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Figure 1: MMDoOCIR evaluation set comprises 313 long documents and 1,658 queries across 10 domains. For each

query, page-level labels are provided via selected screenshots. Red boundary boxes represent layout-level labels.

Abstract

Multimodal document retrieval aims to identify
and retrieve various forms of multimodal con-
tent, such as figures, tables, charts, and layout
information from extensive documents. De-
spite its increasing popularity, there is a notable
lack of a comprehensive and robust benchmark
to effectively evaluate the performance of sys-
tems in such tasks. To address this gap, this
work introduces a new benchmark, named MM-
DoclIR, that encompasses two distinct tasks:
page-level and layout-level retrieval. The for-
mer evaluates the performance of identifying
the most relevant pages within a long document,
while the later assesses the ability of detecting
specific layouts, providing a more fine-grained

"These authors contributed equally

30971

measure than whole-page analysis. A layout
refers to a variety of elements, including tex-
tual paragraphs, equations, figures, tables, or
charts. The MMDocIR benchmark comprises
a rich dataset featuring 1,685 questions anno-
tated by experts and 173,843 questions with
bootstrapped labels, making it a valuable re-
source in multimodal document retrieval for
both training and evaluation. Through rigorous
experiments, we demonstrate that (i) visual re-
trievers significantly outperform their text coun-
terparts, (ii)) MMDoclIR training set effectively
enhances the performance of multimodal docu-
ment retrieval and (iii) text retrievers leveraging
VLM-text significantly outperforms retrievers
relying on OCR-text. Our dataset is available at
https://mmdocrag.github.io/MMDocIR/.
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Figure 2: Area ratio of different modalities (1) in overall and (2) by domains in MMLongBench-Doc benchmark.

1 Introduction

Multimodal document retrieval (Hassan et al.,
2013; Lee et al., 2024) aims to retrieve information
from visually rich documents based on user queries.
Unlike traditional document retrieval (Zhang et al.,
2022; Chen et al., 2023; Dong et al., 2024; Wang
et al., 2023) and long-context (Yang et al., 2025)
QA which primarily deals with textual data, mul-
timodal document retrieval imposes substantially
greater demands on understanding multimodal el-
ements such as images, tables, charts, and layout
designs. Such elements often carry significant in-
formation that plain text fails to convey (Cui et al.,
2021; Sassioui et al., 2023): tables reveal struc-
tured data patterns, charts visualize trends or corre-
lations, images offer contextual and semantic cues,
etc. Combining these visual elements enriches
the quality of retrieved content. Our analysis of
MMLongBench-Doc benchmark (Ma et al., 2024b)
in Figure 2 shows that: text occupies only 52.7% of
content area, while images and tables account for
29.2% and 12.8% respectively. This highlights the
need for retrieval systems that effectively handle
multimodal and cross modal (Zhang et al., 2025)
information.

However, as shown on Table 1, existing bench-
marks exhibit several critical limitations that un-
dermine comprehensive evaluation of multimodal
retrieval systems. The key limitations include: 1.
Question Quality: Many questions used in exist-
ing benchmarks are directly sourced from datasets
for Visual Question Answering (VQA) tasks. Some
questions often assume the input is already relevant,
making it not suited for meaningful evaluation of
retrieval capabilities. 2. Document Completeness
and Diversity: Existing benchmarks often provide
only partial documents, limiting the ability to eval-
vate within full document context. Additionally,
the narrow range of document domains further re-
stricts their applicability across diverse use-cases
in real-world. 3. Retrieval Granularity: Most
benchmarks support only page-level retrieval. Such

granularity is often insufficient, as user queries fre-
quently target specific elements, such as figures or
tables, rather than entire pages.

To address these gaps, we introduce MMDO-
CIR, a multimodal document information retrieval
benchmark. MMDOCIR is designed for two key
tasks: page-level and layout-level retrieval. (1)
The page-level retrieval identifies the most rel-
evant pages within a document to answer user
query. (2) The layout-level retrieval targets the
most relevant layouts. A layout is an element
on the document page where the element could
be a paragraph, a heading, an equation, a table,
a figure, or a chart (see Appendix E.2 for more
examples). Such task supports more precise and
context-aware retrieval that pinpoint specific ele-
ments to address user queries. To support both
tasks, we develop MMDOCIR evaluation set that
comprises 313 documents, each averaging 65.1
pages, along with 1,658 modified queries derived
from MMLongBench-Doc and DocBench (Zou
et al., 2024). The queries are annotated with 2,107
page-level and 2,638 layout-level labels. The page
labels are specific pages that contain the evidence
needed to answer the query.! The layout labels
consist of precisely drawn bounding boxes around
the key evidence within the identified pages. In ad-
dition, we introduce the MMDOCIR training set,
designed to support retriever training. It contains
73,843 questions sourced from 7 DocQA datasets.
To construct this set, we manually collect 6,878
documents and apply a semi-automatic pipeline to
annotate the ground truth labels.

By leveraging MMDOCIR, we conduct a com-
prehensive evaluation on multimodal document re-
trieval across two retriever types: visual-driven and
text-driven. Visual-driven retrievers (Ma et al.,
2024a; Faysse et al., 2024), leverage vision lan-
guage models (VLMs) to capture rich multimodal
cues and generate embeddings for both queries

'While MMLongBench-Doc provided initial page labels,
our meticulous review lead to corrections in 21.3% of them.
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Benchmarks Question Document Label
Type Expert? IR? #Num Evidence Type Domain #Pages Source| Page Layout

DocCVQA VQA question v v 20 TXT/L Finance 1.0 v v X
SciMMIR Image caption X X 530k TAB/I Science 1.0 X X X
ViDoRe VQA question X 3810 TXT/C/TAB/I Multiple 1.0 X 4 X
PDF-MVQA Search query X v 260k TXT/TAB/AI Biomedical 9.6 v v v
MMLongBench-Doc| VQA question v X 1,082 TXT/C/TAB/1 Multiple  47.5 v v X
Wiki-SS Natural question X v 3,610 TXT Wikipedia 1.0 X v X
DocMatix-IR VQA question X X 5.6lm TXT/C/TAB/ Multiple 4.2 v v X
MMDoOCIR (eval) VQA question v v 1,658 TXT/C/TAB/ Multiple  65.1 v v v
MMDOCIR (train) | VQA question « v 73.8k TXT/C/TAB/I Multiple  49.3 v v X

Table 1: MMDOCIR versus existing document IR datasets. TXT/C/TAB/I refers to text/chart/table/image.

and documents. In contrast, text-driven retriev-

ers (Karpukhin et al., 2020; Khattab and Zaharia,

2020; Xiao et al., 2023) rely on OCR or VLM to

first convert the multimodal content into text, subse-

quently employing language models (LMs) to gen-
erate embeddings for both queries and documents.

Our extensive experiments reveal that visual-driven

retrievers consistently outperform their text-driven

counterparts, often by a significant margin. In sum-
mary, our contributions are threefold:

* Dual-task Retrieval Framework: We propose a
dual-task retrieval framework (§ 2) that supports
page-level and fine-grained layout-level multi-
modal document retrieval.

* MMDocIR Benchmark: We introduce Multi-
modal Document Information Retrieval bench-
mark. The evaluation set (§ 3) consists of 313
documents with expert-annotated labels for 1,658
questions. The training set (§ 4) consists of 6,878
documents and labels for 73,843 questions.

* We conduct extensive experiments and compar-
isons of both text and visual retrievers (§ 5),
demonstrating clear advantage of incorporating
visual content in multimodal retrieval tasks.

2 Dual-Task Retrieval Definition

Let D be a document corpora consisting of doc-
ument pages: P = {p1,p2,...,Pn}, and layouts:
L = {l,la,... 1} extracted via layout detec-
tion. The objective is to perform document re-
trieval at both page-level and layout-level. Specif-
ically, given query @, the task is to retrieve the
top k pages and layouts most relevant to (), where
k << n and k << m. The relevance of pages
(p) and layouts (I) to ) is measured by similarity
scores, Sim(Q, p) and Sim(Q), [) respectively. The
retrieval system consists of two phases: (1) an of-
fline indexing phase, where pages and layouts from
‘P and L are encoded into vectors, and (2) an online
querying phase, in which a query @ is encoded into

a vector, which is then compared against the offline-
indexed vectors using similarity scores Sim(Q, p)
for pages and Sim(@Q, !) for layouts.

3 MMDocIR: Evaluation Set

3.1 Document Corpora Collection

After a comprehensive review of existing DocVQA
datasets, we select MMLongBench-Doc (Ma et al.,
2024b) and DocBench (Zou et al., 2024) to facili-
tate our benchmark construction (see Appendix B.2
for our selection criteria). MMLongBench-Doc is
a long-context, multimodal benchmark comprising
1,091 questions across 135 documents with 47.5
pages on average. DocBench emphasizes long doc-
ument understanding, consisting of 1,102 questions
across 229 documents, each with an average length
of 77.5 pages. Both datasets offer corpora from
diverse domains with expert-annotated questions
that require evidence from various modalities. Con-
sequently, we curate a set of 364 documents and
2,193 questions for our subsequent annotation.

3.2 Annotation Process

Question Filtering and Revision. To ensure that
the questions in MMDOCIR are optimally suited
for document retrieval tasks, we identify four spe-
cific types of questions (see Appendix B.3) that
do not align well with the objectives of IR. By fil-
tering and refining these questions, we ensure the
integrity and relevance of MMDOCIR, resulting in
1,658 questions for subsequent annotation.

Page-level Annotation. We annotate page labels
that precisely identify the exact pages containing
ground truth evidence. Given that documents in
MMDoCIR contain 65.1 pages on average, pin-
pointing relevant pages is highly non-trivial, akin
to finding a needle in haystack, which demands
careful inspection and document understanding.
* For DocBench: we manually annotate page la-
bels for all 864 questions from scratch, by care-
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Page Labels Layout Labels
Prec. Recall F1 | Prec. Recall Fl1

A+B ‘95.7 96.1 95.9‘ 88.1 86.8 874

Consistency ‘

B+A 943 946 944|859 875 867
| 950 954 952|870 872 871

Average

Table 2: Annotation consistency between group A & B.

fully reviewing each document and locating the
pages containing answer evidence.

* For MMLongBench-Doc: we rigorously review
and validate the answers and page labels of 794
questions. This effort results in corrections to 10
answers and 169 page labels?.

Layout-level Annotation. To enhance the granu-
larity of our benchmark, we extend our annotations
to include layout-level labels, identifying specific
layout elements as evidence. Compared to page an-
notation, layout-level labeling is significantly more
complex and labor-intensive.

* Layout Detection. We begin by utilizing
MinerU (Wang et al., 2024) to automatically
parse all documents and detect all layouts (e.g.,
layout type and bounding boxes).

* Evidence Identification. We identify the lay-
outs that contain necessary answer evidence. In
case where MinerU fails to detect evidentiary ele-
ment, we manually annotate the bounding boxes,
accounting for 7% of the total layout-level labels.

3.3 Quality Control

To ensure annotation quality and reliability in MM-
DoclIR, we have adopted a rigorous 3-stage quality
control process. We split questions into two parts.
Each group is responsible for annotating approx-
imately 1,000 questions, with an overlap of 400
questions serving the need for cross-validation.

* Overlap Scoring: For the 400 overlapping ques-
tions, A<B evaluates A’s labels with B’s labels
as ground truth, and vice versa for B<—A.

* Cross-Evaluation: We cross-evaluate and
achieve F; score of 95.2 and 87.1 for page and
layout labels, as shown in Table 2. We then iden-
tify and fix the discrepancies.

* Random Cross-Validation: We randomly cross-
validate 50% of the remaining annotations. In
the cases where we have different opinions, we
discuss to achieve mutually-agreed annotations.

2Common errors in page labeling: annotators starting page
indexing at 1 rather than 0, missing labels for questions span-
ning multiple pages, and incorrect or absent page labels.
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Figure 3: Distribution of OCR/VLM-text by length.

