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Abstract
In this paper, we introduce a novel weighted
co-training approach that is guided by Large
Language Models (LLMs). Namely, in our
co-training approach, we use LLM labels on
unlabeled data as target labels and co-train two
encoder-only based networks that train each
other over multiple iterations: first, all sam-
ples are forwarded through each network and
historical estimates of each network’s confi-
dence in the LLM label are recorded; second,
a dynamic importance weight is derived for
each sample according to each network’s be-
lief in the quality of the LLM label for that
sample; finally, the two networks exchange im-
portance weights with each other—each net-
work back-propagates all samples weighted
with the importance weights coming from its
peer network and updates its own parameters.
By strategically utilizing LLM-generated guid-
ance, our approach significantly outperforms
conventional SSL methods, particularly in set-
tings with abundant unlabeled data. Empirical
results show that it achieves state-of-the-art per-
formance on 4 out of 5 benchmark datasets and
ranks first among 14 compared methods accord-
ing to the Friedman test. Our results highlight
a new direction in semi-supervised learning—
where LLMs serve as knowledge amplifiers, en-
abling backbone co-training models to achieve
state-of-the-art performance efficiently.

1 Introduction

Semi-Supervised Learning (SSL) has gained sub-
stantial attention for its ability to improve model
performance by leveraging a small set of labeled
data alongside a large pool of unlabeled data
(Wang et al., 2022; Van Engelen and Hoos, 2020).
A widely used SSL strategy is pseudo-labeling
that relies on the model itself to generate pseudo-
labels for unlabeled data and uses these pseudo-
labels during training. FixMatch exemplifies this

We make our implementation publicly available at https:
//github.com/mezbaur-rahman/Lg-CoTrain

by selecting high-confidence predictions exceed-
ing a fixed threshold as pseudo-labels. However,
this rigid threshold often excludes diverse exam-
ples with lower confidence scores. To address
this, recent methods either: (1) adaptively adjust
class-wise thresholds to incorporate more examples
(Zhang et al., 2021), or (2) assign confidence-based
weights to all unlabeled samples (Chen et al., 2023).
While these strategies improve data utilization, they
remain dependent on the model’s own potentially
unreliable predictions, introducing noisy pseudo-
labels that can harm generalization, especially due
to overconfident yet incorrect predictions.

Recent advances have highlighted the poten-
tial of LLMs in producing high-quality pseudo-
labels for SSL. The VerifyMatch framework (Park
and Caragea, 2024) incorporates LLM-generated
pseudo-labels into the SSL setup and tackles their
noise by first identifying noisy samples using a
verifier network. The verifier flags low-confidence
pseudo-labels (based on softmax probability) and
applies MixUp (Zhang et al., 2018) to blend them
with human-annotated data, thereby mitigating
noise and improving label quality. Although this
approach presents a strong case in combining LLM-
generated pseudo-labels into the SSL setup, it uses
only the confidence scores from the current train-
ing iteration from a single verifier model to distin-
guish between potentially correct and noisy sam-
ples. This limited view misses opportunities to
capture richer training dynamics across time or
across multiple models equipped with complemen-
tary knowledge and learning abilities, which can
further enhance the robustness of pseudo-labeling.

In this paper, we propose a novel co-training
framework that leverages LLM-generated pseudo-
labels without modifying or discarding any sam-
ples. Our approach diverges from VerifyMatch
(Park and Caragea, 2024), which mitigates noise
by altering low-confidence pseudo-labels (e.g., via
MixUp with human-labeled data). Instead, we pre-
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serve all pseudo-labels and reweight them based
on their estimated reliability, allowing the model
to learn from the entire data while reducing the
influence of incorrect pseudo-labels. Moreover,
while VerifyMatch uses a single verifier model
to estimate the label quality, we employ a dual
model-based weighting mechanism. Our frame-
work also diverges from traditional co-training
methods (Blum and Mitchell, 1998) that exchange
the most confident pseudo-labels between mod-
els; we instead exchange importance weights that
reflect each model’s belief in the quality of the
LLM pseudo-labels. Leveraging the insights from
Swayamdipta et al. (2020), our framework goes
beyond relying solely on confidence from the cur-
rent training epoch. Instead, it utilizes historical
training dynamics and the consistency and disagree-
ments of the two models’ predictions across epochs
to assign higher weights to likely correct samples
and lower weights to potentially incorrect ones.

Our contributions are as follows:

• We propose LG-COTRAIN, a novel co-
training method that leverages pseudo-labels
generated by LLMs alongside a small set of
human-annotated labels. Two peer networks
are trained jointly, each guiding the other us-
ing its training dynamics to maintain diver-
gence and promote complementary learning.

• LG-COTRAIN consistently outperforms all
standard SSL baselines across five benchmark
classification datasets and exceeds the perfor-
mance of the LLMs themselves on four out
of five datasets. Remarkably, it also achieves
the top-1 rank in the Friedman test among
14 methods, reducing the mean error rate by
1.56% compared to the second-best baseline.

• We conduct extensive ablation studies and
qualitative analyses to validate the effective-
ness of our proposed method in both balanced
and imbalanced data distributions. We also
evaluate the effectiveness of LG-COTRAIN in
several natural language understanding tasks.

2 Related Works

2.1 Large Language Models
Large Language Models (LLMs) have demon-
strated remarkable capabilities across a wide range
of NLP tasks, including text generation, question
answering, summarization, and dialogue genera-
tion (Zhang et al., 2020; Touvron et al., 2023; Chen

et al., 2024). Their generalization ability and scala-
bility have made them a key component in modern
NLP pipelines. Earlier approaches such as BERT
(Devlin et al., 2019) relied on task-specific fine-
tuning, requiring labeled data and weight updates
for each new task. However, as LLMs have grown
in size and training scope, prompting has emerged
as a more flexible alternative (Brown et al., 2020;
Wei et al., 2022). Prompting enables LLMs to per-
form tasks by conditioning on task descriptions or
a few in-context examples written in natural lan-
guage, allowing for zero-shot and few-shot learn-
ing. In our work, we leverage LLM prompting to
generate high-quality pseudo-labels for unlabeled
data. We also include prompting-based baselines
in our evaluations to assess the effectiveness of our
method relative to direct LLM predictions.

2.2 Semi Supervised Learning

Semi-Supervised Learning (SSL) has led to a surge
of research based on self-training and pseudo-
labeling (Xie et al., 2020b; Sohn et al., 2020; Sosea
and Caragea, 2022; Sadat and Caragea, 2022; Sosea
and Caragea, 2023; Chen et al., 2023; Zou and
Caragea, 2023; Zou et al., 2023; Gyawali et al.,
2024; Hosseini and Caragea, 2023), where mod-
els are trained using a mix of labeled and pseudo-
labeled data. Popular methods like FixMatch (Sohn
et al., 2020) and FlexMatch (Zhang et al., 2021)
rely on confidence thresholding to select pseudo-
labels, but it often results in discarding a large por-
tion of the unlabeled data. To improve data utiliza-
tion, Chen et al. (2023) proposed SoftMatch, which
retains all samples by assigning lower weights to
low-confidence samples during training. However,
whether through hard thresholding or confidence-
based weighting, methods that rely solely on a sin-
gle model for pseudo-labeling remain vulnerable to
assigning high weights to incorrect pseudo-labels,
especially in the early stages of training.

