FANS: Formal Answer Selection for LLM
Natural Language Math Reasoning Using Lean4

Jiarui Yao', Ruida Wang', Tong Zhang!
! University of Illinois Urbana-Champaign
{jiaruil4, ruidaw, tozhang}@illinois.edu

Abstract

Large Language Models (LLMs) have dis-
played astonishing abilities in various tasks, es-
pecially in text generation, classification, ques-
tion answering, etc. However, the reasoning
ability of LLMs still faces many debates, espe-
cially in math reasoning. The inherent ambi-
guity of Natural Language (NL) limits LLMs’
ability to perform verifiable reasoning, mak-
ing the answers lack coherence and trustworthy
support. To tackle the above challenges, we pro-
pose a novel framework named FANS: Formal
ANswer Selection for LLM Natural Language
Math Reasoning Using Lean4. It is a pioneer-
ing framework that utilizes Lean4 to enhance
LLMs’ NL math reasoning ability. In particular,
given an NL math question and LLM-generated
answers, FANS first translates it into Lean4
theorem statements. Then it invokes another
Lean4 prover LLM to produce proofs, and fi-
nally verifies the proofs by Lean4 compiler.
Answers are selected based on the verifications.
It enhances LLMs’ NL math ability in provid-
ing a computer-verifiable solution for its cor-
rect answer and proposes an alternative method
for answer selection beyond the reward model
based ones. Our experiments demonstrate the
effectiveness of FANS with an improvement of
nearly 2% across several math benchmarks, and
even higher further based on reward models or
in subfields such as algebra and number theory
that Lean4 is better at. The code is available in
https://github.com/MaxwellJryao/FANS.

1 Introduction

Math reasoning and problem-solving capability
have been a hot topic in LLM’s research field. Re-
searchers are trying to develop new LLMs (Shao
et al., 2024; Yang et al., 2024b; Yu et al., 2023), in-
creasingly harder benchmarks (Cobbe et al., 2021;
Hendrycks et al., 2021), and advanced reward
model methods for evaluation of answers (Dong
et al., 2023; Yang et al., 2024b). However, there
have always been debates on whether LLMs are

Mistral-7B Deepseek-Math-7B-Instruct

55% | Majority Vote @ 8 70%{ ™=m Majority Vote @ 8
50% Z)ARNMS @@ f 65% Z;N;g :
45% ORM + FANS @ 8 . ORM + FANS @ 8
0% 55%
g 35% 50%
< 30% 45%
25% 40%
20% 35%
15% 30%

eoty

eore eo
e o W«\“e‘ A

Q0@ 1500 o1
EEINT e w o T

P\Qe‘o(aw\}\"\'\so“

Qwen-2.5-Math-1.5B-Instruct Qwen-2-Math-7B-Instruct

959, ™= Majority Vote @ 8 95% | mmm Majority Vote @ 8
FANS @ 8 FANS @ 8
90% ORM @ 8 90% ORM @ 8
¢ ORM + FANS @ 8 ORM + FANS @ 8
85% 85%
§ 80% 80%
g 75% 75%
< 70% 70%
65% 65%
60% 60%
55% 2 o o) 0 55% a o 2 0
¢ ¢ \ ¢ ¢ 0f
\“xe(P\ge‘o m‘“e‘ .“\ei& Q‘\\Qe‘o Wﬂ\’\5 \“‘e(Nge‘ﬂ m\oe(_‘“eLgP\qe‘O N\P"Y\B
W W

Figure 1: Comparision between FANS and majority
vote, together with ORM and ORM + FANS method.
From the results, we could see FANS based on ORM
achieve the highest accuracies consistently across dif-
ferent base models and different test sets. In particular,
FANS performs well on the sub-fields of number theory
and algebra, which are better supported by Lean4 with
its existing libraries.

able to perform real reasoning or simply do pattern
matching (Saparov et al., 2023). Consequently, re-
searchers have begun to consider using symbolic
languages to perform computer-verifiable formal
reasoning in mathematics. Consequently, many for-
mal mathematical languages have been proposed
such as Lean (De Moura et al., 2015; Moura and
Ullrich, 2021), Isabelle (Paulson, 1994), and HOL
Light (Harrison, 2009). These Formal Languages
(FLs) map existing mathematics into their formal
kernels, which allows computers to automatically
verify mathematical proofs. FL provides a clear

3181

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 3181-3200
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/MaxwellJryao/FANS

standard for evaluating answers to theorem proof
and significantly impacts both mathematical and
computer science communities.

In the context of formal reasoning, most existing
works focus on how to use NL to enhance the FL.
capability of the model (Xin et al., 2024b; Wang
et al., 2024b; Lin et al., 2024; Wang et al., 2025b).
Research has also shown that formal language so-
lutions to a math problem can be translated back
to a valid natural language proof with very few er-
rors (Jiang et al., 2022). Despite extensive research
on formal languages (FLs), few have successfully
leveraged Lean4 or other formal languages to en-
hance LLMs’ natural language based mathematical
reasoning. On the other hand, for complex natural
language math reasoning problems, most LLMs
struggle to find a correct solution in limited at-
tempts, but could eventually provide the correct
solution through multiple attempts. This leads to
a natural idea of scaling the test-time computa-
tion resources in NL reasoning to get the correct
answer. Dong et al. (2024); Shao et al. (2024);
Yang et al. (2024b) shown that a model with scale
around 7B without advanced fine-tuning methods
could achieve a pass@n accuracy around 90% on
MATHS500 (Lightman et al., 2023) after a suffi-
cient number of trials. Much recent literature has
revealed the effectiveness of test-time scaling for
improving the model’s performance (Muennighoff
et al., 2025; Chen et al., 2024; Snell et al., 2024;
Wau et al., 2024a; Guan et al., 2025).

However, this raises an important question of
how to select the correct answer from outputs from
the model, which is highly non-trivial especially in
the case that we do not have the ground truth an-
swer. Fundamentally speaking, this partially orig-
inates from mathematical reasoning being a task
with a solid logical foundation, but natural lan-
guage’s inherent ambiguity makes the generated
results not trustworthy enough. To solve this prob-
lem, many answer-selection methods have been
proposed, ranging from majority vote to best-of-N
ranking built upon various reward models (Dong
et al., 2024; Yang et al., 2024b). But these methods
are either too simple to fulfill the pass@n potential,
or still pure LLM-based, failing to make use of
the solid formal foundation of math reasoning. In
addition, it is hard for reward models to generalize
to out-of-distribution (OOD) domains or models
due to the distribution shift.

To solve the above challenges, we propose our
novel FANS framework. It contains the following

stages that work synergistically to enhance answer
selection and provide a verifiable formal foundation
for NL math reasoning:
(a) NL to FL translation: Based on the outstand-
ing reasoning of Long Chain-of-Thought (CoT),
we propose the training method for the Long CoT
translator named LeanTranslator. It can translate
general math question-answering problems into
Lean4 provable formal statements. Applying the
translator to question-answer pairs generated by
LLMs in NL math reasoning, we can obtain Lean4
statements for further processing.
(b) Lean4 proof writing and verification: We
pass the generated statement to an advanced prover
to generate the proofs for the FL statement, then
use the Lean4 verifier to judge the correctness of
the proofs. Final answer selection will be based on
the verification results. (¢) Answer selection and
output: After we obtain the verification results, we
can combine them with existing answer selection
methods jointly. Since our answers are formally
provable, it conveys a more solid foundation and
trustworthiness than direct NL reasoning.