3.4 Multimodal content as OCR/VLM-text

To apply multimodal retrieval to text retrievers,
we convert multimodal layouts (e.g., tables or fig-
ures) into text. Specifically, we extract text using
OCR (Smith, 2007) (“OCR-text”) and generate de-
tailed descriptions using VLMs (OpenAl, 2024;
Qwen-Team, 2024) (“VLM-text”). As a result,
each image layout is represented in three formats:
original image, OCR-text, and VLM-text.

For layouts, the average word length and distribu-
tion of OCR-text and VLM-text of MMDOCIR are
shown in Figure 3a and 3b. Notably, the length
of VLM-text is 1.5 and 3.8 times of OCR-text for
table (with more structured numbers) and figure
(mostly with visual elaboration), respectively.

For pages, we construct two variants by combining
the natural text with either OCR-text and VLM-text
for each page, resulting in OCR-page and VLM-
page representations. The average word length is
477 and 505 for OCR-page and VLM-page respec-
tively, with their distribution shown in Figure 3c.

3.5 Statistics and Analysis

Document Analysis. As shown in Table 3, MM-
DoclIR evaluation set includes 313 long docu-
ments, averaging 65.1 pages, categorized into 10
domains. Different domains feature distinct mul-
timodal distribution. The overall modality distri-
bution is as follows: text (60.4%), image (18.8%),
table (16.7%), and others (4.1%), with fine-grained
distribution shown in Figure 4a.

Question and Annotation Analysis. MMDo-
CIR includes 1,658 questions, and 2,107 page and
2,638 layout labels. The evidence spans 4 modali-
ties: text (44.7%), image (21.7%), table (37.4%),
and layout/meta (11.5%). Notably, MMDoOCIR
presents several challenges: 254 questions require
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Document Statistics Questions (%) Modality Distribution %
MMDocIR #Page #Lay #Page #La Lay/ .
#Doc #QA Labge 1 Labgl /D O‘(’L /Pag}(; JLay | Text Image Table Me}t/a Text Image Table Title
Eval Domains | 313 1,658 2,1072,638 65.1 8.3 41.8 | 447 21.7 374 115|604 188 16.7 4.1
- Research Report 34 200 318 400 394 6.0 39.1 | 450 17.5 745 135|456 400 59 84
- Admin & Industry| 10 59 82 113 168 9.1 451 | 780 203 135 135 |70.1 11.7 149 32
- Tut & Workshop 17 102 165 225 575 4.1 438 | 372 61.7 245 9.8 |28.0 573 63 83
- Academic Paper 75 386 473 571 195 10.1 484 | 28.8 257 50.0 104 | 746 128 11.1 1.5
- Brochure 15 76 121 178 30.3 9.7 41.1 60.5 526 184 36.8 |333 50.8 85 70
- Financial Report 51 343 394 477 169.5 9.2 448 | 280 13.1 545 53 |603 79 292 26
- Guidebook 22 112 168 223 784 10.0 33.6 | 51.8 544 268 17.8 | 63.7 20.0 12.1 4.1
- Government 44 111 116 132 689 69 454 |6937 2.7 0 7.6 | 8.2 37 57 24
- Laws 44 132 133 149 58,5 6.0 31.2 | 62.1 0 106 273 | 838 1.6 123 22
- News 1 137 137 170 500 73.6 723 | 70.1 1.5 0 285|485 398 0.0 11.6

Table 3: Detailed statistics of MMDOCIR evaluation set. “#Lay/Page” is averaging layouts per page, reflecting
layout complexity. “%Lay” is the area ratio of useful layouts (excluding white spaces, headers, and footers).

. Document Statistics Evidence Modality (%) Labels
MMDoCIR PDomain | ypoc  #Qa  #TAEe }E‘g %Lay | Text Image Table Title | Page Lay
__Train Subsets | assorted docs | 6,878 73,843 32.6 632 426 | 493 343 108 49 | v £
- MP-DocVQA | health/ind. docs| 875 15,266 46.8 6.9 38.8 573 18.0 227 1.9 X
- SlideVQA diverse slides | 2,011 11,066 493 44 423 30.1 562 47 8.8 X
- TAT-DQA annual reports 163 15,814 1473 92 422 | 664 44 265 2.7 o/
- arXivQA arXiv papers 1,579 12,314 184 79 50.0 | 704 223 238 1.0 /7
- SciQAG science papers | 1,197 4,976 90 9.1 537 61.8 280 6.7 1.5  /
- DUDE assorted docs 779 3,173 15,6 74 425 57.1 247 152 29 /7
- CUAD legal contracts | 274 11,234 296 74 247 893 25 64 1.1 X

Table 4: MMDOCIR training set statistics about our collected documents, questions, and constructed labels.

cross-modal understanding, 313 questions require
evidence across multiple pages, and 637 questions
require reasoning over multiple layouts.

4 MMDOCIR: Training Set

4.1 Document Corpus Collection

After screening related DocVQA datasets, we
collect our training set corpora from 7 datasets,
namely MP-DocVQA (Tito et al., 2023), Slide-
VQA (Tanaka et al., 2023), TAT-DQA (Zhu et al.,
2022), SciQAG (Wan et al., 2024), DUDE (Lan-
deghem et al., 2023), and CUAD (Hendrycks et al.,
2021). Since most of these datasets do not provide
original document, we invest significant efforts in
tracing and recovering the original document, as
detailed in Appendix B.4.

4.2 Label Construction and statistics

We use semi-automated construction pipeline to
generate page-level and layout-level labels for
datasets that lack them, referring to Appendix
B.5 and B.6 for more details of construction pro-
cess. Notably, layout annotations are missing from
most existing datasets, as we manage to obtain or
construct layout-level labels for only 4 datasets.
The overall statistics (e.g., document information,
modality distribution, domain, etc) of MMDOCIR

training set are summarized in Table 4.

5 Experiment

5.1 Evaluation Metric

The retriever scores each page or layout in the doc-
ument based on its relevance to the question, and
returns the top k candidates with the highest scores.
Recall@F is defined as the proportion of ground
truth page/layout evidence successfully retrieved.
For page matching, the recall is straightforwardly
computed with page indices. For layout match-
ing, we calculate recall based on the overlaps be-
tween the bounding boxes of retrieved layouts and
gold-standard layouts. Unlike page retrieval, where
boundaries are unambiguous, layout detection tools
can produce differing bounding boxes for the same
content. Our ground-truth layouts include both
MinerU outputs and manual annotations for cases
where MinerU misses elements. During our evalua-
tion, retrievers are provided with MinerU predicted
layouts (e.g., bboxes and types), but some ground
truth bboxes cannot be exactly matched to them.
Therefore, simple binary classifications (matched
or not matched) are insufficient. Overlap-based
recall offers a nuanced and realistic evaluation, es-
pecially where perfect alignment is not guaranteed.
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Domain Resear. Admin Tutori.& Acade. Broch- Finance Guide- Govern- L N Average
Method | Report &Indu. Worksh. Paper ure  Report book  ment aws EWS | Macro Micro
DPR 323 255 27.0 31.0 284 18.8 235 31.2 383 161 | 272 269
¥ ColBERT 48.6 428 51.1 46.2  36.0 36.8 496 609 59.5 263 | 458 4409
—~ = BGE 48.8 309 47.1 40.8  37.6 284 434 51.9 489 285 | 40.6 39.6
I = E5 48.1 30.0 50.4 394 41.1 29.7 409 52.8 51.1 241 | 40.8 395
< § Contriever 455 312 49.8 415 394 294 452 553 51.1 204 | 409 39.7
®  GTE 46.5 263 48.7 389 359 27.0 46.2 50.1 458 241 | 389 379
=S DSEwiki_ss 53.0 50.0 54.0 487 4511 43.0 515 46.9 542 336 | 480 475
8 g DSEaoematix | 32.3 404 56.1 51.7 458 435 538 53.7 583 46.7 | 502 50.1
& & ColPali 560 518 58.6 559 520 472 579 53.9 64.0 328 | 53.0 527
£ DPR-Phi3ous | 58.9 50.4 57.4 59.0 573 44.6  63.8 50.5 644 350 | 541 537
Col-Phi3ouws | 56.7 504 56.9 61.3 548 50.7 60.8 613 63.6 540 | 570 571
DPR 522 442 43.5 54.6 520 35.1 44.4 53.9 572 255 | 463 462
}3 ColBERT 70.1 644 70.3 723 59.1 553 71.1 81.3 70.8 343 | 649 648
«» T BGE 715 482 68.8 65.7  56.2 46.5  66.1 69.9 720 321 | 597 59.6
I = ES 684 457 68.1 63.7  60.1 440 693 72.3 78.8 328 | 603 593
2 § Contriever 694 553 68.3 649 569 46.2 699 71.1 720 321 | 60.6 59.7
® GTE 71.1 445 67.2 644 543 43.0 70.6 71.9 682 314 | 587 583
=S DSEwiki—ss 754  65.0 73.9 79.8  69.5 635 754 71.5 81.4 504 | 70.6 714
8 g DSEdoematix | 754 67.5 73.3 80.0 66.3 61.6 728 76.4 826 577 | 714 718
& & ColPali 776 718 79.4 834 726 66.1 80.0 804 864 496 | 747 150
E DPR-Phi3ours| 80.3 665 71.6 839 719 63.8 798 714 84.5 555 | 735 743
Col-Phi3ours | 802  74.1 7.4 848 09.1 67.7 8.7 79.5 81.8 693 | 763 76.8
DPR 66.5  60.1 56.0 689  58.8 438  57.1 68.6 648 336 | 578 578
% CoIBERT 78.8  74.0 78.7 823  66.1 60.8 77.0  88.5 780 387 | 723 723
o 5 BGE 79.5 658 71.3 76.8 624 56.0 772 774 79.5 38.0 | 684 685
I = ES 769 642 75.3 744 674 520 785 78.6 82.6 409 | 69.1 679
e § Contriever 712 67.1 76.7 752  65.1 537 754 79.2 833 394 | 692 683
®  GTE 774 626 74.7 758  62.0 51.8 778 80.0 750 394 | 676 672
S DSEwiki—ss 84.0  80.2 78.7 87.0  75.7 73.0 8.0 773 883 584 | 785 792
8 g DSEdocmatix | 82.1  77.2 79.6 87.8 739 724 81.7 83.1 894 679 | 795 80.1
& & ColPali 846 793 82.3 89.0 79.8 72.1  86.7 849 924 569 | 80.8 810
E DPR-Phi3ours| 869 762 85.3 919  80.0 712 871 79.5 920 613 | 81.1 818
Col-Phi3ous | 863  78.8 81.2 924 79.0 738 853 85.1 87.1 73.0 | 822 83.0

Table 5: Main results for page-level retrieval, with the best results in boldface and second best results underlined.
For clarity, we omit results using VLM-text (Refer to Table 11 for full results).

5.2 Baseline Models and Setting

We evaluate 6 state-of-the-art text retrievers:
namely DPR, ColBERT, BGE, ES5, Contriever, and
GTE (see Appendix D.1). Additionally, we evalu-
ate 5 VLM-based retrievers: 3 off-the-shelf mod-
els, namely DSEiki—ss» DSEqocmatix, and ColPali
(see Appendix D.2), and 2 models trained using
MMDoCIR training set (see Appendix C). Among
all retrievers, ColBERT, ColPali, and Col-Phi3 g
represent query/document as a list of token-level
embeddings, while the other retrievers represent
query/document as a single dense embedding. All
retrievers are adapted to a dual-task setting:

* Page Retrieval: For text retrievers, we use the
text from OCR-page or VLM page as described
in Section 3.4. For visual retrievers, we directly
utilize document page screenshots.

* Layout Retrieval: Text retrievers process mul-
timodal layouts using OCR or VLM text (see
Section 3.4). Visual retrievers® process textual
layouts using either Image input (cropped image
of textual area) or Hybrid input (original text, as
VLM can directly encode text).

*Most visual retrievers are not explicitly trained on text
query-doc pairs, this setup constitutes out-of-domain data.