2.3 Learning with Noisy Labels

The challenge of learning from noisy labels has
been explored for decades (Angluin and Laird,
1988), with renewed focus in deep learning due to
neural networks’ tendency to memorize mislabeled
data (Arpit et al., 2017). Noisy labels—corrupted
deviations from ground truth labels—can signifi-
cantly degrade model performance. To combat this,
several strategies have been proposed to distinguish
between reliable and unreliable training samples.
MentorNet (Jiang et al., 2018) proposed an auxil-
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iary network to select clean samples, but its reliance
on a single model introduces confirmation bias.
Co-teaching (Han et al., 2018a) addressed this by
training two peer networks that exchange low-loss
samples, minimizing mutual errors. DivideMix
(Li et al., 2020) treated noisy label learning as
a semi-supervised task, using Gaussian Mixture
Models to split data into confident and unconfident
subsets and co-trained two models on complemen-
tary partitions. VerifyMatch (Park and Caragea,
2024) used LLM-generated pseudo-labels, which
are generally of high quality but still noisy. Veri-
fyMatch introduces a verifier network to estimate
label confidence: low-confidence, noisy samples
are refined using MixUp (Zhang et al., 2018) and
human-annotated data, while high-confidence sam-
ples are used directly.

In contrast, we propose a dual-model semi-
supervised framework that integrates LLM-
generated pseudo-labels while training two clas-
sifiers in parallel. Unlike VerifyMatch (Park and
Caragea, 2024), which employs a single-model
setup with a verifier, our approach leverages a dual-
model architecture and dynamically weights train-
ing samples based on cross-model training dynam-
ics. Another key distinction is our use of multi-
epoch training dynamics to assess model behav-
ior consistency over time—an aspect VerifyMatch
overlooks. Furthermore, our method differs from
DivideMix (Li et al., 2020) and Co-Teaching (Han
et al., 2018a), which rely on label exchange or sam-
ple selection during training. Instead, we retain
all pseudo-labels without discarding or modifying
them, and guide the training process through histor-
ical training dynamics based weighting. This strat-
egy encourages model divergence and enhances
robustness while preserving the integrity of the
pseudo-labeled data.

3 Proposed Approach

In this section, we present LG-COTRAIN, our pro-
posed approach for semi-supervised learning. We
begin by defining the notation used throughout the
method. We then describe the pseudo-label genera-
tion process using LLMs (§3.1). Next, we describe
the weighting metrics to estimate the reliability of
each pseudo-labeled sample (§3.2). Finally, we
present our weighted co-training strategy, where
two peer models are trained jointly using these
weights, which are continuously updated during
training (§3.3).

Notation. We consider a training dataset D con-
sisting of a small labeled set Dl = {(xli, yli)}Nl

i=1

and a much larger unlabeled set Du = {xuj }Nu
j=1.

Here, x denotes an input sample (e.g., a text se-
quence), and y ∈ {1, . . . , C} denotes its corre-
sponding class label. We define Nl, Nu, and C as
the number of labeled samples, unlabeled samples,
and class categories, respectively, where Nu ≫ Nl.

3.1 Pseudo-Label Generation with LLMs

We utilize LLMs to generate pseudo-labels for un-
labeled texts through task-specific prompting de-
signed for classification. We use the LLMs in zero-
shot or few-shot settings to generate pseudo-labels
for the unlabeled samples.

Given an unlabeled input xuj ∈ Du, the prompt
P (xuj ) formats the input into a query suitable for
the LLM. The model then generates an output token
sequence, from which a label word is extracted and
mapped to class c, resulting in the pseudo-label
ỹj = c. This yields the pseudo-labeled set:

DLG = {(xuj , ỹj) | xuj ∈ Du, ỹj ∈ {1, . . . , C}}

This process ensures that DLG contains sam-
ples with valid class-aligned pseudo-labels. These
samples serve as additional supervision during the
co-training stage. The prompt templates and the
prompting strategies are provided in Appendix ??.

3.2 Weight Generation

The two networks (i.e., the classifiers) in our co-
training setup are denoted as θ1 and θ2. At each
training epoch, we assign importance weights to the
samples from DLG based on the training dynam-
ics of each classifier. The goal is twofold: (1) to
emphasize reliable pseudo-labeled examples, and
(2) to maintain divergence between the classifiers,
enabling them to learn complementary signals and
suppress the effects of noisy supervision.

To assess sample reliability, we make use of two
metrics—confidence and variability—as proposed
in Dataset Cartography (Swayamdipta et al., 2020).
These metrics capture the historical behavior of
a model on each sample during training. Confi-
dence reflects how confidently a model predicts
the assigned label over iterations. For example,
for a sample (x, ỹ), the confidence of a classifier θ
across e training iterations is computed as:

cθ(x, ỹ) =
1

e

e∑

t=1

p(ỹ|x; θ) (1)
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Variability captures how consistently a model pre-
dicts the assigned label over iterations, i.e., the
standard deviation of these predictions, indicating
how stable the model’s belief in the label is:

vθ(x, ỹ) =

√√√√1

e

e∑

t=1

(p(ỹ|x; θt)− cθ(x, ỹ))
2 (2)

While these metrics individually signal sample
quality, they do not directly promote complemen-
tary learning between the two classifiers. To ad-
dress this, inspired by prior works (Poesina et al.,
2024; Sadat and Caragea, 2024), we use two asym-
metric importance weighting schemes—λ1 and
λ2—which leverage the confidence and variability
of each sample in opposing ways. These weights
are used to supervise the peer network, thereby
encouraging divergence and suppressing mutual
error reinforcement. Specifically, for each pseudo-
labeled sample (xi, ỹi) and each classifier, θ1 and
θ2, we define:

λi
1 = cθ1(x

i, ỹi) + vθ1(x
i, ỹi) (3)

λi
2 = cθ2(x

i, ỹi)− vθ2(x
i, ỹi) (4)

As a result, examples that are easy to classify
by both classifiers (i.e., high confidence and low
variability) produce high values for both λi

1 and λi
2.

Conversely, hard examples (i.e., low confidence
and low variability) yield low values for both λi

1

and λi
2. For ambiguous examples, defined by high

variability and moderate confidence by both clas-
sifiers, the weights differ between the classifiers.
Specifically, the weight for θ1 (i.e., λi

2) is low due
to the classifiers showing only moderate confidence
in these examples. That is, a confidence of 0.5 and
a variability of 0.4 result in a low weight of 0.1.
In contrast, the weight for θ2 (i.e., λi

1) remains
high even with moderate confidence, when the vari-
ability is high. That is, a confidence of 0.5 and
variability of 0.4 result in a high weight of 0.9.

This weighting strategy gives higher weight
to easy, likely correct examples, while down-
weighting harder, noisier ones to reduce their im-
pact on both classifiers. For ambiguous examples,
where the classifiers exhibit uncertainty about the
assigned labels, one classifier receives high weights
for these examples, while the other receives low
weights. This approach preserves divergence be-
tween the classifiers and allows them to learn com-
plementary information from the data.

