
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 31211–31236
November 4-9, 2025 ©2025 Association for Computational Linguistics

Prior Prompt Engineering for Reinforcement Fine-Tuning
Pittawat Taveekitworachai1, Potsawee Manakul1,

Sarana Nutanong2, Kunat Pipatanakul1

1SCB 10X R&D,
SCB 10X, SCBX Group, Thailand

2School of Information Science and Technology,
Vidyasirimedhi Institute of Science and Technology, Thailand

pittawat@scb10x.com, potsawee@scb10x.com, snutanon@vistec.ac.th, kunat@scb10x.com

Abstract

This paper investigates prior prompt engineer-
ing (pPE) in the context of reinforcement fine-
tuning (RFT), where language models (LMs)
are incentivized to exhibit behaviors that max-
imize performance through reward signals.
While existing RFT research has primarily fo-
cused on algorithms, reward shaping, and data
curation, the design of the prior prompt–the
instructions prepended to queries during train-
ing to elicit behaviors such as step-by-step
reasoning–remains underexplored. We inves-
tigate whether different pPE approaches can
guide LMs to internalize distinct behaviors af-
ter RFT. Inspired by inference-time prompt en-
gineering (iPE), we translate five representa-
tive iPE strategies–reasoning, planning, code-
based reasoning, knowledge recall, and null-
example utilization–into corresponding pPE ap-
proaches. We experiment with Qwen2.5-7B us-
ing each of the pPE approaches, then evaluate
performance on in-domain and out-of-domain
benchmz arks (e.g., AIME2024, HumanEval+,
and GPQA-Diamond). Our results show that all
pPE-trained models surpass their iPE-prompted
counterparts, with the null-example pPE ap-
proach achieving the largest average perfor-
mance gain and the highest improvement on
AIME2024 and GPQA-Diamond, surpassing
the commonly used reasoning approach. Fur-
thermore, by adapting a behavior-classification
framework, we demonstrate that different pPE
strategies instill distinct behavioral styles in the
resulting models. These findings position pPE
as a powerful yet understudied axis for RFT.

1 Introduction

Recent advancements in reasoning models mark
a significant step forward in improving language
model (LM) performance by allocating additional
compute budget at test time. A common approach
to developing such models is reinforcement fine-
tuning (RFT), which incentivizes an LM to perform
extended reasoning during inference by using re-

ward signals–based on the correctness of generated
answers–during training. Current studies have ex-
plored various components of the RFT pipeline, in-
cluding objective functions and training algorithms
(Liu et al., 2025; Yu et al., 2025; Yeo et al., 2025;
Yue et al., 2025), data domains and curricula (Xie
et al., 2025; Wei et al., 2025; Su et al., 2025; Hu
et al., 2025), reward functions and shaping (Yeo
et al., 2025; Su et al., 2025; Hu et al., 2025), and the
influence of inherent behaviors across different LM
families and model sizes (Liu et al., 2025; Zeng
et al., 2025a; Gandhi et al., 2025). However, de-
spite these improvements for various components
of the RFT pipeline, one critical aspect remains
understudied: the design of the prompt.

To scope our study, we separate a prompt used
during RFT into two main components: the in-
struction and the task content (see Figure 2). The
instruction guides the model to exhibit desired be-
haviors (e.g., step-by-step reasoning). We refer to
this section as the prior prompt, which is the main
focus of this study. Examples of prior prompts
from existing work are provided in Appendix C.
While some studies briefly note the role of prior
prompts in training stability and performance (Xie
et al., 2025; Zeng et al., 2025a), there has been lit-
tle systematic investigation into how different prior
prompting approaches during RFT shape model
behaviors. This study therefore centers on the fol-
lowing question: Can different prior prompt en-
gineering approaches guide language models to
internalize distinct behaviors during RFT?

The breadth of prompt engineering, which we
define in this paper as inference-time prompt en-
gineering (iPE) to distinguish it from prompt en-
gineering during training, demonstrates its effec-
tiveness in eliciting diverse behaviors (i.e., genera-
tion patterns) from LMs (Kojima et al., 2022), ulti-
mately leading to varying performance outcomes.
For instance, chain-of-thought prompting (CoT)
(Wei et al., 2022b) elicits step-by-step reasoning

31211

mailto:pittawat@scb10x.com
mailto:potsawee@scb10x.com
mailto:snutanon@vistec.ac.th
mailto:kunat@scb10x.com

<think>

To determine the number of
positive whole-number divisors of
196, we first need to find its prime
factorization.

1. Start by dividing 196 by the
smallest prime number, which is 2:

...

</think>

<think>
Chain-of-thought prompting

<plan>

1. Identify the prime factorization
of 196.

2. Use the formula for finding the
number of divisors from the prime
factorization.

</plan>

<plan>
Plan-and-solve prompting

<code>

divisors = []

number = 196

for i in range(1, number + 1):

 if number % i == 0:

 divisors.append(i)

</code>

<code>
Program-of-thought prompting

<knowledge>

To determine the number of positive
whole-number divisors of 196, we
first need to find its prime
factorization. The prime factorization
of a number is the product of prime
numbers that equals the original
number.

...

</knowledge>

<knowledge>
Generated knowledge prompting

<examples>

To determine the number of
positive whole-number divisors of
196, we first need to find its prime
factorization.

1. Start by dividing 196 by the
smallest prime number, which is 2:

...

</examples>

<examples>
Null-shot prompting

How many positive whole-number divisors does 196 have?
Query

Figure 1: Five generated responses from five distinct models post-RFT with different pPE approaches–<think>,
<plan>, <code>, <examples>, and <knowledge>. Each pPE approach is inspired by a corresponding iPE paradigm:
chain-of-thought, plan-and-solve, program-of-thought, null-shot, and generated knowledge prompting, respectively.

A conversation between User and Assistant. The user
asks a question, and the Assistant solves it. The as-
sistant first thinks about the reasoning process in the
mind and then provides the user with the answer. The
reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags,
respectively, i.e., <think> reasoning process here
</think><answer> answer here </answer>. User:
Let the circles k1 and k2 intersect at two distinct
points A and B, and let t be a common tangent of
k1 and k2, that touches k1 and k2 at M and N , re-
spectively. If t ⊥ AM and MN = 2AM , evaluate
∠NMB. Assistant:

Figure 2: The prompt used during RFT by DeepSeek-AI
et al. (2025). The prior prompt is highlighted in yellow.
Non-highlighted content is task content.

before producing a final answer; plan-and-solve
prompting (PS) (Wang et al., 2023) first gener-
ates a high-level plan before problem solving; and
program-of-thought prompting (PoT) (Chen et al.,
2023) induces code-based reasoning. These exam-
ples illustrate that different iPE approaches not only
elicit distinct behaviors (e.g., reasoning, planning,
coding) but also lead to varied performance results.

Inspired by iPE, we introduce the term prior
prompt engineering (pPE) to denote approaches
for modifying the prior prompt in RFT. Just as iPE
guides behavior during inference, we conjecture
that pPE can shape model behavior during training.
By combining the varied elicitation induced by
pPE with RFT’s incentivization mechanism, the
resulting models may exhibit diverse behaviors and
achieve different levels of performance impact.

In this paper, we study the effects of various
pPE approaches on model behaviors and perfor-
mance impact after RFT. We select five representa-
tive iPE approaches based on their distinct elicited
behaviors–reasoning, planning, coding, knowledge
recall, and null example utilization–and translate
them into corresponding pPE approaches. We em-

ploy these five pPE approaches to train Qwen2.5 7B
into five distinct models with RFT using math-only
training data. We then compare each RFT-trained
model to its corresponding iPE-only baseline.

We evaluate our models using both quanti-
tative and qualitative methods. Quantitatively,
we measure performance on mathematical rea-
soning, coding, and question-answering bench-
marks (e.g., AIME2024, GPQA Diamond, and
HumanEval+) to assess impact on in-domain and
out-of-domain tasks. Qualitatively, we employ a
modified behavior-classification framework from
Gandhi et al. (2025) to quantify differences in
model behaviors. To test generalization, we repli-
cate our experiments at smaller scales on Qwen2.5
3B, Qwen2.5 Coder 7B, and Llama 3.1 8B.

We find that all pPE-trained models surpass their
corresponding iPE-only baselines. Among pPE
approaches, the null-example utilization approach–
which exhibits behavioral similarities to the reason-
ing approach–achieves the largest improvement on
GPQA Diamond and the highest average perfor-
mance gain across tasks. Figure 1 illustrates the
five models trained with different pPE strategies,
each demonstrating distinct behavioral styles and
indicating that pPE can incentivize diverse behav-
iors. Our contributions are as follows:

• We introduce the concepts of prior prompt and
prior prompt engineering (pPE) as critical yet
previously understudied aspects of RFT.

• We demonstrate that different pPE strategies
elicit distinct behaviors, including variations
in performance impact, response structure, ver-
bosity, and behavior types.

• We propose an updated systematic behavior
classification approach to quantify both cogni-
tive and elicited behaviors, revealing how differ-
ent pPE approaches shape model behavior.

31212

2 Prior Prompt Engineering for
Reinforcement Fine-Tuning

Our main question in this study is whether different
pPE approaches can lead an LM to internalize dis-
tinct behavioral styles after RFT. If different pPE
approaches indeed yield different behaviors, this
could provide a simple means–by only changing
the prior prompt–to train models for specialized
behaviors beyond reasoning (e.g., plan generation,
code-based reasoning, or knowledge generation).
To answer this question, we select five representa-
tive iPE approaches and translate them into pPE
approaches. We then apply a standard RFT setup
to train five distinct models, differing only in their
pPE approach and format reward (see Section 3).
The overall process and distinctions between iPE
and pPE are depicted in Figure 3.

We evaluate each model quantitatively and qual-
itatively to assess performance changes and behav-
ioral differences. Quantitative evaluation uses es-
tablished benchmarks for mathematical reasoning,
coding, and question answering. For qualitative
evaluation, we adapt the framework of Gandhi et al.
(2025) to classify each post-RFT model’s behavior
into one of four cognitive categories and five pPE-
specific categories. We also apply these evaluations
to the base model at inference time with different
iPE approaches, to further compare iPE and pPE.

To explore the impact of pPE approaches on
prior prompts, we select five representative iPE
approaches based on their differences in behavioral
elicitation when used to prompt an LM:

1. Reasoning: Chain-of-thought prompting (CoT)
(Wei et al., 2022b) elicits an LM to generate
step-by-step reasoning before producing a fi-
nal answer. This iPE approach is mapped to
<think> in pPE and is the most commonly used
in RFT studies, resulting in reasoning models
(DeepSeek-AI et al., 2025; Xie et al., 2025).
This serves as our baseline for comparison.