5.3 Main Results for Page-level Retrieval

Table 5 presents the main results for page-level
retrieval. Our key findings are as follows:

* Superiority of Visual Retrievers: Visual retriev-
ers consistently outperform text retrievers across
various domains and retrieval metrics, highlight-
ing the advantage of using screenshots to retain
multimodal cues often lost in text conversion.

* Effectiveness of MMDOCIR: The visual retriev-
ers trained on the MMDOCIR training set demon-
strate superior performance, demonstrating the
value of high-quality training data.

* Effect of Token-level Embeddings: Compared
to dense-level retrievers (e.g., BGE, DSE, DPR-
Phi3,,.5), token-level retrievers (e.g., CoIBERT,
ColPali, Col-Phi3,s) achieve more advanta-
geous results in Recall@1 and have marginal
performance improvement in Recall@3/5. How-
ever, token-level embedding can incur storage
costs of 10 times more than a single embedding
(DSE requires 0.24GB for indexing MMDoOCIR
while ColPali requires 10.0GB).

» Top 5 Coverage: Retrieving top 5 pages provides
substantial coverage of relevant information.
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Domain Resear. Admin Tutori.& Acade. Broch- Finance Guide- Govern- L N Average
Method | Report &Indu. Worksh. Paper ure  Report book  ment aws EWS | Macro Micro
DPR 11.6 9.5 19.2 192 149 15.9 15.8 25.6 347 270 | 193 192
¥ CoIBERT 220 149 28.0 28.3 17.9 29.7 211 52.6 545 445 | 313 314
—~ 5 BGE 192 152 24.6 28.7 12.8 27.6 19.7 47.0 523 358 | 283 290
I = ES 159 8.8 27.7 243 14.6 21.8 14.7 45.6 53.0 405 | 267 264
e § Contriever 234 7.5 28.2 26.8 17.1 25.7 16.1 43.6 515 429 | 283 289
® GTE 17.5 10.5 23.0 272 145 26.3 14.4 39.8 49.2 383 | 26.1 27.1
S DSEwiki—ss 206  15.1 31.0 31.1 20.1 292 220 39.3 375 358 | 282 292
8 g DSEdocmatix | 199 114 31.5 30.1 17.8 30,0 208 46.5 394 314 | 279 29.1
& & ColPali 225 213 36.6 309  26.8 32.1 19.3 52.5 51.8 336 | 327 325
E DPR-Phi3ous | 21.1 2211 36.8 352 256 28.7 2441 38.3 354 274 | 295 302
Col-Phi3ours | 22.6 220 37.5 349 289 303 227 502 45.1 263 | 31.1 31.6
DPR 31.0 257 36.7 449 330 34.1 349 49.9 563 51.1 | 39.8 404
¥ CoIBERT 418 377 53.7 61.8  35.1 524  46.1 83.2 70.1 625 | 544  56.0
v = BGE 410 281 52.7 592  36.7 46.0  50.7 72.0 715 599 | 51.8 532
I = E5 354 281 51.7 585 332 412 402 79 779 646 | 51.1 518
< § Contriever 402 292 54.1 579  36.8 47.1 44.6 68.8 762 619 | 51.7 53.0
® GTE 36.7 25.6 51.2 56.6  39.7 46.6 464 722 743 632 | 513 523
S DSEuiki-ss 424 329 56.3 585 398 50.6 41.6 68.6 60.9 500 | 50.2 521
8 g DSEdocmatix | 39.6 362 53.9 57.5 337 525 428 69.4 63.1 489 | 498 519
& & ColPali 40.7 459 54.9 58.5 426 512 457 76.8 745 489 | 540 543
£ DPR-Phi3oure 455 377 57.0 629 414 51.1 45.5 65.1 60.8 493 | 51.6 539
Col-Phi3ours | 464 382 53.1 61.8 45.0 546 457 68.8 657 438 | 523 545
DPR 422 331 52.1 562 399 435 440 62.8 61.7 597 | 495 505
% ColBERT 51.0 487 60.6 69.8 439 61.6  53.7 88.4 748 664 | 619 63.7
S 5 BGE 51.1 387 62.1 71.5 419 55.6  58.7 80.8 787 635 | 603 624
I = E5 453  38.6 62.0 705  45.6 500 553 87.1 824 668 | 604 612
© § Contriever 499 413 62.0 70.5 448 56.5 545 81.3 780 649 | 604 622
@ GIE | 486 411 6L5 688 443 569 580 8.0 775 669 | 60.7 622
=  DSEuwiki—ss 559 413 61.5 68.1 478 60.7 542 72.9 683 544 | 585 61.1
8 & DSEdagematix | 53.7 433 59.6 66.5 447 59.1 50.3 754 69.2 537 | 575 599
~ & ColPali 536 541 64.4 69.5  48.8 60.7  54.0 81.9 825 504 | 62.0 632
E DPR-Phi3ous | 58.1  49.1 67.0 74.7 484 579 578 687 662 544 | 602 628
Col-Phi3ous | 57.7  50.5 66.6 723 507 59.3 536 68.5 748 575 | 61.1 633

Table 6: Main results for layout-level retrieval (Refer to Table 12 for full results with VLM-text and Hybrid inputs).

5.4 Main Results for Layout-level Retrieval

Table 6 shows the main results for layout-level
retrieval. Our key findings are as follows:

* Effectiveness of VLM-Text: Interestingly,
VLM-text approaches perform comparably to
visual retrievers, demonstrating the promising
image description capabilities of state-of-the-art
VLM. This greatly benefits textual retrievers in
multimodal understanding.

* Effect of Token-level Embeddings: For layout
retrieval tasks, token-level retrievers marginally
outperform dense-level retrievers, demonstrating
its importance of such task.

* Top 10 Coverage: For layout retrieval tasks, re-
trieving top 10 layouts does not guarantee com-
prehensive coverage of the ground truth layout
labels, emphasizing the complexity of the tasks.

5.5 Text Retrieval: OCR-text vs VLM-Text

Text retrievers leveraging VLM-text significantly
outperform those using OCR-text in both tasks.
Based on results, OCR-text is insufficient for mul-
timodal retrieval, while VLM-text retains richer
multimodal information. Although VLM-text of-
fers much more comprehensive text information

Page recall Layout recall

Method | ocR™VLM A |OCR VLM A
DPR 23 272 +49|126 193 +67
ColBERT | 403 458 +55| 198 313 +I11.5
" BGE 357 40.6 +49|190 283 493
I Es 35.0 408 +58| 184 267 483
Contriever | 353 409 +56| 188 283 495
GTE 354 389 +435)182 261 +79
DPR 394 463 +69|237 398 +16.1
© CoIBERT | 58.8 649 +6.1|332 544 +212
S BGE 554 597 +43|327 518 +19.1
® ES 548 603 455|333 511 +178
" Contriever | 549 60.6 +5.7|317 517 +200
GTE 549 587 438|335 513 +178
— DPR 490 578 +88]299 495 +196
= COIBERT | 660 723 +63|37.6 619 +243
5 BGE 627 684 +57|378 603 +225
w  ES 641 691 +50|390 604 +214
I Contriever | 63.1 692 +6.1| 373 604 +23.1
< GTE 632 676 +44|409 607 +198

Table 7: Results of text retrievers using OCR/VLM-text.

than OCR-text, it also introduces higher computa-
tional overhead and longer inference time.

Most text retrievers based on on BERT (Devlin
et al., 2019), truncate input that exceed 512 tokens
(approximately 380 english words). As shown in
Figure 3c, there are many pages containing more
than 380 words (62.9% for OCR-page and 61.1%
for VLM-page). Those pages suffer from critical
information loss during page retrieval if the ground
truth evidence is in the truncated part. In contrast,
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Layout recall

Method Hybrid Image A
DSEyiki—ss 24.6 282  +3.6
—  DSEdocmatix 27.5 279  +0.4
|| ColPali 28.5 327  +4.2
~¢ DPR-Phi3ours 28.9 295 +0.6
Col-Phi3ours 29.8 31,1 +13
DSEwiki—ss 46.7 502  +35
15 DSEdocmatix 48.2 498 +1.6
I ColPali 522 540  +1.8
~¢ DPR-Phi3ous | 50.1 51.6  +1.5
Col-Phi3ours 50.0 523 423
DSEyiki—ss 55.8 58.5 427
S DSEdocmatix 57.4 575 +40.1
| ColPali 60.0 62.0 +2.0
<« DPR-Phi3gus | 55.5 60.2  +4.7
Col-Phi3gurs 58.7 61.1 +24

Table 8: Results of visual retrievers: image vs hybrid.

only a small fraction of layouts contain more than
380 tokens (3.9% for OCR-text, 4.8% for VLM-
text, 0.5% for natural-text). Hence, as reflected in
Table 5 and 6, text retriever demonstrates stronger
performance on layout-level retrieval than on page-
level retrieval.

5.6 Visual Retrieval: Image vs Hybrid input

Visual retrievers tend to perform better when encod-
ing text as images via visual encoders, rather than
processing native textual input with LLM back-
bones. This advantage largely stems from their
training setup: visual retrievers are typically opti-
mized using text queries paired with image-based
passages or documents, but are not fine-tuned di-
rectly on purely textual passages. However, encod-
ing text as images incurs substantial computational
overhead. Representing text as image tokens re-
quires significantly more resources than native text
encoding. To address this inefficiency and pro-
mote balanced retrieval capabilities (Dumitru et al.,
2025; Liang et al., 2025), we advocate for future
visual retrievers to be jointly trained on both text
and visual retrieval tasks using SFT or RL (Duong
et al., 2025). Such hybrid training would enable
models to efficiently process text when appropri-
ate, without compromising performance on visual
inputs.

5.7 Cascade Retrieval

As shown in Table 6, directly performing layout
retrieval can be challenging. Hence, we propose
alternative methods, by perform page-retrieval first,
subsequently followed by layout-retrieval within
the retrieved page. We term such retrieval to be
cascade retrieval. Note that the page retrieval is not
perfect, such error can propagate to layout retrieval

and affect the final results.

page(Ist)  layout(2nd) | Topl | Top5 | Topl0
BGE: direct layout 29.0 | 532 62.4
BGE BGE 243 | 49.0 58.6
E5: direct layout 26.4 51.8 61.2
E5 E5 222 | 478 58.2

ColBERT: direct layout 314 | 56.0 63.7

ColBERT  ColBERT 285 | 53.0 61.3
ColPali: direct layout 325 | 543 63.2
ColPali ColPali 327 | 545 63.2
ColPali ColBERT 31.8 | 57.0 64.2
DSE: direct layout 29.1 51.9 59.9
DSE DSE 29.6 | 54.0 62.0
DSE ColBERT 29.0 | 56.4 64.4

DPR-Phi3: direct layout 30.2 53.9 62.8

DPR-Phi3  DPR-Phi3 31.1 | 542 61.7
DPR-Phi3  ColBERT 30.6 | 56.6 64.5
Col-Phi3: direct layout 31.6 | 545 63.3
Col-Phi3 Col-Phi3 333 | 58.6 63.7
Col-Phi3 ColBERT 353 | 588 65.4

Table 9: Comparison of 1-stage vs 2-stage approaches
across different models

In this setting, we retrieve top-k pages first, then
rerank all layouts belonging to retrieved k pages,
and get top-k layouts. The cascade retrieval results
are shown in Table 9. We can observe that method
with high page retrieval recall can significantly im-
prove layout retrieval in the reranking paradigm.

5.8 Efficiency Analysis

We evaluate the inference efficiency by measuring
three key metrics : storage consumption, index-
ing time and, retrieval latency, as shown in Table
10. Experiments are conducted with batch size
of 4 for image and 256 for text. DPR-styled re-
trievers which generate single vector embeddings,
demonstrates higher efficiency and lower compu-
tation across all metrics, compared to ColBERT-
styled retrievers that produce token-level embed-
dings. Although DPR-styled retrievers slightly un-
derperform in retrieval accuracy, their smaller em-
beddings size provide a significant advantage in the
inference stage when storage space and inference
time are concerned.

