluates in-
consistencies only when both ANLS(yC , GT )
and ANLS(yP , GT ) are at least 0.5. The ANLS
metric (Biten et al., 2019) is widely used in docu-
ment understanding to measure text similarity on
a scale from 0 to 1. Generally, cases with ANLS
below 0.5 are considered complete failures of the

model’s response to a query. By filtering out these
poor cases caused by model performance, this met-
ric provides additional insight into the C&P consis-
tency under ideal conditions.

2.2 The Construction of Evaluation Samples

To calculate C&P consistency, we construct pairs
of cognitive (VQA) query and perceptual (OCR)
query, i.e., (xC , xP ), with each pair using the same
ground truth GT from the image xI . The process
is as follows:

Given an image xI with its QA annotation
(Q,A), we assign GT = A and xC = Q. We
construct xP using visual prompting (Wu et al.,
2024b; Yang et al., 2023). xP is a simple ques-
tion: “What is the text within the red
box?” The corresponding image xBI is obtained
by drawing a red box in xI at the location of Box,
denoted as xBI = VisP(xI , Box), where VisP(·)
represents the visual prompting process and Box
is the bounding box containing GT . In practice,
responses for cognitive and perceptual tasks are
obtained as yC = f(xC , xI) and yP = f(xP , x

B
I ),

respectively.

Additionally, constructing (xC , xP ) pairs in-
volves several preprocessing steps. According to
the definition in Section 2.1, the questions must
pertain to the text in the image. However, certain
questions, such as those related to comparisons or
yes/no answers, do not directly reference the text.
Moreover, since the current document datasets do
not provide Box annotations, we also need to lo-
cate Box based on the OCR annotations of xI . We
employ GPT-4o to perform these preprocessing
steps. Specific details are provided in Section A.2.

In particular, we consider five document un-
derstanding datasets to construct evaluation sam-
ples, which are categorized into three tasks: Doc-
ument Question Answering (DocVQA (Mathew
et al., 2021) and DUDE (Van Landeghem et al.,
2023)), Document Information Extraction (Deep-
Form (Svetlichnaya, 2020) and FUNSD (Jaume
et al., 2019)), and Chart Question Answering
(ChartQA (Masry et al., 2022)). The evaluation
samples are constructed from the test sets of these
datasets. Section A.1 and A.2 provides additional
details, including dataset descriptions, an example
evaluation sample, and comprehensive statistics.
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What is the title of the sheet?𝒙𝑪:

What is the text within the 
red box?

𝒙𝑷:

𝒚𝒑: Y4 Premiums and Materials

𝒚𝑪: YA Premiums and Materials

P1: Character-level ErrorsDistribution of Conflict Patterns

34.8%

17.4%41.3%

6.5%

Others P3

P2P1

How is the packaging of 
Camel snus?

𝒙𝑪:

𝒚𝑪: round in packaging
What is the text within the 
red box?

𝒙𝑷:

𝒚𝒑: round tin packaging

P2: Cognitive Bias

What is the total expenditure 
on health care at USA(1963)?

𝒙𝑪 :

𝒚𝑪: $307.5
What is the text within the 
red box?

𝒙𝑷:

𝒚𝒑: $29,814

P3: Limited Cognitive Ability

(c)

(a) (b)

Figure 2: a: C&P knowledge conflicts in current MLLMs. “*” denotes the “SFT-baseline” (see Section 3).
Additional quantitative results are provided in Section A.4 and Table 1. b: Results of the synthetic noise experiment,
with additional details provided in Section A.5. c: The distribution of conflict patterns, including character-level
errors (P1), cognitive bias (P2), and limited cognitive ability (P3), with one illustrative example for each.

3 The Cognition and Perception
Knowledge Conflicts in Current
MLLMs

Two closed-source and three open-source MLLMs
are evaluated. The closed-source models, GPT-4o
(OpenAI, 2024) and Qwen-VL-Max (Bai et al.,
2024, 2025), are well-regarded in the commu-
nity. We evaluate these models using their pub-
licly available APIs, disabling all randomness-
inducing hyperparameters. Additionally, to ensure
that MLLMs follow instructions, we carefully ad-
just the prompts based on the characteristics of
each dataset. Details are provided in Section A.4.

The open-source models include InternVL2-2b
(Chen et al., 2024b), InternVL2-8b (Chen et al.,
2024b), and Qwen2.5-VL-7b (Bai et al., 2025),
which differ in size and architecture. We per-
form the evaluation by disabling all randomness-
inducing hyperparameters on an Nvidia A100 GPU.
Furthermore, we observe that using the original
weights for inference leads to issues with instruc-
tion following (see Section A.4 for details), and
thus we construct SFT data using the training sets
from all datasets following the procedure outlined
in Section 2.2 to train baseline models for each
MLLM, referred to as “SFT-baseline”. Training
details are provided in Section 5.1.

Figure 2 (a) presents the evaluation results, with
more quantitative results provided in Section A.4
and Table 1. Overall, C&P knowledge conflicts
are common in current MLLMs, with inconsisten-
cies observed in 12%–25% of cases. Furthermore,
the severity of these conflicts appears comparable
between open-source and closed-source models.

To further investigate the potential cause of C&P
knowledge conflicts, we train InternVL2-2b with
varying levels of synthetic noise (OCR: shape mix-
ups, missing or extra letters; VQA: typos, omitted
details). Synthetic noise is injected into 5%, 10%,
and 20% of the training data. Figure 2 (b) shows
the results, with additional quantitative analysis
provided in Section A.5. Overall, as the level of
noise increases, the C&P consistency declines.