Algorithm 1 LG-COTRAIN

1: Input: Labeled set Dl = {(xi, yi)}Nl
i=1;

Unlabeled set Du = {xi}Nu
i=1; Classifiers θ1, θ2;

Weight generation epochs T , Max co-training epochs E;
Probability matrices P1,P2 ∈ RT×|DLG|

2: Construct DLG = {(xi, ỹi)}NLG
i=1 ← Sec. 3.1

3: Divide Dl into two balanced subsets Dl1 and Dl2

4: for iter t ∈ {1, 2, . . . , T} do
5: Train θ1 and θ2 using Dl1 and Dl2 , respectively;
6: for each i ∈ DLG do
7: P1[t, i]← pt(y

i | xi; θ1)
8: P2[t, i]← pt(ỹ

i | xi; θ2)
9: end for

10: end for
11: for each sample i ∈ DLG do
12: ciθ1 , ciθ2 ← GETCONF(P1, i), GETCONF(P2, i)

viθ1 , viθ2 ← GETVAR(P1, i), GETVAR(P2, i)

13: λi
1 ← ciθ1 + viθ1 ; λi

2 ← ciθ2 − viθ2 .
14: end for
15: Re-initialize θ1, θ2.
16: for iter ϵ ∈ {1, 2, . . . , E} do
17: for each mini-batch B ∈ DLG do
18: L1 ← 1

|B|
∑|B|

i=0 λ
i
2 ∗H(ỹi, pd(x

i; θ1))

19: L2 ← 1
|B|

∑|B|
i=0 λ

i
1 ∗H(ỹi, pd(x

i; θ2))

20: for each example i ∈ B do
21: Update ciθk , viθk via Eq. (1), (2) for k = 1, 2

22: λi
1 ← cθ1(x

i, ỹi) + vθ1(x
i, ỹi)

23: λi
2 ← cθ2(x

i, ỹi)− vθ2(x
i, ỹi)

24: end for
25: end for
26: θ1 ← θ1 − η ∗ ∇L1; θ2 ← θ2 − η ∗ ∇L2.
27: end for
28: Fine-tune θ1 and θ2 using Dl1 and Dl2 respectively

3.3 Weighted Co-Training

The weighted co-training module consists of three
main steps, which are outlined below:

Initial Weight Assignment To initialize the im-
portance weights for the samples in the pseudo-
labeled set DLG, the classifiers θ1 and θ2 are first
trained on different, equally sized subsets of the
labeled dataset Dl, denoted as Dl1 and Dl2 , respec-
tively. These subsets are constructed to maintain
similar class distributions, ensuring a fair training
process.

Next, we define two probability matrices,
P1,P2 ∈ RT×|DLG|, where each entry stores the
predicted probabilities p(ỹi | xi; θ1) and p(ỹi |
xi; θ2) for each sample i in DLG across epochs
t = 1, . . . , T . These probabilities are recorded at
each training epoch.

For each sample in DLG, we compute confi-
dence and variability using Eq. (1) and Eq. (2),
respectively, based on the corresponding probabil-
ity matrix. These values are then substituted into
Eq. (3) and Eq. (4) to determine the initial impor-
tance weights λ1 and λ2.
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Co-Training In this step, we begin by re-
initializing the two classifiers, θ1 and θ2. Both
classifiers are then co-trained using the pseudo-
labeled dataset DLG. After each training epoch,
for model θ1, each sample’s loss is scaled by the
weight metric λ2; similarly, for model θ2, each
sample’s loss is scaled by the weight metric λ1.
Specifically, for each mini-batch B ⊆ DLG, the
losses L1 and L2 for θ1 and θ2, respectively, are
computed as follows:

L1 =
1

|B|

|B|∑

i=1

λi
2 ∗H(ỹi, pd(x

i; θ1)). (5)

L2 =
1

|B|

|B|∑

i=1

λi
1 ∗H(ỹi, pd(x

i; θ2)). (6)

Here, pd represents the probability distribution
over the labels predicted by a classifier for a pseudo-
labeled sample xi in B, and H denotes the standard
cross-entropy loss.

After calculating the loss for both classifiers, the
confidence and variability metrics are updated us-
ing Eq. (1) and Eq. (2). It is important to note that
the probabilities predicted by the classifiers dur-
ing the final epoch of Step 1 are used as the initial
probabilities for both classifiers. These initial prob-
abilities are included in the calculation of the mean
and standard deviation throughout the co-training
epochs. Subsequently, both sets of weights are re-
calculated using Eq. (3) and Eq. (4), based on the
updated confidence and variability metrics, to be
applied in the next epoch.

This iterative process allows the classifiers to co-
train by exchanging complementary information
derived from their respective training dynamics
across epochs. Crucially, each model guides the
other by dynamically adjusting the influence of
each training sample using the weight metric λ.

Fine-tuning Upon completing the co-training
process after a predefined maximum of E epochs,
the classifiers θ1 and θ2 are fine-tuned using the
labeled subsets Dl1 and Dl2 , respectively.

During inference, we ensemble the two models
by averaging their softmax outputs and taking the
argmax to get the final prediction.

4 Experiments

In this section, we describe the datasets used for
evaluation (§4.1), present our experimental setup
and baselines (§4.2), and discuss the results (§4.3).

4.1 Datasets

We conduct experiments on five widely used clas-
sification datasets: IMDB (Maas et al., 2011),
AG News (Zhang et al., 2015), Yahoo! An-
swers (Chang et al., 2008), Amazon Reviews
(McAuley and Leskovec, 2013), and Yelp Reviews
(Yelp.com), along with three natural language un-
derstanding (NLU) tasks: QQP (Iyer et al., 2017),
SWAG (Zellers et al., 2018), and MNLI (Williams
et al., 2018). The first five datasets are used to
evaluate performance against SSL baselines, while
the remaining three assess generalization on NLU
tasks. For the classification datasets, we use the
pre-processed splits (labeled, unlabeled, validation,
and test) provided by Wang et al. (2022),1 released
under the MIT license. For the NLU tasks, we use
the official dev set for validation and construct the
labeled and unlabeled sets by randomly sampling
from their respective training sets. Further dataset
details are provided in Appendix A.

4.2 Experimental Setup & Baselines

We evaluate our method using both BERT-base and
RoBERTa-base as backbone classifiers to demon-
strate generality across architectures. All experi-
ments are conducted with three independent runs,
and results are reported using mean error rate
and standard deviation. In addition, we compute
the Friedman rank (Friedman, 1940) of each al-
gorithm to assess overall ranking across tasks:
rankF = 1

m

∑m
i=1 ranki, where m = 15 is the

number of evaluation setups and ranki is the algo-
rithm’s rank in the i-th setup. Our implementation
details are presented in Appendix B.

For LLMs pseudo-labels, we experiment with
three open-source LLMs—PHI-3-MEDIUM-4K,
MISTRAL-7B, and LLAMA-3.1-8B. We use both
zero-shot and few-shot prompting strategies with
all three LLMs. Among all settings, PHI-3 zero-
shot—where PHI-3 is also the largest model in
terms of parameter count (14B)—achieves the best
performance across all test sets; hence, we report
the PHI-3 zero-shot baseline and the correspond-
ing LG-COTRAIN variant that uses pseudo-labels
generated by PHI-3 zero-shot in the main paper.
We show the complete set of prompts for all LLMs
in Appendix C, with extensive experimental results
for both zero-shot and few-shot scenarios being
provided in Appendix D.