2. Planning: Plan-and-solve prompting (PS)
(Wang et al., 2023) elicits the model to first gen-
erate a plan (e.g., numbered steps) and then exe-
cute that plan, yielding improvements over stan-
dard CoT. The planning approach is mapped to
<plan> in pPE. We expect the post-RFT model
to generate a plan before providing an answer.

3. Code-based reasoning: Program-of-thought
prompting (PoT) (Chen et al., 2023) elicits

structured reasoning through code by asking
a model to generate relevant code for problem
solving. PoT has shown strong performance
on math and logic tasks, especially with code-
pretrained models such as CodeLlama (Rozière
et al., 2024), Qwen2.5-Coder (Hui et al., 2024),
and StarCoder 2 (Lozhkov et al., 2024). This
iPE approach is mapped to <code> in pPE. We
expect the post-RFT model to generate code and
comments that solve the given task.

4. Knowledge recall: Generated knowledge
prompting (Liu et al., 2022) asks the model to
recall or synthesize relevant knowledge before
answering, simulating a form of self-retrieval
and improving performance on commonsense
benchmarks. This approach is mapped to
<knowledge> in pPE. We expect the post-RFT
model to recall definitions, theorems, or formu-
las before proceeding to a final answer.

5. Null-example utilization: Null-shot prompt-
ing (Taveekitworachai et al., 2024) prompts the
model to utilize non-existent in-context exam-
ples relevant to the question, exploiting induc-
tive biases without providing real demonstra-
tions. It maps to <examples> in pPE, and we
expect the post-RFT model to generate or refer-
ence illustrative examples relevant to a query.

With these five distinct pPE approaches for elic-
iting different behaviors in LMs during RFT, we
expect not only differences in performance impact
and post-RFT behaviors but also in training dynam-
ics, such as average response length or per-step
reward trajectories.

3 Experimental Setup

3.1 Prior Prompts
To construct our prior prompts, we adapt the tem-
plate of Xie et al. (2025). For each iPE approach,
we modify the instruction in the template (e.g.,
“plan,” “recall relevant knowledge,” “write required
code”) and update the corresponding tag <x></x>
as described in Section 2. The <think></think>
pPE approach thus is the standard RFT setup.
These same templates are also used when evalu-
ating iPE-prompted models. The complete prior
prompt templates are provided in Appendix D.1.

3.2 Training
We follow a standard RFT setup similar to
DeepSeek-AI et al. (2025). Specifically, we use

31213

Inference-time Prompt Engineering (iPE) Prior Prompt Engineering (pPE)

Reinforcement Fine-Tuning (RFT)

Training

Queries

Queries

Chain-of-

Thought

Plan-and-

Solve

Program-of- 
Thought

Generated 
Knowledge Null-Shot

Prompt Engineering Approaches

Chain-of-

Thought

Plan-and-

Solve

Program-of- 
Thought

Generated 
Knowledge Null-Shot

Prompt Engineering Approaches

Prior

Prompts

PromptsPrompts

Responses Language Model

Language Model

Reward Function

GRPO
Trained Model

Figure 3: Left: iPE approaches are applied to a prompt during inference, before inputting it into an LM, to elicit
desired behaviors in the response. Right: pPE approaches are translated from iPE approaches and applied to the
prior prompt to elicit desired behaviors during training.

Group Relative Policy Optimization (GRPO) with
a pretrained base LM. Our training stack is Open-
RLHF v0.6.4 (Hu et al., 2024) for policy optimiza-
tion and vLLM v0.8.2 (Kwon et al., 2023) for roll-
out generation. We train using prompts from the
STILLv3 dataset (Chen et al., 2025), which con-
tains approximately 30K mathematical problems
and is used to train a reasoning model. We note
that the use of math-only training datasets is com-
mon in the existing literature (Liu et al., 2025; Yeo
et al., 2025; Yu et al., 2025). In addition, math-only
training datasets provides a simplicity in verifiable
reward design, i.e., value equivalent checking be-
tween a generated answer and the ground truth,
unlike other domains, which inconclusive in imple-
mentation standards of the reward function. Ad-
ditional details and hyperparameters are listed in
Appendix D.3.

Our reward function comprises two equally
weighted components (summing to 1.0): (1) ac-
curacy, which assesses whether the model pro-
duces the correct final answer; and (2) format,
which assesses whether the model’s output fol-
lows the expected format–<x></x> followed by
<answer></answer>, where x is one of {think,
plan, code, knowledge, examples}. The ex-
pected format is updated dynamically to match the
pPE approach. Additional details on the reward
function are available in Appendix D.2.

For our main experiments, we use Qwen2.5-7B
(Qwen et al., 2025) as the base model. All five
pPE variants are trained with the same settings,
differing only in the pPE approaches. We also use
Qwen2.5-7B, prompted at inference with each iPE
approach, as our comparison baseline. To isolate
the effects of inherent performance changes from
those of the dataset, we also train Qwen2.5-7B on
the dataset without any prior prompts–thus without

format instructions and without a format reward;
accuracy reward maxed at 1.0. This setup serves
as our No PP baseline to distinguish dataset effects
from those of pPE approaches.

We select Qwen2.5-7B, a base model, to follow
the R1-Zero (DeepSeek-AI et al., 2025) approach
and mitigate confounding factors from instruction
tuning of instruct models; evaluation of the instruct
variant is left for future work. Although prompting
base models with iPE approaches has become less
common in recent years due to the prevalence of
instruct models, prior studies introducing the iPE
methods (Wei et al., 2022b; Wang et al., 2023; Chen
et al., 2023; Liu et al., 2022; Taveekitworachai
et al., 2024) considered here have shown it to be
effective with base models.

To assess generalization under budget con-
straints, we conduct scaled-down experiments
along two dimensions: model size and model fam-
ily. For model size, we train Qwen2.5-3B with
<think> and <plan>, as it belongs to the same fam-
ily as Qwen2.5-7B from the main experiment and
allows direct size comparison. For model family,
we evaluate Llama 3.1-8B (Grattafiori et al., 2024)
with <think> and <plan>, chosen for its compa-
rable size to Qwen2.5-7B, and Qwen2.5-Coder-
7B (Hui et al., 2024) with <think> and <code>,
included to examine differences between a code-
specialized model and its base counterpart. We
prioritize <plan> as the main comparator due to
its distinct behaviors during and after RFT, while
<code> probes domain-specific specialization.

3.3 Evaluation

We evaluate all models and prompting methods via
quantitative and qualitative analyses.

Quantitative benchmarks Although our train-
ing set is math-only, we also evaluate all models on

31214

non-mathematical benchmarks to assess generaliza-
tion. We report average accuracy across the follow-
ing: Mathematical reasoning: AIME2024 (AIME)
(Li et al., 2024), AMC12 ’22–’23 (AMC) (Li et al.,
2024), and MATH-500 (MATH) (Hendrycks et al.,
2021); Coding: HumanEval+ (HE+) base and extra
sets (Liu et al., 2023); Question answering: GPQA-
Diamond (GPQA) (Rein et al., 2024). Additional
details are provided in Appendix D.4.1.

Qualitative analysis We analyze differences
across: (1) Training dynamics, (2) Average re-
sponse length, (3) Ratio of four fundamental cogni-
tive behaviors (Gandhi et al., 2025), and (4) Ratio
of behavior patterns specific to each of the five pPE
categories. Four fundamental cognitive behaviors
are (i) Verification: identifying errors; (ii) Back-
tracking: proposing an alternative approach; (iii)
Subgoal setting: generating intermediate steps; and
(iv) Backward chaining: reasoning from the result
to inputs. For (3) and (4), we employ the LM-based
classification framework of Gandhi et al. (2025) to
automatically classify model responses. Further
details are in Appendix D.4.2.

4 Results and Findings

In this section, we present and discuss results from
our experiments, as described the setup in Section 3.
Our objective is to answer the core question posed
earlier: whether and how different pPE approaches
can guide LMs to internalize distinct behaviors
during RFT. To address this question, we examine
three key aspects:

1. Performance impact: Do different pPE ap-
proaches lead to measurable improvements over
the baseline and their iPE counterparts? Do they
result in distinct performance gains across tasks,
or do they converge to similar outcomes?

2. Behavioral differences: Do different pPE ap-
proaches induce differences in fundamental cog-
nitive behaviors and elicited generation pat-
terns? Do the behavioral profiles of pPE-trained
models align with those observed under iPE?

3. Generalization: How well do pPE approaches
generalize across model sizes and families?

The following subsections address each of these
aspects in detail. Additional and detailed results,
including results from the generalization study, are
presented in Appendix E.

4.1 Performance Impact

Model AIME AMC GPQA MATH HE+ Avg.

Qwen2.5-7B 13.33 37.35 24.24 55.60 72.60 40.62

iPE
Think 10.00 31.33 24.24 56.00 75.00 39.31
Plan 10.00 30.12 24.24 51.20 73.80 37.87
Code 13.33 26.51 24.24 51.40 72.00 37.50
Knowledge 20.00 25.30 24.24 59.60 72.00 40.23
Examples 16.67 32.53 24.24 56.80 0.00 26.05

RFT
No PP 26.67 37.35 21.21 70.40 73.80 45.41

pPE
Think 20.00 43.37 28.28 73.20 70.10 46.99
Plan 20.00 44.58 24.75 69.60 68.90 45.57
Code 16.67 46.99 25.25 66.20 78.00 46.62
Knowledge 16.67 37.35 21.72 71.00 73.20 43.99
Examples 20.00 43.37 30.81 71.20 72.60 47.60

Table 1: Benchmark accuracy (%) of Qwen2.5-7B
when prompted with different iPE or RFT with different
pPE approaches across five benchmarks. No PP rep-
resents a baseline trained with RFT without any prior
prompts. Bold indicates the best performance per col-
umn; underlined indicates the second best per column.

Table 1 presents the performance of Qwen2.5-
7B when prompted with different iPE approaches
or fine-tuned using RFT with different pPE ap-
proaches across benchmarks. Notably, all iPE
approaches result in lower average performance
compared to the base model. For instance, un-
der the null-example utilization approach, iPE fails
to generate parsable code during HE+ evaluation,
yielding 0.00.

In contrast, all post-RFT models–regardless of
the pPE approach–achieve performance improve-
ments over the base model. Part of these gains can
be attributed to the dataset itself: training without
a prior prompt (No PP) raises AIME from 13.33 to
26.67 and MATH from 55.60 to 70.40, outperform-
ing every iPE variant and even all pPE variants on
these two math-heavy benchmarks. This indicates
that the dataset and RFT alone drive substantial
improvements in mathematical reasoning.

The influence of prior prompts becomes more
apparent on other benchmarks. On AMC, No PP
provides no improvement (37.35 to 37.35), yet ev-
ery pPE variant surpasses it, with code-based rea-
soning reaching 46.99. Several pPE approaches
also improve GPQA, and the code-based approach
raises HE+ from 73.80 to 78.00. Importantly, all
pPE variants except knowledge recall outperform
No PP in average performance, demonstrating that
prior prompts exert an independent effect beyond
dataset-driven gains.