We summarize our contributions as follows:

1. We propose FANS, a pioneering framework
that applies formal mathematical language,
Lean4, in enhancing the capability of LLMs
to solve NL math problems.

2. In our framework, we propose a new method
to train the Long CoT translator that translates
NL question-answer pairs into Lean4 state-
ments. To be best of our knowledge, this is
the first work that proposes such methods.

3. Extensive experiments indicate that enhanced
by our framework, LLMs are able to perform
better answer selection. It can improve the
accuracy on MATHS500 by at most 1.91% and
AMC23 by at most 8.33%. In some particular
subfields that Lean is better at, we can even
select all correct solutions. The qualitative
studies also indicate that our framework can
make the NL solutions generated by the model
have a solid basis using formal language, en-
hancing the trustworthiness of the answer.

2 Methodology

High-level speaking, FANS framework can be de-
composed into three stages. Firstly, we introduce
methods for translation for Natural Language (NL)

3182

,” Natural Language Statement)
!

Answer 1
Half the value of $3x-

o
1
1 Z
1
r

theorem math_problem_0 (x : R)
:(1/2)*(3*x-9)=x+37):x=83:=hy

Follow these instructions N

/ Formal Language Statement N

carefully: \
1. Provide a logically correct
and rigorous Lean4 proof.

A
1 1 1
1 T 1
1 ' :
I] .
I 9Sis $x+37S. What is The vglue | Translator 2. In the <Thought> section, !
! ? of x is 83. H include your detailed step-by-
i the value of xS7? e 1
! " ' ! & step reasoning. ... !
! : Answer 2 1 —
, Question " ' =/ Proof1 ! {O} Long-CoT Prompt 1=~ "1 !
| The value o 1 2 \ | e | .
! of x is 70. " ' ° ! | |]] !
h 1 o . 1 1 !
: Answer 3 :: ! ° 1 a I e I : 0 : 1 Output
] " ' ° 'XE] ! ! XX
1 The value " N ° . 1 1 |
| of x is 56. o] L4 1 Prover gackbone Verifier -l : 0 | !
1 " : — ! ‘ﬁ_' ' . :
| " ! = Proof n] ' ' ' 1
'\ : AN = ' [IWN Le
\ ° /7 . |] ° 1 //
AN L AN e
I I PP The value
- 1 I Output of x is 83.
Majority Vote Best-of-N Based Joint Output
on Reward Model (FANS + ORM)

Figure 2: FANS Framework: The framework shown in the upper part first passes the Natural Language math
questions and the LLM-generated answers to our Long CoT NL-to-FL translator. Subsequently, it invokes a prover
to prove the translated Lean4 statements and uses the verifier to check whether the proofs are correct. The correct
outputs are used for further answer selection as a verifiable foundation. Existing Methods: majority vote and
best-of-N ranking based on reward models are shown in the lower part of the figure.

question-answer pairs into their corresponding For-
mal Language (FL) statements in Section 2.1. Sub-
sequently, we detail how we write FL proofs and
verify it using the Lean4 verifier in Section 2.2. Fi-
nally, we introduce further usage for the verified
proofs in Section 2.3. The general idea for FANS
is to bridge the gap between FL and NL using the
verified FL proofs as a solid foundation for LLM’s
NL reasoning.

2.1 From Natural Language to Formal
Language

To obtain accurately aligned FL statements from
the original NL question-answer pairs, we first train
a Long Chain-of-Thought (Long-CoT) (OpenAl,
2024) translator using pair-wise NL-FL statements.
We try to teach a prover to analyze the NL state-
ment in its Long CoT and then translate it into the
FL statement. However, since there is no Long
CoT data available for NL-to-FL statement transla-
tion, inspired by transfer learning methods for Lean
prove Long CoT in MA-LoT (Wang et al., 2025b),
we introduce the following training method for FL.
statement translator training.

Firstly, we collect the NL-FL aligned statement
translation data from Lean-Workbook (Ying et al.,
2024). Based on such data, as versatile examples
and use analysis-then-generate method inspired by

Wang et al. (2023), we generate NL statements for
the DeepSeek-Prover-v1 dataset’s Lean4 theorem
statement using Qwen-2.5-72B. Altogether, we ob-
tain a dataset containing 162,181 NL-FL aligned
theorem statements without Long CoT. Among
them, 21,967 are generated from DeepSeek-v1 and
140,214 are from Lean-Workbook.

Based on the aligned dataset, we train a Long
CoT translator using the LoT-Solver (Wang et al.,
2025b) as the base model. Since there is no
Long CoT annotated theorem statement transla-
tion dataset, we apply the transfer learning tech-
nique. During training, we explicitly instruct the
model in the system prompt to answer without us-
ing Long CoT and provide the empty Long CoT
content. During inference, we instruct the model
to use Long CoT to answer the question. In the
inference, the model learns from the basic Long
CoT ability in LoT-Solver to accurately translate
the NL statement into the FL statement. Details of
training and inference data examples can be found
in Appendix A.

Besides our own Long CoT translator, recently,
Wang et al. (2025a) also released an NL-FL transla-
tor, and we also utilize it as the translator in the fol-
lowing experiments. Since it is not guaranteed that
the translated FL statements are perfectly consis-
tent with the original NL statements, we introduce

3183

another procedure to check whether the translations
are faithful by prompting the LLMs themselves or
a stronger one, QwQ-32B (Qwen Team, 2025) in
our case, to generate a decision.

2.2 Formal Language Proofs and Verification

After receiving the translated formal language state-
ments, we utilize the open-sourced Lean4 provers
(Lin et al., 2025; Ren et al., 2025) to produce po-
tential proofs written in Lean4 as well. To adapt
the prover on the formal language statements from
natural language math problems, we use a few-
shot prompt for better alignment with the formats
of classic formal language proof problems. Since
the natural language statements have been trans-
lated into the standard formal language statements
format, provers fine-tuned on formal language
statements-proofs could be immediately applied
without any modification. For this very reason,
FANS could generalize among different backbone
provers easily, with a highly disentangled formula-
tion of its three-stage procedure.

The core backbone for FANS to be rigorously
verified stems from the formal proof process in
the functional programming level, which could be
implemented by retrieving the compilation results
from the verifier. At its core, Lean4 operates within
the calculus of inductive constructions, ensuring
that every proof is mechanically verified through
a type-checking system that enforces strict logical
consistency. This could eliminate human errors
commonly found in formal reasoning, getting rid
of unstable reasoning based on intuition and vague
derivation. Therefore, once a theorem is proven in
Lean4, it is mathematically indisputable, provid-
ing a robust foundation for tasks such as answer
selection in math problem solving.

2.3 Beyond Formal Language Itself

Though the provers could achieve a 60% to 80%
success rate on standard formal language proofs
datasets like miniF2F (Zheng et al., 2021), there are
still chances that all the tries of formal proofs fail
because of the gap between the formal language
problems used to train the prover and the formats
of translated formal language statements from the
natural math QA questions. In this case, FANS
will fall back to other alternate methods to select
the best output. For example, we could turn to
the vanilla majority vote, or take advantage of re-
ward models and output the answer with the highest
score. For the former, we first conduct a majority

vote on those answers successfully verified by the
Lean4 verifier, and if there the number of votes for
the winner is below one pre-specified threshold, we
discard the answer and return to the majority vote
directly to mitigate the impact of false positives
due to mis-translation.

If the reward models are accessible, they could
serve as a metric to determine which problems are
more difficult by comparing the scores on specific
questions and model outputs. Intuitively, harder
problems might lead to more erroneous attempts,
rendering the best-of-N based on reward models
ineffective. Under this scenario, we resort to verifi-
able formal language proofs to accurately identify
the correct answer among multiple wrong options.