We also randomly sample 10% of all inconsis-
tent cases generated by InternVL2-2b and manu-
ally inspect them. Three main types of conflicts are
identified, as shown in Figure 2 (c). The majority
of conflicts (41.3%, P1) stem from character-level
errors when the model responds to either the OCR
or VQA query. P2 (17.4%) arises from cognitive
bias. Although the model “sees” the correct text (its
OCR output is accurate), it prefers a linguistically
more plausible answer (e.g., substituting “round tin
packaging” with “round in packaging”). The syn-
thetic noise experiment, together with P1 and P2,
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𝒚′𝒑: <CPLINK>SUBJECT: Review of existing 
Brainstorming Ideas/483</CPLINK>what is the subject of this letter?𝑸

Review of existing Brainstorming Ideas/483𝑨

Annotations

Cognition Task with C&P Link Token

what is the subject of this letter? <CPLINK> XXX 
</CPLINK> indicates the OCR-derived answer.

𝒙′𝑪:

𝒚′𝑪: <CPLINK>Review of existing          
Brainstorming Ideas/483</CPLINK>

What is the text within 
the red box?

𝒙𝑷:

C&P Connector

𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝒙𝑪𝒐𝒏𝒏- = 𝑻𝒆𝒎𝒑𝑸𝑪𝒐𝒏𝒏 𝑸, 𝒚𝑪 :

Verification

what is the subject of this letter? The answer to this question can be found in 
the text within the red box, specifically it is Review of existing Brainstorming 
Ideas/483

The text within the red box is <CPLINK>SUBJECT: Review of Existing 
Brainstorming Ideas/483</CPLINK>. The answer provided here, 
<CPLINK>Review of existing Brainstorming Ideas/483</CPLINK>, is indeed 
consistent with this text.

𝒚𝑪𝒐𝒏𝒏- = 𝑻𝒆𝒎𝒑𝑹𝑪𝒐𝒏𝒏- 𝒚𝑪, 𝒚𝑷 :

𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

what is the subject of this letter? The answer to this question can be found in 
the text within the red box, specifically it is Review of existing Brainstonning
ldeas/463

Verification & Correction

The text within the red box is <CPLINK>SUBJECT: Review of Existing 
Brainstorming Ideas/483</CPLINK>. The provided answer is not consistent with 
this text. The correct answer is <CPLINK>Review of existing Brainstorming 
Ideas/483<CPLINK>.

𝒙𝑪𝒐𝒏𝒏. = 𝑻𝒆𝒎𝒑𝑸𝑪𝒐𝒏𝒏 𝑸, 𝒚𝑪. :

𝒚𝑪𝒐𝒏𝒏. = 𝑻𝒆𝒎𝒑𝑹𝑪𝒐𝒏𝒏. 𝒚𝑪, 𝒚𝑷 :

Perceptual Task with C&P Link Token

Figure 3: An example illustrates the source data and its corresponding Multimodal Knowledge Consistency Fine-
tuning sample. All mathematical symbols in the figure are consistent with those in Section 4. Corresponding
relationships use the same colors for clarity.

supports our hypothesis that heterogeneous VQA
and OCR annotations are a primary source of C&P
knowledge conflicts. Specifically, P1 reflects per-
ception noise introduced by external OCR engine
annotators, while P2 reflects semantic bias intro-
duced by human or LLM annotators. P3 (34.8%)
reveals a limitation in the model’s cognitive ability,
where the VQA response is hallucinated despite an
accurate OCR output. To focus on purer conflict
conditions, we exclude P3 from the idealized C&P
consistency (Section 2.1).

4 Multimodal Knowledge Consistency
Fine-tuning

Section 3 demonstrates that even state-of-the-art
MLLMs exhibit C&P knowledge conflicts. To
resolve these conflicts, we propose Multimodal
Knowledge Consistency Fine-tuning, illustrated in
Figure 3, which comprises two components: C&P
Link Tokens and the C&P Connector. As hetero-
geneous VQA and OCR annotations are a primary
source of C&P conflicts (Section 3), this method
aims to reinforce the connection between cogni-
tive and perceptual tasks, thereby mitigating C&P
knowledge conflicts.

4.1 C&P Link Tokens
Previous research (Wu et al., 2024a) indicates
that special tokens can effectively connect knowl-
edge across different tasks. Therefore, we de-
fine a pair of C&P Link Tokens to connect cog-

nitive and perceptual tasks, namely <CPLINK> and
</CPLINK>, and add them to the original MLLM
vocabulary. When the MLLM responds to a query
using text extracted from an image, it encloses
that text with the two C&P link tokens, for exam-
ple, “<CPLINK>XXX</CPLINK>.” Given an image
xI with QA annotation (Q,A), the cognitive task’s
query and response are (xC , yC) and the percep-
tual task’s are (xP , yP ). According to Section 2.2,
both yC and yP are texts derived from xI , i.e. A.
Therefore, the C&P link tokens can be applied to
the responses of both tasks, denoted as y′C and y′P ,
thereby strengthening their connection. Addition-
ally, for guiding linked responses, we design x′C
to more explicitly prompt the model by adding
a special instruction: “<CPLINK>XXX</CPLINK>
indicates the OCR-derived answer.”

4.2 C&P Connector

The second component is the C&P Connector,
which uses the question Q as an intermediary
to link yP and yC , thereby bridging cognitive
and perceptual tasks. The C&P Connector con-
sists of positive and negative samples, denoted as
(x+Conn, y

+
Conn) and (x−Conn, y

−
Conn), respectively.

In terms of input images, the connector takes im-
ages with bounding boxes, xBI , as input (see Sec-
tion 2.2 for details).