1https://github.com/microsoft/Semi-supervised-
learning/tree/main
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Dataset IMDB AG News Amazon Review Yahoo! Answer Yelp Review Mean Fried. Final
# Label 20 100 40 200 250 1000 500 2000 250 1000 Err. rank rank

Sup (full) 5.690.15 5.730.11 36.380.01 24.860.07 31.980.20 21.07 - -

Sup (lb) 20.312.79 14.021.22 15.061.08 14.250.97 52.311.28 47.530.69 37.430.29 33.260.10 51.220.98 46.710.37 33.31 - -
Sup (lb+ps) 10.681.17 7.880.01 11.880.07 10.920.25 47.770.53 42.230.42 33.380.34 32.150.52 44.440.49 39.570.23 28.09 9.8 11

UDA 49.970.04 50.00.0 41.024.96 53.6830.15 60.7613.61 68.3816.44 71.326.45 70.527.58 69.3315.08 66.9518.46 60.19 15 15
Dash 8.340.86 7.550.35 31.6713.19 13.761.67 47.10.74 43.090.6 35.260.33 31.190.29 45.242.02 40.140.79 30.33 11.6 14
FixMatch 7.720.33 7.330.13 30.171.87 11.711.95 47.610.83 43.050.54 33.030.49 30.510.53 46.520.94 40.650.46 29.83 10.2 13
Flexmatch 7.820.77 7.410.38 16.383.94 12.080.73 45.731.6 42.250.33 35.611.08 31.130.18 43.350.69 40.510.34 28.23 10.0 12
Softmatch 7.760.58 7.970.72 11.90.27 11.721.58 45.290.95 42.210.2 33.070.31 30.440.62 44.090.5 39.760.13 27.42 8.3 8
Simmatch 7.930.55 7.080.33 14.261.51 12.451.37 45.910.95 42.210.3 33.060.2 30.160.21 46.120.48 40.260.62 27.94 8.95 10
Crmatch 8.960.88 7.160.09 12.281.43 11.081.24 45.490.98 43.070.5 32.510.4 29.980.07 45.710.63 40.620.28 27.69 8.70 9
Adamatch 8.090.99 7.110.2 11.730.17 11.220.95 46.720.72 42.270.25 32.750.35 30.440.31 45.40.96 40.160.49 27.59 8.15 7
VerifyMatch R 7.580.61 7.380.43 11.950.18 11.640.21 39.970.29 40.940.44 32.030.08 32.140.71 37.630.10 37.162.23 25.84 6.7 6

CoTeach R 9.042.07 11.040.48 39.380.56 31.310.18 36.351.27 25.42 6.7 5
DivideMix R 7.670.17 11.050.14 39.340.44 30.830.66 35.340.55 24.85 5.0 3
Phi-3 4.78 12.67 39.32 33.53 34.62 24.98 6.3 4

LG-CoTr B 7.650.05 7.630.08 11.360.06 10.770.06 38.120.06 37.660.27 29.380.16 28.14†
0.23 33.870.14 33.520.12 23.81 3.1 2

LG-CoTr R 6.770.32 6.580.15 11.350.17 10.410.20 37.15†
0.19 37.04†

0.13 29.31†
0.11 28.160.06 33.15†

0.27 32.93†
0.53 23.29 1.5 1

Table 1: Error rate (%) and Rank across datasets and label sizes. The first 8 rows are from Wang et al. (2022).
Subsequent rows show results using pseudo-labels generated by Phi-3 with zero-shot prompting, including our
LG-CoTr. Subscripts R and B indicate RoBERTa and BERT backbones, respectively. Best results are bolded.
Superscript † indicates a statistically significant improvement (p < 0.05) over the best baseline using a paired t-test.

We benchmark our method against a diverse
set of SSL baselines using varying amounts of la-
beled and unlabeled data, following the standard-
ized setup from Wang et al. (2022). These baselines
include FixMatch (Sohn et al., 2020), FlexMatch
(Zhang et al., 2021), SoftMatch (Chen et al., 2023),
SimMatch (Zheng et al., 2022), CRMatch (Fan
et al., 2023), AdaMatch (Berthelot et al., 2022),
Dash (Xu et al., 2021), and UDA (Xie et al., 2020a),
along with a supervised-only baseline for reference
(as an upper bound), a supervised baseline that uses
only the small labeled data, and a supervised base-
line that uses the combination of small labeled data
and LLM pseudo-labeled data.

To ensure a fair comparison with our dual-
classifier architecture, we also include two-
network-based methods such as Co-teaching (Han
et al., 2018b) and DivideMix (Li et al., 2020),
commonly used in noisy label learning. Addition-
ally, we compare against VerifyMatch (Park and
Caragea, 2024), a recent LLM-guided SSL frame-
work that directly handles noisy pseudo-labels.

4.3 Results & Observations

The comprehensive results of our main experi-
ments, along with comparisons to other baselines,
are presented in Table 1. Based on these results,
we highlight the following key observations.

LG-CoTrain vs. Other SSL Baselines: LG-
COTRAIN outperforms traditional SSL baselines
across all five datasets. While standard methods

rely on self-generated pseudo-labels, often amplify-
ing errors, our approach integrates LLM-generated
labels and adaptively weights them using train-
ing dynamics. Compared to BERT-based results
from Wang et al. (2022), our BERT-based model
(LG-CoTrB) achieves a 3.78% lower average error
than AdaMatch, the strongest of the SSL baselines,
demonstrating the effectiveness of our framework.

LG-CoTrain vs. VerifyMatch: VerifyMatch is
a semi-supervised learning method that, like our ap-
proach, incorporates LLM-generated pseudo-labels
into the training process. Thus, it serves as a criti-
cal baseline for evaluating the effectiveness of our
framework. As shown in Table 1, LG-COTRAIN

outperforms VerifyMatch across all five datasets,
with substantial improvements in four of them. On
IMDB, our method still achieves a lower error rate,
although the margin is relatively small. Overall,
LG-COTRAIN achieves an average error rate im-
provement of 2.55%, further demonstrating the ad-
vantage of our method.

LG-CoTrain vs. CoTeach and DivideMix:
Our LG-COTRAIN method consistently surpasses
CoTeach and DivideMix, both of which are de-
signed to mitigate the impact of noisy labels. On
average, LG-COTRAIN achieves a 1.56% lower
mean error compared to DivideMix and a 2.13%
lower mean error compared to CoTeach, demon-
strating the effectiveness of training dynamics-
based weighting methods in noisy settings.

LG-CoTrain vs. Supervised Settings: We
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Dataset Amazon Review Yahoo! Answer Yelp Review Mean Error Friedman Final

# Label 250 1000 500 2000 250 1000 Rate (%) Rank Rank

LG-COTRAINoracle 34.680.06 34.710.03 24.270.04 24.270.02 30.330.05 30.520.24 29.80 - -

ST-RANDOM 37.550.14 38.080.21 30.370.14 29.170.21 34.140.29 34.050.49 33.89 3.67 4
FT-ENSEMBLED 41.830.19 39.830.10 33.600.15 32.080.10 39.180.14 36.740.08 37.21 5.33 5
VANILLA-COTRAIN 50.370.53 49.000.66 33.100.33 29.290.82 43.680.29 39.230.63 40.78 5.67 6
LG-COTRAINSingleSet 37.860.12 37.700.25 30.030.12 28.900.04 33.390.40 33.010.35 33.48 2.17 2
LG-COTRAINcc 38.350.17 38.060.21 30.150.26 29.150.28 33.830.26 33.860.11 33.9 3.17 3
LG-COTRAIN 37.15†

0.19 37.04†
0.13 29.31†

0.11 28.160.06 33.150.27 32.930.53 32.96 1 1

Table 2: Ablation Study for different componenets of LG-COTRAIN. The best-performing results among all
baselines are highlighted in bold. Superscript † indicates a statistically significant improvement (p < 0.05) over the
best baseline using a paired t-test.

compare three baselines to LG-COTRAIN (BERT-
base): (i) supervised training on the full labeled
set (SUP (FULL)), serving as an empirical upper
bound; (ii) supervised training on a small labeled
subset (SUP (LB)); and (iii) supervised training on
labeled data augmented with LLM pseudo-labels
(SUP (LB+PS)). As shown in Table 1, as expected,
SUP (FULL) achieves the lowest error (2.22%),
while SUP (LB) performs much worse (33.31%). In
case of (SUP (LB+PS)), adding pseudo-labeled data
with the small labeled set helps reduce the mean
error by 5.12 points, and LG-COTRAIN achieves
a further 4.28% reduction in mean error, totaling a
9.40% mean error reduction over SUP (LB).