3 Experiments

We conduct extensive experiments on the
MATHS500 (Hendrycks et al, 2021) and
AMC23 (Yang et al.,, 2024b) to evaluate the
effectiveness of FANS on enhancing the NL
mathematical reasoning using FL methods.
We quantitatively measure its usage in answer
selection in Section 3.3 and qualitatively show its
capability in enhancing the trustworthiness of NL
math reasoning by providing a formal backbone in
Section 3.5. Additionally, we conduct a thorough
ablation study to validate the importance of each
module of our proposed framework.

3.1 Experiment Setup
3.1.1 Dataset and Task

In this work, we evaluate FANS’s capability in en-
hancing LLMs’ NL reasoning on several challeng-
ing datasets. The first is MATHS500 (Hendrycks
et al., 2021), a dataset containing 500 high-school-
level math problems ranging in 7 major fields, in-
cluding precalculus, algebra, number theory, etc.
Another dataset we use is AMC23 from the repo of
Qwen-2.5-Math (Yang et al., 2024b). This dataset
contains 40 high-school-level math competition
questions, ranging from similar fields as MATHS500
but harder and more versatile in the form of ques-
tion types. Other datasets include Minverva Math
(Lewkowycz et al., 2022) and Olympiad Bench (He
et al., 2024).

The goal of FANS is to use the FL. method to
enhance the existing answer selection methods like
Majority Vote (MV) and Optimized Reward Model
(ORM), and use formal reasoning to provide verifi-
able support for NL reasoning.

3184

Models MATH(total) MATH-Algebra MATH-Number Theory AMC23
Mistral-MV 33.80 42.74 33.87 12.50
Mistral-FANS 36.40 45.97 35.48 15.00
Improvement(%) +7.69 +7.56 +4.75 +20.00
DeepSeek-Math-ORM 62.60 82.26 61.29 30.00
DeepSeek-Math-ORM+FANS 63.80 82.26 66.13 32.50
Improvement(%) +1.91 - +7.90 +8.33
Qwen-2.5-Math-ORM 80.80 96.77 91.94 70.00
Qwen-2.5-MATH-ORM+FANS 81.80 98.39 93.55 70.00
Improvement(%) +1.25 +1.67 +1.75 -

Table 1: Accuracies on math benchmarks (%). For all baselines, we apply ORM @8 for comparison to using FANS
based on ORM or using FANS compared with majority voting. The result for FANS is denoted as FANS-model.

Models MATHS00 Minerva Math Olympiad Bench AMC23 Average
Llama-3.2-3B-Instruct 56.60 24.26 21.93 35.00 34.45
FANS w/ self check 57.60 22.06 21.89 32.50 33.51
FANS w/ external check 61.00 24.26 24.15 35.00 36.10
FANS remove 61.80 27.21 25.48 40.00 38.62
Deepseek-Math-7B-Instruct 54.00 27.57 20.74 32.50 33.70
FANS w/ self check 55.40 26.47 22.37 27.50 32.94
FANS w/ external check 57.00 27.21 22.67 30.00 34.22
FANS remove 58.60 30.88 23.85 32.50 36.46
Qwen?2.5-Math-1.5B-Instruct 79.00 33.46 44.30 55.00 52.94
FANS w/ self check 79.20 33.82 44.44 55.00 53.12
FANS w/ external check 80.00 33.82 44.74 57.50 54.02
FANS remove 80.20 36.40 45.63 60.00 55.56
Qwen2.5-Math-7B-Instruct 87.40 41.18 50.22 72.50 62.83
FANS w/ self check 87.40 40.07 50.52 72.50 62.62
FANS w/ external check 88.00 41.18 50.67 72.50 63.09
FANS remove 88.80 42.65 51.85 72.50 63.95

Table 2: Results (%) with new translator (Wang et al., 2025a) and current SOTA prover (Ren et al., 2025).

3.1.2 Baselines

To demonstrate how FANS works across diverse
base models with different levels of answer-
ing mathematical questions, we select Mistral-
7B (Jiang et al., 2023), DeepSeek-Math-7B (Shao
et al., 2024) and Qwen-2.5-Math-1.5B / 7B (Yang
et al., 2024b). The former two are relatively weaker
models, leaving more space for them to be im-
proved by FANS itself. In contrast, for the latter
stronger models, which could answer more prob-
lems correctly, FANS majorly focus on providing
trustworthiness and a verifiable foundation to the
generated solutions. For ORM methods, we uni-
formly select Qwen-RM-72B because it is a larger
model and has the best performance.

3.2 Implementation Details

In FANS, we use LoT-Solver as the base model for
our Long CoT translator training using the transfer
learning method we proposed. We train the transla-
tor on 162,181 records of NL-FL aligned statement
data. To stabilize training, we also use block train-
ing and curriculum data sorting techniques in Wang
et al. (2024b). Besides, Kimina-Autoformalizer
(Wang et al., 2025a) is also tested as the translator.
We use DeepSeek-Prover-v1.5 (Xin et al., 2024b),
Goedel Prover (Lin et al., 2025) and DeepSeek-
Prover-v2 (Ren et al., 2025) as our provers and
Santos et al. (2025) as the verifier, which signifi-
cantly reduces the verification overhead. We use
NVIDIA H200 for model training and inference.
Lean4 verification is conducted on CPUs.

3185

3.3 Results

Table 1 demonstrates that FANS consistently im-
proves the answer selection accuracy across all base
models when compared to the baselines. On the
two sub-fields, algebra and number theory, where
lean4 performs better compared to other fields due
to well-developed support from the language li-
braries, FANS could achieve an accuracy gain up
to 7.90%. On stronger base models like Qwen-
2.5-Math (Yang et al., 2024b), FANS increases the
accuracy for answer selection by 1.75% as well.
On the harder dataset AMC23, FANS helps weaker
models to select the correct answer successfully,
confirming that FANS working upon the verifiable
proof process would be more helpful to identify the
right answer from multiple wrong ones.

Table 2 displays the results with the translator
from Wang et al. (2025a) and the current SOTA
prover from Ren et al. (2025) at 7B scale. Here
“FANS remove” means we remove all false posi-
tive translations by eliminating those items with
incorrectly selected answers but successfully veri-
fied FL proofs. Therefore, it could be regarded as
a kind of upper bound for FANS, while an exact
one since, if the translations are correct, provers
could prove more FL statements. To ensure better
consistency and fidelity of translated FL statements
with the original NL statements, we introduce an
extra stage to check whether the translations are
correct or not, by invoking the base models them-
selves, or an external stronger model, for example,
QwQ-32B (Qwen Team, 2025) here.

After the verification of the translations from
the external model, FANS could achieve uniformly
better final performance compared to all baselines,
while the verification from the same base models
could also achieve slight improvements on some
datasets. This implies the potential of integrat-
ing FL to assist the answer selection in LLMs’
math reasoning, especially by providing a verifi-
able backbone when the translation from natural
language to formal language is faithful enough.

3.4 Ablation Studies
3.4.1 Dropping Long CoT in Translator

To validate the effectiveness of the Long CoT trans-
lator in FANS, we conduct the study on dropping
the Long CoT translator and replacing it with other
models. Choices include the fine-tuned transla-
tor without Long CoT and GPT-40-mini. We use
few-shot prompts for all models. The results are

FANS FANS
Dataset (GPT-do-mini) (w/o Long CoT) /NS
Number Theory 30.65 37.10 37.10
Prealgebra 57.32 59.76 60.98
Inter Algebra 16.49 1443 17.53
Algebra 46.77 48.39 50.81
Precalculus 14.29 21.43 19.64
MATHS500-Full 33.80 35.40 37.40

Table 3: Comparison among different translators with
Mistral-7B as the base model.