Positive samples aim to guide the model to
use perceptual knowledge to verify cognitive
knowledge. Specifically, as shown in Figure 3,
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DocVQA DUDE DeepForm FUNSD ChartQA Average

InternVL2-2b* 80.59
90.62

64.69
83.00

72.05
77.40

80.84
87.95

83.80
91.27

76.40
86.05

InternVL2-2b (Ours) 83.39
91.32

69.49
84.75

78.56
82.20

81.50
89.60

87.64
93.17

80.12
88.21

InternVL2-8b* 84.28
91.32

67.82
83.14

74.19
77.70

82.60
91.82

86.88
91.86

79.15
87.17

InternVL2-8b (Ours) 87.32
93.03

73.26
84.70

79.17
82.22

83.48
90.13

90.53
94.22

82.75
88.86

Qwen2.5-VL-7b* 93.79
96.44

79.30
91.87

75.20
85.36

84.80
90.38

92.06
95.37

85.03
91.88

Qwen2.5-VL-7b (Ours) 94.95
97.10

84.04
94.22

79.57
86.73

90.31
94.07

93.09
95.74

88.39
93.57

Table 1: Performance comparison between the original MLLM and the MLLM after multimodal knowledge
consistency fine-tuning (ours) across all datasets. All values are percentages (%). The main number is C&P
Consistency, and the smaller number is Idealized C&P Consistency. Bolded numbers indicate superior performance.
The average results are the macro-averages of all datasets. “*” denotes the “SFT-baseline” (see Section 3).

(x+Conn, y
+
Conn) is constructed as follows:

{
x+Conn = TempQConn(Q, yC)
y+Conn = TempR+

Conn(yC , yP )
. (3)

Here, TempQConn(·) is the template for
constructing C&P connector queries, and
TempR+

Conn(·) is the template for constructing pos-
itive sample responses. The model is required to
first answer yP , and then yC , thus using perceptual
knowledge to verify cognitive knowledge.

In addition to verification, negative samples fur-
ther guide the model to use perceptual knowledge
to correct erroneous cognitive results. Specifi-
cally, as shown in Figure 3, (x−Conn, y

−
Conn) is con-

structed as follows:

{
x−Conn = TempQConn(Q, y−C )
y−Conn = TempR−

Conn(yC , yP )
. (4)

Here, the template for constructing queries is the
same as that used for positive samples. y−C is an
OCR-error version of yC , generated using GPT-4o
(refer to the Section A.7 for the specific prompt).
TempR−

Conn(·) is the template for generating nega-
tive sample responses, which require the model to
first answer yP , then indicate that y−C is incorrect,
and finally provide the correct yC .

The final training data, given N pairs of (Q,A),
is represented as follows:

X = {(x′Ci
, y′Ci

), (xPi , y
′
Pi
),

(x+Conni
, y+Conni

), (x−Conni
, y−Conni

)}Ni=0.
(5)

5 Experiment

5.1 Implementation

We construct the training data using the training
sets from the five datasets mentioned in Section 2.2.
For the multimodal knowledge consistency fine-
tuning experiment, we focus on three open-source
MLLMs (Section 3): InternVL2-2b, InternVL2-8b,
and Qwen2.5-VL-7b. We train all models using the
original weights from Huggingface with a learning
rate of 1e-5 and a batch size of 128, while keeping
other hyperparameters at their default settings. We
freeze the visual encoder and optimize only the lan-
guage model. Each model trains for 1 epoch using
8 Nvidia A100 GPUs. We disable all randomness-
inducing hyperparameters during inference.

5.2 C&P Consistency Results

The evaluation is conducted on the dataset con-
structed in Section 2.2. The experimental results,
presented in Table 1, demonstrate that our multi-
modal knowledge consistency fine-tuning method
enhances C&P consistency across all five datasets.
Specifically, InternVL2-2b and InternVL2-8b show
improvements of 3.72% and 3.60% in C&P consis-
tency, respectively, while Qwen2.5-VL-7b exhibits
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Doc
DUDE

Deep
FUNSD

Chart
VQA Form QA

C.T. P.T. C.T. P.T. C.T. P.T. C.T. P.T. C.T. P.T.

InternVL2-2b* 83.44 91.71 60.29 86.64 72.42 91.70 73.87 87.39 72.76 96.39
InternVL2-2b (Ours) 85.37 93.24 62.44 88.78 75.50 94.09 76.34 88.69 75.84 97.28

InternVL2-8b* 88.54 92.27 65.09 88.88 76.58 92.70 78.01 87.33 78.52 96.95
InternVL2-8b (Ours) 89.47 94.01 67.18 90.41 77.08 94.58 78.16 89.77 82.80 97.55

Qwen2.5-VL-7b* 94.79 90.67 70.11 87.56 50.17 95.64 79.75 89.39 87.76 95.29
Qwen2.5-VL-7b (Ours) 95.40 91.85 71.10 88.66 57.58 96.90 80.52 91.29 88.32 95.74

Table 2: The performance of cognitive and perceptual tasks. “C.T.” and “P.T.” stand for cognitive task (VQA) and
perceptual task (OCR), respectively. Metrics are detailed in Section 5.3; all values are percentages (%), with bold
indicating superior performance. “*” denotes the “SFT-baseline” (see Section 3).

# Link. Conn.
Doc
VQA

Deep
Form

Chart
QA

Average

1 80.59
90.62

72.05
77.40

83.80
91.27

76.40
86.05

2 ✓ 82.97
91.52

77.85
80.97

87.45
93.66

79.10
87.77

3 ✓ 82.71
91.14

77.24
80.72

87.45
93.26

79.24
87.51

4 ✓ ✓ 83.39
91.32

78.56
82.20

87.64
93.17

80.12
88.21

Table 3: Ablation study based on InternVL2-2b. All
values are percentages (%), with the primary number
representing C&P Consistency and the smaller repre-
senting Idealized C&P Consistency. The best results are
in bold. “Link.” and “Conn.” denote C&P link token
and C&P connector, respectively (see Section 4).

a 3.36% increase. Under ideal conditions, consis-
tency also improves. These findings indicate that
our method effectively reduces C&P knowledge
conflicts by linking perceptual and cognitive tasks.
The comparison between Qwen2.5-VL-7b and the
InternVL2 models highlights the general applica-
bility of our approach across different MLLM ar-
chitectures. Additionally, we perform two-sided
paired t-tests using InternVL2-2b in Section A.9,
showing that all gains in Table 1 are statistically
significant.