Another key finding is that textual inputs are
significantly more efficient than the visual inputs
across all metrics. Meanwhile, hybrid retrieval sys-
tem, which processes text in the image through
LLM rather than visual encoders, further reduces
memory and time consumption. Hence, future
works on training hybrid retrieval system are en-
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Model Store Index Search
(GB) (MM:SS) (MM:SS)
o DPR 0.06 6:53 00:02
£ | % ColBERT | 345 14:12 00:04
% | & BGE 0.08 7:31 00:03
g| BS | 0.08 8:26 00:03
S| o DPR-Phi3 | 024  101:20 00:04
;23” é“ ColPali 10.00 47:14 00:05
= Col-Phi3 | 24.56 106:23 00:07
DPR 0.51 41:33 00:15
o | % ColBERT | 26.72 94:56 02:25
S | & BGE 0.66 55:05 00:18
4 ES 0.66 60:21 00:18
g B ] 066 6021 00:18
© | » DPR-Phi3 | 1.99 735:51 00:44
’; é" ColPali 83.50  262:29 09:06
o | = Col-Phi3 | 20432  784.07 | 10:56
S | = DPR-Phi3 | 1.84 130:38 01:09
S ColPali 12.06 73:50 04:24
& Col-Phi3 | 22.72 140:44 02:41

Table 10: Efficiency analysis different retrievers.

couraged as it offers a strong balance between com-
putational efficiency and retrieval performance.

6 Related Work

DocCVQA (Tito et al., 2021) proposes extract-
ing information from a document image collection.
However, it is limited by its small question set (20
questions). While PDF-MVQA (Ding et al., 2024)
is tailored for multimodal retrieval in biomedical ar-
ticles, it is annotated by GPT-3.5-turbo rather than
experts. SciMMIR (Wu et al., 2024) also investi-
gates multimodal retrieval but only provides image-
caption pairs, lacking user queries paired with the
corresponding document pages. Ma et al. (2024a)
introduces two relevant datasets, namely Wiki-SS
and DocMatix-IR. Wiki-SS is derived from natural
questions (Kwiatkowski et al., 2019) , wherein evi-
dence passages are screenshots of Wikipedia pages.
However, natural questions are primarily designed
for text retrieval, and the provided screenshots may
not consistently capture the ground-truth evidence,
as only the front page is considered. DocMatix-IR
is constructed from the large-scale DocMatix (Lau-
rencon et al., 2024) dataset using filtering and hard
negative mining. However, the questions are gen-
erated by Phi-3-small (Abdin et al., 2024) rather
than human experts, and are not de-contextualized
for retrieval task. MMDocRAG (Dong et al., 2025)
is constructed upon MMDOCIR to support multi-
modal generation. ViDoRe (Faysse et al., 2024)
is the most relevant benchmark to MMDoCIR. It
integrates multiple DocVQA datasets and provides
new industrial documents. Upon a thorough exam-
ination of the 2,400 questions, we find that over

80% questions exhibit notable limitations in terms
of their complexity, contextual clarity, and the ab-
sence of complete document corpora. Refer to Ap-
pendix F for detailed quantitative and qualitative
analysis of ViDoRe.

7 Conclusion

In conclusion, multimodal document retrieval
presents a complex challenge that requires both
understanding and integrating diverse data modali-
ties beyond plain text. To more effectively evaluate
these capabilities, we introduce the MMDOCIR
benchmark, which features the innovative dual-
task retrieval capabilities targeting page-level and
layout-level document granularity. The MMDo-
CIR includes a rich dataset featuring expertly anno-
tated labels for 1,685 questions and bootstrapped
labels for 73,843 questions, serving as a valuable
resource for both training and evaluation of mul-
timodal document retrieval. Our comprehensive
empirical studies show that visual-driven retrievers
significantly outperform text-driven ones, under-
scoring the importance of visual information in
improving retrieval performance. Future work can
expand upon these findings by optimizing retrieval
algorithms to enhance both accuracy and efficiency
of multimodal document retrieval systems, as well
as the multilingual capability (Liang et al., 2020).

Limitations

The limitations of MMDOCIR are summarized as

follows:

¢ Incomplete layout label annotations for train-
ing set: For 3 out of 7 training subsets, our
semi-automated pipelines could not extract lay-
out labels. These pipelines are optimized for
datasets with single text or image layouts and
cannot handle complex or cross-modal layouts.
Future work should explore leveraging advanced
vision-language models (VLMs) to facilitate an-
notation of layout labels for these subsets.

* Lack of joint text and visual training: As
demonstrated in Section 5.6, all visual retrievers
are suboptimal at modeling text passages, com-
pared to modeling text as image screenshots. Our
current visual retrievers do not explicitly utilize
text query-document pairs to address this limita-
tion. Future research should consider integrating
both text and visual passages for joint training
or finetuning to improve performance on both
retrieval tasks.
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A Supplementary Experimental Results

In this section, we provide the full results of page-
level and layout-level retrievals, which supplement
our main results discussion in Section 5.3 and Sec-
tion 5.4 respectively.

Specifically, Table 11 extends the main page-
level results shown in Table 5 with the results of
text retrievers using OCR-text. Table 12 extends
the main layout-level results shown in Table 6 with
the results of (i) text retrievers using OCR-text and
(i) visual retrievers using hybrid inputs.
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GTE 774 626 747 758 620 518 778 800 750 394 | 676 672

DSEwiki—ss 84.0  80.2 78.7 87.0 757 73.0  82.0 71.3 883 584 | 785 792
o DSEdocmatix | 82.1  77.2 79.6 87.8 739 724 81.7 83.1 894 679 | 795 80.1
g ColPali 84.6 793 823 89.0 79.8 72.1 86.7 84.9 924 569 | 80.8 810
= DPR-Phi3ours | 86.9  76.2 85.3 919  80.0 712 871 79.5 920 613 | 81.1 818
Col-Phi3ours | 863  78.8 81.2 924 79.0 73.8 85.3 85.1 87.1 73.0 | 822 83.0

Table 11: Main results for page-level retrieval. “OCR-text” and “VLM-text” refer to converting multi-modal content
using OCR and VLM respectively. “Image” refers to processing document page as screenshot image.
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Domain Resear. Admin Tutori.& Acade. Broch- Finance Guide- Govern- Laws  News Average
Method | Report &Indu. Worksh. Paper ure  Report book  ment Macro Micro

DPR 34 72 12 113 30 98 82 247 309 263 | 126 124
£ ColBERT 50 88 47 164 20 132 46 508 477 453 | 198 19.1
_ Y BGE 70 109 37 143 23 163 84 461 455 358 | 190 185
S & ES 63 6.0 26 140 35 144 6.1 447 454 405 | 184 179
-2 & Contriever 67 1.0 38 143 41 133 83 436 439 429 | 188 18.1
g GIE | 5770 39 172 28 158 94 407 416 383 | 182 184
= DPR 1.6 95 192 192 149 159 158 256 347 270 | 193 192
2 g ColBERT 220 149 280 283 179 297 21.1 526 545 445 | 313 314
— & 2 BGE 192 152 246 287 128 276 197 470 523 358 | 283 290
I 3 Es 159 88 277 243 146 218 147 456 530 405 | 267 264
§ 5 Contriever 234 75 282 268 17.1 257 161 436 515 429 | 283 289
= GIE | 175 105 230 272 145 263 144 398 492 383 | 261 27.1
3 DSEwixi—ss | 206 151 310 31.1 201 292 220 393 375 358 | 282 292

[}

& DSEdoematix | 199 114 315  30.1 178 300 208 465 394 314 | 279 29.1
E ColPali 225 213 366 309 268 321 193 525 518 336 | 327 325
© DPR-Phi3ous| 211 221 368 352 256 287 241 383 354 274 | 295 302
£ Col-Phi3ows | 226 220 375 349 289 303 227 502 451 263 | 31.1 316

DSEwiki—ss 140 104 29.8 180 137 20.4 13.5 46.0 45.1 347 | 246 234
3 DSEdocmatix | 18.2 11.6 32.7 24.0 17.7 27.2 16.7 48.1 455 330 | 275 274
J;ColPali 17.7 12.3 30.0 18.4 19.0 255 206 497 512 409 | 285 27.1
T DPR-Phi3ours | 283 111 355 188 293 240 274 38.0 419 345 | 289 273

Col-Phi3ours | 264 126 33.7 273 301 279 246 462 474 219 | 298 29.6

Visual Retrieval

DPR 73 125 56 240 89 169 136 472 502 SL1 | 237 235
< ColBERT 109 238 102 322 68 255 170 787 634 632 | 332 326
_ 2 BGE 1.9 203 136 300 117 277 188 685 654 591 | 327 322
S X Es 128 162 89 319 109 236 199 761 688 639 | 333 327
2 & Contriever 119 179 119 288 93 246 181 643 680 627 | 317 312
g GIE || 100 182 128 329 152 294 210 677 653 624 | 335 335
= DPR 310 257 367 449 330 341 349 499 563 511 | 398 404
£ % ColBERT 418 377 537  6L8 351 524 461 832 701 625 | 544  56.0
w & 2 BGE 410 281 527 592 367 460 507 720 715 599 | 51.8 532
I =Es 354 281 517 585 332 412 402 797 779 646 | 5.1 518
§ 5 Contriever 402 292 541 579 368 47.1 446 688 762 619 | 517 53.0
= GIE | 367 256 512 566 397 466 464 722 743 632 | 513 523
5 g DSEwii .« | 424 329 563 585 398 506 416 686 609 500 | 502 521
® P DSEdoematix | 39.6 362 539 575 337 525 428 694 631 489 | 498 519
s £ ColPali 407 459 549 585 426 512 457 768 745 489 | 540 543
8 £ DPR-Phidous| 455 377 570 629 414 511 455 651 608 493 | 516 539
B A Col-Phidoy, | 464 382 531 618 450 546 457 688 657 438 | 523 545
=  DSEwii-ss | 318 295 511 430 345 393 383 713 713 570 | 467 456
2 o DSEqoematix | 37.3 267 482 497 345 486 410 722 694 542 | 482 493
& £ ColPali 40.1 383 552 492 427 476 408 786 687 610 | 522 514
2 DPR-Phi3ous| 542 274 538 399 366 454 496 672 668 59.8 | 50.1 493
Col-Phieus | 509 255 491 583 419 481 492 623  60.6 485 | 500 518
DPR 105 2.1 88 320 149 196 170 597 564 589 | 299 293
< ColBERT 141 311 131 384 91 310 224 839 679 654 | 37.6 374
_ 2BGE 157 243 159 359 179 316 253 763 734 621 | 378 373
S & ES 169 245 138 401 158 267 247 835 779 661 | 390 383
2 & Contriever 151 257 142 368 159 279 242 768 718 649 | 373  36.6
g GIE | 191 290 214 390 192 329 292 788 745 662 | 409 40.1
= DPR 422 331 521 562 399 435 440 628 617 597 | 495 505
~ £ % ColBERT 510 487 606 698 439 61.6 537 884 748 664 | 619 637
S 5 2 BGE 511 387 621 715 419 556 587 808 787 635 | 603 624
I~ =Es 453 386 620 705 456 500 553 87.1 824 668 | 604 612
% 5 Contriever 499 413 620 705 448 565 545 813 780 649 | 604 622
e GTE 486 41.1 615 688 443 569 580 830 775 669 | 607 622
B DSEwiki_ss | 559 413 615 68.1 478 607 542 729 683 544 | 585 6.1
& DSEqocmatix | 537 433 596 665 447 590 503 754 692 537 | 575 599

DPR-Phi3ours | 58.1  49.1 67.0 7477 484 579 518 68.7 662 544 | 602 628
Col-Phi3ous | 57.7  50.5 66.6 723 50.7 593  53.6 685 748 575 | 61.1 633

(5]
o
<
»—% ColPali 536 541 64.4 69.5 488 60.7 540 81.9 825 504 | 620 632
(5}
5
oo

DSEwiki—ss 441 343 57.6 563 426 50.7  48.6 81.1 79.1 637 | 558 56.0
< DSEdocmatix | 499 373 57.3 613 459 579  50.1 719 749 615 | 574 589
é ColPali 52.1 464 65.0 644  50.7 53.8 510 82.7 714 625 | 60.0 60.2
T DPR-Phi3ous | 65.2 337 60.3 513 424 524 529 79.1 725 656 | 555 534

Col-Phi3ours | 59.1 387 57.0 717 439 577 517 72.4 68.0 60.7 | 587 628

Visual Retrieval

Table 12: Main results for layout-level retrieval. “Pure-Image” and “Hybrid” refer to reading textual layouts in
image and text format respectively.
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B Dataset Construction

B.1 Related DocVQA Benchmarks

Early DocVQA benchmarks primarily address
single-page visual question answering (VQA), ex-
emplified by datasets such as DocVQA (Mathew
et al., 2021), InfoVQA (Mathew et al., 2022),
and TAT-DQA (Zhu et al.,, 2022). To over-
come the limitations of single-page inputs, sub-
sequent datasets like DUDE (Landeghem et al.,
2023), MP-DocVQA (Tito et al., 2023), and Slide-
VQA (Tanaka et al., 2023) have extended the con-
text length to an average of 5.7, 8.3, and 20 pages,
respectively. More recent benchmarks, includ-
ing MMLongBench-Doc (Ma et al., 2024b) and
DocBench (Zou et al., 2024), treat DocVQA as
a long-context task, accommodating entire doc-
uments that average between 50 to 70 pages in
length. As document lengths increase, retrieval
becomes essential. Relevant pages must first be
identified, followed by answer generation based on
the retrieved multimodal evidence.