ORM
Dataset ORM ORM (Q(\?vlzlrgj (Qwen2.5
(Mistral) (Deepseek) "Math) -Math)
+ FANS
Precalculus 30.36 23.21 26.79 26.79
Prealgebra 64.63 65.84 73.17 7317
Interalgebra 25.77 16.49 24.74 25.77
Algebra 56.45 5242 60.48 60.48
Number Theory 32.26 30.65 40.32 43.55
MATH500 42.40 38.80 45.80 46.40

Table 4: Comparison among different reward models
with Mistral-7B as the base model.

presented in Table 3. The results show that the accu-
racy for MATHS500 without the Long CoT transla-
tor drops significantly, confirming the effectiveness
of Long CoT in providing a more faithful transla-
tion. Comparison to the results on GPT-40-mini
shows that existing closed-source LLMs have sub-
optimal performance on FL translation, aligned
with previous studies (Wang et al., 2024b).

3.4.2 Using different reward models

To test the effectiveness of reward models in FANS,
we conduct the ablation study on switching be-
tween different kinds of Reward models. In the
experiment, we use different reward models to se-
lect data generated by Mistral-7B. The results are
presented in Table 4. It indicates that the Mistral
reward model has the best performance on Mistral
generated data while other reward models all suffer
from suboptimal performances. This experiment
shows that reward models may be unable to gener-
alize to OOD model or data. Indicating the need
for our generalizable answer selection methods.

3.5 Qualitative Studies

A concrete example through FANS pipeline is dis-
played in 1. From the example, we could see that
the translator translates the NL statement into its
corresponding FL statement correctly, maintaining
the original semantic meaning and mathematical
formulation without inappropriate modification. In

3186

the proof stage, the prover successfully proves the
FL statement with detailed step-by-step explana-
tions preceding each line, which are omitted here
for brevity. In the example, the question asks for
the solution to a system of equations. Since the
original natural language statement is already in
a quite standard math format, our translator sim-
ply transforms the natural language description to
a formal language expression. The prover gener-
ates a rigorous proof for the statement, which is
successfully verified by the verifier.

4 Related Work

Reasoning models, both proprietary like
OpenAlI-O1, Google Gemini Flash Thinking, Kimi-
k1.5 (Kimi Team, 2025) and open-sourced ones
such as Qwen Math (Yang et al., 2024b) and
Deepseek-R1 (Xin et al., 2024a), begin to substi-
tute general language models in the core of LLM
research. This stems from not only the representa-
tive of (math) reasoning ability for evaluating the
intelligence of LL.Ms but also the various down-
stream tasks it could be applied to and the potential
it reveals about the underlying immense abilities
of LLMs to solve complicated problems that can
only be resolved by humans in the past. Zhou et al.
(2024) proposed a similar framework to FANS, but
their method is heavily prompt-based, built upon
weaker base models, while we train another Long
CoT translator and utilize more advanced models
to generate proofs and translation verification.

4.1 Formal Language Reasoning

The Formal Languages (FL) for math reasoning
express mathematical statements in verifiable first-
order logic. By solving math problems using FL,
we can not only verify the correctness of the prob-
lem by the final answer like MATH (Hendrycks
et al., 2021) or GSM8k (Cobbe et al., 2021) but
also explicitly verify the correctness of each inter-
mediate steps, making math reasoning has a solid
foundation. Typical FL are like Isabelle (Paulson,
1994), Coq (Coq, 1996), Metamath (Megill and
Wheeler, 2019), HOL Light (Harrison, 2009), and
Lean (De Moura et al., 2015; Moura and Ullrich,
2021). Following Yang et al. (2024c), we choose
Lean4, the latest and most actively studied FL, as
the language we use.

Traditional studies on FL all focused on how
to annotate more data to boost the performance
of LLMs on FL. Representative works like Lean-

Dojo (Yang et al., 2024c) use retrial methods to
select tactics; Wang et al. (2024b) tries to use LLM
to translate NL proof to FL proof; MA-LoT (Wang
et al., 2025b) proposed Long CoT and multi-
agent framework to solve FL questions; DeepSeek-
Prover (Xin et al., 2024b,a), Godel-Prover (Lin
et al., 2025), and InternLM-Step-Prover (Wu et al.,
2024b) applies massive data annotation to provide
better foundation models. However, all of the
above works focus on solving FL. problems and
ignore the potential of using FL to enhance the
performance of NL math reasoning.

4.2 Natural Language Math Reasoning

Recent efforts to enhance the mathematical reason-
ing capabilities of large language models (LLMs)
have spurred the development of diverse math
problem-solving techniques. Many works in this
field focus on developing advanced foundation
models for solving math word problems such as
DeepSeek-Math (Shao et al., 2024), Qwen-2.5-
Math (Yang et al., 2024b), Mistral-Math (Yu et al.,
2023), and Llemma (Azerbayev et al., 2023). Other
focus on the inference methods to query the exist-
ing models to write better answers, typical methods
like traditional Chain-of-Thought (CoT) (Wei et al.,
2022; Yao et al., 2025; Xiong et al., 2025; Zhang
etal., 2025a), tree-search methods (Yao et al., 2023;
Jiang et al., 2024) and recent proposed Long-CoT
approaches (OpenAl, 2024; Wang et al., 2025b;
Open-Source-0O1, 2024). However, none of them
jump beyond the context of natural language in
math reasoning, leading to LLMs’ math reasoning
without formal foundations.

4.3 Reward Modeling

Reward models play a crucial role in assessing
the quality of LLMs’ outputs, serving as an essen-
tial component in downstream applications such
as reinforcement learning from human feedback
(RLHF). These models function as evaluative mech-
anisms that guide optimization processes, ensuring
that generated responses align with human prefer-
ences and ethical considerations. Several studies
have incorporated reward models into their RLHF
frameworks, highlighting their significance in fine-
tuning LLMs (Dong et al., 2024; Bai et al., 2022;
Ouyang et al., 2022; Dong et al., 2023; Wang et al.,
2024a). Depending on the design of how to model
the rewards, reward models can be categorized into
both explicit and implicit frameworks. The for-
mer includes outcome-based or process-based ones

3187

Demonstration of FANS

Natural Language Math Problem

of x except —8 and 3.
Answer —5.
Translated Formal Language Statement

theorem math_problem_@ (CD : Z) (h : V x :
8) = (4% x-23)/ (x*2+5%x - 24))

Formal Language Proof

theorem math_problem_@ (CD : Z) (h : V x :

have hy := h @ (by norm_num)
have hy := h 1 (by norm_num)
have hs := h (-1) (by norm_num)
field_simp at hy hs hg

ring_nf at hy ha hs

norm_cast at h; hs hs

nlinarith

Find the product CD of the integers C and D for which -% + £ =

R, x#3 Ax#-8—=C/ (x-3)+D/ (x+
: CxD=-5

R, x#3 Ax#-8—=>C/ (x-3)+D/ (x+8)
= (4 *x-23)/ (x"*2+5%x-24)) : CxD=-5:=hy

_Axz—23
778 = 771529z for all real values

:= by

(Ma et al., 2023; Zhang et al., 2025b, 2024b,a; Li
and Li, 2024) with each assessing only the final
output or intermediate steps respectively. In con-
trast, implicit reward modeling bypasses the need
for explicit reward function engineering by lever-
aging preference optimization techniques. Notable
examples include direct preference optimization
(DPO) (Rafailov et al., 2024) and other variants
like KTO (Ethayarajh et al., 2024), SimPO (Meng
et al., 2024), IPO (Azar et al., 2024), etc., all of
which aim to refine LLM behavior without explicit
reward function definition.