5.3 The Performance of Cognitive and
Perceptual Tasks

To assess the impact of C&P consistency on model
performance, we evaluate the model’s effectiveness
on cognitive and perceptual tasks. For the cognitive

Doc Deep Chart
VQA Form QA

# Link. Conn. C.T. P.T. C.T. P.T. C.T. P.T.

1 83.4 91.7 72.4 91.7 72.8 96.4

2 ✓ 85.0 92.9 75.3 93.5 75.6 96.8
3 ✓ 85.1 93.1 75.2 94.0 75.4 97.1

4 ✓ ✓ 85.4 93.2 75.5 94.1 75.8 97.3

Table 4: Ablation study based on InternVL2-2b. “C.T.”
and “P.T.” denote cognitive (VQA) and perceptual
(OCR) tasks. Metrics are in Section 5.3; values are
percentages (%), with bold numbers indicating best per-
formance. “Link.” and “Conn.” denote C&P link token
and C&P connector, respectively (see Section 4).

task, following previous works (Borchmann et al.,
2021; Lee et al., 2023; Luo et al., 2024), we evalu-
ate DocVQA and FUNSD using ANLS (Biten et al.,
2019), DeepForm using the F1 score, and ChartQA
using relaxed accuracy (Methani et al., 2020). For
the perceptual task, all datasets are evaluated using
ANLS.

As shown in Table 2, the three MLLMs show
improved performance on both cognitive and per-
ceptual tasks across all datasets after the multi-
modal knowledge consistency fine-tuning. We
attribute this improvement to our fine-tuning ap-
proach, which reduces the conflict between percep-
tual and cognitive knowledge, thereby promoting
their integration. We believe that the results suggest
that enhancing C&P consistency can strengthen the
capabilities of MLLMs. Similar to Section 5.2, the
t-tests in Section A.9 show that the performance
gains are statistically significant.
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(a)

InternVL2-2b* & InternVL2-8b* 

What is the text within the red 
box?

𝒙𝑷: 𝒚𝒑: … sustainable
development

What is the name of the Centre 
of ITC?

𝒙𝑪: 𝒚𝑪: … sustainability
development Conflicts

InternVL2-2b (Ours) & InternVL2-8b (Ours)

What is the text within the red 
box?

𝒙𝑷: 𝒚𝒑: … sustainable
development

What is the name of the Centre 
of ITC?

𝒙𝑪: 𝒚𝑪: … sustainable
development Consistent

(b-1)

InternVL2-2b* & InternVL2-8b* 

What is the text within the red 
box?

𝒙𝑷: 𝒚𝒑: … 1961

In which year is the price index 
for Rent the highest?

𝒙𝑪: 𝒚𝑪: … 1940 Conflicts

InternVL2-2b (Ours) & InternVL2-8b (Ours)

What is the text within the red 
box?

𝒙𝑷: 𝒚𝒑: … 1961

In which year is the price index 
for Rent the highest?

𝒙𝑪: 𝒚𝑪: … 1963 Conflicts

(b-2)

Figure 4: a: Comparison of the distribution of con-
flict patterns between InternVL2-2b* and InternVL2-2b
(Ours). b: Two cases: b-1 demonstrates the effective-
ness of our method, while b-2 reveals a limitation.

5.4 Ablation Study

To evaluate the contribution of each component
in multimodal knowledge consistency fine-tuning,
we conduct a series of ablation experiments using
InternVL2-2b, as shown in Table 3 and Table 4.
Due to space limits, we show three datasets here
and provide the rest in Section A.6. Each exper-
iment, with different fine-tuning tasks, is trained
according to the settings outlined in Section 5.1.
#2 removes all C&P link tokens from the train-
ing data, including those in the C&P connector.
The results in Table 3 validate our hypothesis that
both components in multimodal knowledge consis-
tency fine-tuning are crucial for enhancing C&P
consistency. For instance, on average, the C&P link
token improves by 2.70%, and the C&P connector
improves by 2.84%. Furthermore, Table 4 shows
that our method achieves the best performance on
cognitive and perceptual tasks.

5.5 Analysis of Conflict Patterns and Case
Evidence

To further evaluate the effectiveness of multimodal
knowledge consistency fine-tuning, we reuse the
procedure described in Section 3 to analyze con-
flict patterns. Figure 4 (a) shows that, after fine-
tuning, character-level errors (P1) and cognitive
bias (P2) decrease significantly, making limited
cognitive ability (P3) the dominant pattern. This
shift supports our claim that heterogeneous VQA
and OCR annotations are the primary sources of

C&P knowledge conflicts and confirms that our
method mitigates them effectively. The qualitative
evidence in Figure 4 (b) illustrates these statistics.
In case (b-1), categorized as P2, both InternVL2-2b
and InternVL2-8b recognize “sustainable develop-
ment” but incorrectly respond with “sustainability
development” in the VQA task due to cognitive
bias. The conflicts disappear after fine-tuning, as
the models better integrate cognitive and percep-
tual knowledge. Notably, a similar P1 case with
the same conclusion is provided in the Section A.8.
In case (b-2), categorized as P3, the result indi-
cates that our method cannot fundamentally extend
the model’s cognitive boundaries. In Figure 4, the
responses of InternVL2-2b and InternVL2-8b are
identical, reflecting the representativeness of these
cases, though they differ in most other cases.

6 Related Work

MLLMs for Document Understanding Docu-
ment understanding (Cui et al., 2021; Xu et al.,
2021; Huang et al., 2022; Luo et al., 2023, 2024;
Shao et al., 2023; Wang et al., 2023; Zhu et al.,
2025; Mo et al., 2025b) is a rapidly growing re-
search area driven by increasing industrial demand.
Its main objective is to comprehend complex type-
set images that contain rich textual information,
such as scanned document pages (Mathew et al.,
2021; Svetlichnaya, 2020; Stanisławek et al., 2021),
charts (Masry et al., 2022; Kafle et al., 2018;
Methani et al., 2020), tables (Pasupat and Liang,
2015; Chen et al., 2019; Mo et al., 2025a), and
other formats (Tanaka et al., 2021; Mathew et al.,
2022; Xing et al., 2024; Shao et al., 2024). As a
multimodal task, document understanding involves
automated processes for understanding, classify-
ing, and extracting information, requiring models
to possess both perceptual and cognitive capabili-
ties (Cui et al., 2021). Recent studies (Chen et al.,
2024b; Hong et al., 2024; Dong et al., 2024; Bai
et al., 2025) for general MLLMs improve the encod-
ing resolution of document images, significantly
boosting performance in document understanding
tasks. Several MLLMs are developed to focus
on addressing document understanding problems,
such as mPLUG-DocOwl (Ye et al., 2023a; Hu
et al., 2024) and UReader (Ye et al., 2023b).