B.2 Document Corpora Collection Criteria

Early document related benchmarks (Dong et al.,

2021) are mostly textual only, which are not consid-

ered in MMDoCIR. To facilitate the development

of MMDOCIR, we leverage visually-rich docu-
ments from recent DocVQA benchmarks described
in Appendix B.1. Despite not being curated for

IR, they offer valuable document corpora and ques-

tions that can be adapted for IR tasks. We select

relevant DocVQA datasets based on the following
criteria:

* Document Source: The dataset must include ac-
cessible original documents or sources for these
documents. We need to access and enrich them
to support more complex retrieval tasks.

* Diverse Domain/Modality: The document col-
lections must (1) encompass diverse domains
suitable for generalized evaluation, and (2) con-
tain multiple modalities, such as text, figures,
tables, charts, and layouts.

* Long Document: We choose documents with ex-
tensive texts as longer texts pose more significant
challenges. This criterion can evaluate models in
handling complex and lengthy documents.

* Question Diversity and Comprehensiveness:
The questions included in the dataset should be
diverse and challenging. For example, cross-
modal questions require reasoning across both
text and visual tables/figures; multi-hop ques-

tions require reasoning over multiple steps; multi-
page questions require combining information
from multiple pages.
Considering these criteria, we utilize document
corpora and questions from datasets as follows:
* Evaluation:. MMLongBench-Doc (Ma et al.,
2024b) and DocBench (Zou et al., 2024).

* Training: MP-DocVQA (Tito et al., 2023), Slide-
VQA (Tanaka et al., 2023), TAT-DQA (Zhu et al.,
2022), SciQAG (Wan et al., 2024), DUDE (Lan-
deghem et al., 2023), and CUAD (Hendrycks
etal., 2021).

B.3 Question Filtering Guidelines

We filter questions based on the following criteria:

e Summarization Questions: Questions such as
“What does this book mainly illustrate ?”’*“What
does this story mainly tell?”’ require understand-
ing of large sections or even the entire document.
The broad scope makes it hard to pinpoint spe-
cific content and contradicts the IR nature of our
task.

¢ Overwhelm Statistical Questions: Questions that
demand extensive data computation or collation,
such as “How many words are there in total in
the paper?”*“How many pictures are there in total
in the document?” are also excluded from our
scope.

¢ Online Search Questions: Questions like “What
is the Google Scholar citation count of the au-
thor?” rely on information from external online
resources. We focus only on retrieving informa-
tion within the documents, and therefore exclude
these questions.

* Unanswerable Questions: These are designed
to test if models generate answers based on
non-existent information (model hallucinations).
Since they do not facilitate the retrieval of factual
document-based information, these questions are
excluded.

B.4 Training Document Collection

We collect the training datasets as follows:

e MP-DocVQA (Tito et al., 2023) contains 47,952
images collected from Industry Documents Li-
brary (IDL) #. IDL is a crucial resource for pub-
lic health research, containing millions of doc-
uments produced by industries such as tobacco,

*https://www.industrydocuments.ucsf.edu/
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drug, chemical, and food, which have had sig-
nificant impacts on public health. We group the
47,952 document images into separate document
files, and obtain 875 long documents (46.8 pages
on average) with 15,266 QA pairs.

SlideVQA (Tanaka et al., 2023) contains 2,619
slide documents collected from slideshare > and
covering 39 topics. SlideVQA hosts a wide va-
riety of slide presentations across various cate-
gories such as business, mobile, social media,
marketing, technology, arts, career, design, edu-
cation, and government & nonprofit, among oth-
ers, which can enrich the diversity of our corpus.
Note that SlideVQA contains only the first 20
pages for each slide deck. In our research, we
manually collect the remaining missing pages,
and obtain 2,011 long documents (averaging 49.3
pages) with 11,066 QA pairs. SlideVQA requires
complex reasoning, including single-hop, multi-
hop, and numerical reasoning, and also provides
annotated arithmetic expressions of numerical
answers for enhancing the ability of numerical
reasoning.

TAT-DQA (Zhu et al., 2022) consists of 3,067
document pages from financial reports 6, dated
between 2018 and 2020. AnnualReports.com
provides access to a comprehensive collection
of corporate annual reports from over 10,320
companies worldwide. Note that neither original
documents nor links are provided. We use OCR
to extract text in the pages, and use search engine
to find relevant documents. After careful tracing
and recognition, we identify 163 original docu-
ments (averaging 147.3 pages) with 15,814 QA
pairs.

arXivQA (Li et al., 2024) comprises 32k figures
cropped from academic pages ’. The papers on
arXiv cover a wide range of disciplines including
physics, mathematics, computer science, quanti-
tative biology, quantitative finance, statistics, en-
gineering, and systems science, and economics,
etc. We use the arXiv DOIs provided to collect
the academic papers. Due to the missing of pa-
per versions, extra efforts are made to identify
paper versions. After careful tracing, recognition,
and document length filtering, we identify 1,579
documents averaging 18.4 pages.

5https ://www.slideshare.net/
®https://www.annualreports.com/
"https://arxiv.org/

¢ SciQAG (Wan et al., 2024) consists of 22,728
papers and 188,042 QA pairs in 24 scientific dis-
ciplines, collected from Web of Science (WoS)
Core Collection database. WoS provides compre-
hensive scientific literature in natural sciences,
social sciences, arts, and humanities. We sample
50 documents from each discipline, and manually
collect 1,197 papers using the DOIs provided.

* DUDE (Landeghem et al., 2023) provides 5,019
documents from aggregator websites®. It cov-
ers a broad range of domains, including medical,
legal, technical, and financial, among others, to
evaluate models’ ability to handle diverse topics
and the specific knowledge each requires. We
filter out short documents and obtain 779 rel-
atively long documents (averaging 15.6 pages)
with 3,173 QA pairs.

* CUAD (Hendrycks et al., 2021) provides 510
commercial legal contracts, collected from Elec-
tronic Data Gathering, Analysis, and Retrieval
(EDGAR)’. EDGAR contracts are usually more
complex and heavily negotiated than the general
population of all legal contracts. We filter out
short documents in CUAD and obtain 274 long
documents (29.6 pages on average) with 11,234
QA pairs.

B.5 Training Dataset Label Construction

The page labels can be directly obtained in the MP-
DocVQA, SlideVQA, and DUDE datasets. Among
these, only DUDE provides layout labels.

SciQAG provides only question and answer in
texts. We use these information to infer the page-
level and layout-level labels. Specifically, we first
use MinerU to obtain layout-level passage chunks.
For each QA pair, we deploy E5 and BGE retrievers
to obtain question-passage and answer-passage sim-
ilarity scores against all extracted passage chunks.
If both scores rank within top 3 for a specific pas-
sage chunk, we assign this layout as the layout-
level labels for the given QA pair.

Similarly, arXivQA provides only cropped im-
ages, without document page/layout labels. We
first use MinerU to obtain layout-level images.
For each cropped image, we calculate its similar-
ity against all extracted images using brute-force
matcher!?, and select the most similar one. Subse-

81: archive.org, 2: http://commons.wikimedia.

org/,3: http://documentcloud.org/
*https://www.sec.gov/search-filings
https://opencv.org/
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(a) 313 documents in MMDOCIR evaluation set in Section 3
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Figure 4: Area ratio of different modalities (1) in overall and (2) by domains/datasets in MMDOCIR evaluation and
training set. Note that white spaces, headers, and footers are excluded from the area calculations.

quently, we manually examine if the selected image
matches the cropped image. In this way, we filter
around 20% unmatched images, resulting 1,579
questions with page and layout level labels.

For TAT-DQA, layout-level labels are provided
for each sampled page. To localize the page index
of the sampled pages, we first utilize PDF map-
ping tool'! to retrieve best matched page in the
document. Then, we manually verify whether the
retrieved page matches the given page, and correct
the labels if there were any errors.

B.6 Hard Negative Sampling

In addition to annotating ground truth (positive)
page labels, we enhance our training data with neg-
ative labels (Li et al., 2025). In the context of
retrieval, hard negatives are particularly informa-
tive non-relevant documents that closely resemble
true positives according to the model’s current scor-
ing function. Unlike randomly selected negatives,
hard negatives are challenging for the model to dis-
tinguish from relevant documents, thus providing
stronger supervision.

In our framework, hard negatives are crucial for
improving retrieval performance. By training the
model on these challenging examples, we encour-
age it to learn more discriminative representations,
ultimately enhancing its robustness and reducing
false positives during retrieval.

Mhttps://github. com/pymupdf/PyMuPDF

As described in Appendix C.3, training is con-
ducted using a contrastive loss, where the model
aims to separate relevant documents from irrelevant
ones. Specifically, we obtain hard negatives using
the ColPali retriever (Faysse et al., 2024), which
scores all document pages for a given query. The
irrelevant pages with the highest top-k scores (i.e.,
those most likely to be confused with positives) are
selected as hard negatives for training. In the future,
we consider to incorporate content planning (Bao
et al., 2022b) and synthetic methods (Bao et al.,
2023, 2022a) for hard negative generation.

B.7 Fine-grained Modality Distribution

MMDoCIR evaluation set includes 313 long docu-
ments with an average length of 65.1 pages, catego-
rized into ten main domains: research reports, ad-
ministration&industry, tutorials&workshops, aca-
demic papers, brochures, financial reports, guide-
books, government documents, laws, and news ar-
ticles. Overall, the modality distribution is: Text
(60.4%), Image (18.8%), Table (16.7%), and other
modalities (4.1%), as shown in Figure 4a Different
domains exhibit different distributions of multi-
modal information. For instance, research reports,
tutorials, workshops, and brochures predominantly
contain images, whereas financial and industry doc-
uments are table-rich. In contrast, government and
legal documents primarily comprise text.

MMDoCIR training set includes 6,878 long
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Artifacts |

Purpose

| Referred Section |

Resource URL

MMLong’-Doc

Eval-set curation

DocBench Eval-set curation Section 3
MP-DocVQA Train-set curation

SlideVQA Train-set curation

TAT-DQA Train-set curation .