5 Conclusion and Discussion

Faced with the gap between existing answer selec-
tion methods and the upper bound from models’
intrinsic abilities in the math problem-solving task,
we propose FANS, a framework that introduces a
formal language-based approach to perform bet-
ter answer selection, offering a more rigorous and
trustworthy alternative to heuristic methods like
majority voting or best-of-N based on reward mod-
els. From the experiment results 1, we could see
FANS indeed improve the accuracy for answer se-
lection, achieving at most a relative improvement
of 7.9% on MATH500 Number Theory and 20%
on AMC?23. This highlights the potential of utiliz-
ing formal language in enhancing answer selection
for math problem-solving tasks. While it demon-
strates notable improvements over baselines, there
is still a gap between its current performance and
the theoretical upper bound, i.e., pass @ N. Two
primary directions for improvement stand out given
the two-stage workflow of FANS.

Refining the NL-FL translation process is cru-
cial to reducing false positives in theorem formu-
lation. Errors in translation, such as misrepresent-
ing an equation-solving problem as a tautology or
mishandling extremum problems by misinterpret-
ing constraints, often lead to vacuous proofs and
incorrect answer selection. Enhancing the trans-
lator to preserve problem constraints accurately
and explicitly consider optimization conditions can
significantly improve formalization quality.

Enhancing the proving capabilities of the prover
is necessary. Lean4’s current package ecosystem
is biased toward certain fields like algebra and num-
ber theory, limiting its applicability in others like
geometry and combinatorics. Expanding its library
support would enable broader coverage of mathe-
matical domains. Additionally, while the Goedel-
Prover (Lin et al., 2025) achieves state-of-the-art
results on formal language benchmarks (Zheng
et al., 2021; Ying et al., 2024), it still struggles
with nearly 40% of proof problems. Strengthening
its reasoning abilities through iterative fine-tuning
and improved proof-search strategies could address
this limitation.

Despite these challenges, the formal verification
approach provides a trustworthy and interpretable
alternative compared to conventional answer selec-
tion methods. By incorporating rigorously verifi-
able Lean4 deductions, FANS reduces dependence
on extensive adaptation for different base mod-
els, ensuring consistent and scalable improvements
in LLM-driven mathematical reasoning, shedding
light on a more trustworthy way to better leverage
the capability of existing models.

3188

Limitations

One major limitation of using formal language for
answer selection is its high false positive rate and
the inherent incompleteness of provers, which pro-
hibits successfully verifying all factually correct
statements. Errors in formalization, such as in-
correct theorem representations or inadequate con-
straint handling, further lead to misclassification.
Additionally, the limited domain coverage of Lean
4 constrains its applicability to only a subset of
mathematical fields.

Future work could focus on improving the ro-
bustness of NL-FL translation, ensuring accurate
problem formulation, and enhancing the theorem-
proving capabilities of provers to handle more com-
plex and diverse mathematical problems. Expand-
ing the formal proof ecosystem beyond algebra
and number theory will be essential for broader
applicability as well. We believe addressing these
challenges will bring formal verification closer to a
more reliable, scalable solution for mathematical
reasoning in LLMs.

For potential risks, since this work focuses on the
math reasoning task of LLMs, with no intersection
with ethics or other societal questions, we believe
it currently contains no such risk. Besides, Al
assistants were only used for spelling and grammar
checking during writing.

References

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Arti-
ficial Intelligence and Statistics, pages 4447—-4455.
PMLR.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and 1
others. 2022. Training a helpful and harmless assis-
tant with reinforcement learning from human feed-
back. arXiv preprint arXiv:2204.05862.

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu,
Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
Ye, Hao Tian, Zhaoyang Liu, and 1 others. 2024.
Expanding performance boundaries of open-source
multimodal models with model, data, and test-time
scaling. arXiv preprint arXiv:2412.05271.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Projet Coq. 1996. The coq proof assistant-reference
manual. INRIA Rocquencourt and ENS Lyon, ver-
sion, 5.

Leonardo De Moura, Soonho Kong, Jeremy Avigad,
Floris Van Doorn, and Jakob von Raumer. 2015. The
lean theorem prover (system description). In Auto-
mated Deduction-CADE-25: 25th International Con-
ference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings 25, pages 378-388.
Springer.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan,
Shizhe Diao, Jipeng Zhang, Kashun Shum, and
Tong Zhang. 2023. Raft: Reward ranked finetuning
for generative foundation model alignment. arXiv
preprint arXiv:2304.06767.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. 2024. Rlhf work-
flow: From reward modeling to online rlhf. arXiv
preprint arXiv:2405.07863.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

3189

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small Ilms can master math reason-
ing with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519.

John Harrison. 2009. Hol light: An overview. In Inter-
national Conference on Theorem Proving in Higher
Order Logics, pages 60—66. Springer.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024. Olympiadbench:
A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific prob-
lems. Preprint, arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou,
Wenda Li, Jiacheng Liu, Mateja Jamnik, Timo-
thée Lacroix, Yuhuai Wu, and Guillaume Lample.
2022. Draft, sketch, and prove: Guiding formal the-
orem provers with informal proofs. arXiv preprint
arXiv:2210.12283.

Jinhao Jiang, Zhipeng Chen, Yingqian Min, Jie Chen,
Xiaoxue Cheng, Jiapeng Wang, Yiru Tang, Haox-
iang Sun, Jia Deng, Wayne Xin Zhao, and 1 oth-
ers. 2024. Technical report: Enhancing Ilm reason-
ing with reward-guided tree search. arXiv preprint
arXiv:2411.11694.

Kimi Team. 2025. Kimi k1.5: Scaling reinforcement
learning with Ilms.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, and 1 others. 2022. Solving quan-
titative reasoning problems with language models.
Advances in Neural Information Processing Systems,
35:3843-3857.

Wendi Li and Yixuan Li. 2024.
model with g-value rankings.
arXiv:2410.11287.

Process reward
arXiv preprint

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean
Welleck. 2024. Lean-star: Learning to in-
terleave thinking and proving. arXiv preprint
arXiv:2407.10040.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu,
Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou
Xia, Danqgi Chen, Sanjeev Arora, and Chi Jin.
2025. Goedel-prover: A frontier model for open-
source automated theorem proving. Preprint,
arXiv:2502.07640.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan,
Pengfei Liu, Yang You, and Hongxia Yang. 2023.
Let’s reward step by step: Step-level reward model
as the navigators for reasoning. arXiv preprint
arXiv:2310.10080.

Norman Megill and David A Wheeler. 2019. Metamath:
a computer language for mathematical proofs. Lulu.
com.

Yu Meng, Mengzhou Xia, and Danqi Chen.
2024. Simpo: Simple preference optimization
with a reference-free reward. arXiv preprint
arXiv:2405.14734.

Leonardo de Moura and Sebastian Ullrich. 2021. The
lean 4 theorem prover and programming language. In
Automated Deduction—-CADE 28: 28th International
Conference on Automated Deduction, Virtual Event,
July 12—-15, 2021, Proceedings 28, pages 625-635.
Springer.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Open-Source-O1. 2024. Open-ol. Accessed: 2024-12-
28.