LG-CoTrain vs. LLMs: Among the three
LLMs evaluated—PHI-3-14B, MISTRAL-7B, and
LLAMA-3.1-8B—PHI-3 achieves the strongest
overall performance in the zero-shot setting, while
LLAMA-3 performs best under few-shot prompt-
ing. Despite these strong baselines, our LG-
COTRAIN approach consistently outperforms both
the zero-shot and few-shot results of all three LLMs
across the test splits of all datasets, with the sole
exception of IMDB (see the comparison with Phi-
3 in Table 1 and the other LLM comparisons in
Appendix D). Notably, our best variant achieves a
1.76% lower mean error than PHI-3 zero-shot and a
2.93% lower mean error than LLAMA-3 few-shot.
Comprehensive results with both zero-shot and few-
shot approaches are reported in Appendix D.

5 Analysis

We conduct our analysis through four complemen-
tary investigations: (1) ablation studies examining
the contributions of LG-COTRAIN’s core compo-
nents; (2) assessment of LG-COTRAIN’s gener-
alizability across natural language understanding
(NLU) tasks; (3) analysis of class imbalance and
pseudo-label skew effects; and (4) qualitative eval-
uation of the weighting mechanism’s capacity to

distinguish clean from noisy samples.

5.1 Ablations

We conducted an ablation study and show the re-
sults in Table 2. The goal of this study is to un-
derstand the effectiveness of different components
within our framework. Although LG-COTRAIN

is a cohesive design where multiple components
interact synergistically, and it is not always straight-
forward to isolate the contribution of each part, we
aim to analyze their individual impact by system-
atically removing or modifying specific elements.
The results from these controlled variants are re-
ported and analyzed below.

LG-CoTrain vs. Finetuning: We compare
LG-COTRAIN with a finetuning-based baseline,
where two RoBERTa-base classifiers are trained
on the combined dataset DLG ∪ Dl, and their pre-
dictions are ensembled during inference. This
baseline, referred to as FT-ENSEMBLED, results
in a 4.25% higher mean error rate, underscoring
the effectiveness of our weighted co-training strat-
egy—especially in scenarios where the training
data includes noisy pseudo-labels generated by
LLMs.

LG-CoTrain vs. Self-Training with Random
Weighting: To highlight the importance of us-
ing dual classifiers and training-dynamics-guided
weighting, we compare against ST-RANDOM, a
self-training baseline where a single classifier is
trained using pseudo-labeled samples. For each
sample, either λ1 or λ2—as defined in Eq. (3) and
Eq. (4)—is randomly selected and used as its train-
ing weight. This setup results in a 0.93% higher
mean error rate, reinforcing the effectiveness of
our dual-classifier design and training dynamics-
guided weighting strategy.

LG-CoTrain vs. Vanilla CoTraining:
VANILLA-COTRAIN relies only on the most
confident predictions exchanged between clas-
sifier pairs, without leveraging LLM-generated
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Dataset QQP SWAG MNLI-m MNLI-mm Mean Fried. Final

# Label 100 500 200 1000 150 750 150 750 Error Rank Rank

Phi-3 24.66 23.33 19.36 21.53 22.22 2.38 2
CoTeach 24.510.64 23.490.28 20.620.46 21.750.40 22.59 2.88 3

Vanilla Cotrain 32.010.25 23.261.28 33.570.38 27.490.52 63.621.40 48.726.44 59.913.27 49.109.01 42.21 3.75 4
LG-CoTrain 20.22†

0.77 17.48†
0.25 22.53†

0.27 20.91†
0.30 16.82†

1.0 15.29†
0.29 17.32†

0.94 15.19†
0.22 18.22 1 1

Table 3: Performance evaluation on the QQP, SWAG, and MNLI development sets. Here, MNLI-m refers to MNLI
matched, while MNLI-mm denotes MNLI mismatched. Best results are bolded. † indicates a statistically significant
improvement (p < 0.05) over the best baseline using a paired t-test.

pseudo-labels. This results in a 7.82% increase in
mean error rate, demonstrating the value of incor-
porating LLM pseudo labels and systematically
incorporating them into the training process.

LG-CoTrain vs. LG-CoTrainCC: LG-
COTRAINCC is a variant that uses only confidence-
based weighting (averaged across iterations), com-
pletely ignoring variability. This design reduces
divergence between classifiers and weakens perfor-
mance, leading to a 0.94% increase in mean error.

LG-CoTrain vs. LG-CoTrain (SingleSet): In
LG-COTRAIN (SINGLESET), both classifiers are
trained on the same labeled subset, removing the
complementary learning effect gained from dis-
joint splits. This results in a 0.52% increase in
mean error, indicating that diversity in supervision
is important for robust co-training.

LG-CoTrain in an Oracle Setting: In Table 2,
LG-COTRAINoracle shows an ideal case where
we use only gold-standard (human-annotated) la-
bels instead of LLM-generated pseudo-labels for
training. This helps us measure the maximum pos-
sible gain from perfect pseudo-labels—resulting in
a 3.16% lower error rate compared to our regular
LG-COTRAIN that uses LLM-generated labels.

5.2 Evaluation on Other NLU Tasks

We evaluate LG-COTRAIN on a range of challeng-
ing natural language understanding (NLU) tasks
under different SSL settings. Specifically, we as-
sess its performance on paraphrase detection using
the QQP dev set, natural language inference (NLI)
using both the MNLI matched and mismatched dev
sets, and commonsense reasoning using the SWAG
dev set. For each task, we experiment with two SSL
settings by varying the number of labeled exam-
ples while treating the remaining training data as
unlabeled. We compare LG-COTRAIN against sev-
eral baselines, including COTEACH, VANILLA CO-
TRAINING, and zero-shot LLM prompting. Across
all tasks, LG-COTRAIN consistently outperforms
the baselines, demonstrating its robustness and ef-

Dataset Most (count) Least (count) Skew (Most/Least)

IMDB 12,303 10,685 1.15
AG News 25,545 24,144 1.06
Yahoo 63,659 31,465 2.02
Amazon 62,213 30,759 2.02
Yelp 67,796 32,420 2.09

Table 4: LLM pseudo-label distribution. For each
dataset we report the most and least frequent pseudo-
label counts and the induced skew ratio.

fectiveness in NLU tasks under limited supervision.
Detailed results are provided in Table 3.

5.3 Effect of Class Imbalance and
Pseudo-Label Skew

As specified in Appendix A, our main experiments
use class-balanced labeled and unlabeled training
splits. We use the same dataset splits as in Wang
et al. (2022), which ensures fair and direct compar-
ison with several strong SSL baselines. While the
ground-truth label distribution of the training data
is balanced in these settings, the LLM-generated
pseudo-labels over the unlabeled set exhibit vary-
ing degrees of skew across datasets: IMDB and AG
News maintain near-uniform distributions, while
Amazon Review, Yelp Review, and Yahoo Answers
exhibit moderate skew with the most frequent class
appearing approximately twice as often as the least
frequent class (see Table 4). This pseudo-label im-
balance arises from prediction error by the LLMs.
In this scenario—balanced true labels but imbal-
anced pseudo-labels—LG-CoTrain remains robust,
as its weighting mechanism down-weights erro-
neous pseudo-labels and up-weights correct ones
(Appendix F). Thus, the gains in Table 1 hold even
when pseudo-labels are skewed.