The widely used reasoning approach, <think>,
serves as a strong pPE baseline and delivers sub-
stantial gains (+6.37 points). Surprisingly, the

31215

null-example utilization approach, which performs
worst under iPE, achieves the highest average im-
provement (+6.98 points) after RFT–surpassing
<think>. Notably, while the null-example iPE
approach fails entirely on HE+, its pPE counter-
part maintains strong performance on that bench-
mark. Conversely, the knowledge recall approach,
which yields the best iPE performance, produces
the weakest results in the pPE setting. These con-
trasts underscore that performance trends in iPE
do not directly translate to pPE, highlighting the
fundamentally different mechanisms underlying
inference-time prompting and RFT.

Finally, as with iPE, pPE methods exhibit di-
verse benchmark-specific effects. The code-based
reasoning approach, while expectedly excelling on
HE+, also delivers the strongest AMC score. In
contrast, knowledge recall fails to provide mean-
ingful gains on GPQA and even underperforms
relative to the base model. Together, these results
suggest that the impact of pPE is more nuanced
than simply aligning a domain-specific prompt with
a domain-specific task. We leave further investiga-
tion of these dynamics to future work.

4.2 Behavioral Differences

0 20 40 60 80 100 120 140 160
Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
wa

rd

Code
Knowledge
Examples
No PP
Think
Plan

Figure 4: The reward progression of Qwen2.5-7B dur-
ing RFT exhibits similar trends–an initial climb fol-
lowed by fluctuations–across all pPE approaches, except
for No PP, which yields lower rewards as it focuses only
on accuracy without the format component.

Training dynamics Figures 4 and 5 show the re-
ward and average response length dynamics during
RFT for each pPE approach, respectively. For all
pPE variants, the training curves are highly consis-
tent: reward increases sharply in the first 20 steps,
likely reflecting the model learning to follow for-
mat constraints, and then enters a steadier phase
with minor fluctuations. This phase coincides with
a gradual recovery of response length after an initial
drop, suggesting that the model begins to exploit a
larger token budget in pursuit of higher rewards.

0 20 40 60 80 100 120 140 160
Step

200

400

600

800

1000

1200

1400

Re
sp

on
se

 L
en

gt
h

Code
Knowledge
Examples
No PP
Think
Plan

Figure 5: Evolution of the average response length for
Qwen2.5-7B during RFT shows an initial drop followed
by gradual recovery across pPE approaches, whereas
the No PP baseline maintains a higher and more stable
response length throughout.

The No PP baseline, however, exhibits markedly
different dynamics. In reward progression, it fails
to reach the same level as pPE approaches, as it op-
timizes only for accuracy without benefiting from a
format reward. In response length, it shows consis-
tently longer outputs and a relatively steady trend
rather than the sharp dip-and-recovery pattern ob-
served in pPE approaches.

These results show that pPE affects not only final
model performance but also the training process
itself. Models trained with pPE share consistent
dynamics–rapid reward gains followed by stabi-
lization, along with a dip and recovery in response
length–whereas the No PP baseline follows a com-
pletely different trajectory, with lower rewards and
longer responses. This contrast highlights that the
inclusion of a prior prompt fundamentally shapes
how the model learns during RFT.

At the same time, other factors such as the train-
ing algorithm (Yu et al., 2025; Liu et al., 2025),
the base model family (Zeng et al., 2025a), and
hyperparameter choices remain important determi-
nants of training behavior. Finally, the divergence
between training dynamics and final benchmark re-
sults suggests that metrics like reward progression
and response length should not be relied upon as
predictors of final performance.

Average response length Table 2 reports the av-
erage response length, measured as the mean num-
ber of generated tokens during quantitative eval-
uation. We find that reasoning and null-example
utilization iPE approaches already elicit longer re-
sponses compared to the base model. After RFT,
average response length generally increases fur-
ther, though the No PP baseline produces by far the
longest responses across all benchmarks, despite
not achieving the strongest performance. In con-

31216

Model AIME AMC GPQA MATH Avg.

Qwen2.5-7B 1416.80 1352.54 534.29 841.74 1036.34

iPE
Think 2512.17 1367.69 534.29 804.85 1304.75
Plan 1662.57 644.90 534.29 540.98 845.69
Code 641.07 953.51 534.29 635.09 690.99
Knowledge 1406.30 1237.22 534.29 780.31 989.53
Examples 2274.17 1316.12 534.29 752.60 1219.30

RFT
No PP 2902.97 1543.40 982.79 850.33 1569.87

pPE
Think 2042.70 1024.96 476.86 612.10 1039.16
Plan 1685.17 1085.47 476.47 601.18 962.07
Code 1657.47 836.28 492.44 690.42 919.15
Knowledge 2015.57 1082.96 587.10 626.45 1078.02
Examples 1136.20 831.98 442.48 685.79 774.11

Table 2: Average response length, i.e., number of tokens,
of Qwen2.5-7B when prompted with different iPE or
RFT with different pPE approaches.

trast, pPE variants yield shorter and more varied
response lengths.

Interestingly, the null-example utilization pPE
approach achieves the highest overall performance
while producing some of the shortest responses on
average, making it the most efficient in terms of
test-time compute. By comparison, the reasoning
pPE approach also reduces response length relative
to its iPE counterpart while still delivering strong
performance gains.

These results indicate that different pPE ap-
proaches shape not only the performance but also
the efficiency of post-RFT models. In particular,
these results highlight pPE as a practical tool for
influencing the trade-off between model accuracy
and computational efficiency.

Four fundamental behaviors Figure 6 shows
the ratio of four fundamental cognitive behaviors
in responses from the quantitative evaluation, both
when prompted with iPE approaches and after RFT
with pPE approaches. We observe that backward
chaining is the most prominent behavior across all
models–regardless of whether iPE or pPE is used–
and is already present in the base model. Interest-
ingly, the base model with RFT without any prior
prompts displays even higher levels of backward
chaining, backtracking, and verifications than the
raw base, indicating that RFT with the math-only
dataset alone encourages more cognitive behaviors.

In general, iPE approaches increase the fre-
quency of backward chaining, while pPE ap-
proaches tend to reduce it, with the exception of the
planning approach. More broadly, pPE approaches
tend to decrease the overall presence of all four fun-
damental cognitive behaviors compared to iPE. Im-
portantly, the ratio of these behaviors does not cor-

relate well with final model performance. However,
these ratios remain useful for highlighting how fun-
damental cognitive behaviors shift post-RFT, and
for differentiating between pPE approaches based
on their behavioral profiles.

We speculate that this behavior classification
framework–originally developed to analyze reason-
ing models (Gandhi et al., 2025)–may not gener-
alize well to models trained with different pPE
paradigms, which may incentivize different forms
of fundamental behavior beyond those captured by
the current classification framework.

Five elicited behaviors Figure 7 shows changes
in the frequency of five elicited behaviors when
models are prompted or trained using iPE or
pPE approaches, relative to the base model under
zero-shot prompting. We observe that most iPE
approaches–with the exception of reasoning and
planning–elicit high levels of reasoning, planning,
and knowledge recall behaviors. In contrast, post-
RFT behavior patterns are more targeted: post-RFT
models tend to show their largest gains in the be-
havior aligned with the specific pPE approach they
were trained on, with the notable exception of the
null-example utilization approach. For instance,
the planning pPE yields the strongest increases in
planning, while the code pPE uniquely boosts code-
related behaviors–consistent with expectations.

The No PP baseline shows that RFT alone in-
creases reasoning, planning, and knowledge recall
behaviors relative to the zero-shot baseline. This
indicates that RFT with math-only datasets already
incentivizes models to exhibit these behaviors.

Finally, each pPE still induces a distinct distri-
bution across the five behaviors. Notably, the null-
example utilization pPE yields the fewest knowl-
edge recall instances, yet achieves the highest per-
formance gains on GPQA. Furthermore, it also
exhibits the lowest number of null-example behav-
ior instances–in contrast to its iPE counterpart and
to our expectations. This suggests that a pPE ap-
proach may not always result in the model exhibit-
ing the anticipated behavior. Instead, the model
may discover more effective behavior patterns dur-
ing RFT, independent of the specific pPE approach.

Qualitative behaviors We present qualitative ex-
amples of generated responses in Appendix F. We
observe that post-RFT models are generally able
to produce behaviors aligned with the pPE ap-
proaches. For example, the planning pPE approach
results in models that generate a numbered list

31217

Base RFT (No PP)
0

500

1000

1500

2000

2500

3000

3500

Co
un

t
Base

iPE pPE

Think

iPE pPE

Plan

iPE pPE

Code

iPE pPE

Knowledge

iPE pPE

Examples

Backtracking Backward chaining Sub-goal settings Verifications

Figure 6: Ratio of the four fundamental cognitive behaviors–backtracking, backward chaining, subgoal setting, and
verification–across different prompting (iPE) and RFT (pPE) approaches with Qwen2.5-7B. Backward chaining
dominates across setups, especially under iPE.

Th
ink Pla

n
Cod

e

Kn
ow

led
ge

Ex
am

ple
s

Behavior Type

Think

Plan

Code

Knowledge

Examples

Ap
pr

oa
ch

5 -30 -162 9 -22

-52 81 -155 -10 -26

419 485 511 376 -17

578 503 -105 542 35

593 484 -125 486 82

iPE

Th
ink Pla

n
Cod

e

Kn
ow

led
ge

Ex
am

ple
s

Behavior Type

No PP

Think

Plan

Code

Knowledge

Examples

Ap
pr

oa
ch

69 64 -177 82 -2

53 89 -159 36 -9

46 107 -170 32 -20

28 36 409 14 -19

49 70 -179 94 -16

35 52 -172 6 -20

pPE

100

0

100

200

300

400

500

Ch
an

ge
 fr

om
 B

as
e

Figure 7: Ratio of five elicited behavior categories–
reasoning, planning, code-based reasoning, knowledge
recall, and null-example utilization–as observed when
behaviors are elicited through prompting with different
iPE approaches (left) and after RFT with different pPE
approaches (right).

of steps to solve the problem and then execute
them. The reasoning pPE approach leads to step-
by-step reasoning, while the knowledge recall pPE
approach elicits definitions and formulas relevant
to solving the task. Interestingly, the null-example
utilization pPE approach somewhat resembles the
behavior of the reasoning pPE model, despite its
differences in performance trends.