OpenAl. 2024. Learning to reason with
Ilms. https://openai.com/index/
learning-to-reason-with-11lms/. Accessed:

2024-11-24.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730-27744.

Lawrence C Paulson. 1994. Isabelle: A generic theorem
prover. Springer.

Qwen Team. 2025. Qwq-32b: Embracing the power of
reinforcement learning.

3190

https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640
https://github.com/Open-Source-O1/Open-O1
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

77 Ren, Zhihong Shao, Junxiao Song, Huajian Xin,
Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe
Fu, Qihao Zhu, Dejian Yang, and 1 others. 2025.
Deepseek-prover-v2: Advancing formal mathemati-
cal reasoning via reinforcement learning for subgoal
decomposition. arXiv preprint arXiv:2504.21801.

Marco Dos Santos, Haiming Wang, Hugues de Saxcé,
Ran Wang, Mantas Baksys, Mert Unsal, Jungi Liu,
Zhengying Liu, and Jia Li. 2025. Kimina lean server:
Technical report. Preprint, arXiv:2504.21230.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Pad-
makumar, Nitish Joshi, Mehran Kazemi, Najoung
Kim, and He He. 2023. Testing the general deductive
reasoning capacity of large language models using
ood examples. Advances in Neural Information Pro-
cessing Systems, 36:3083-3105.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan
Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu
Zhou, Chenyu Shi, and 1 others. 2024a. Secrets of
rlhf in large language models part ii: Reward model-
ing. arXiv preprint arXiv:2401.06080.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas
Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, and 1 oth-
ers. 2025a. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning.
arXiv preprint arXiv:2504.11354.

Ruida Wang, Rui Pan, Yuxin Li, Jipeng Zhang, Yizhen
Jia, Shizhe Diao, Renjie Pi, Junjie Hu, and Tong
Zhang. 2025b. Ma-lot: Multi-agent lean-based long
chain-of-thought reasoning enhances formal theorem
proving. arXiv preprint arXiv:2503.03205.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe
Diao, Renjie Pi, and Tong Zhang. 2024b. Theoreml-
lama: Transforming general-purpose llms into lean4
experts. arXiv preprint arXiv:2407.03203.

Ruida Wang, Wangchunshu Zhou, and Mrinmaya
Sachan. 2023. Let’s synthesize step by step: Iter-
ative dataset synthesis with large language models
by extrapolating errors from small models. arXiv
preprint arXiv:2310.13671.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024a. Inference scaling laws:
An empirical analysis of compute-optimal inference
for problem-solving with language models. arXiv
preprint arXiv:2408.00724.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan
Ying, Jiayu Wang, Dahua Lin, and Kai Chen. 2024b.
Internlm?2. 5-stepprover: Advancing automated theo-
rem proving via expert iteration on large-scale lean
problems. arXiv preprint arXiv:2410.15700.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. 2024a. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. arXiv preprint arXiv:2405.14333.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao,
Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,
Xuan Lu, Qiushi Du, and 1 others. 2024b. Deepseek-
prover-v1. 5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search.
arXiv preprint arXiv:2408.08152.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang,
Doyen Sahoo, Junnan Li, Nan Jiang, Tong Zhang,
Caiming Xiong, and 1 others. 2025. A minimalist
approach to llm reasoning: from rejection sampling
to reinforce. arXiv preprint arXiv:2504.11343.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, and 1 others.
2024a. Qwen?2 technical report. arXiv preprint
arXiv:2407.10671.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024b. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. arXiv preprint arXiv:2409.12122.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J

3191

https://arxiv.org/abs/2504.21230
https://arxiv.org/abs/2504.21230
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Prenger, and Animashree Anandkumar. 2024c. Le-
andojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information
Processing Systems, 36.

Jiarui Yao, Yifan Hao, Hanning Zhang, Hanze Dong,
Wei Xiong, Nan Jiang, and Tong Zhang. 2025. Opti-
mizing chain-of-thought reasoners via gradient vari-
ance minimization in rejection sampling and rl. arXiv
preprint arXiv:2505.02391.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models, 2023.
URL https://arxiv. org/pdf/2305.10601. pdf.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang,
Dahua Lin, and Kai Chen. 2024. Lean workbook:
A large-scale lean problem set formalized from
natural language math problems. arXiv preprint
arXiv:2406.03847.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: LIm
self-training via process reward guided tree search.
arXiv preprint arXiv:2406.03816.

Hanning Zhang, Jiarui Yao, Chenlu Ye, Wei Xiong,
and Tong Zhang. 2025a. Online-dpo-r1: Unlocking
effective reasoning without the ppo overhead.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024b.
Generative verifiers: Reward modeling as next-token
prediction. arXiv preprint arXiv:2408.15240.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025b. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. Minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian
Szegedy, Kilian Q Weinberger, and Yuhuai Wu.
2024. Don’t trust: Verify—grounding llm quantita-
tive reasoning with autoformalization. arXiv preprint
arXiv:2403.18120.

A Translator Training Example

This section gives examples of the training and
inference method for using the transfer learning
method to train the Long CoT capability of transla-
tor based on data without special Long CoT anno-
tation.

The prompt for training is as follows:

"role": "system",

"content”:"You are a helpful
mathematical assistant
specialized in formal language
Lean4. Please translate the
following natural language
statement into Lean4 theorem
statement. You are directly
asked to provide the answer to
the problem *xWITHOUT** using
the Long Chain of Thought."

e

"role"”: "user",

"content”: """@ Natural language
theorem statement: Let a,b,c
be positive real numbers .Prove
that $ \\frac{b+c}{\\sqrt{a”*2 +
8bc}} + \\frac{cta}{\\sqrt{b*2 +
8cal}} + \\frac{a+b}{\\sqrt{c”2 +
8ab}} \\geq 2. $

e

nnn

@ Lean4 theorem statement:

b
{

"role”: "assistant”,

"content”: """<Thought> The user ask
< not to solve with long CoT, so I
< will directly write the

< answer.</Thought>

“*~lean4d

theorem lean_workbook_@ (a b ¢ : R)

— (ha : @< a) (hb : @ <b) (hc :

— ©<<c): (b+c)/ Real.sqgrt (a

— "2+ 8xb*xc)+ (c+a)/

< Real.sqrt (b * 2+ 8 xc *a) +

<~ (a+b) /Real.sgrt (¢ » 2 + 8 *
< a*b)>2 := by

~~snnn

3192

We use system prompt and user input as the
training input and the assistant part as the expected
output for our model training. We can see that in
the system prompt, we indicate the model not to
use Long CoT and in training, we just put a dummy
placeholder for the Long CoT.

The inference output is as follows:

===Model Input===
<|begin_of_sentence|>Follow these

— instructions carefully:

1. Provide a logically correct and

— rigorous translate of natural

— language theorem statement to Lean4
— Statement.

2. In the <Thought> section, include

— your detailed step-by-step

< reasoning.

3. In the <Output> section, provide only
— the final Lean4 proof or final

— result.### Instruction:You will

— receive several Lean4 problems. For
— each:

- xxUsexx a step-by-step solution

< internally in <Thought>.

- xxDo not** reveal your chain of

— thought outside the <Thought> block.
- xxEnsure*x the final Lean4 code or

— final result is placed #**only*x in
— <Output>.

@ Natural language theorem statement:
mathd_numbertheory_3

What is the units digit of the sum of the
< squares of the first nine positive
« integers? Show that it is 5.

@ Lean4 theorem statement:
Response:
<Thought>

Alright, I should do the following:

1. Analysis the problem and understand
< the requirements.

2. Use natural language to analysis
— the potentional Lean4 condition
< and requirements in the natural
— language theorem statement.