. . . Section 4
arXivQA Train-set curation Appendix B.4
SciQAG Train-set curation pp ’
DUDE Train-set curation
CUAD Train-set curation
MinerU | DocParsing | Section3.2 |
Tesseract OCR OCR-text
GPT-40 VLM-text Section 3.4
QwenVL2.5 VLM-text
PyMuPDF Page matching
OpenCV Image matching Appendix B.5
Text Retriever Layout location

Visual Retriever |

Hard negatives

Appendix B.6

https://github.com/mayubo2333/MMLongBench-Doc
https://github.com/Anni-Zou/DocBench

//rrc.cvc.uab.es/?ch=17&com=tasks
//github.com/nttmdlab-nlp/S1lideVQA
//github.com/NExTplusplus/TAT-DQA
//huggingface.co/datasets/taesiri/arxiv_qa
//github.com/MasterAI-EAM/SciQAG
//github.com/duchallenge-team/dude
//www.atticusprojectai.org/cuad

https:
https:
https:
https:
https:
https:
https:

https://github.com/opendatalab/Minery

//github.
//openai.
//github.

com/tesseract-ocr/tesseract
com/index/hello-gpt-40/
com/QwenLM/Qwen2.5-VL

https://github.com/pymupdf/PyMuPDF
https://opencv.org/
BGE and ES (see Table 14)

Colpali (see Table 14)

https:
https:
https:

Table 13: Artifacts used to facilitate construction of MMDOCIR evaluation & train set.

documents with an average length of 32.6 pages,
categorized into seven Document VQA or QA
datasets: MP-DocVQA (Tito et al., 2023), Slide-
VQA (Tanaka et al., 2023), TAT-DQA (Zhu et al.,
2022), arXivQA (Li et al., 2024), SciQAG (Wan
et al., 2024), and DUDE (Landeghem et al., 2023).
Overall, the modality distribution is: Text (49.3%),
Image (34.3%), Table (10.8%), and other modali-
ties (4.9%), as shown in Figure 4b. Each dataset
features unique distributions of multimodal con-
tent. The legal documents and academic papers are
text-intensive. The slides consist mostly of visual
features. Industrial documents and financial reports
are table-intensive.

B.8 Resource URL of Artifacts

In this section, we summarize the artifacts used to
facilitate the construction of MMDOCIR’s evalu-
ation and train set, as shown in Table 13. These
artifacts mainly includes: datasets used for curating
MMDoCIR evaluation and training sets, tools for
parsing documents, packages for locating evidence,
and etc.

C Model Training: DPR-Phi3&Col-Phi3

To evaluate the effectiveness of the MMDo-
CIR training set, we train two visual retriev-
ers based on Phi3-Vision (Abdin et al., 2024).
Phi3-Vision (Mppigyv) reuses the image tok-
enizer from clip-vit-large!? (My;). It can

12ViT-Large: https://huggingface.co/openai/
clip-vit-large-patch14-336

deal with high-resolution images by cropping them
into sub-images, where each sub-image has 336 x
336 pixels.

C.1 Document/Query Encoding

DPR-Phi3 and Col-Phi3 represent document page
or query using a single dense embedding (following
DPR (Karpukhin et al., 2020)) and a list of token-
level embeddings (following ColBERT (Khattab
and Zaharia, 2020)), respectively. Specifically, we
follow Ma et al. (2024a) to concatenate document
image with a text prompt: “<s><d> What is shown
in this image?</s>". Here, the <d> token is a spe-
cial placeholder token and is replaced by the se-
quence of patch latent embeddings from the vision
encoder. We consider only text queries and use text
prompt: “<s> query: <gq> </s>. Similarly, the
placeholder <g> token is replaced by input query.
We encode query ¢ and document d in two ways:

Egpr = Mphisv (Mvit (d), prompt) [—1], € RP1
Egpr = MphiSv (Q> prompt) [_1]7 € RDl
(D

where the end-of-sequence token </s> from the last
hidden state (D1 = 3072) of Mppi3y is used to
represent EJ”" and EG™".

EEOI = Mproj ’ Mphi3v (Mvit(d)a prompt) (2)
anl = Mproj : 1v[phi3v (Q7 Prompt)

where EQ' € RNexP2 and Ea‘ﬂ e RNoxD2 and
M,10j is projection layer to map the last hidden
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states of Mppi3y into reduced dimension Do =
128. Ny = 2500 for a typical high-resolution page
and N is the number of query tokens.
C.2  Query-Doc Similarity
The similarity between the query and the document
is computed as follows:

dpr|~dpr
(Eq™ [Eg™)

dpr dpr
Eq ' HEd

Sim(q, d)gpr = H (3)

where Sim(q, d) gy is computed as the cosine sim-
ilarity between their embeddings. and (-|-) is the
dot product.

max <Egol (@) |E301 (4) >

Sim(q, d)eo =
(¢, d)col e

ie[LNQ]

4)

where Sim/(q, d). is the sum over all query vec-
tors anl(2)7 of its maximum dot product (-|-)

with each of the N; document embedding vectors
Eéol(j ) )

C.3 Contrastive Loss

Given the query ¢, we have the positive document
d™ and a set of negative documents d~ including
hard negatives and in-batch negatives. The hard
negatives are negative pages within the document
with highest Sim/(q, d~) scored by ColPali (Faysse
et al., 2024) retriever, refer to Appendix B.6 for
more details on hard negative selection. We calcu-
late the loss as:

o exp(Sim?gzﬁ)/T)
((idﬂd*) - log ’ . dpr
> d;edtud- eXP(Slm(q,di)/T)

(&)
where DPR-Phi3 is trained on the InfoNCE loss,
and the temperature parameter 7 = 0.02 in our
experiments.

l i ;
i ary = log (1+ o (o (Siml)

— sim(el,.))) (6)

where Col-Phi3 is trained via the softplus loss
based on the positive scores w.r.t. to the maximal
negative scores.

C.4 Training Implementation Details

In summary, we train two visual retrievers
based on Phi3-Vision (Abdin et al., 2024).
DPR-Phi3 and Col-Phi3 represent document page

or query using a single dense embedding (following
DPR (Karpukhin et al., 2020)) and a list of token-
level embeddings (following ColBERT (Khattab
and Zaharia, 2020)), respectively. To train the
model, we employ memory-efficient techniques
such as PERF (Zhang et al., 2024b,a), LoRA (Hu
etal., 2022), FlashAttention (Dao, 2024), and Deep-
Speed (Rasley et al., 2020).

The model is trained with a batch size of 64 for
one epoch on MMDOCIR training set. The model
weights are shared between the language models
for document screenshot and query encoding. In
both tasks, each training query is paired with one
positive document and one hard negative document.
The document screenshots are resized to 1,344 x
1, 344 pixels and cropped into 4 x 4 sub-images.

D Retrievers: Introduction and
Implementation Details

D.1 Text-Centric Document Retrieval

For text retrieval, the first step is to convert
multimodal document into text using techniques,
e.g., Document Parsing (Chao and Fan, 2004;
Wang et al., 2024), Optical Character Recognition
(OCR) (Chaudhuri et al., 2017; Borovikov, 2014;
Mori et al., 1999), Layout Detection (Sassioui et al.,
2023; Xu et al., 2020, 2021), Information extrac-
tion (Dong et al., 2022, 2023a), Chunking (Chen
et al., 2024a; Raina and Gales, 2024), and Image
Captioning (You et al., 2016; Aneja et al., 2018).
These steps are time-consuming and can introduce
errors that impact the overall retrieval performance
(Wu et al., 2025; Nie et al., 2023; Li et al., 2023a).
Current text retrieval are primarily categorized as
sparse or dense retrieval on chunks (Dong et al.,
2023b). For two widely-used sparse retrievers:
TF-IDF (Salton et al., 1983) calculates the rele-
vance via word frequency with the inverse docu-
ment frequency, and BM25 (Robertson et al., 1994)
introduces nonlinear word frequency saturation and
length normalization. Dense retrievers encode con-
tent into vector representations. DPR (Karpukhin
et al., 2020) is the pioneering work of dense vec-
tor representations for QA tasks. Similarly, Col-
BERT (Khattab and Zaharia, 2020) introduces an
efficient question-document interaction model with
late fine-grained term matching. Contriever (Izac-
ard et al., 2022) leverages contrastive learning to
improve content dense encoding. E5 (Wang et al.,
2022) and BGE (Xiao et al., 2023) propose novel
training and data preparation techniques to enhance
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retrieval performance. Moreover, GTE (Li et al.,
2023b) integrates graph-based techniques to en-
hance dense embedding. However, most text re-
trieval systems overlook valuable visual informa-
tion present in documents.

D.2 Vision-Driven Document Retrieval

Vision Language Models (VLMs) (Abdin et al.,
2024; Beyer et al., 2024; Bai et al., 2023;
Chen et al., 2024b) can understand and gener-
ate text based on combined text and visual in-
puts. This advancement has led to the develop-
ment of cutting-edge visual-driven retrievers, such
as ColPali (Faysse et al., 2024) and DSE (Ma
et al., 2024a). These models specifically lever-
age PaliGemma (Beyer et al., 2024) and Phi3-
Vision (Abdin et al., 2024) to directly encode docu-
ment page screenshots for multimodal document re-
trieval. ColPali adopts a similar question-document
interaction as ColBERT, and represents each doc-
ument page in token-level embeddings. By con-
trast, DSE is similar to DPR in that it encodes each
page with a single dense embedding. Visual re-
trievers are capable of modeling useful visual infor-
mation, allowing direct utilization of multimodal
content without first converting it into text first.
Despite these advancements, visual retrievers face
challenges, particularly in dealing with text details
when document page resolutions are high. The
high resolution of document pages substantially
increases the computational cost and complexity
of the embedding process, which may hinder the
model’s performance.

D.3 Implementation Details

In our experiments (refer to Section 5.2), we im-
plement 9 off-the-shelf retrievers including 6 text
retrievers and 3 visual retrievers. The text retrieval
models deployed are namely DPR, ColBERT, Con-
triever, E5, BGE and GTE. These models use
the WordPiece tokenizer from BERT and also in-
herit the maximum input length of 512 tokens
from BERT (Devlin et al., 2019). Additionally,
we make use of the sentence-transformer library'3
when deploying ES, BGE and GTE. The visual re-
trieval models deployed are namely DSEixi—_ss,
DSEgocmatixs and ColPali. We use pre-trained
checkpoints available on HuggingFace '4; the spe-
cific checkpoint information can be found in Ta-
ble 14 alongside other configuration details.

13https ://www.sbert.net/
“https://huggingface.co/

E Dataset Demonstration

E.1 Document Pages by Domains

The documents in MMDoclIR can be categorized
into 10 types. We provide examples of each type
as below.

* Admin & Industry: These documents primar-
ily consist of instructional and overview con-
tent on industry, reflected by the dominance
of text-based questions (78.0%) and a smaller
reliance on visual evidence (image questions
only 20.3%), which shows a text-heavy struc-
ture (70.1%). Some detailed examples are shown
in Figure 5b.

* Tut & Workshop: Documents in this category
focus on slides or tutorials, which exhibit a bal-
anced question modality: 61.7% text, 24.5% im-
age, and 9.5% table questions. Strong visual
components are present, with 57.4% of its con-
tent being images—the highest among all cate-
gories. Some detailed examples are shown in
Figure Sc.

* Academic Paper: These documents are formal
publications with structured layouts, citations,
and academic pictures. The questions span mul-
tiple modalities: 28.8% text, 25.7% image, and
50.0% table. Text modality dominates content
distribution (74.6%), with the presence of tables
(11.1%) and images (12.8%) demonstrating rich
multimodal alignment and explicit questions with
answers. Some detailed examples are shown in
Figure 6a.

* Brochure: Designed for promotional purposes,
the brochure category contains highly visual doc-
uments. Over 52.6% of questions are image-
based—the highest among all domains—while
text-based questions account for only 60.5%.
Modality distribution is similarly diverse: 50.8%
image, showcasing their visually complex layout.
Some detailed examples are shown in Figure 6b.

* Financial Report: These documents involve
massive numerical and quantitative data, re-
flected in a high proportion of table questions
(54.5%) and strong table content distribution
(29.2%). While text remains significant (60.3%),
the inclusion of tabular and numerical analysis
is essential for understanding these documents.
Some detailed examples are shown in Figure 6c¢.