Knowledge Conflicts in LLMs LLMs are distin-
guished for encapsulating an extensive repository
of world knowledge, known as the memory. Simul-
taneously, LLMs continue to engage with external
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contextual knowledge post-deployment (Pan et al.,
2023). The discrepancies between the contexts
and the model’s memory knowledge, i.e. context-
memory conflicts, are being intensively studied
recently (Xie et al., 2023). Another notable chal-
lenge arises with intra-memory conflict—a con-
dition where LLMs exhibit unpredictable behav-
iors to inputs that are semantically equivalent but
syntactically distinct (Chang and Bergen, 2023;
Bartsch et al., 2023; Li et al., 2024b; Zhu et al.,
2024; Zhang et al., 2024). This variance can be
attributed to the conflicting knowledge embedded
within the LLM’s memory, which stems from the
inconsistencies present in the complex and diverse
pre-training datasets.

Hallucination issues in MLLMs MLLMs pro-
vide powerful tools for content generation across
a wide range of tasks. However, they are suscep-
tible to hallucinations (Bang et al., 2023; Zhang
et al., 2023b; Liu et al., 2024b), where the gen-
erated outputs contain information not present in
the visual input. These hallucinations typically
arise when the models overly rely on the strong
priors of their language modules. Such conflicts
between MLLMs’ language and visual perception
raise concerns about their reliability and limit their
applications (Ji et al., 2023; Kaddour et al., 2023).
Current research primarily focuses on detecting and
evaluating hallucinations (Li et al., 2023; Zhang
et al., 2023b), as well as methods to reduce them
(Liu et al., 2024a; Wang et al., 2024). To mitigate
hallucinations, efforts have been directed toward
enhancing data collection and training procedures
(Liu et al., 2024a; Wang et al., 2024). Neverthe-
less, research on how MLLMs integrate perception
and cognition knowledge, which is also vital for
interpreting and debugging these models, has not
progressed at the same pace.

7 Conclusion

In this paper, we identify that current MLLMs of-
ten face conflicts between cognition and percep-
tion, referred to as Cognition and Perception (C&P)
knowledge conflicts. The severity of these conflicts
is systematically assessed across five document
understanding datasets, revealing that even lead-
ing MLLMs still struggle with these multimodal
knowledge conflicts. To address this problem, a
novel method called Multimodal Knowledge Con-
sistency Fine-tuning is introduced. Comprehensive
experiments demonstrate the effectiveness of our

method in reducing C&P knowledge conflicts. Ad-
ditionally, our method improves the performance
of MLLMs in both cognitive and perceptual tasks.

Limitations

Despite contributing to the identification and mit-
igation of C&P knowledge conflicts, several lim-
itations remain. This work simplifies cognition
and perception to VQA and OCR tasks, potentially
overlooking other cognitive abilities (e.g., multi-
step reasoning, layout-aware inference) and per-
ceptual channels (e.g., color, shape). We address
these omissions in future work. Moreover, the
current focus is on document understanding. We
plan to extend our research to broader multimodal
domains, such as general open-world images and
video streams, to further explore C&P knowledge
conflicts.
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A Additional Details

A.1 Details of Selected Datasets

We consider five document understanding datasets
to assess C&P knowledge conflicts, categorized
into the following three tasks:

Document QA. DocVQA (Mathew et al., 2021)
contains 50k question-answer pairs from 12k docu-
ment images in the UCSF Industry Documents Li-
brary. DUDE (Van Landeghem et al., 2023) covers
diverse domains, including medical, legal, techni-
cal, and financial, providing 41k question-answer
pairs from 5k documents. We exclude all multi-
page VQA annotations from DUDE, retaining only
single-page annotations.

Document IE. DeepForm (Svetlichnaya, 2020)
and FUNSD (Jaume et al., 2019) are two Infor-
mation Extraction datasets. DeepForm consists
of 1.1k documents related to election spending.
FUNSD contains 0.2k document images from the
RVL-CDIP dataset (Harley et al., 2015). The anno-
tations for DeepForm and FUNSD are transformed
into a question-answer format, with DeepForm fol-
lowing Hu et al. (2024), and FUNSD following Luo
et al. (2024). The annotations in Hu et al. (2024)
for DeepForm incorrectly assume that all key val-
ues are on the first page, ignoring that DeepForm
documents are multi-page. We correct this issue
(see Section A.3 for details), ensuring information
extraction occurs on the correct pages.

Chart QA. ChartQA (Masry et al., 2022) com-
piles a diverse range of topics and chart types
from four primary sources: Statista (statista.com),
The Pew Research Center (pewresearch.org), Our
World in Data (ourworldindata.org), and the OECD
(oecd.org). In total, the dataset includes 21k chart
images and 32k question-answer pairs.

Notably, OCR annotations are required in Sec-
tion 2.2. For DocVQA and DUDE, the official
OCR annotations are utilized, whereas the other
datasets employ OCR annotations generated by a
commercial OCR solution.