3. Write the translated Lean4
s statement code.

===Model Output===
he “mathd_numbertheory_3~ has the
— following conditions:

- The problem asks for the units digit
< of the sum of the squares of the
— first nine positive integers.

- The expected answer is 5.

So, the theorem should state that the
< units digit of the sum of the

< squares of the first nine positive
< integers is 5.

</Thought>

<Output>

"~ lean4d

theorem mathd_numbertheory_3 : (Sum i in
— Finset.range 10, i * 2) % 10 = 5 :=
Tt

</Output>

We can see that by using the system prompt to
clearly instruct the model to use Long CoT in in-
ference, the model apply its internal bearing Long
CoT capability, together with the Lean4 knowledge
and statement translation ability learned in transfer
learning. The model can perform accurate transla-
tion from NL to FL using Long CoT inference.

B Experiments Details

B.1 Implementation Settings

For the answer generation, we use vLLM (Kwon
et al., 2023) as the inference framework, with the
temperature set to 0.6 to avoid too much repetition,
and set the max tokens allowed to be generated as
4096. During the first stage of translation, we set
the temperature of generation to 0, together with
the number of max new tokens set to 2048, and use
Transformers (Wolf et al., 2020) as the inference
framework directly. For the prover, we use vLLM
for inference as well and set the temperature to 1.0,
with the max number of new tokens set to 2048.
For all experiment results, we evaluate our
method FANS on four different base models,
Mistral-7B (Jiang et al., 2023), DeepSeek-Math-
7B-Instruct (Shao et al., 2024), Qwen-2.5-Math-
1.5B-Instruct (Yang et al., 2024b), Qwen2-Math-
7B-Instruct (Yang et al., 2024a), and the results
could be found in table 5. We did not include Qwen-
2.5-Math-7B-Instruct as one of our base models

3193

Formal Language Translation Prompt with-

out Natural Language Alignment

"{question} Show that it is: {answer}."

Figure 3: Formal language translation prompt without
natural language alignment.

because during inference we found that it could
easily generate nonsense outputs not related to the
math problems until the inference budget is reached.
This phenomenon persists no matter what inference
framework we use. So as an alternative, we chose
the 7B model from a version before. Overall, the
performance of the latter two models is better than
the former two. And FANS could achieve uniform
performance gain among all different base models,
with a larger margin on weaker base models.

The performance gain on stronger base mod-
els is smaller due to the fact that harder problems
are more challenging to be translated into appro-
priate natural language statements with consistent
meaning and math formulation, and they are hard
to be proved automatically by the prover in stage
two. In an ideal situation, if the success rates for
NL-FL translation and prover are p and ¢ respec-
tively, and the accuracies for majority vote and pass
@ n are r; and 79 respectively, then the theoreti-
cal performance gain of FANS should be roughly
(ro — 1) - pq. This leaves a huge space for future
work to improve the current pipeline from both the
point of views of translator and prover. With better
translator achieving lower false positive rates, and /
or better prover which could systematically prove
harder formal language statements, FANS will be
more effective and efficient benefiting from both
aspects.

B.2 Effects of Natural Language Alignment

Without natural language statements alignment, we
directly append the generated answers to the end of
the questions and utilize the concatenated ones as
instructions for the formal language translator. In
this scenario, the prompt used for formal language
translation is table 3.

However, since the translator model is mainly
trained on the dataset in the aligned format, we
conduct an ablation study on whether natural lan-
guage statement alignment is helpful or not. We

use meta-llama/Llama-3.3-70B-Instruct! as
the alignment model to transform the original nat-
ural language statements into the corresponding
aligned format. During translation, we keep the
temperature as zero, and set the max length of new
tokens to 1024. To accelerate the inference, we
utilize the package vLLM (Kwon et al., 2023) as
our translation framework. The alignment prompt
is shown as in Figure 4.

For a given math question answering problem in
its original format, the alignment format will be in
“Given ... (premises), show that ... (goal)”, or “If
... (premises), prove that ... (goal)” like standard
formats. Table 5 demonstrates a concrete example
of aligning the original natural language statement
into the standard format. From the results in table 6,
we may notice that whether to use natural language
alignment does not affect the overall performance
of FANS, so we omit this alignment step in the
other experiments.

The prompt used for formal language translation
without Long-CoT is shown in Figure 6, which
takes advantage of the ability of LLMs’ in-context
learning provided few-shot examples.

Concatenating the formal language statement
and the proof header, together with the natural lan-
guage statement as the auxiliary comment, we trig-
ger the prover model and generate potential proofs
for the given formal language statements.

Below we present more concrete examples from
FANS, verifying that with the assistance of formal
language, we could select the correct answer out of
all possible candidates successfully.

"https://huggingface.co/meta-llama/Llama-3.3-70B-
Instruct

3194

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

Base Model Method Precalculus Prealgebra InterAlgebra Algebra Number Theory MATH500 AMC23
Pass @ 1 0.1071 0.4954 0.1289 0.3579 0.2681 0.2785 0.0781
Mistral-7B Pass @ 8 0.3214 0.8049 0.3402 0.6532 0.4677 0.5180 0.3250
Majority Vote @ 8 0.1786 0.5732 0.1546 0.4274 0.3387 0.3880 0.1250
FANS @ 8 0.1786 0.6341 0.1753 0.4597 0.3548 0.3640 0.1500
Pass @ 1 0.1696 0.6387 0.2023 0.5998 0.3609 0.4098 0.1687
Pass @ 8 0.4107 0.8780 0.4742 0.8548 0.7258 0.6860 0.4500
Deepseek-Math-7B-Instruct Majority Vote @ 8 0.1786 0.7195 0.3402 0.7177 0.5484 0.5200 0.2250
FANS @ 8 0.1786 0.7195 0.3608 0.7339 0.5484 0.5240 0.2250
ORM @ 8 0.3750 0.8049 0.4021 0.8226 0.6129 0.6260 0.3000
ORM + FANS @ 8 0.3750 0.8171 0.4227 0.8226 0.6613 0.6380 0.3250
Pass @ 1 0.5558 0.7774 0.5296 0.8871 0.8165 0.7055 0.4938
Pass @ 8 0.7500 0.8902 0.7526 0.9839 0.9839 0.8720 0.8000
Majority Vote @ 8 0.6250 0.8415 0.5979 0.9435 0.8871 0.7740 0.6000
Quen-2.5-Math-1.5B-lnstruct - £\ @ g 0.6250 0.8659 0.5979 0.9435 0.8871 07760 0.6250
ORM @ 8 0.6607 0.8780 0.6392 0.9677 0.9194 0.8080 0.7000
ORM + FANS @ 8 0.6607 0.8780 0.6495 0.9839 0.9355 0.8180 0.7000
Pass @ 1 0.5446 0.8110 0.5206 0.8891 0.8145 0.7182 0.4781
Pass @ 8 0.7321 0.9302 0.7320 0.9758 0.9677 0.8700 0.8500
Qwen-2-Math-7B-Instruct Majority Vote @ 8 0.6071 0.8780 0.5773 0.9355 0.9194 0.7840 0.5500
FANS @ 8 0.5893 0.8659 0.5773 0.9355 0.9194 0.7760 0.5750
ORM @ 8 0.6964 0.8902 0.6289 0.9597 0.9032 0.8180 0.7500
ORM + FANS @ 8 0.6964 0.8902 0.6392 0.9597 0.9194 0.8220 0.7500

Table 5: Full experiments results.