Long-tailed true label distributions. To further
stress-test robustness, we evaluate a more challeng-
ing scenario where both labeled and unlabeled sets
follow a long-tailed ground-truth distribution with
an imbalance ratio (IR) of 10 (max-to-min class fre-
quency ratio). This creates simultaneous challenges
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Dataset Amazon Review Yahoo Answers Yelp Review Mean Fried. Final

# Label 250 1000 500 2000 250 1000 Error Rank Rank

VerifyMatch (imb) 40.710.76 39.480.62 32.750.52 32.260.48 37.380.98 37.170.23 36.62 2 2
LG-CoTrain (imb) 37.770.11 39.010.40 30.710.22 29.460.23 34.920.30 35.730.12 34.60 1 1

Table 5: Error rates (%) under long-tailed imbalance (IR=10). Both labeled and unlabeled sets follow a long-tailed
ground-truth distribution. Lower is better. Meansstd over three runs. Best results are bolded. Mean error is averaged
across all setups. Friedman rank (Fried.) is the average rank across setups, and Final Rank is the overall ranking.

of (i) true-class imbalance and (ii) pseudo-label
noise from LLM predictions. We compare LG-
COTRAIN against VERIFYMATCH, a competing
method that also utilizes LLM-generated pseudo-
labels. The results in Table 5 show that across three
datasets (Amazon, Yelp, Yahoo) and two labeled-
data budgets, LG-COTRAIN consistently outper-
forms VERIFYMATCH. This maintains the perfor-
mance trends observed in Table 1 and demonstrates
superior robustness to real-world distribution skew.

5.4 Qualitative Analysis

To better understand the behavior of our sample
weighting strategy, we analyze how the learned
weights correlate with the correctness of LLM-
generated pseudo-labels. In our SSL framework,
pseudo-labels remain fixed throughout training,
making it essential that correct labels are empha-
sized while incorrect ones are down-weighted. Fig-
ure 1 presents kernel density estimates (KDE) of
the two weighting metrics, λ1 and λ2, correspond-
ing to the two co-training models trained on YA-
HOO! ANSWERS dataset. For each plot, we sep-
arate samples into two groups: those where the
LLM-generated pseudo-label matches the ground
truth (Match, shown in blue), and those where it
does not (Mismatch, shown in orange).

We observe a clear separation between the two
distributions in both λ1 and λ2. Correctly labeled
samples (Match) tend to have higher weights, as
indicated by the rightward shift of the blue curves.
In contrast, incorrectly labeled samples (Mismatch)
exhibit a leftward shift, reflecting lower assigned
weights. This confirms that the dynamic weight-
ing effectively distinguishes between high-quality
and noisy pseudo-labels, promoting reliable learn-
ing signals during co-training. Similar trends are
observed across other datasets (see Appendix F).

6 Conclusion

In this paper, we introduced LG-COTRAIN, a novel
semi-supervised learning (SSL) framework that
leverages Large Language Model (LLM)-guided

Figure 1: KDE plots of λ1 and λ2 for matched and
mismatched samples of Yahoo! Answers dataset.

pseudo-labeling with weighted error mitigation
to enhance co-training. Our approach addresses
the key SSL challenge of pseudo-label quality
by leveraging LLM-generated labels and refining
them with a dynamic weighting mechanism based
on training dynamics. Unlike conventional SSL
methods that discard low-confidence pseudo-labels,
LG-COTRAIN utilizes all pseudo-labels, assign-
ing appropriate importance to each to maximize
data efficiency. Through extensive experiments
on five benchmark datasets, LG-COTRAIN con-
sistently outperforms prior SSL baselines, setting
new state-of-the-art results. Additionally, we val-
idate its effectiveness across multiple NLU tasks,
demonstrating its strong generalization capability.
Our findings demonstrate the feasibility of integrat-
ing LLMs into SSL frameworks efficiently, open-
ing new avenues for research in semi-supervised
NLP. In the future, it would also be interesting
to explore approaches where the LLM-generated
pseudo-labels are updated over iterations.
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Limitations

One limitation of our approach is the slightly in-
creased computational overhead compared to stan-
dard SSL baselines. This is primarily due to the
use of a dual-network architecture, which requires
training and updating the parameters of two models
simultaneously. A detailed comparison of training
times is provided in Appendix E.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, and 1 others. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
arXiv preprint arXiv:2404.14219.

Dana Angluin and Philip Laird. 1988. Learning from
noisy examples. Machine learning, 2:343–370.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas,
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A Dataset Details

As previously mentioned, we adopt the same
dataset splits as Wang et al. (2022) to en-
sure fair comparison with existing benchmarks.
Additionally, to evaluate the generalizability
of our approach, we incorporate widely-used
datasets—MNLI, QQP, and SWAG—from the Hug-
ging Face Datasets Library (Lhoest et al., 2021).
Below, we provide detailed descriptions of each
dataset used in our study.

IMDB The IMDB dataset (Maas et al., 2011) is a
binary sentiment classification dataset consisting of
25,000 reviews for training and 25,000 for testing.
The dataset is balanced, with an equal number of
positive and negative reviews in both the training
and test sets. For consistency, we rely on the official
splits released by Wang et al. (2022), which contain
12,500 samples and 1,000 samples per class in the
training and validation datasets, respectively. The
test set remains unchanged.

Amazon Review The Amazon Review dataset
(McAuley and Leskovec, 2013) is a sentiment
classification dataset with five classes (ratings).
Each class contains 600,000 training samples and
130,000 test samples. For consistency, we rely on
the official splits released by Wang et al. (2022),
which contain 50,000 samples and 5,000 samples

31115

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2023.emnlp-main.451
https://doi.org/10.18653/v1/2023.emnlp-main.451
https://doi.org/10.18653/v1/2023.emnlp-main.451
https://doi.org/10.18653/v1/2023.emnlp-main.451
https://doi.org/10.18653/v1/2023.findings-emnlp.406
https://doi.org/10.18653/v1/2023.findings-emnlp.406
https://doi.org/10.18653/v1/2023.findings-emnlp.406


per class in the training and validation datasets,
respectively. The test set remains unchanged.

Yelp Review The Yelp Review dataset
(Yelp.com) is a sentiment classification dataset
with five classes. It includes 130,000 training
samples and 10,000 test samples per class. For
consistency, we rely on the official splits released
by Wang et al. (2022), which contain 50,000
samples and 5,000 samples per class in the training
and validation datasets, respectively. The test set
remains unchanged.

AG News The AG News dataset (Zhang et al.,
2015) is a news topic classification dataset with
four classes. Each class contains 30,000 training
samples and 1,900 test samples. For consistency,
we rely on the official splits released by Wang
et al. (2022), which contain 25,000 samples and
2,500 samples per class in the training and vali-
dation datasets, respectively. The test set remains
unchanged.

Yahoo! Answer The Yahoo! Answer dataset
(Chang et al., 2008) is a topic classification dataset
with ten categories. It includes 140,000 training
samples and 6,000 test samples per class. For con-
sistency, we rely on the official splits released by
Wang et al. (2022), which contain 50,000 samples
and 5,000 samples per class in the training and val-
idation datasets, respectively. The test set remains
unchanged.