We also observe that Qwen2.5-7B tends to prefer
natural language reasoning over code-based reason-
ing during RFT. Specifically, under the code-based
reasoning pPE approach, the model frequently gen-
erates natural language reasoning, followed by a
statement such as:

<code>
We don’t need to write any Python code
since the problem is solved analytically.
</code>

This stands in contrast to the code-specialized
model, which, as shown in the qualitative exam-
ples, relies more heavily on code generation as part
of its problem-solving process. These behavioral
differences among post-RFT models suggest that

RFT with different pPE approaches can be used
to steer models toward exhibiting distinct, desired
behaviors–similar to RLHF (Ouyang et al., 2022).
For instance, it is possible to train a plan-generating
model by applying RFT with a prior prompt that
elicits plan generation. However, for such a model
to be effective, the plan must not only be valid but
also executable in a way that achieves a high re-
ward. In this context, the reward signal serves as a
proxy for plan quality. We note that all qualitative
analyses presented here are preliminary and focus
on observed differences in behaviors. A deeper
analysis of the mechanisms by which pPE or RFT
influence the trained model’s behaviors is beyond
the scope of this work. We further discuss the
implications, extensions, and applications of pPE
for RFT in Appendix B, as well as limitations and
possible extensions in Limitations.

4.3 Generalization

Performance impact Table 3 shows the per-
formance of Qwen2.5-3B, LLaMA 3.1-8B, and
Qwen2.5-Coder-7B, which serve as representative
models for our generalization studies. Additional
accompanying results–including training dynam-
ics and behavior classification–are available in Ap-
pendix E. We observe that the reasoning pPE ap-
proach, i.e., <think>, is consistently robust across
model families and sizes. This is likely due to its
alignment with behavioral patterns already famil-
iar to models from prior fine-tuning on CoT-like
data (Chung et al., 2024). In contrast, smaller or
weaker model families show limited success with
non-reasoning pPE approaches, aligning with find-
ings from (Zeng et al., 2025a) that such models
benefit less from reasoning RFT.

31218

Model AIME AMC GPQA MATH HE+ Avg.

Qwen2.5 3B 13.33 24.10 9.60 49.40 62.80 31.85

iPE
Think 13.33 22.89 9.60 37.20 61.00 28.80
Plan 13.33 15.66 9.60 35.20 60.40 26.84

pPE
Think 10.00 12.05 11.11 28.40 61.00 24.51
Plan 0.00 0.00 7.07 0.00 59.10 13.23

Llama 3.1-8B 0.00 1.20 0.00 5.00 31.70 7.58

iPE
Think 3.33 3.61 0.00 8.00 31.70 9.33
Plan 6.67 4.82 0.00 6.80 31.70 10.00

pPE
Think 3.33 6.02 0.00 9.60 32.30 10.25
Plan 3.33 2.41 0.00 8.40 32.90 9.41

Qwen2.5-Coder-7B 6.67 15.66 25.25 27.60 81.10 31.26

iPE
Think 0.00 10.84 25.25 22.20 75.60 26.78
Code 3.33 10.84 25.25 12.00 78.00 25.88

pPE
Think 13.33 37.35 26.26 68.80 78.70 44.89
Code 13.33 18.07 34.85 26.80 75.00 33.61

Table 3: Benchmark accuracy (%) of Qwen2.5-3B,
Llama 3.1-8B, and Qwen2.5-Coder-7B when prompted
with different iPE or RFT with different pPE approaches
across five benchmarks. Bold indicates the best per-
formance per column under the same base model;
underlined indicates the second best per column under
the same base model.

Behavioral differences We also observe in-
stances of reward hacking when RFT is applied
with the planning pPE approach in Qwen2.5-3B
and LLaMA 3.1-8B. In these cases, the models
output only correctly formatted responses in order
to maximize the format reward, while neglecting
further exploration of the accuracy reward (see Fig-
ures 25 to 28). Another notable observation is that
the code-specialized Qwen2.5-Coder-7B model is
more effective at exhibiting code-based reasoning
behaviors–under both iPE and pPE–compared to
Qwen2.5-7B. This illustrates how different model
families can influence the behaviors exhibited after
RFT (Zeng et al., 2025a). Nevertheless, both rea-
soning and code-based reasoning pPE approaches
improve performance over the baseline, although
the reasoning pPE approach achieves the highest
performance. Still, pPE demonstrates measurable
success over iPE in steering model behavior post-
RFT, as illustrated in Figures 34 to 36. These
findings suggest that pPE generalizes reliably in
stronger, behaviorally aligned models, while less
capable models are more prone to reward hacking
or fail to internalize the intended behaviors.

5 Conclusions

This paper investigates the impact of pPE in the
context of RFT by evaluating five pPE approaches

inspired by iPE: reasoning, planning, code-based
reasoning, knowledge recall, and null-example uti-
lization. While these approaches often degrade
performance when applied only at inference time
(iPE), incorporating them during RFT (pPE) con-
sistently improves performance relative to the base
model. In particular, null-example utilization
proves more effective than the reasoning approach
for enhancing downstream task performance.

Beyond these performance impact, different pPE
approaches induce distinct behavioral patterns in
the fine-tuned models. For example, models trained
with the planning pPE approach tend to exhibit a
“plan-and-solve” behavior, i.e., generating a list of
steps before execution. Finally, we explore the gen-
eralization of pPE approaches across model sizes
and families. We hope this study will inspire fur-
ther research into the role of pPE in RFT, especially
given the extensive literature on iPE.

Limitations

Due to computational resource constraints, we
were unable to conduct experiments with larger
model sizes, larger datasets, or a higher number of
steps. As a result, the behavioral trends observed
in this study remain inconclusive for larger models
where emergent abilities (Wei et al., 2022a)–known
to appear only at scale–may lead to different out-
comes. While we believe many of our findings
will generalize across model sizes (as is often the
case in iPE studies), this assumption remains to
be validated. In contrast, smaller models may not
capture the complexity or expressiveness of their
larger counterparts due to their lower capacity and
the limited potential of pPE, similar to iPE.

Additionally, we fixed the training data domain
(mathematics), the reinforcement learning algo-
rithm (GRPO), and other experimental configura-
tions to isolate the effect of pPE approaches. Fu-
ture work should investigate how different domains,
RL algorithms, and reward schemes interact with
pPE. We conjecture that, as with iPE, once a model
demonstrates the ability to exhibit structured be-
haviors, those behaviors will generalize across ar-
chitectures and settings. However, further studies
are necessary to confirm this generalization in a
broader context of RFT.

Ethical Considerations

Prompting language models to elicit specific behav-
iors is inherently unpredictable due to their stochas-

31219

tic nature (Bengio et al., 2000). RFT, which aims to
amplify specific generation patterns for improved
performance, may also unintentionally reinforce
undesirable or unsafe behaviors–especially those
that were already latent in the pretrained model.

We strongly recommend integrating established
alignment techniques (Grattafiori et al., 2024; Bai
et al., 2022; Dai et al., 2024) and safety measures
(Zeng et al., 2025b; Inan et al., 2023), as prior stud-
ies (DeepSeek-AI et al., 2025; Seed et al., 2025)
have shown that such safeguards remain effective
even after RFT. As with iPE, models in dynamic or
open-ended environments are vulnerable to misuse.
For example, they may be exposed to malicious
prompts (Liu et al., 2024) or poisoned data (Zhao
et al., 2025) during RFT, leading to unexpected or
concerning behaviors.

Furthermore, the pPE framework proposed in
this study can be extended to alignment and safety-
focused training, similar to recent efforts in delib-
erative alignment (Guan et al., 2025). To mitigate
risks, we recommend safeguards such as prompt
auditing, robust reward design, safe rollout filter-
ing, and post-training alignment steps–especially
when applying RFT in safety-critical or user-facing
applications.

References

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
and 32 others. 2022. Constitutional AI: Harmless-
ness from AI Feedback. Preprint, arXiv:2212.08073.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2000. A Neural Probabilistic Language Model. In
Advances in Neural Information Processing Systems,
volume 13. MIT Press.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language Models are
Few-Shot Learners. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 1877–
1901. Curran Associates, Inc.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of Thoughts

Prompting: Disentangling Computation from Rea-
soning for Numerical Reasoning Tasks. Transactions
on Machine Learning Research.

Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen,
Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao,
Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan
Wang, and Ji-Rong Wen. 2025. An Empirical Study
on Eliciting and Improving R1-like Reasoning Mod-
els. Preprint, arXiv:2503.04548.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, and 16
others. 2024. Scaling instruction-finetuned language
models. Journal of Machine Learning Research,
25(70):1–53.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo
Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang.
2024. Safe RLHF: Safe Reinforcement Learning
from Human Feedback. In The Twelfth International
Conference on Learning Representations.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. DeepSeek-R1: Incentivizing Reasoning Capa-
bility in LLMs via Reinforcement Learning. Preprint,
arXiv:2501.12948.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin
Chi, and Wanjun Zhong. 2025. ReTool: Rein-
forcement Learning for Strategic Tool Use in LLMs.
Preprint, arXiv:2504.11536.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh,
Nathan Lile, and Noah D. Goodman. 2025. Cognitive
Behaviors that Enable Self-Improving Reasoners, or,
Four Habits of Highly Effective STaRs. Preprint,
arXiv:2503.01307.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The Llama 3 Herd
of Models. Preprint, arXiv:2407.21783.

Melody Y. Guan, Manas Joglekar, Eric Wallace, Saachi
Jain, Boaz Barak, Alec Helyar, Rachel Dias, Andrea
Vallone, Hongyu Ren, Jason Wei, Hyung Won Chung,
Sam Toyer, Johannes Heidecke, Alex Beutel, and
Amelia Glaese. 2025. Deliberative Alignment: Rea-
soning Enables Safer Language Models. Preprint,
arXiv:2412.16339.

31220

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://arxiv.org/abs/2503.04548
https://arxiv.org/abs/2503.04548
https://arxiv.org/abs/2503.04548
http://jmlr.org/papers/v25/23-0870.html
http://jmlr.org/papers/v25/23-0870.html
https://openreview.net/forum?id=TyFrPOKYXw
https://openreview.net/forum?id=TyFrPOKYXw
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2503.01307
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.16339
https://arxiv.org/abs/2412.16339

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring Mathematical
Problem Solving With the MATH Dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang,
Dehao Zhang, and Yu Cao. 2024. OpenRLHF: An
Easy-to-use, Scalable and High-performance RLHF
Framework. Preprint, arXiv:2405.11143.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xi-
angyu Zhang, and Heung-Yeung Shum. 2025. Open-
Reasoner-Zero: An Open Source Approach to Scal-
ing Up Reinforcement Learning on the Base Model.
Preprint, arXiv:2503.24290.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan,
Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, and 5
others. 2024. Qwen2.5-Coder Technical Report.
Preprint, arXiv:2409.12186.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi
Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine,
and Madian Khabsa. 2023. Llama Guard: LLM-
based Input-Output Safeguard for Human-AI Conver-
sations. Preprint, arXiv:2312.06674.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large Lan-
guage Models are Zero-Shot Reasoners. In Advances
in Neural Information Processing Systems.