Method Precalculus Prealgebra InterAlgebra Algebra Number Theory Geometry Counting & Probability MATHS500
FANS @ 8 0.2143 0.5976 0.1443 0.4839 0.3710 0.2195 0.2632 0.354
FANS @ 8 aligned NL 0.1786 0.5244 0.1753 0.5081 0.3548 0.3171 0.2368 0.354

Table 6: Comparision between FANS with aligned natural language statement and original ones.

3195

Natural Language Statements Alignment Prompt

Example list:

[NNN

md
Let a,b,c>0. Prove that:

a be b ca c ab 2abc
bt+c\/ (b+a)(cta) + ct+at\/ (c+b)(a+b) + a+b\/ (a+c)(b+c) + (a+Db)(b+c)(c+a) <1

NN

NN

md
Leta,b,c > 0 satisfy a + b+ ¢ = 3 . Prove that

1
(a2 + 2b¢) (B + 2ca)(2 + 2ab) < %(ab S

[NNN

[NNN

md
Ifx1 + 29 = —aand xo + 23 = —b,thenzy —23=>0—a

[N

NN

md
If a,b, c € [k, k] where a, b, ¢, k are real numbers and a+b+c = 0, show that a3 +b%+¢3 < %

NN

NNN

md
If z,y, z > 0 then prove:

2+ y? 4+ —ay—yr—za+ x‘rf;’_fz > /x2y?2?

[NNN

Help me transform the following math problem with the given answer to a proof problem, and the
language format of the question should be identical to the example list above, also in the “‘md***
structure. Do not modify the given answer even if it is not correct, just transform the format.
Question

“md

Figure 4: The prompt used for natural language statements alignment.

3196

Example of Natural Language Statements Alignment

Question Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your
answer in the form (7, 0), where r > 0 and 0 < 6 < 27.

Answer Step 1: To convert from rectangular coordinates to polar coordinates, we use the formulas

r = +/x? + y? and § = arctan (£). Step 2: In this case, s = Oand y = 3, so 7 = V02 + 32 = 3

and f = arctan (%) = Z. Step 3: Since 0 < 6 < 27, we have § = 5. Step 4: Therefore, the polar

coordinates of the point (0, 3) are (3, z) . The answer is: (3,)

T

Aligned Output Let (z,y) = (0, 3). Prove that the polar coordinates of the point are (3,).

Figure 5: Example of the aligned natural language statement generated by the alignment model, given the original
question and answer.

3197

Formal Language Translation Prompt without Long-CoT

Convert the following natural language mathematical statement into a corresponding Lean4
Statement.

Natural language statement:

Let a,b,c>0. Prove that:

b b b 2ab
e\ BFa)era) T oray/ ero) ety T avs\ are)re) T @rpbratera) = !

Leand statement:

“leand

theorem lean_workbook_plus_49559 (abc: R) (ha: O0<a) (hb: 0<b) (hc: O<c): (a/(b+c)*
Real.sqrt (b *c/(b+a)*(c+a))+b/(c+a)*Realsqrt(c *a/(c+b)*(a+b))+c/(a+b)*
Realsqrt (a*b/(a+c)*(b+c)+2*a*b*c/(a+b)/(b+c)/(c+a)<1:=by

&

Convert the following natural language mathematical statement into a corresponding Lean4
statement.

Natural language statement:

Let a,b,c > 0 satisfy a + b + ¢ = 3 . Prove that

1
(a® + 2bc) (b* + 2ca)(c® + 2ab) < 8g(ab + bc + ca)

Leand statement:

leand

theorem lean_workbook_plus_82625 (abc: R)(ha:a>0Ab>0Ac>0)(hab:a+b+c=3)
:(@2+2*b*c)*(b2+2%c*a)*(c2+2*a*b)<8l/8*(@a*b+b*c+c*a):=by
g

Convert the following natural language mathematical statement into a corresponding Lean4
Statement.

Natural language statement:

{natural language statement to be translated}

Leand statement:

““leand

Figure 6: Formal language translation prompt without Long-CoT instruction.

3198

Formal Language Translation Prompt with Long-CoT

Follow these instructions carefully:

1. Provide a logically correct and rigorous translate of natural language theorem statement to
Lean4 statement.

2. In the <Thought> section, include your detailed step-by-step reasoning.

3. In the <Output> section, provide only the final Lean4 proof or final result.
Instruction: You will receive several Lean4 problems. For each:

- **Use** a step-by-step solution internally in <Thought>.

- **Do not** reveal your chain of thought outside the <Thought> block.

- **Ensure** the final Lean4 code or final result is placed **only** in <Output>.
@ Natural language theorem statement:

algebra_sqineq_2unitcircatbltl

Show that for any real numbers a and b such that a2+ =2ab<1.

@ Lean4 theorem statement:

theorem algebra_sqineq_2unitcircatbltl (ab : R) (hp : a*2+b*2=2):axb<1:=

@ Natural language theorem statement:

mathd_numbertheory_629

Suppose t is a positive integer such that lem[12,¢]> = (12¢)2. What is the smallest possible value
for t? Show that it is 18.

@ Lean4 theorem statement:

theorem mathd_numbertheory_629 : Isleast { t : N | @ <t A Nat.lem 12t * 3 = (12 x t) * 2 }
18 :=

@ Natural language theorem statement:

{title} {NL statement}

@ Lean4 theorem statement:

Response:

<Thought>

Alright, I should do the following:

1. Analyze the problem and understand the requirements.
2. Use natural language to analyze the potential Lean4 condition and requirements in the natural
language theorem statement.

3. Write the translated Lean4 statement code.

The “{title}" has the following conditions

Figure 7: Formal Language Translation Prompt with Long-CoT

Header of Formal Proof Prompt

Complete the following Lean 4 code with explanatory comments preceding each line of code:
““leand

import Mathlib

import Aesop

set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

Figure 8: Header of Formal Proof Prompt

3199

More Concrete Examples for FANS Pipeline

Natural Language Math Problem

Find the value of log, 3 - logs 4 - log, 5 - logs 6 - logg 7 - logy 8.
Answer 3

Translated Formal Language Statement

theorem math_problem_@ : Real.logb 2 3 * Real.logb 3 4 * Real.loghb 4 5 * Real.logb 5 6 *
Real.logb 6 7 x Real.logb 7 8 = 3 := by

Formal Language Proof

theorem math_problem_@ : Real.logb 2 3 * Real.logb 3 4 * Real.logh 4 5 * Real.logh 5 6 *

Real.logb 6 7 x Real.logh 7 8 = 3 := by

simp [Real.logb, mul_assoc, mul_comm, mul_left_comm, show (3 : R) = 3 by norm_num,
show (4 : R) = 2 * 2 by norm_num, show (5 : R) = 5 by norm_num, show (6 : R) = 2 x 3 by
norm_num,
show (7 : R) = 7 by norm_num, show (8 : R) = 2 * 3 by norm_num]

field_simp

ring_nf

Natural Language Math Problem

A steel sphere with a 3-inch radius is made by removing metal from the corners of a cube that has
the shortest possible side lengths. How many cubic inches are in the volume of the cube?
Answer 216

Translated Formal Language Statement

theorem math_problem_@ (r : R) (hp : r = 3) : let cube_side :
by

2 * r; cube_side * 3 = 216 :

Formal Language Proof

theorem math_problem_@ (r : R) (hp : r = 3) : let cube_side := 2 * r; cube_side * 3 = 216 :
by
subst hg
simp only [pow_three]
norm_num

Figure 9: More concrete examples that demonstrate formal language could indeed translate the natural language
statement correctly and then prove it successfully.

3200