QQP The Quora Question Pairs (QQP) dataset
(Iyer et al., 2017) is a binary classification dataset
designed to determine whether two questions are
semantically equivalent. For our work, we use the
training and development splits from the Hugging
Face Datasets library, which consist of approxi-
mately 363,846 training samples and 40,430 devel-
opment samples.

SWAG Dataset The Situations With Adversarial
Generations (SWAG) dataset (Zellers et al., 2018)
is a multiple-choice dataset for commonsense rea-
soning. For our work, we use the training and de-
velopment splits from the Hugging Face Datasets
library, which consist of 73,546 training samples
and 20,006 development samples.

MNLI The Multi-Genre Natural Language In-
ference (MNLI) dataset (Williams et al., 2018) is
a textual entailment dataset with three labels: en-
tailment, contradiction, and neutral. For our work,
we use the training and development splits from
the Hugging Face Datasets library, which consist
of 392,702 training samples and 9815 matched and
mismatched developement samples.

B Implementation Details

We utilized Llama-3.1-8B (Meta, 2024), Phi-3-
medium-4k (Abdin et al., 2024), and Mistral-7B-
Instruct (Mistral AI, 2024) as our large language
models (LLMs) to generate pseudo-labels for unla-
beled samples. Throughout this paper, any mention
of these models specifically refers to the variants
described here. For the backbone models for co-
training, we used the base variant of ROBERTA

(Liu, 2019) and BERT (Devlin et al., 2019). For
all methods, including baselines and our proposed
approach, we set the batch size to 32. The mod-
els are trained using the Adam optimizer (Kingma,
2014) with a learning rate of 2e−5. The maximum
number of epochs is set to 10 for co-training and
100 for fine-tuning. We apply early stopping with
a patience of 5 to prevent overfitting. Each experi-
ment is run three times with different random seeds
to ensure the reliability of results.

C Prompts Used for Pseudo Label
Generation

In Table 6, we present the base zero-shot prompts
used for generating pseudo-labels for each dataset.
For few-shot scenarios, we augment these prompts
with randomly selected labeled examples from the
training set. Specifically, we use 4 examples per
class for AG News, 3 for Yahoo! Answers, and 2
for IMDB, Amazon Review, and Yelp Review.

Additionally, prompts are customized for each
LLM by incorporating model-specific system in-
structions or formatting conventions to ensure com-
patibility and optimal performance.

D Additional Results

This section presents extended experimental re-
sults incorporating three additional LLM pseudo-
labelers: LLaMA-3, Mistral, and Phi-3. We eval-
uate these models under both zero-shot and few-
shot prompting configurations. Table 7 provides
a comprehensive comparison across datasets and
label sizes, reporting both error rates and ranking
metrics to complement the main paper’s findings.

Notably, we observe that few-shot in-context
learning occasionally underperforms compared to
zero-shot settings. We attribute this phenomenon
to the random sampling of few-shot examples from
the training set, as prior work (Zhang et al., 2022)
demonstrates that exemplar selection critically im-
pacts in-context learning performance. The sub-
optimal performance in some few-shot scenarios
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Dataset Prompt

AG News News Article: {news_article}. Based on the content of the news article provided, which of the
following categories would it best fit under: World, Sports, Business, or Science/Technology?
Just select one of these four options. No explanation required.

IMDB Movie Review: {movie_review}. Based on the content of the movie review provided, determine
the category for the movie review: Positive or Negative. Select only one of these options. No
explanation required.

Yahoo! Answer Question: {question}. Based on the content of the question provided, which of the following
categories would it best fit under: Society & Culture, Science & Mathematics, Health, Education
& Reference, Computers & Internet, Sports, Business & Finance, Entertainment & Music, Family
& Relationships, or Politics & Government? Just select one of these ten options. No explanation
required.

Amazon Reviews Review Text: {review_text}. Based on the content of the review text provided, determine the
rating for the product review: (1 star, 2 stars, 3 stars, 4 stars, or 5 stars). Just select one of these
five options. No explanation required.

Yelp Reviews Review Text: {review_text}. Based on the content of the review text provided, determine the
rating for the restaurant review: (1 star, 2 stars, 3 stars, 4 stars, or 5 stars). Just select one of
these five options. No explanation required.

QQP Question 1: {question1}. Question 2: {question2}. Based on the context, phrasing, and
intent of the two questions provided, determine if the two questions are semantically equivalent
(duplicates). Select only one of these options: duplicate or not duplicate. No explanation
required.

SWAG Startphrase: {startphrase}. Ending 0: {ending0}. Ending 1: {ending1}. Ending 2:
{ending2}. Ending 3: {ending3}. Based on the startphrase and potential endings provided,
determine the most likely ending to the startphrase. Respond with only one of these options: 0,
1, 2, or 3. No explanation required.

MNLI Premise: {premise}. Hypothesis: {hypothesis}. Based on the premise and hypothesis
provided, determine the most likely relationship between the two. Respond with only one of
these options: entailment, contradiction, or neutral. No explanation required.

Table 6: Example Prompts used to generate pseudo-labels

suggests that randomly selected examples may in-
troduce noise or bias that degrades pseudo-labeling
quality.

E Training Cost

To ensure a fair comparison across all methods, we
standardized the training configuration for each ex-
periment. Table 8 summarizes the compute budget
used for each method and dataset, including the
number of training hours, training settings per run,
and the number of random seeds. The total GPU
hours reported assume a single GPU per run. All
experiments were conducted using NVIDIA V100
GPUs.

E.1 Fairness in Parameter and Inference Cost

Our proposed framework requires training two
models jointly and performing inference with both
at test time. To ensure fair comparisons, we further
evaluated self-ensembled baselines, where each
baseline (e.g., AdaMatch, SoftMatch) is trained
twice independently and their predictions are en-
sembled at inference. This matches our framework

in terms of parameter count and test-time computa-
tion.

The results, shown in Table 9, indicate that
our method consistently outperforms these self-
ensembled variants, demonstrating that our co-
training design provides benefits beyond simply
increasing model size or applying post-hoc ensem-
bling.

F Distribution of Pseudo-Label Weights

In this section, we provide kernel density estimates
(KDE) of the weighting metrics λ1 and λ2 across
all five benchmark datasets to evaluate the consis-
tency and effectiveness of our sample weighting
strategy. For each dataset, we visualize the distri-
bution of weights assigned to samples where the
LLM-generated pseudo-labels match the ground
truth (Match) and where they do not (Mismatch),
as shown in Figure 2.