Komal Kumar, Tajamul Ashraf, Omkar Thawakar,
Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip H. S. Torr,
Fahad Shahbaz Khan, and Salman Khan. 2025. LLM
Post-Training: A Deep Dive into Reasoning Large
Language Models. Preprint, arXiv:2502.21321.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the
29th Symposium on Operating Systems Principles,
SOSP ’23, page 611–626, New York, NY, USA. As-
sociation for Computing Machinery.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lip-
kin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q Jiang, Ziju Shen, and 1 others.
2024. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math prob-
lems and solutions. Hugging Face repository, 13:9.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Pe-
ter West, Ronan Le Bras, Yejin Choi, and Hannaneh
Hajishirzi. 2022. Generated knowledge prompting
for commonsense reasoning. In Proceedings of the

60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3154–3169, Dublin, Ireland. Association for Compu-
tational Linguistics.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is Your Code Generated by Chat-
GPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zi-
hao Wang, Xiaofeng Wang, Tianwei Zhang, Yepang
Liu, Haoyu Wang, Yan Zheng, and Yang Liu. 2024.
Prompt Injection attack against LLM-integrated Ap-
plications. Preprint, arXiv:2306.05499.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi,
Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
2025. Understanding R1-Zero-Like Training: A Crit-
ical Perspective. Preprint, arXiv:2503.20783.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, and 47 others.
2024. StarCoder 2 and The Stack v2: The Next
Generation. Preprint, arXiv:2402.19173.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048–11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen-
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling
Gu, Shengyi Huang, Matt Jordan, Nathan Lambert,
Dustin Schwenk, Oyvind Tafjord, Taira Anderson,
David Atkinson, Faeze Brahman, Christopher Clark,
Pradeep Dasigi, Nouha Dziri, and 21 others. 2025. 2
OLMo 2 Furious. Preprint, arXiv:2501.00656.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan
Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, and 25 others.

31221

https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2405.11143
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/2503.24290
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2502.21321
https://arxiv.org/abs/2502.21321
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.18653/v1/2022.acl-long.225
https://doi.org/10.18653/v1/2022.acl-long.225
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

2025. Qwen2.5 Technical Report. Preprint,
arXiv:2412.15115.

Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Sm-
ruti Mishra, Xuan Qi, Zhengyuan Shen, Shuai Wang,
Sangmin Woo, Sullam Jeoung, Yawei Wang, Haozhu
Wang, Han Ding, Yuzhe Lu, Zhichao Xu, Yun Zhou,
Balasubramaniam Srinivasan, Qiaojing Yan, Yueyan
Chen, Haibo Ding, and 2 others. 2025. A System-
atic Survey of Automatic Prompt Optimization Tech-
niques. Preprint, arXiv:2502.16923.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A Graduate-Level Google-Proof Q&A Benchmark.
In First Conference on Language Modeling.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez, and
7 others. 2024. Code Llama: Open Foundation Mod-
els for Code. Preprint, arXiv:2308.12950.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha. 2025.
A Systematic Survey of Prompt Engineering in Large
Language Models: Techniques and Applications.
Preprint, arXiv:2402.07927.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal Policy Optimization Algorithms. Preprint,
arXiv:1707.06347.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2024. Quantifying Language Models’ Sensitiv-
ity to Spurious Features in Prompt Design or: How
I learned to start worrying about prompt formatting.
In The Twelfth International Conference on Learning
Representations.

ByteDance Seed, :, Jiaze Chen, Tiantian Fan, Xin Liu,
Lingjun Liu, Zhiqi Lin, Mingxuan Wang, Chengyi
Wang, Xiangpeng Wei, Wenyuan Xu, Yufeng Yuan,
Yu Yue, Lin Yan, Qiying Yu, Xiaochen Zuo, Chi
Zhang, Ruofei Zhu, Zhecheng An, and 255 oth-
ers. 2025. Seed-Thinking-v1.5: Advancing Superb
Reasoning Models with Reinforcement Learning.
Preprint, arXiv:2504.13914.

Murray Shanahan, Kyle McDonell, and Laria Reynolds.
2023. Role play with large language models. Nature,
623(7987):493–498.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
DeepSeekMath: Pushing the Limits of Mathemat-
ical Reasoning in Open Language Models. Preprint,
arXiv:2402.03300.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao
Mi, Zhaopeng Tu, Min Zhang, and Dong Yu. 2025.
Crossing the Reward Bridge: Expanding RL with Ver-
ifiable Rewards Across Diverse Domains. Preprint,
arXiv:2503.23829.

Xiangru Tang, Yiming Zong, Jason Phang, Yilun Zhao,
Wangchunshu Zhou, Arman Cohan, and Mark Ger-
stein. 2024. Struc-bench: Are large language models
good at generating complex structured tabular data?
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 12–34, Mexico City,
Mexico. Association for Computational Linguistics.

Pittawat Taveekitworachai, Febri Abdullah, and Ruck
Thawonmas. 2024. Null-shot prompting: Rethinking
prompting large language models with hallucination.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
13321–13361, Miami, Florida, USA. Association for
Computational Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609–2634, Toronto, Canada. Associ-
ation for Computational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent Abilities of Large Language Models. Transac-
tions on Machine Learning Research. Survey Certifi-
cation.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and
Denny Zhou. 2022b. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin
Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang.
2025. SWE-RL: Advancing LLM Reasoning via Re-
inforcement Learning on Open Software Evolution.
Preprint, arXiv:2502.18449.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo,
Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhi-
rong Wu, and Chong Luo. 2025. Logic-RL: Unleash-
ing LLM Reasoning with Rule-Based Reinforcement
Learning. Preprint, arXiv:2502.14768.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng
He. 2025. Chain of Draft: Thinking Faster by Writ-
ing Less. Preprint, arXiv:2502.18600.

31222

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2502.16923
https://arxiv.org/abs/2502.16923
https://arxiv.org/abs/2502.16923
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://arxiv.org/abs/2504.13914
https://arxiv.org/abs/2504.13914
https://doi.org/10.1038/s41586-023-06647-8
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.23829
https://arxiv.org/abs/2503.23829
https://doi.org/10.18653/v1/2024.naacl-short.2
https://doi.org/10.18653/v1/2024.naacl-short.2
https://doi.org/10.18653/v1/2024.emnlp-main.740
https://doi.org/10.18653/v1/2024.emnlp-main.740
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://doi.org/10.18653/v1/2023.acl-long.147
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.18600
https://arxiv.org/abs/2502.18600

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neu-
big, and Xiang Yue. 2025. Demystifying Long
Chain-of-Thought Reasoning in LLMs. Preprint,
arXiv:2502.03373.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole
Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang,
Mofan Zhang, Wang Zhang, Hang Zhu, and 16
others. 2025. DAPO: An Open-Source LLM Re-
inforcement Learning System at Scale. Preprint,
arXiv:2503.14476.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei
Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang,
TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xi-
angyu Yu, Gaohong Liu, Juncai Liu, Lingjun Liu,
Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, and 8
others. 2025. VAPO: Efficient and Reliable Rein-
forcement Learning for Advanced Reasoning Tasks.
Preprint, arXiv:2504.05118.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu,
Keqing He, Zejun Ma, and Junxian He. 2025a.
SimpleRL-Zoo: Investigating and Taming Zero Re-
inforcement Learning for Open Base Models in the
Wild. Preprint, arXiv:2503.18892.

Wenjun Zeng, Dana Kurniawan, Ryan Mullins, Yuchi
Liu, Tamoghna Saha, Dirichi Ike-Njoku, Jindong
Gu, Yiwen Song, Cai Xu, Jingjing Zhou, Aparna
Joshi, Shravan Dheep, Mani Malek, Hamid Palangi,
Joon Baek, Rick Pereira, and Karthik Narasimhan.
2025b. ShieldGemma 2: Robust and Tractable Image
Content Moderation. Preprint, arXiv:2504.01081.

Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang,
Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
Guo, Yufei Wang, Niklas Muennighoff, Irwin King,
Xue Liu, and Chen Ma. 2025. A Survey on Test-
Time Scaling in Large Language Models: What, How,
Where, and How Well? Preprint, arXiv:2503.24235.

Pinlong Zhao, Weiyao Zhu, Pengfei Jiao, Di Gao, and
Ou Wu. 2025. Data Poisoning in Deep Learning: A
Survey. Preprint, arXiv:2503.22759.

A Related Work

A.1 Reinforcement Fine-Tuning (RFT)
Reinforcement learning (RL) has become a com-
mon post-training method for large language mod-
els (LLMs) (Kumar et al., 2025). One promi-
nent RL approach is reinforcement learning from
human feedback (RLHF) (Ouyang et al., 2022),
where a reward model–trained on human prefer-
ence comparisons–predicts scalar scores for model
outputs. This enables optimization of model be-
havior toward human-aligned responses, typically
using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017).

A recent shift in RL for LLM post-training is the
introduction of reinforcement learning with verifi-
able rewards (RLVR), also known as reinforcement
fine-tuning (RFT). First introduced by OLMo et al.
(2025), RFT replaces the reward model with task-
specific, rule-based reward functions for domains
with verifiable answers such as mathematics, logic,
and code. This not only improves performance but
also eliminates the need to train a separate reward
model and maintain it during training.

RFT gained widespread attention following the
release of DeepSeek-R1-Zero (DeepSeek-AI et al.,
2025), which extends the RLVR paradigm by incor-
porating two key modifications: (1) replacing PPO
with Group Relative Policy Optimization (GRPO)
(Shao et al., 2024) to eliminate the need for a sep-
arate value model, reducing compute cost; and
(2) introducing a prior prompt to elicit reason-
ing behavior during training. While the former
has received significant attention, the latter–prior
prompt–remains largely understudied.

The core components of RFT include: (1) the RL
algorithm, (2) base language model, (3) training
dataset, (4) reward function, and (5) prior prompt.
Recent studies have explored improvements in RL
algorithms (e.g., Dr. GRPO (Liu et al., 2025),
DAPO (Yu et al., 2025), VAPO (Yue et al., 2025)),
base model effects (Zeng et al., 2025a; Gandhi
et al., 2025), and expanding verifiable tasks such as
logic (Xie et al., 2025), coding (Wei et al., 2025),
and function calling (Feng et al., 2025). However,
the role of prior prompts has received little atten-
tion. Aside from one study noting their effect on
training stability (Xie et al., 2025; Hu et al., 2025),
prompt design in RFT remains significantly under-
explored. Given the importance of prompting in
inference-time settings (iPE), we argue that pPE
deserves focused study as a core axis of RFT.