¢ Guidebook: Instruction manuals for electronics
and tools, guidebooks exhibit the most balanced
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| Model | Dimension | Base Model | HuggingFace Checkpoint
facebook/dpr-ctx_encoder-multiset-base
bR ‘ ,,,,,,,, e ‘,,FFB,,TTP??? ,,,,, f?,@91?,993@5,?199?5@99,_?99991Qrtmul,t,iﬁ,eﬁ:b%ss,,
_CoIBERT | Niokx768 | BERT-base | colbert-ir/colbertv2.0
§ Contriever | 768 | BERT-basc | facebook/contriever-msmarco
BEs ] | 1024 | BERTarge | intfloat/e5-large-v2
BGE | | 1024 | RetroMAE | BAAlbge-large-en-vis
GTE | 1,024 | BERT-large | thenlper/gte-large
5 | DSEwiki—ss | 3,072 | Phi-3-Vision | Tevatron/dse-phi3-vio0
Z | DSEscemas | 3072 | Phi-3-Vision | Tevawon/dse-phi3-docmatix-v2
ColPali \ Niok X 128 \ PaliGemma \ vidore/colpali

Table 14: Implementation details for

question modality: 51.8% text, 54.4% image, and
26.8% table, indicating multimodal instructional
designs. Some detailed examples are shown in
Figure 7a.

* Government: This category covers policy files
and governmental reports. It is highly text-centric
with 69.9% text questions and 88.2% text content.
This reflects the formal and regulatory nature of
such documents. Some detailed examples are
shown in Figure 7b.

* Laws: Legal documents exhibit strong textual
dominance both in questions (62.1%) and con-
tent (83.8%), with very limited visual presence
(image content only 1.6%). They often maintain
specific formats and focus on linguistic interpre-
tation rather than visual layout. Some detailed
examples are shown in Figure 7c.

* News: Although based on only one document,
the “News” domain shows notable multimodal
richness. It includes a significant image portion
(39.8%), high text presence (48.5%), and 11.6%
titles. This reflects the use of images and head-
lines typical of news articles. Some detailed ex-
amples are shown in Figure 7d.

E.2 Document Layouts

In this section, we present 9 pages along with their
detected layouts, which are highlighted for better
visualizations, as shown in Figure 8, 9, and 10.
Specifically, layout detection identifies the spatial
location of different content types, such as images,
tables, and text within a document. With the help
of layout detection, we can precisely locate the spe-
cific position of an answer, whether it is an image,
a text paragraph, or a table. This enables a more
fine-grained layout-level evaluation of multimodal
retrieval capabilities.

Text and Vision Retrieval Models

E.3 Annotation Examples

In this section, we present 4 annotation examples
that illustrate typical multimodal retrieval and rea-
soning patterns, which help explain the construc-
tion and retrieval process. Each annotation includes
the following primary components: question, an-
swer, page-level labels, and layout-level labels. The
page-level labels show the selected pages that con-
tain ground truth evidence. Based on these selected
pages, layout-level labels further display the spe-
cific layout box detection of evidence. These exam-
ples frequently require reasoning across multiple
pages and modalities. The evidence encompasses
diverse formats such as figures, charts, tables, and
texts, highlighting the complexity and richness of
the multimodal retrieval tasks.
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(a) Page screenshots in Research Report domain.

Latinos Increasingly
Confident in Personal
Finances, See Betier
Economic Times Ahead

It
]
;E
i

m
Deep Learning?

Whos of st machine eing
tedniues

Figure 5: The screenshot examples of typical document pages for (a) Research Report, (b) Administration
Industry, and (c) Tutorial & Workshop domain.
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(a) Page screenshots in Academic Paper domain.

Figure 6: The screenshot examples of typical document pages for (a) Academic Paper, (b) Brochure, and (c)
Financial Report domain.
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(a) Page screenshots in Guidebook domain.

Figure 7: The screenshot examples of typical document pages for (a) Guidebook, (b) Government, (c) Laws domain,
and (d) News domain.
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(a) Example 1: original page vs. page highlighted with layout bounding boxes.
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(b) Example 2: original page vs. page highlighted with layout bounding boxes.

’l'abl 3

2: QUALITY and QASPER Performance With + Without RAPTOR: Performance com-
n across the QUALITY and QASPER datasets of various retrieval methods (SBERT, BM25,
DR with and wihout RAPTOR. UnificdQA-3B is e a the language model. RAPTOR outper.
forms baselines of each respective retrieval method for both datasets.

Model Accuracy (QUALITY) _ Answer F1 (QASPER)
SBERT with RAPTOR 56.6% 3670%
SBERT without RAPTOR 549% 36.23%
BM25 witl R 521% 27.00%
BM25 without RAPTOR 49.9% 26.47%
DI OR 547% 3223%
DPR without RAPTOR 5315 3170%

‘Table 3: Controlled comparison of F-1 scores on the QASPER dataset, using three different lan-
guage models (GPT-3, GPT-4, UnifiedQA 3B) and various retrieval methods. The column “Title +
Abstract” reflects performance when only the title and abstract of the papers are used for context.
RAPTOR outperforms the established baselines BM25 and DPR across all tested language models.
Specifically. RAPTOR’ F-1 scores are at least 1.8% points higher than DPR and at least 5.3¢% points
higher than BM25.

Retriever GPT-3F-1 Match_GPT4F-I Match _ UnificdQA F-1 Mateh
Tille + Abstract 252 22 175
BM25 466 502 264

513 530 321
RAPTOR 531 X 366

Comparison to State-of-the-art Systems Table 4: Comparison of accuracies on the QUAL-
Building_upon our controlled comparisons. ITY dev dataset for two different language mod-
we examine RAPTOR’s performance relative  els (GPT-3, UnifiedQA 3B) using various retrieval
to other state-of-the-art_ models. ~ As shown methods. RAPTOR outperforms the basclines of
in Table 5, RAPTOR with GPT-4 sets a new  BM25 and DPR by at least 2.0% in accuracy.
benchmark on QASPER, with a 55.7% F-1

score, supassing the CoLTS XL's score of  “Nogel  GPT3 Ace,  UnifiedQA Ac

53.9%. —
BM25 573 99

In the QUALITY dataset, as shown in Table 7, DPR 60.4 539

RAPTOR paired with GPT-4 sets a new state- RAPTOR 624 56.6

of-the-art with an accuracy of 82.6%, surpass-
ing the previous best result of 62.3¢%. In par- Table 5: Results on F-1 Match scores of various
ticular, it outperforms CoLISA by 21.5% on  models on the QASPER dataset.
QUALITY-HARD. which represents questions

that humans took unusually long 10 correctly  Niodel

answer, requiring rereading parts of the text,
difficult reasoning, or both.

F-1 Mateh

LongT5 XL (Guo et al BN
COLTS XL (Ainslic etal., *xm) 539
RAPTOR + GPT-4 k]

For the NarrativeQA dataset, as represented in
‘Table 6, RAPTOR paired with UnifiedQA sets
a new state-of-the-art METEOR score. When compared to the recursively summarizing model by
Wa et al. (2021), which also employs UnifiedQA, RAPTOR outperforms it on all metrics. While
W et al. (2021) rely solely on the summary in the top root node of the tree structure, RAPTOR
benefits from its intermediate layers and clustering approaches, which allows it 1o capture a range of
information, from general themes to specific details, contributing to its overall strong performance.

4.1 CONTRIBUTION OF THE TREE STRUCTURE

‘We examine the contribution of each layer of nodes to RAPTOR's retrieval capabilities. We hy-
pothesized that upper nodes play a crucial role in handling thematic or multi-hop queries requiring
a broader understanding of the text.

Table 2: QUALITY and QASPER Performance With + Without RAPTOR: Performance com-
parison across the QUALITY and QASPER datasets of various retrieval methods (SBERT, BM25,
DPR) with and without RAPTOR. UnifiedQA-3B is used as the language model. RAPTOR outper-
forms baselines of each respective retrieval method for both datasets.

Model Accuracy (QUALITY) _ Answer F1 (QASPER)
SBERT with RAPTOR 56.6% 3670%
SBERT without RAPTOR 5499 36.23%

BM25 with RAPTOR 52.1% 27.00%

BM25 without RAPTOR 49.9% 2647%

DPR with RAPTOR 547% 32.23%

DPR without RAPTOR 53.1%

Table 3: Controlled comparison of F-1 scores on the QASPER dataset, using three different lan-
‘guage models (GPT -3, GPT-4, UmﬁedQA 3B) and various retrieval methods. The column “Title +

Abstract” reflects when only the title and abstract of the papers are used for context.
RAPTOR outperforms theestablished basclines BM25 and DPR acros al eted anguage models
Specifically, RAPTOR''s F-1 scores are at least 1.8% points higher than DPR and at least 5.3% points
higher than BM25.

Retriever GPT-3F-1 Match  GPT-4 F-1 Match  UnifiedQA F-1 Match

Title + Abstract 252 22 175
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(c) Example 3: original page vs. page highlighted with layout bounding boxes.
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Figure 8: The 3 examples illustrate the function and effectiveness of layout detection on document pages.
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(a) Example 1: original page vs. page highlighted with layout bounding boxes.
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(b) Example 2: original page vs. page highlighted with layout bounding boxes.
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(c) Example 3: original page vs. page highlighted with layout bounding boxes.
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Figure 9: The 3 examples illustrate the function and effectiveness of layout detection on document pages.
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(a) Example 1: original page vs. page highlighted with layout bounding boxes.
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(b) Example 2: original page vs. page highlighted with layout bounding boxes.

Setting Up DVD or CD Sharing

You can partner your MacBook Air with another Mac or Windows computer that has an

optical disc drive and is on the same wired or wireless network. Use this other

computer to:

+ Migrate information to your MacBook Air, if the other computer is a Mac (see
“Migrating Information to Your MacBook Air” on page 16)

« Share the contents of DVDs or CDs (see “Sharing Discs with DVD or CD Sharing” on
page 19)

+ Remotely install Mac OS X (see “Reinstalling Software Using Remote Install Mac OS X"
on page 45) or use Disk Utility (see “Using Disk Utility” on page 49)

The computer with the optical drive can be a Mac with Mac OS X v10.4.10 or later, or a
Windows XP or Windows Vista computer. You can partner with more than one other
computer.

Mac or Windows computer MacBook Air

Setting Up DVD or CD Sharing

You can partner your MacBook Air with another Mac or Windows computer that has an

optical disc drive and is on the same wired or wireless network. Use this other

computer to:

* Migrate information to your MacBook Air, if the other computer is a Mac (see
“Migrating Information to Your MacBook Air” on page 16)

« Share the contents of DVDs or CDs (see “Sharing Discs with DVD or CD Sharing” on
page 19)

+ Remotely install Mac OS X (see “Reinstalling Software Using Remote Install Mac OS X"
on page 45) or use Disk Utility (see “Using Disk Utility” on page 49)

The computer with the optical drive can be a Mac with Mac OS X v10.4.10 or later, or a
Windows XP or Windows Vista computer. You can partner with more than one other
computer.

Mac or Windows computer MacBook Air

(c) Example 3: original page vs. page highlighted with layout bounding boxes.

CURRICULUM ROADMAP

General Education Courses Business Environment

24 Units | Courses
*  Cultures and Connections 20 Units
«  Critique and Expression *  Legal Environment of
«  DataLiteracy Business
*  Digital Literacy * Managerial Economics
E% «  Singapore Studies *  Decision Analytics using
l I Communities and Spreadsheets
Engagement « Business
COMMON Communication for
Leaders
CURRICUEUN Cross Disciplinary Course *  Introduction to
- Field Service Project Real Estate
8 Units «  Ethicsin Business
Work Experience Global Experience
Milestone Milestone

Level 2000, 3000 and 4000
rses:

Aounianey UNRESTRICTED

ELECTIVE COURSES

Business Majors

Applied Business Analytics™
Business Economics’

MAJOR
CURRICULUM
Business Majors

Finance’
Innovation & Entrepreneurship®

Accountancy Major

Leadership & Human Capital
Management™

Marketing"

Accountancy Major

Real Estate Major

Real Estate Major Operations & Supply Chain

Management”

Real Estate With a curriculum that
is at least a quarter of

CURRICULUM ROADMAP

E

COMMON
CURRICULUM

UNRESTRICTED

MAJOR ELECTIVE COURSES

CURRICULUM Business Majors
Business Majors
Accountancy Major
tancy Major
Real Estate Major

unrestricted electives,
‘ students have a higher
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[ Embark with us on an A.G.L.L.E. iournev

Figure 10: The 3 examples illustrate the function and effectiveness of layout detection on document pages.
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Latinos see economie upward
n

Question: According to the report, how do 5% of the
Latinos see economic upward mobility for their children?