Across four out of five datasets: AG NEWS,
Amazon Reviews, Yahoo! Answers, and Yelp Re-
views—we observe a clear separation between the
Match and Mismatch distributions. Correctly la-
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Dataset IMDB AG News Amazon Review Yahoo! Answer Yelp Review Mean Fried. Final
# Label 20 40 40 200 250 1000 500 2000 250 1000 Err. rank rank

LG-CoTr P-FS 7.110.15 6.990.20 13.221.24 11.290.50 36.76†
0.05 36.70†

0.09 29.460.07 28.620.09 33.460.52 32.850.61 23.65 5.55 4
LG-CoTr M-FS 7.110.06 6.830.11 11.960.80 11.350.23 37.530.23 36.850.34 30.220.13 28.750.15 33.800.14 33.040.29 23.74 6.35 6
LG-CoTr L-FS 6.630.35 6.430.32 11.120.11 10.700.27 37.470.24 36.710.18 28.67†

0.19 27.97†
0.14 33.600.13 32.910.17 23.22 3.10 1

LG-CoTr P-ZS 6.770.32 6.580.15 11.350.17 10.410.20 37.150.19 37.040.13 29.310.11 28.160.06 33.15†
0.27 32.930.53 23.29 3.70 2

LG-CoTr M-ZS 6.780.23 6.940.04 11.190.12 10.010.30 37.910.33 37.210.10 30.200.09 28.960.20 33.680.27 32.76†
0.07 23.56 5.00 3

LG-CoTr L-ZS 6.810.27 6.680.26 12.290.52 10.770.81 38.490.07 37.530.23 29.180.16 28.290.06 33.850.48 33.280.12 23.71 6.00 5

VerifyMatch P-ZS 7.580.61 7.380.43 11.950.18 11.640.21 39.970.29 40.940.44 32.030.08 32.140.71 37.630.10 37.162.23 25.84 12.30 11
VerifyMatch M-ZS 8.290.69 8.000.33 13.331.13 14.221.93 40.410.77 40.031.24 34.520.51 34.170.36 35.450.53 35.740.19 26.42 14.40 15
VerifyMatch L-ZS 7.570.66 7.900.85 15.271.55 14.311.36 45.881.26 43.860.74 33.780.25 33.430.51 37.790.44 39.581.23 27.94 16.30 20

CoTeach P-ZS 9.042.07 11.040.48 39.380.56 31.310.18 36.351.27 25.42 11.0 9
CoTeach M-ZS 10.442.95 16.761.53 39.720.84 33.670.34 35.940.73 27.31 15.50 17
CoTeach L-ZS 8.301.75 15.742.30 43.721.23 33.450.52 36.980.50 27.64 15.70 18

DivideMix P-ZS 7.670.17 11.050.14 39.340.44 30.830.66 35.340.55 24.85 9.30 8
DivideMix M-ZS 9.981.90 12.800.59 38.820.05 31.990.99 34.830.22 25.68 11.30 10
DivideMix L-ZS 8.451.29 13.060.79 41.951.73 30.810.31 35.090.79 25.87 12.50 12

Phi-3 FS 11.84 18.07 37.5 38.52 34.14 28.01 14.20 14
Mistral FS 5.79 19.62 41.67 39.45 39.18 29.14 16.30 21
Llama-3 FS 6.37 13.09 40.14 33.96 37.2 26.15 12.80 13

Phi-3 ZS 4.78 12.67 39.32 33.53 34.62 24.98 8.40 7
Mistral ZS 5.08 14.39 44.74 36.27 38.51 27.80 15.10 16
Llama-3 ZS 4.68 25.7 45.67 39.17 38.32 30.71 16.20 19

Table 7: Error rate (%) and Rank across datasets and label sizes. Subscripts P, M, and L denote the LLMs used:
Phi-3, Mistral, and LLaMA-3, respectively. Subscripts FS and ZS indicate few-shot and zero-shot prompting settings.
Best results are bolded. † indicates a statistically significant improvement (p < 0.05) over the best baseline using a
paired t-test. Grayed rows are also reported in the main paper.

beled samples consistently receive higher weights,
as shown by the rightward shift of the blue curves,
while mislabeled ones are assigned lower weights.
These trends align with our overall performance
improvements in these datasets.

The only exception is IMDB, where the Match
and Mismatch distributions overlap more signifi-
cantly, suggesting reduced discriminative capacity
in weighting. Correspondingly, this is also the
only dataset where our method does not outper-
form LLM baselines, reinforcing the link between
effective sample weighting and performance gains.

G Variability vs. Accuracy

LG-CoTrain is designed to exploit complemen-
tary behavior between two jointly trained models,
which is reflected in the performance gains reported
in Table 2 of the main paper. In our framework,
each model assigns a per-sample weighting factor λ
when computing the loss. For model 1, the weight
is defined as λ1 = confidence + variability, while
for model 2 it is λ2 = confidence − variability.
This asymmetry in weighting causes the two mod-
els to prioritize different examples during training,
leading them to learn distinct yet complementary
representations.

To further understand the benefits of this de-
sign, we include the ST-Random baseline, where
a single model is trained using a randomly selected
λ ∈ {λ1, λ2} for each sample. This baseline con-
sistently underperforms LG-CoTrain, underscoring
the importance of the dual-model structure in which
each model makes unique and complementary con-
tributions to the final prediction.

G.1 Distributional Analysis of δλ
To quantify the divergence between the two models,
we analyze the difference in sample weights:

δλ = λ1 − λ2.

A larger range of δλ indicates stronger divergence
in how the models prioritize samples, suggesting
that the two models are being trained differently
and thus forming distinct perspectives.

We find that Yahoo Answers and Yelp Reviews
exhibit the widest ranges of δλ (approximately 0
to 0.8), followed by Amazon Reviews (approxi-
mately 0 to 0.6). In contrast, AG News and IMDB
show narrower ranges (approximately 0 to 0.2 and
0 to 0.1, respectively), suggesting more similar
sample prioritization between the models.
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Method Dataset Hours × Settings ×
Seeds

Total GPU Hours

USB SSL

IMDB 8× 2× 3

222 GPU Hours
(9 GPU Days)

AG News 6× 2× 3
Amazon Review 8× 2× 3
Yahoo! Answer 7× 2× 3
Yelp Review 8× 2× 3

VerifyMatch

IMDB 1× 2× 3

195 GPU Hours
(8 GPU Days)

AG News 2.5× 2× 3
Amazon Review 8× 2× 3
Yahoo! Answer 13× 2× 3
Yelp Review 8× 2× 3

LG-CoTrain

IMDB 1× 2× 3

294 GPU Hours
(12 GPU Days)

AG News 4× 2× 3
Amazon Review 12× 2× 3
Yahoo! Answer 20× 2× 3
Yelp Review 12× 2× 3

Table 8: Comparison of GPU Budget and Training Setup for Each Method and Dataset

Dataset Amazon Yahoo Yelp

# Label 250 1000 500 2000 250 1000

AdaMatch-En 46.240.52 41.270.09 30.530.40 28.390.24 44.310.43 37.960.19
SoftMatch-En 42.970.35 41.150.29 30.240.17 28.480.12 41.710.35 37.440.18
Ours 38.120.06 37.660.27 29.380.16 28.140.23 33.870.14 33.520.12

Table 9: Error rates (%) of ensemble variants. Comparison between AdaMatch-Ensembled, SoftMatch-
Ensembled, and our method on three datasets. Lower is better. Meansstd over three runs. Best results are bolded.

Correspondingly, LG-CoTrain achieves the
largest performance improvements over baselines
on Yahoo, Yelp, and Amazon, while the gains
are smaller on AG News and IMDB. These
trends support the hypothesis that greater diver-
gence—and thus more unique contributions from
each model—leads to improved overall perfor-
mance. To better illustrate this relationship, we
added Figure 3, which visualizes the distributions
of δλ across all datasets.
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(a) IMDB

(b) AG NEWS

(c) AMAZON REVIEW

(d) YAHOO! ANSWERS

(e) YELP REVIEW

Figure 2: Kernel density plots of λ1 and λ2 weights for label-matched and mismatched samples across five datasets.
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(a) IMDB

(b) AG NEWS

(c) AMAZON REVIEW

(d) YAHOO! ANSWERS

(e) YELP REVIEW

Figure 3: Kernel density plots of δλ = (λ1 − λ2) for all samples across five datasets.
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