A.2 Inference-Time Prompt Engineering
(iPE)

iPE has seen rapid development since the intro-
duction of ChatGPT (Sahoo et al., 2025). iPE
refers to techniques for prompting LLMs to pro-
duce desirable outcomes. A prominent direction in
iPE is reasoning-centric prompting, with the semi-
nal work being chain-of-thought (CoT) prompting
(Wei et al., 2022b), which uses in-context examples
to demonstrate multi-step reasoning. This was later
extended by zero-shot CoT (Kojima et al., 2022)
prompting, where a simple phrase like “Let’s think
step by step.” is sufficient to elicit similar behavior

31223

https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.05118
https://arxiv.org/abs/2504.05118
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2504.01081
https://arxiv.org/abs/2504.01081
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.24235
https://arxiv.org/abs/2503.22759
https://arxiv.org/abs/2503.22759

from capable LLMs.
Since then, many variants have emerged to elicit

a range of intermediate reasoning patterns–beyond
just step-by-step reasoning. These include prompt-
ing for planning (Wang et al., 2023), code gener-
ation (Chen et al., 2023), knowledge recall (Liu
et al., 2022), and hallucination induction (Taveekit-
worachai et al., 2024).

We note a conceptual parallel between iPE and
pPE: both initially focused on reasoning, but iPE
has since broadened to include diverse useful be-
haviors (Sahoo et al., 2025). Motivated by this,
our study extends RFT by incorporating a range of
iPE-inspired prompting strategies as prior prompts.
We aim to investigate whether these paradigms,
when moved from inference to training time, yield
corresponding behavioral changes during RFT.

B Additional Discussions

B.1 Domain generalization

We observe that, although only mathematical prob-
lems is used during training, performance improve-
ments often extend to other domains–as seen in
GPQA and HE+ in Tables 1 and 3. This demon-
strates the robustness of the RFT approach in gen-
eral and suggests that RFT may function more as a
mechanism for discovering useful generation pat-
terns than for infusing the model with new knowl-
edge. We expect broader performance generaliza-
tion to emerge with more diverse training data, such
as by incorporating code or logic problems.

B.2 pPE for RFT

As demonstrated in this study, the importance of
pPE in RFT is analogous to the role of iPE for LMs.
Prompts play a critical role in conditioning the base
model’s generation, which in turn affects the trajec-
tories sampled during RFT–ultimately leading to
distinct post-training behaviors.

This also implies that properties known to affect
LMs during inference, such as sensitivity to prompt
wording (Kojima et al., 2022; Shanahan et al.,
2023), formatting (Sclar et al., 2024; Tang et al.,
2024), and prompt order (Taveekitworachai et al.,
2024; Min et al., 2022), can similarly influence
RFT outcomes. However, our results in Section 4.1
suggest that insights from iPE do not directly
translate to RFT–reinforcing the need for targeted
study of pPE. That said, the model’s instruction-
following capabilities can still be leveraged to in-
centivize distinct behavioral patterns through care-

fully designed prior prompts.

B.3 Beyond Reasoning Models
We discuss here several promising directions en-
abled by pPE, inspired by advances in iPE:

Not only think, plan, code, and recall knowl-
edge The reasoning trace itself can be an impor-
tant vehicle for interpretability and user trust (Wei
et al., 2022b). Given that we can elicit distinct
reasoning styles, we may tailor them to user prefer-
ences or application requirements. For instance,
an LLM could reason in a self-talk style using
<dialogues> tags, or imitate a specific style us-
ing few-shot demonstrations (Brown et al., 2020).

Recent work on chain-of-draft prompting (Xu
et al., 2025) shows that natural language constraints
can guide the model to produce shorter but still
effective reasoning traces. Such behavior can likely
be transferred into pPE settings, especially with
models that possess strong instruction-following
capabilities. The breadth of iPE research suggests
many additional styles–beyond those we studied
here–could be explored and reinforced via pPE.

Dynamic pPE As shown in Table 1, different
pPE approaches excel in different domains. Dy-
namically selecting the prior prompt based on the
task or question difficulty could further enhance
performance. This idea aligns with the test-time
scaling paradigm (Zhang et al., 2025), which advo-
cates allocating more resources to harder inputs.

Furthermore, prior prompts could become part
of the RL optimization process, akin to automatic
prompt search (Ramnath et al., 2025). While such
approaches increase system complexity, they offer
a path toward more adaptive and robust behaviors.

Structured thinking Instead of using a single
behavior tag (e.g., <think>), we may extend to
multi-tag structures (e.g., combining <plan> and
<code>) to guide the model through more struc-
tured multi-phase reasoning processes. This may
be especially beneficial in tasks requiring distinct
reasoning modes at different stages (e.g., planning
followed by execution).

Incentivizing behaviors through verifiable re-
wards Consider a model trained with the <plan>
prompt. During training, it learns to produce a use-
ful plan inside the <plan> tag before solving the
problem in <answer>. Because final task accuracy
is used as a reward, this implicitly incentivizes the
model to generate effective intermediate content.

31224

Thus, verifiable rewards can act as a surrogate sig-
nal for training behaviors–such as a planning or
coding–without direct supervised signals.

This logic extends to other prompts: if we stop
generation after </plan> or </code>, we can re-
purpose these models to act as plan generators or
code synthesizers. This strategy opens up a broader
class of behavioral specialization, where useful in-
termediate behaviors can be extracted and repur-
posed for downstream applications—all trained in-
directly via RFT.

C Prior Prompt Examples

In this section, we provide additional two examples
of prior prompts used in existing RFT studies to
elicit reasoning behavior during RFT. These are
Figures 8 and 9.

Logic-RL Prior Prompt

You are a helpful assistant. The assistant first thinks
about the reasoning process in the mind and then pro-
vides the user with the answer. The reasoning process
and answer are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think>
reasoning process here </think><answer> answer
here </answer>. Now the user asks you to solve a
logical reasoning problem. After thinking, when you
finally reach a conclusion, clearly state the identity
of each character within <answer> </answer> tags.
i.e., <answer> (1) Zoey is a knight, (2) ... </answer>.

Figure 8: The prompt used during RFT by Logic-RL
(Xie et al., 2025).

Open-Reasoner-Zero Prior Prompt

A conversation between User and Assistant. The user
asks a question, and the Assistant solves it. The as-
sistant first thinks about the reasoning process in
the mind and then provides the user with the an-
swer. The reasoning process and answer are enclosed
within <think> </think> and <answer> </answer>
tags, respectively, i.e., <think> reasoning process here
</think> <answer> answer here </answer>. User:
You must put your answer inside <answer> </an-
swer> tags, i.e., <answer> answer here </answer>.
And your final answer will be extracted automatically
by the \boxed{} tag.
{{user_prompt}}
Assistant: <think>

Figure 9: The prompt used during RFT by Open-
Reasoner-Zero (Hu et al., 2025).

D Additional Experimental Setup Details

This section provides additional implementation
details of our experimental setup, including prior
prompt templates in Appendix D.1, training scripts
in Appendix D.3, reward function design in
Appendix D.2, and evaluation details in Ap-
pendix D.4.

D.1 Prior Prompts
This section presents the full set of prior prompts
used in our experiments, as described in Sec-
tion 3. Each prompt was designed to elicit dif-
ferent behavioral styles from the model. These
prompts are: <think> (Figure 10, for step-by-
step reasoning), <plan> (Figure 11, for planning),
<code> (Figure 12, for reasoning through code),
<knowledge> (Figure 13, for recalling relevant
facts), and <examples> (Figure 14, for utilizing
null-examples).

Think Prompt

You are a helpful assistant. The assistant first thinks
about the reasoning process in the mind and then pro-
vides the user with the answer. The reasoning process
and answer are enclosed within <think></think> and
<answer></answer> tags, respectively, i.e., <think>
reasoning process here </think><answer> answer
here </answer>. Now the user asks you to solve
a mathematical reasoning problem. After thinking,
when you finally reach a conclusion, clearly state the
final answer in \boxed{} within <answer> </answer>
tags. You always answer mathematically and do not
state the choice.

Figure 10: The <think> prior prompt, inspired by chain-
of-thought (CoT) prompting (Wei et al., 2022b), encour-
ages the model to reason step by step before concluding
with an answer.

D.2 Reward Design
We design our reward function with two equally
weighted components: (1) an accuracy reward
and (2) a format reward. This setup follows the
approach introduced by Xie et al. (2025). While
some studies suggest the format reward may not
be necessary (Zeng et al., 2025a), we find that it is
crucial in our setting to ensure the model outputs
are well-structured.

• Accuracy: The accuracy reward is based on
the model’s predicted answer, extracted from
the content enclosed in \boxed{}. We use the
math-verify1 package (Apache License 2.0)

1https://github.com/huggingface/Math-Verify

31225

https://github.com/huggingface/Math-Verify

Plan Prompt

You are a helpful assistant. The assistant first plans
about the reasoning process in the mind and then
provides the user with the answer. The plan and
answer are enclosed within <plan></plan> and <an-
swer></answer> tags, respectively, i.e., <plan> de-
tailed plan here </plan><answer> answer here </an-
swer>. Now the user asks you to solve a mathemat-
ical reasoning problem. After planning, when you
finally reach a conclusion, clearly state the final an-
swer in \boxed{} within <answer> </answer> tags.
You always answer mathematically and do not state
the choice.

Figure 11: The <plan> prior prompt, based on plan-and-
solve prompting (Wang et al., 2023), asks the model to
explicitly lay out a plan before solving the problem.

Code Prompt

You are a helpful assistant. The assistant first writes
required code used to solve the problem and then
provides the user with the answer. The code and
answer are enclosed within <code></code> and <an-
swer></answer> tags, respectively, i.e., <code> de-
tailed code here </code><answer> answer here </an-
swer>. Now the user asks you to solve a mathematical
reasoning problem. After coding, when you finally
reach a conclusion, clearly state the final answer in
\boxed{} within <answer> </answer> tags. You al-
ways answer mathematically and do not state the
choice.

Figure 12: The <code> prior prompt encourages the
model to reason through code, inspired by program-of-
thought (PoT) prompting (Chen et al., 2023).

Knowledge Prompt

You are a helpful assistant. The assistant first re-
calls relevant knowledge used to solve the prob-
lem and then provides the user with the answer.
The knowledge and answer are enclosed within
<knowledge></knowledge> and <answer></answer>
tags, respectively, i.e., <knowledge> comprehensive
knowledge here </knowledge><answer> answer here
</answer>. Now the user asks you to solve a math-
ematical reasoning problem. After recalling knowl-
edge, when you finally reach a conclusion, clearly
state the final answer in \boxed{} within <answer>
</answer> tags. You always answer mathematically
and do not state the choice.

Figure 13: The <knowledge> prior prompt elicits fac-
tual recall relevant to the problem before beginning
reasoning, inspired by generated knowledge prompting
(Liu et al., 2022).

Examples Prompt

You are a helpful assistant. The assistant first
lists relevant examples used to solve the problem
and then provides the user with the answer. The
examples and answer are enclosed within <exam-
ples></examples> and <answer></answer> tags, re-
spectively, i.e., <examples> relevant examples here
</examples><answer> answer here </answer>. Now
the user asks you to solve a mathematical reasoning
problem. After listing examples, when you finally
reach a conclusion, clearly state the final answer in
\boxed{} within <answer> </answer> tags. You al-
ways answer mathematically and do not state the
choice.