Answer: Less well off

Page id: [4]
Type: Chart

Layout mapping:

{"page": 4,
"page_size": [612.0, 792.0],
"bbox": [366, 229, 514, 383]}

Comment:

The question ask what's the opinion of 5% of Latinos see
econimic upward mobility, the correct answer evidence is
a pie chart, which indicates different views and it's
account , from the chart , the 5% part is less well off.

Figure 11: This example shows a typical image retrieval and reasoning task that requires synthesizing information
from pie chart.
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Question: For dataset construction, which step takes the
most word to describe than the others

Answer: Evolutionary Question Generation

Page id: [11, 12]

Type: Text

Layout mapping:
[{"page": 11, "page_size": [595.2760009765625, 841.8900146484375], "bbox": [306, 171,
410, 184]},

{"page": 12, "page_size": [595.2760009765625, 841.8900146484375], "bbox": [318, 242,
501, 276]}, {"page": 12, "page_size": [595.2760009765625, 841.8900146484375], "bbox":
[305, 286.197021484375, 526, 434.83447265625]}

Comment:

The question ask in data construction part, which part have most words,, first dataset construction is
in the appendix , and in page12 and page13, so after contrast, the dataset Evolutionary Question
Generation part have most words. From the picture ,through the layout mapping we can see every
paragraph is located explicitly and compared.

Figure 12: This example shows a typical multi-page retrieval task that requires synthesizing information from text
passages across multiple pages.
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HUAWE| NoVa Y70

Question: In the demostration of how to use a Knuckle to

Take a Scrolling S

b Take a Scrolling Screenshot, what buildings appear in the
s e Tk St St | first picture?

Answer: Eiffel tower

Page id: [14]

Type: Figure

Layout mapping:

{"page": 14,

"page_size": [595.275634765625,

(235.438)
© The figures are for reference only:

T — 841.8897705078125],
automatly ol th bt f he page o capre i f h conent i 3snge "obox": [235, 154, 367, 439]}

2 You can touch the screen at any time to stop the scrolling. . ’ ? ?

Use a Shortcut to Take a Srolling Sereenshot Comment:

1 Swipe ht edge of the

The question ask in the how to use a Knuckle to take a
screen shot part, what buildings appear in the first picture,
ultiowindow in the image we ca see the first image is Eiffel tower,
Splt the Sreen, to Mt Task Away from the layout mapping we can see the evidence

e B B R e e it location is the right picture

13

to

2 Yo

Figure 13: This example shows a typical image reasoning task that requires synthesizing information from specific
image.
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Question: "Repeat the instructions corresponding to the
settings shown in red box of Figure 3 (left)

Answer: Identify the entities expressed by each sentence,
and locate each entity to words in the sentence. The
possible entity types are: [Type_1], [Type_2], ..., [Type_N].
If you do not find any entity in this sentence, just output
Answer: No entities found.

Page id: [4, 16]

. ' Type: Chart, Text

Layout mapping:

{"page": 4, "page_size": [595.2760009765625, 841.8900146484375], "bbox": [70, 67, 526, 236]}, {"pags":

16, "page_size": [595.2760009765625, 841.8900146484375], "bbox": [305, 447.7352600097656, 526,

500.7 3125]}.

Comment:
The question asks about repeating the instruction settings shown in the red box on the left side of

Figure 3. Figure 3 is located on page 4, while the actual instruction settings appear on page 16. From
the left image in Figure 3, we can see that the red box is the second one, indicating that it represents
Instruction 1. Therefore, on page 16, the content of Instruction 1 is extracted based on the location of

the corresponding layout mapping box.

Figure 14: This example shows a typical multi-page image and text reasoning task that requires synthesizing
cross-modal information from image and text.
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F Detailed Analysis of ViDoRe
Benchmark

F.1 Query and Annotation Analysis

As mentioned in Section 6, ViDoRe (Faysse
et al.,, 2024) is the most relevant benchmark
to MMDocIR. It integrates several datasets
such as DocVQA (Mathew et al., 2021), In-
foVQA (Mathew et al., 2022), TAT-DQA (Zhu
et al., 2022), arXiVQA (Li et al., 2024), and pro-
viding new documents in scientific, medical, ad-
ministrative, and environment domains. In this
Appendix, we elaborate our analysis of the sam-
pled 2,400 questions sampled from ViDoRe. The
statistics are shown in Table 15. ViDoRe test set
contains questions in either English or French. In
our work, we examine only the English questions.
For academic subsets, we examine all 1,500 ques-
tions: 500 questions from DocVQA, 500 questions
from InfoVQA, and 500 questions from arXiVQA.
In TAT-DQA, we sample and examine the first 500
questions. For the industrial documents, we se-
lect 100 questions from each domain (i.e., energy,
healthcare, government, and artificial intelligence).
We examine sampled questions and summarize
these questions into 3 categories:

¢ Unsuitable Queries. Queries that are not well-
suited for IR systems can often burden these sys-
tems by generating numerous irrelevant results.
For example, a query such as “What’s the x-axis
of the figure” is likely to prompt matches from
multiple passages within document corpora that
mention figures with an x-axis. This tends to
happen because the query is overly broad and
lacks contextual specificity. When such queries
stem from Document Visual Question Answer-
ing (DocVQA) tasks targeting a single image,
the challenge is exacerbated, as the reliance on
precise context increases while the target remains
too vague, undermining the fundamental princi-
ples of effective IR.

¢ Barely Suitable Queries. Queries that fall into
this category provide some guidance towards lo-
cating useful passages, yet suffer from a lack of
precise detail. These queries often fetch moder-
ate number of passages, where both relevance
and focus may not be as sharp. For example, the
query “What was the total assets from AMER in
20187 is meant for Visual Question Answering
(VQA) focused on a specific financial topic. Al-
though this seems specific, the issue arises when

multiple sections within an annual report discuss
AMER’s total assets for the year. This causes
significant confusion since ViDoRe is set to ac-
knowledge only a single passage as the verified
answer. This lack of uniqueness in the ground
truth makes it hard to evaluate the actual perfor-
mance of IR system.

Suitable Queries. The most effective queries for
IR systems are characterized by their specificity
and ability to distinguish between different sec-
tions of texts. These queries often involve precise
facts or detailed inquiries that facilitate pinpoint-
ing exact passages. For instance, the question
“What was the magnitude of the earthquake that
occurred in Maule on 2/27/2010?” incorporates
significant keywords and details that guide the
retrieval system directly to the necessary data.
Such queries align perfectly with the objectives
of IR, leveraging specificity and detailed context
to efficiently retrieve most relevant information.

The comprehensive analysis of our queries, as
presented in Table 15, reveals a significant chal-
lenge in adapting questions from Visual Question
Answering (VQA) datasets (such as DocVQA, In-
foVQA, TAT-DQA, and arXiVQA) for Information
Retrieval (IR) purposes. Only 8% of these queries
prove suitable for effective IR usage. In compari-
son, queries derived from industrial documents per-
form slightly better, with 15.5% deemed suitable.
A common issue identified is that these queries are
either excessively simplistic or highly specific to a
particular context. Our findings suggest that the pri-
mary difficulty stems from the inherent differences
between DoclR and DocVQA. VQA queries are
typically crafted to address content on a specific
page or within a particular image, inherently limit-
ing their scope and specificity. This specificity and
simplism are functional within the confines of the
intended VQA context but pose substantial limita-
tions when such queries are repurposed for IR tasks.
Due to this gap, we exclude ViDoRe benchmark
from our experiments.

F.2 Document Corpora Analysis

ViDoRe bootstrap document corpora directly from
existing DocVQA benchmarks (i.e., DocVQA, In-
foVQA, TAT-DQA, arXiVQA) that perform single-
page VQA. In the DocVQA setting, only selected
pages are provided for VQA, rather than the en-
tire document pages. For arXivQA, the retrieved
passages are not document pages, but are cropped
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#Not #Barely #Suit- .

Sub dataset suitable suitable able #Total | HuggingFace Resource

arXiVQA 245 203 52 500 vidore/arxivqa_test_subsampled

DocVQA 345 130 25 500 vidore/docvqa_test_subsampled

InfoVQA 139 284 77 500 vidore/infovqa_test_subsampled

TAT-DQA 373 121 6 500 vidore/tatdqa_test
vidore/syntheticDocQA _energy_test

. vidore/syntheticDocQA _healthcare_industry_test

Industrial 8 260 62 400 vidore/syntheticDocQA_government_reports_test
vidore/syntheticDocQA _artificial_intelligence_test

Sum 1180 998 222 2,400 | -

Percentage 49.1% 41.5% 9.25% - -

Table 15: Document statistics for ViDoRe Benchmark.

images (e.g., figures, tables, and charts). In our ex-
periments, we need to rely on the entire documents
pages to evaluate retrieval on long documents. To
bridge the gap of missing complete document cor-
pora, we put in considerable efforts to collect the
original documents of existing DocVQA datasets,
as mentioned in Section 4.1.

G License Agreements

We ensure that the distribution of each dataset com-

plies with the corresponding licenses, all of which

are listed below:

* MMLongBench-Doc: is under Apache-2.0 li-
cense agreement for academic research purposes.

* DocBench: we achieved the agreement of usage
as academic research from the dataset’s author.

e MP-DocVQA: is under “MIT License” license
agreement for academic research purposes.

e SlideVQA: is under “NTT License” license
agreement for academic research purposes.

* TAT-DQA: is under “CC-BY-4.0” license agree-
ment for academic research purposes.

¢ ArXivQA: is under “CC-BY-SA-4.0” license
agreement for academic research purposes.

* SciQAG: is under “CC-BY-4.0” license agree-
ment for academic research purposes.

* DUDE: is under “GPL-3.0” license agreement
for academic research purposes.

* CUAD: is under “CC-BY-4.0” license agreement
for academic research purposes.

For the new annotations contributed in MMDo-
CIR, including but not limited to the questions,
page and layout annotations, we make them avail-
able solely for research purposes. Users are permit-
ted to use, modify, and share these annotations for

academic and non-commercial research activities.
Any other use, including commercial exploitation,
is not permitted without explicit written permission
from the authors.

H Ethical Considerations

The introduction and broader adoption of MMDoO-
CIR may have potential ethical impacts spanning
both positive and negative dimensions. Below, we
outline possible negative consequences and discuss
potential mitigation strategies:

Privacy Risks: MMDOCIR enables models to
retrieve relevant information over lengthy, multi-
modal documents, which may include sensitive
personal, financial, or health information. There is
a risk that such technologies could be leveraged for
large-scale surveillance, unauthorized extraction of
personal data, or other privacy violations.

Fairness and Bias: If benchmarked models are
trained or evaluated on data that does not reflect
diverse demographic, linguistic, and backgrounds,
outputs may exhibit biases. This may lead to unfair
decision-making or stereotypes.

Mitigation Strategies: To mitigate these risks,
we make sure that: (i) Benchmark development
uses only publicly available, carefully vetted
datasets, with sensitive information anonymized
or removed; (ii) Retrieval outputs are monitored
for bias and fairness.

We encourage researchers and practitioners em-
ploying MMDoOCIR to be mindful of these fac-
tors and to actively work toward responsible de-
velopment and deployment, including transparency
about limitations and proactive safeguards where
needed. We welcome community feedback and
collaboration on best practices to further reduce
risks as this technology evolves.
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https://huggingface.co/datasets/vidore/arxivqa_test_subsampled
https://huggingface.co/datasets/vidore/docvqa_test_subsampled
https://huggingface.co/datasets/vidore/infovqa_test_subsampled
https://huggingface.co/datasets/vidore/tatdqa_test
https://huggingface.co/datasets/vidore/syntheticDocQA_energy_test
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