A.2 Details of Evaluation Sample
Construction

As described in Section 2.2, the construction of
(xC , xP ) pairs involves several preprocessing steps.
According to the definition in Section 2.1, the ques-
tions must pertain to the text in the image. However,
certain questions, such as those related to compar-
isons or yes/no answers, do not directly reference
the text. To address this, we filter out such QA pairs

Doc
VQA

DUDE
Deep
Form

FUNSD
Chart
QA

# (xC , xP ) 4575 1855 984 454 1562
# Images 1268 1101 248 46 1278

Table 5: Data statistics for C&P knowledge conflicts
evaluation. The number of evaluation samples, i.e.,
cognitive (VQA) query and perceptual (OCR) query
(xC , xP ) pairs, along with the corresponding images
for each dataset.

What is the extension number?𝑸
5177𝑨

Evaluation Sample For C&P Knowledge Conflicts

Image and Annotations

What is the extension number ?𝒙𝑪 = 𝑸

5177𝑮𝑻 = 	𝑨

𝒙𝑷:

<box>700,285,752,299</box>𝑩𝒐𝒙
Identified by searching OCR annotations for 𝑨

What is the text within the red box?

Figure 5: A specific example illustrates the evaluation
sample. All mathematical symbols in the figure are
consistent with those in Section 2.2. Corresponding
relationships are represented using the same colors for
clarity.

using GPT-4o with the prompt detailed in Table 12.
Moreover, since the Box annotations are not pro-
vided, we employ GPT-4o to locate Box based on
the OCR annotations of xI with the prompt de-
tailed in Table 13. We use GPT-4o to find Box
because a single image may contain multiple occur-
rences of the text A in different locations. There-
fore, identifying the correct Box requires semantic
understanding, which GPT-4o excels at. QA pairs
for which GPT-4o cannot find a Box, or the Box
found does not contain A, are also excluded. Ad-
ditionally, an example of an evaluation sample is
provided in Section 5. Table 5 provides the statis-
tics of evaluation data, including the number of
(xC , xP ) pairs and their corresponding images.

A.3 Details of DeepForm Single-page QA
Annotations

As described in Section A.1, Hu et al. (2024) pro-
vide incorrect annotations for DeepForm because
they assume all key values are on the first page,
overlooking that DeepForm documents are multi-
page. To address this, we use GPT-4o to identify
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DocVQA DUDE DeepForm FUNSD ChartQA Average

GPT-4o 85.58
93.35

67.84
87.30

62.70
71.20

78.76
90.52

81.41
92.38

75.26
86.95

Qwen-VL-Max 95.66
97.15

82.54
91.35

83.23
86.69

83.19
90.52

92.44
95.68

87.41
92.28

Table 6: C&P knowledge conflicts in current MLLMs. All values are percentages (%), where the primary number
represents C&P Consistency and the smaller number represents Idealized C&P Consistency.

# Link. Conn. DUDE FUNSD

1 64.69
83.00

80.84
87.95

2 ✓ 67.49
84.14

79.74
88.56

3 ✓ 68.84
84.46

79.96
87.97

4 ✓ ✓ 69.49
84.75

81.50
89.60

Table 7: Ablation study based on InternVL2-2b. All
values are percentages (%), with the primary number
representing C&P consistency and the smaller represent-
ing idealized C&P consistency. Best results are in bold.
“Link.” and “Conn.” denote C&P link token and C&P
connector, respectively, as detailed in Section 4.

the correct page for information extraction using
the prompt detailed in Table 14, ensuring that all
single-page QA annotations in DeepForm are cor-
rect.

A.4 Additional Details of C&P Knowledge
Conflicts Evaluation

As described in Section 3, to ensure that closed-
source MLLMs follow instructions, we carefully
adjust the prompts based on the characteristics of
each dataset. For cognitive tasks, the prompts
for DocVQA and DUDE are detailed in Table 15,
DeepForm in Table 16, FUNSD in Table 17, and
ChartQA in Table 18. For perceptual tasks, the
prompts are detailed in Table 19. Table 6 presents
the additional evaluation results of C&P knowledge
conflicts in closed-source MLLMs.

Additionally, Table 9 presents the performance
of closed-source MLLMs on cognitive and percep-
tual tasks. The results demonstrate that closed-
source MLLMs perform well on both tasks, indi-
cating that they effectively follow instructions and
validating the results reported in Section 3.

We also report in Table 9 the performance of

DUDE FUNSD

# Link. Conn. C.T. P.T. C.T. P.T.

1 60.29 86.64 73.87 87.39

2 ✓ 62.32 87.56 75.89 88.02
3 ✓ 61.68 88.43 76.20 88.51

4 ✓ ✓ 62.44 88.78 76.34 88.69

Table 8: Ablation study based on InternVL2-2b. “C.T.”
and “P.T.” denote cognitive (VQA) and perceptual
(OCR) tasks. Metrics are in Section 5.3; values are
percentages (%), with bold numbers indicating best per-
formance. “Link.” and “Conn.” denote C&P link token
and C&P connector, respectively (see Section 4).

open-source MLLMs with original weights on cog-
nitive and perceptual tasks. The results show that
open-source MLLMs perform exceptionally poorly
on some datasets, highlighting the necessity of us-
ing the “SFT-baseline” in Section 3.

We evaluate the closed-source MLLMs via their
publicly available APIs. Specifically, we use
the snapshots of GPT-4o1 from 2024-11-20 and
Qwen-VL-Max2 from 2025-04-08. For open-
source MLLMs, we use the model weights avail-
able on Hugging Face, including InternVL2-2B3,
InternVL2-8B4, and Qwen2.5-VL-7B5.

A.5 Additional Results of the Synthetic Noise
Experiment

The additional results of the synthetic noise experi-
ment based on InternVL2-2b (Section 3) show in

1https://platform.openai.com/docs/models/
gpt-4o

2https://www.alibabacloud.com/help/en/
model-studio

3https://huggingface.co/OpenGVLab/
InternVL2-2B

4https://huggingface.co/OpenGVLab/
InternVL2-8B

5https://huggingface.co/Qwen/Qwen2.
5-VL-7B-Instruct
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InternVL2-2b* & InternVL2-8b* 
What is the value for the address__postcode?

What is the text within the red box?