Figure 14: The <examples> prior prompt draws on
null-shot prompting (Taveekitworachai et al., 2024) to
encourage the model to provide illustrative examples
before answering.

to check for mathematical equivalence with the
ground-truth answer. If the answer is equivalent,
the model receives a reward of 0.5; otherwise, it
receives 0.0.

• Format: We adopt a relaxed version of the for-
mat reward from the open-r12 (Apache License
2.0) implementation. The reward is given if the
response includes exactly one pair of the ex-
pected XML tags (e.g., <think>...</think>
followed by <answer>...</answer>), and the
content satisfies basic XML structure constraints,
even if the tags are not the only elements in the
string. This constraint discourages generation
of multiple or malformed tag pairs. If the re-
sponse satisfies these constraints, a reward of 0.5
is granted; otherwise, it receives 0.0.

The total reward is the sum of these two com-
ponents, yielding a final reward in the range [0, 1].
This balanced reward design helps incentivize both
correct and well-structured responses during RFT.

D.3 Training Setup and Hyperparameters
We use the training script illustrated in Figure 15
for training the models as described in Section 3.2.
All training runs use a single node equipped with
8xH100 GPUs. Across all experiments presented
in this paper, we utilized a total of 78 GPU-hours.

We note that both OpenRLHF and vLLM are
available under the Apache License 2.0. The
Qwen2.5-7B model used in our main experiments
is distributed under the Apache License 2.0. For
our generalization studies, the Qwen2.5-3B model

2https://github.com/huggingface/open-r1

31226

https://github.com/huggingface/open-r1

is distributed under the Qwen Research License,
the Llama 3.1-8B model under the Llama 3.1
Community License Agreement, and the Qwen2.5-
Coder-7B model under the Apache License 2.0. All
of these licenses permit use for research purposes.

OpenRLHF Training Script

python3 -m openrlhf.cli.train_ppo_ray \
--ref_num_nodes 1 \
--ref_num_gpus_per_node 8 \
--actor_num_nodes 1 \
--actor_num_gpus_per_node 8 \
--vllm_num_engines 8 \
--vllm_tensor_parallel_size 1 \
--colocate_all_models \
--vllm_enable_sleep \
--vllm_gpu_memory_utilization 0.5 \
--pretrain "Qwen/Qwen2.5-7B" \
--remote_rm_url "reward_function.py" \
--micro_train_batch_size 1 \
--train_batch_size 64 \
--micro_rollout_batch_size 8 \
--rollout_batch_size 64 \
--n_samples_per_prompt 8 \
--enable_prefix_caching \
--max_epochs 1 \
--prompt_max_len 1024 \
--max_samples 10000 \
--generate_max_len 4096 \
--init_kl_coef 1e-6 \
--gamma 1.0 \
--use_kl_loss \
--kl_estimator k3 \
--advantage_estimator group_norm \
--zero_stage 2 \
--bf16 \
--actor_learning_rate 5e-7 \
--prompt_data "user/stillv3" \
--prompt_split "train" \
--input_key "query" \
--label_key "answer" \
--apply_chat_template \
--normalize_reward \
--adam_offload \
--gradient_checkpointing \
--flash_attn \
--packing_samples

Figure 15: Training script using the OpenRLHF for
RFT. This script specifies the model, dataset, GRPO
algorithm, reward configuration, and other relevant hy-
perparameters.

D.4 Evaluation
In this section, we provide additional details on
quantitative and qualitative evaluation, mentioned
in Section 3.3.

D.4.1 Quantitative Analysis
We evaluate the performance of each trained model
using both in- and out-of-domain benchmarks. Dur-

ing evaluation, we consistently prepend the same
prior prompt used during training to elicit the
trained behaviors. We evaluate once with fixed
random seed using pass@1 accuracy. The bench-
marks are:

• Mathematical reasoning: AIME24 (Li et al.,
2024), AMC12 ’22–’23 (Li et al., 2024), and
MATH-500 (Hendrycks et al., 2021) are bench-
marks used for evaluating mathematical reason-
ing and serve as our primary in-domain evalua-
tions.

• Coding: HumanEval+ (base and extra) (Liu et al.,
2023) is used to evaluate general coding ability
and serves as an out-of-domain probe.

• Knowledge-based question answering: GPQA-
Diamond (Rein et al., 2024) evaluates factual
knowledge and complex reasoning. We include
it to assess whether math-centric training with
different prior prompts can elicit behaviors asso-
ciated with knowledge recall. While this ability
may appear unrelated to solving math problems,
it can be useful for recalling definitions, theo-
rems, or formulas relevant to a given problem.

Additional metadata of these evaluation bench-
marks, along with our training set, is available in
Table 4.

D.4.2 Qualitative Analysis
To investigate whether different pPE approaches
lead to distinct behavioral patterns after RFT, we
assess the following aspects:

Training dynamics and response length We an-
alyze whether different pPE approaches result in
distinct training dynamics across models. In addi-
tion, we compute the average number of tokens in
generated responses.

Four fundamental cognitive behaviors of rea-
soning models Gandhi et al. (2025) identify four
fundamental cognitive behaviors commonly exhib-
ited by reasoning models. These behaviors are con-
sidered core components of what makes a model
capable of reasoning: (1) Verification: Identifying
errors in intermediate results, (2) Backtracking:
Abandoning the current approach and trying alter-
natives, (3) Subgoal setting: Breaking problems
down into smaller, more manageable steps, and (4)
Backward chaining: Reasoning backward from
the expected answer to the given inputs.

31227

Dataset Task Split Count Answer Type License

Training dataset
STILLv3 (Chen et al., 2025) Math Train 29925 N/A N/A

Evaluation benchmark
AIME24 (Li et al., 2024) Math Test 30 Number N/A
AMC12 ’22–’23 (Li et al., 2024) Math Test 83 Number N/A
MATH-500 (Hendrycks et al., 2021) Math Test 500 Number MIT License
HumanEval+ (Liu et al., 2023) Code Test 164 Code Apache 2.0
GPQA-Diamond (Rein et al., 2024) QA Test 198 MC CC BY 4.0

Table 4: Overview of the training dataset and evaluation benchmarks. We note that all datasets are available for the
purposes used in this study.

Following their methodology, we use an LLM-
based classifier to detect the presence of each
behavior in model outputs. While the original
study used gpt-4o-mini, we employ a more recent
model, gpt-4.1-mini-2025-04-14, for classifica-
tion. Our goal is to compare the distribution of
these behaviors across models trained or prompted
using different iPE/pPE strategies. Prompts used
for classification are provided in Figures 16 to 19.

Verifications Classification Prompt

You are a helpful assistant that analyzes mathematical
reasoning.

Here is a response that a language model gen-
erated while trying to solve a the following problem
the goal of accurately answer the problem.

Problem
{problem}

The response the model used is the follow-
ing:

Response
{completion}

Evaluate whether the response contains any
answer-verification steps. An example of an
answer-verification step is: ’This sequence results
in 1, which is not equal to 22’ and ’Since 25 is not
equal to 22’ for explicit verification and ’Too high!’
or ’This works!’ for implicit verification. We want to
mark instances where the response explicitly checks
the current result.

If you find any answer-verification steps, please
count them and provide the count as between the tags
<count> </count>. If the response does not contain
any answer-verification steps, please provide a count
of 0 as <count>0</count>.

Figure 16: Prompt used to identify verification behavior–
explicit checking or validation of intermediate results–in
the model’s reasoning.

Five pPE-specific behaviors We further adapt
the same classification approach to evaluate

Backtracking Classification Prompt

You are a helpful assistant that analyzes mathematical
reasoning.

Here is a response that a language model gen-
erated while trying to solve a the following problem
the goal of accurately answer the problem.

Problem
{problem}

The response the model used is the follow-
ing:

Response
{completion}

Evaluate whether the response contains any
backtracking behavior, where the model realizes a
path won’t work and explicitly goes back to try a
different approach.

Count the number of distinct backtracking in-
stances and provide the count between the tags
<count> </count>. If the response does not contain
any backtracking behavior, please provide a count of
0 as <count>0</count>.

Figure 17: Classification prompt used to detect instances
of backtracking–when a model revises or abandons a
previous approach–in its reasoning trace.

31228

Subgoal Settings Classification Prompt

You are a helpful assistant that analyzes mathematical
reasoning.

Here is a response that a language model gen-
erated while trying to solve a the following problem
the goal of accurately answer the problem.

Problem
{problem}

The response the model used is the follow-
ing:

Response
{completion}

Evaluate whether the response contains any
backward-chaining behavior, where the model starts
from the target and works backwards to the initial
problem. An example of backward-chaining when
the target is 24 and the numbers are 12 and 2 is:
"Let’s work backwards from the target. 24/2 = 12.
So, 12*2=24." and if the target is 22 and the numbers
are 25 and 3 is: "Since the target is 22, and 22 + 3 =
25, ...".

Count the number of distinct backward-chaining
instances and provide the count between the tags
<count> </count>. If the response does not contain
any backward-chaining behavior, please provide a
count of 0 as <count>0</count>.

Figure 18: Prompt used to detect subgoal setting be-
havior, where the model breaks a problem into smaller,
intermediate steps.

Backward Chaining Classification Prompt

You are a helpful assistant that analyzes mathematical
reasoning.

Here is a response that a language model gen-
erated while trying to solve a the following problem
the goal of accurately answer the problem.

Problem
{problem}

The response the model used is the follow-
ing:

Response
{completion}

Evaluate whether the response contains any
explicit subgoal setting, where the model breaks
down the problem into smaller, intermediate goals.
An example of subgoal setting is: "First, I’ll try to
get close to target/2, then...".

Count the number of distinct subgoals set and
provide the count between the tags <count> </count>.
If the response does not contain any subgoal setting,
please provide a count of 0 as <count>0</count>.

Figure 19: Classification prompt used to identify back-
ward chaining–reasoning from the goal back to known
facts–within a model’s response.

whether the target behavior elicited by each pPE
(e.g., reasoning, planning, coding, knowledge re-
call, or example generation) is present in model
responses. This is treated as a binary classifica-
tion task, assessing the presence or absence of
the expected behavior per response. Classification
prompts are provided in Figures 20 to 24.

For all analyses, we exclude HumanEval+ due to
missing raw responses from the evaluation program.
We also omit a very small number of responses
(less than 0.05% of the total) due to response pars-
ing errors from gpt-4.1-mini-2025-04-14.

E Additional Results

This section presents additional results from the
generalization studies discussed in Section 4.3.
Training dynamics for the three language models
are provided in Appendix E.1. Results for the clas-
sification of the four fundamental behaviors and
the five elicited behavior categories are available in
Appendix E.2 and Appendix E.3, respectively. In
addition, we provide an alternative visualization of
performance across benchmarks from the main ex-
periments on Qwen2.5-7B, showing changes over
the baseline in Table 5.