𝒙𝑪:

𝒙𝑷:

𝒚𝑪:

𝒚𝒑: SW2 2QP

5W2 2QP
Conflicts

InternVL2-2b (Ours) & InternVL2-8b (Ours) 
What is the value for the address__postcode?
What is the text within 
<box>691,328,776,344</box>?

𝒙𝑪:

𝒙𝑷:

𝒚𝑪:

𝒚𝒑: SW2 2QP

SW2 2QP
Consistent

Figure 6: An additional case demonstrating the effec-
tiveness of our method.

Table 10.

A.6 Additional Results of the Ablation Study
Due to space constraints, we report the results of
only three datasets in Section 5.4. The results of
the remaining two datasets are presented in Table 7
and Table 8.

A.7 Additional Details of C&P Connector
As described in Section 4, the negative samples for
the C&P Connector are required to use the OCR-
error version of yC , denoted as y−C , which is gen-
erated using GPT-4o with the prompt detailed in
Table 20.

A.8 Additional Case Study
We present a case in Figure 6, categorized as P1
(Section 3), which provides evidence that multi-
modal knowledge consistency fine-tuning mitigates
C&P knowledge conflicts.

A.9 Additional Results of the T-test
We perform two-sided paired t-tests using
InternVL2-2b, and the results are shown in Table
11.
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Doc
DUDE

Deep
FUNSD

Chart
VQA Form QA

C.T. P.T. C.T. P.T. C.T. P.T. C.T. P.T. C.T. P.T.

GPT-4o 89.14 86.55 62.70 74.58 37.17 85.51 75.95 87.39 68.04 95.22
Qwen-VL-Max 95.88 92.25 70.94 87.91 45.33 97.00 83.18 91.06 87.48 94.28

InternVL2-2b 87.03 66.66 59.96 52.25 19.37 34.28 74.02 59.08 76.40 65.96
InternVL2-8b 91.73 74.18 65.96 59.80 21.63 63.67 75.84 70.22 83.12 73.05
Qwen2.5-VL-7b 95.55 87.95 69.79 82.60 37.98 94.79 78.37 82.09 87.60 92.66

Table 9: The performance of cognitive and perceptual tasks, consisting of two groups: the results of closed-source
models and the results of open-source models with original weights. “C.T.” and “P.T.” stand for cognitive task
(VQA) and perceptual task (OCR), respectively. Metrics are detailed in Section 5.3, and all values are reported as
percentages (%).

DocVQA DUDE DeepForm FUNSD ChartQA Average

0% 80.59
90.62

64.69
83.00

72.05
77.40

80.84
87.95

83.80
91.27

76.40
86.05

5% 79.12
90.97

64.09
82.70

71.36
76.31

79.74
87.67

83.81
90.12

75.62
85.55

10% 79.01
90.08

62.58
81.80

72.17
76.85

80.18
87.34

83.24
90.39

75.44
85.29

20% 77.92
89.93

61.61
81.17

70.24
75.38

77.53
85.45

82.08
90.52

73.88
84.49

Table 10: The synthetic noise experiment based on InternVL2-2b. All values are percentages (%), where the primary
number represents C&P Consistency and the smaller number represents Idealized C&P Consistency.

DocVQA DUDE DeepForm FUNSD ChartQA

C&P Consistency
5.22

(1.84×10−7)
4.75

(2.18×10−6)
5.41

(7.94×10−8)
2.36

(7.22×10−3)
4.72

(2.61×10−6)

Cognitive Task
4.69

(2.76×10−6)
3.28

(1.05×10−3)
3.32

(9.17×10−4)
2.10

(3.60×10−2)
4.55

(5.70×10−6)

Perceptual Task
6.52

(7.99×10−11)
4.49

(7.43×10−6)
5.81

(8.57×10−9)
2.53

(1.28×10−2)
3.20

(1.38×10−3)

Table 11: Results of two-sided paired t-tests using InternVL2-2b, reported as t-statistics with p-values in parentheses.
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Prompt You are tasked with determining whether the provided question-answer pairs are
examples of extractive question answering (Extractive QA).

**You have been provided with the following:**
1. The document image.
2. A list of question-answer pairs.

**Here are the questions and answers:**
{Question_Answering}

**Definition of Extractive QA**
In the domain of document understanding, Extractive Question Answering (Extractive
QA) refers to systems that analyze and comprehend both the visual and textual
information within a document to directly extract answers to user queries from the
document’s existing content. The answers are typically located in specific sections of
the document, eliminating the need for complex reasoning or the generation of new
content. Extractive QA emphasizes precise localization and extraction of information
to ensure the accuracy and verifiability of the answers.

**Non-Extractive QA Question Types:**
1. **Counting Questions:** These require the system to count specific elements or
occurrences within the document, such as "How many times is the term ’machine
learning’ mentioned in the report?"
2. **Comparing Questions:** These involve evaluating and contrasting different
pieces of information within the document, such as "Which department had a higher
budget allocation in Q2, Marketing or Sales?"
3. **Causal Reasoning:** These questions require understanding cause-effect re-
lationships within the document, such as "What caused the increase in operational
costs?"
4. **Synthesis Questions:** These require summarizing or aggregating information
from the document, such as "Summarize the key findings of the annual report."
5. **Inference Questions:** These ask for conclusions based on implicit information
within the document, such as "What can be inferred about the company’s market
strategy from the sales data?"

**Your Task**
For each question in the list, determine whether it is an example of extractive QA
based on the definition provided.

**Important:**
- **Do not include any explanatory content in your response.**
- **Respond in the following format for each question:**
- If the question is extractive QA, respond with: "Yes".
- If the question is not extractive QA, respond with: "No".

**Example Response:**
Q1: Yes
Q2: No
Q3: Yes

Slots Question_Answering List of question-answering annotations for the given images.

Table 12: Prompt for using GPT-4o to filter the questions that do not directly reference the text.
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Prompt You are tasked with identifying the locations of answers to multiple questions about a
document image.

**You have been provided with the following:**
1. The document image.
2. A list of questions along with their corresponding answers.
3. Text extracted from the document image using an Optical Character Recognition
(OCR) engine by a third party.

**Here are the questions and answers:**
{Question_Answering}

**Here is the text extracted by the OCR engine:**
{OCR_Text}

**Your task:**
For each question in the list, first determine whether the answer text can be found
within the document image based on the OCR-extracted text. If the answer is present,
identify the box ID(s) that contain the correct answer. Each answer appears **only
once** in the document image and may be entirely within a single box or span multiple
adjacent boxes, either horizontally or vertically. Include all relevant box IDs that
collectively constitute the answer. If the answer text cannot be found in any box,
indicate this as well.

**It is important to emphasize that you should identify only the boxes that contain the
correct answer text, not the boxes that are relevant to answering the question.** In
other words, even if a question explicitly mentions a specific box, if the answer text
does not appear in that box, it should not be considered.

Keep in mind that you need to find the box that semantically matches the answer,
not just the box with the answer text. This means you should fully consider all the
information from the document image, including images, text, layout, and style.

**Important:**
- **Do not include any explanatory content in your response.**
- **Respond in the following format for each question:**
- If you find the box(es) containing the true answer, respond with: "Found [Box IDs]"
- If you cannot find any boxes containing the true answer, respond with: "Not Found"

**Example Response:**
Q1: Found [9, 12]
Q2: Not Found
Q3: Found [15]

Slots Question_Answering List of question-answering annotations for the given images.
OCR_Text JSON-formatted OCR text for the given images.

Table 13: Prompt for using GPT-4o to locate Box based on the OCR annotations of given image xI .
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Prompt You are given several images with the page number indicated in the top left corner.

You will also receive a number of independent question-answer pairs.
For each question, your task is to identify which numbered page provide the informa-
tion needed to arrive at the given answer.
Note:
- Please identify which page these key-value pairs are most likely to appear on.
- Output only question-answer pair id and its corresponding number. Format:
Q1:number
{Question_Answering}

Slots Question_Answering List of question-answering annotations for the given images.

Table 14: Prompt for using GPT-4o to identify the correct page for information extraction on DeepForm.

Prompt You are asked to answer questions asked on a document image.
The answers to questions are short text spans taken verbatim from the document.
This means that the answers comprise a set of contiguous text tokens present in the
document.

Question: {Question}

Directly extract the answer of the question from the document with as few words as
possible.

Answer:

Slots Question The question about the given image.

Table 15: Prompt for evaluating close-source MLLMs on cognitive task in DocVQA and DUDE.

Prompt You are now working on DeepForm, a dataset for extracting text from visually struc-
tured political ad receipts. This dataset focuses on five key fields:

1. **contract_num**: Contract number (multiple documents can share the same
number if a contract is revised)
2. **advertiser**: Advertiser name (often a political committee, but not always)
3. **flight_from / flight_to**: Start and end air dates for the ad (also known as "flight
dates")
4. **gross_amount**: Total amount paid for the ads

The answer always appears in the document, but it may not match the exact words of
the question or field name. Provide a contiguous text span from the form, and include
no additional explanation besides the answer.

Question: {Question}

Answer:

Slots Question The question about the given image.

Table 16: Prompt for evaluating close-source MLLMs on cognitive task in DeepForm.
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Prompt You are now working on FUNSD, a dataset for form understanding in scanned doc-
uments. These documents often contain text arranged in various sections, tables,
or multi-line blocks, and your goal is to extract the text that directly answers each
question. Your task is to return the contiguous text snippet from the document that
fully answers each question. The answer is guaranteed to be present in the form image,
so do not refuse. If the relevant text spans multiple lines or rows in a table, ensure you
include all of them exactly as they appear. Avoid adding explanations or summarizing
the text; simply return a contiguous text snippet from the form that best addresses the
question.

Question: {Question}

Answer:

Slots Question The question about the given image.

Table 17: Prompt for evaluating close-source MLLMs on cognitive task in FUNSD.

Prompt You are analyzing a chart that may include numeric data, textual labels, and visual
features (e.g., bars, lines, colors). Below are some example questions and answers
from other charts—these examples are not from this chart. When answering the
current question, rely solely on the information in the chart you are analyzing, and
provide a concise answer based strictly on the chart’s data. Avoid outside knowledge
or extra explanations.

Additionally, the question is guaranteed to have an answer found in the chart. For
numeric answers, remove any commas or symbols (e.g., “%”) unless specifically
asked for. For instance, “37,133” should be written as “37133” and “32.4%” should
be written as “32.4.”

Question: {Question}

Answer:

Slots Question The question about the given image.

Table 18: Prompt for evaluating close-source MLLMs on cognitive task in ChartQA.

Prompt Analyze the provided image, which has a **single red box** containing text. **Extract
only** the text inside this box, preserving the **original line order** from **top**
to **bottom**. If there are multiple lines, output them **separately**; if there’s just
one line, output it **as is**. **Do not** include any text or descriptions from outside
the red box, and **do not** add any extra punctuation, commentary, or code block
markers. Return **only** the exact text inside the red box.

Table 19: Prompt for evaluating close-source MLLMs on perceptual task.

30943



Prompt **Task Description**

You are tasked with generating potential OCR (Optical Character Recognition) error
results based on the provided list of question-answer (QA) pairs.

**Provided Content:**

**List of QA Pairs:**
{Question_Answering}

**Your Task**

For each QA pair, provide **3 possible OCR error results for the answer (A)**.
**Each error result must maintain a similar format, contain different content, must
not be identical to the original answer (A), and must be distinct from the other error
results.**

**Output Format**

Please respond in **JSON** format according to the structure provided below. Note
that "error1," "error2," and "error3" are merely placeholders.

Slots Question_Answering List of question-answering annotations for the given images.

Table 20: Prompt for using GPT-4o to generate y−C (Section 4).
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