31229

Think Classification Prompt

You are a helpful assistant that analyzes mathematical
reasoning.

Here is a response that a language model gen-
erated while trying to solve a the following problem
the goal of accurately answer the problem.

Problem
{problem}

The response the model used is the follow-
ing:

Response
{completion}

Evaluate whether the response contains inter-
nal step-by-step logical reasoning to reach a
conclusion. Look for clear sequences of deductive or
mathematical steps that reflect the assistant "thinking
through" the problem logically.

If you find any reasoning steps, please return
<result>YES</result>. If the response does not
contain any reasoning steps, please return <re-
sult>NO</result>.

Figure 20: Prompt used to classify whether the model is
exhibiting reasoning aligned with the <think> prompt
(step-by-step logical reasoning).

Plan Classification Prompt

ou are a helpful assistant that analyzes mathematical
reasoning.

Here is a response that a language model gen-
erated while trying to solve a the following problem
the goal of accurately answer the problem.

Problem
{problem}

The response the model used is the follow-
ing:

Response
{completion}

Evaluate whether the response contains a structured
plan or approach for solving the problem before
executing calculations. Look for high-level steps,
strategies, or intentions stated clearly (e.g., "First I
will factor this... then I will check for...", "1. Conduct
a hypothesis testing.").

If you find any solution planning, please re-
turn <result>YES</result>. If the response does
not contain any solution planning, please return
<result>NO</result>.

Figure 21: Prompt used to identify whether the model
is engaging in explicit planning, consistent with the
<plan> prompting style.

Code Classification Prompt

You are a helpful assistant that analyzes mathematical
reasoning.

Here is a response that a language model gen-
erated while trying to solve a the following problem
the goal of accurately answer the problem.

Problem
{problem}

The response the model used is the follow-
ing:

Response
{completion}

Evaluate whether the response includes writ-
ten code (in any programming language) used
to compute or check the solution. Code may be
accompanied by brief comments or used directly to
reason.

If you find any code implementation, please
return <result>YES</result>. If the response does
not contain any code implementation, please return
<result>NO</result>.

Figure 22: Prompt used to determine whether code-
based reasoning patterns, encouraged by the <code>
prompt, are present in the model output.

Knowledge Classification Prompt

You are a helpful assistant that analyzes mathematical
reasoning.

Here is a response that a language model gen-
erated while trying to solve a the following problem
the goal of accurately answer the problem.

Problem
{problem}

The response the model used is the follow-
ing:

Response
{completion}

Evaluate whether the response recalls relevant
facts, theorems, or concepts before solving the
problem. This includes definitions, properties,
or known formulas used to justify or support the
solution path.

If you find any background knowledge, please
return <result>YES</result>. If the response does
not contain any background knowledge, please return
<result>NO</result>.

Figure 23: Prompt used to detect knowledge-recall be-
havior, as in <knowledge> approach.

31230

Examples Classification Prompt

You are a helpful assistant that analyzes mathematical
reasoning.

Here is a response that a language model gen-
erated while trying to solve a the following problem
the goal of accurately answer the problem.

Problem {problem}

The response the model used is the follow-
ing:

Response
{completion}

Evaluate whether the response provides one
or more illustrative examples (worked out or
referenced) that help explain the problem or solution
process. These may be from simpler or analogous
problems used to derive or validate the answer.

If you find any example usage, please return
<result>YES</result>. If the response does not
contain any example usage, please return <re-
sult>NO</result>.

Figure 24: Prompt used to classify whether the model
is generating illustrative examples, as intended by the
<examples> prompting approach.

Model AIME AMC GPQA MATH HE+ Avg.

iPE
Think -3.33 -6.02 +0.00 +0.40 +2.40 -1.31
Plan -3.33 -7.23 +0.00 -4.40 +1.20 -2.75
Code +0.00 -10.84 +0.00 -4.20 -0.60 -3.13
Knowledge +6.67 -12.05 +0.00 +4.00 -0.60 -0.40
Examples +3.34 -4.82 +0.00 +1.20 -72.60 -14.58

RFT
No PP +13.34 +0.00 -3.03 +14.80 +1.20 +4.79

pPE
Think +6.67 +6.02 +4.04 +17.60 -2.50 +6.37
Plan +6.67 +7.23 +0.51 +14.00 -3.70 +4.94
Code +3.34 +9.64 +1.01 +10.60 +5.40 +6.00
Knowledge +3.34 +0.00 -2.52 +15.40 +0.60 +3.36
Examples +6.67 +6.02 +6.57 +15.60 +0.00 +6.97

Table 5: Absolute change in accuracy (green = gain,
red = drop) relative to the zero-shot Qwen2.5-7B base
model.

E.1 Training Dynamics and Average
Response Length

0 20 40 60 80 100 120 140 160
Step

0.1

0.2

0.3

0.4

0.5

Re
wa

rd

Think
Plan

Figure 25: Reward progression for Qwen2.5-3B during
RFT.

0 20 40 60 80 100 120 140 160
Step

0

100

200

300

400

500

600

700

Re
sp

on
se

 L
en

gt
h

Think
Plan

Figure 26: Evolution of the average response length for
Qwen2.5-3B during RFT.

0 20 40 60 80 100 120 140 160
Step

0.0

0.1

0.2

0.3

0.4

0.5

Re
wa

rd

Think
Plan

Figure 27: Reward progression for Llama 3.1-8B during
RFT.

Figures 25 to 30 present the reward and response-
length dynamics during RFT for Qwen2.5-3B,
Llama 3.1-8B, and Qwen2.5-Coder-7B, respec-
tively.

Finally, Table 6 reports the average response
length, i.e., average number of tokens in responses
for the generalization experiments.

E.2 Four Fundamental Cognitive Behaviors

In this subsection, we present the results of four fun-
damental cognitive behavior classifications from
the generalization studies for Qwen2.5-3B, Llama
3.1-8B, and Qwen2.5-Coder-7B, shown in Fig-
ures 31 to 33, respectively.

31231

0 20 40 60 80 100 120 140 160
Step

0

500

1000

1500

2000

2500

Re
sp

on
se

 L
en

gt
h

Think
Plan

Figure 28: Evolution of the average response length for
Llama 3.1-8B during RFT.

0 20 40 60 80 100 120 140 160
Step

0.1

0.2

0.3

0.4

0.5

0.6

Re
wa

rd

Code
Think

Figure 29: Reward progression for Qwen2.5-Coder-7B
during RFT.

0 20 40 60 80 100 120 140 160
Step

0

500

1000

1500

2000

2500

Re
sp

on
se

 L
en

gt
h

Code
Think

Figure 30: Evolution of the average response length for
Qwen2.5-Coder-7B during RFT.

Base
0

250

500

750

1000

1250

1500

1750

Co
un

t

Base

iPE pPE

Think

iPE pPE

Plan

Backtracking Backward chaining Sub-goal settings Verifications

Figure 31: Ratio of the four fundamental cognitive
behaviors–backtracking, backward chaining, subgoal
setting, and verification–across different prompting
(iPE) and RFT (pPE) approaches with Qwen2.5-3B.

Model AIME AMC GPQA MATH Avg.

Qwen2.5 3B 1249.00 1297.70 455.85 981.93 996.12

iPE
Think 1764.63 1156.81 455.85 754.45 1032.94
Plan 1349.13 1270.47 455.85 631.23 926.67

pPE
Think 124.37 492.70 412.17 182.44 302.92
Plan 9.00 9.00 274.95 9.00 75.49

Llama 3.1-8B 8.03 11.25 N/A 128.93 49.40

iPE
Think 6122.33 4347.72 N/A 4177.73 4882.59
Plan 4562.97 5150.96 N/A 4452.76 4722.23

pPE
Think 22.70 23.23 N/A 25.84 23.92
Plan 21.10 20.37 N/A 53.94 31.80

Qwen2.5-Coder-7B 3856.83 2947.86 1510.95 3570.15 2971.45

iPE
Think 2601.03 748.31 1510.95 917.51 1444.45
Code 779.67 337.59 1510.95 265.43 723.41

pPE
Think 1850.67 1045.12 592.05 758.67 1061.63
Code 164.72 254.41 311.49 152.67 220.82

Table 6: Average response length, i.e., number of tokens,
of Qwen2.5-3B, Llama 3.1-8B, and Qwen2.5-Coder-7B
when prompted with different iPE or RFT with different
pPE approaches across four benchmarks.

Base
0

10

20

30

40

Co
un

t

Base

iPE pPE

Think

iPE pPE

Plan

Backtracking Backward chaining Sub-goal settings Verifications

Figure 32: Ratio of the four fundamental cognitive
behaviors–backtracking, backward chaining, subgoal
setting, and verification–across different prompting
(iPE) and RFT (pPE) approaches with Llama 3.1-8B.

In addition, we provide detailed tables of the
exact behavior counts for the main experiment in
Table 7, previously visualized in Figure 6, and for
the generalization studies in Table 8, previously
visualized in Figures 31 to 33.

E.3 Five Elicited Behaviors

In this subsection, we present the results of five
elicited cognitive behavior classifications from the
generalization studies for Qwen2.5-3B, Llama 3.1-
8B, and Qwen2.5-Coder-7B, shown in Figures 34
to 36, respectively.

In addition, we provide detailed tables of the
exact behavior counts for the main experiment in
Table 9, previously visualized in Figure 7, and for
the generalization studies in Table 10, previously
visualized in Figures 34 to 36.

31232

Base
0

500

1000

1500

2000

2500

Co
un

t
Base

iPE pPE

Think

iPE pPE

Code

Backtracking Backward chaining Sub-goal settings Verifications

Figure 33: Ratio of the four fundamental cognitive
behaviors–backtracking, backward chaining, subgoal
setting, and verification–across different prompting
(iPE) and RFT (pPE) approaches with Qwen2.5-Coder-
7B.

Model Backtrack. Back.Chain. Subgoal.Set. Veri.

Qwen2.5-7B 30 1707 9 195

iPE
Think 31 1542 15 201
Plan 60 2202 6 156
Code 66 2394 31 223
Knowledge 79 2794 56 274
Examples 114 3159 30 453

RFT
No PP 70 2195 23 336

pPE
Think 27 1354 16 150
Plan 32 2450 11 110
Code 42 1628 19 262
Knowledge 63 1180 14 148
Examples 46 1545 8 98

Table 7: Occurrence counts of the four fundamental cog-
nitive behaviors–backtracking (Backtrack.), backward
chaining (Back.Chain.), subgoal settings (Subgoal.Set.),
and verifications (Veri.)–in Qwen2.5-7B’s responses
under different iPE and pPE approaches. Counts are
obtained via the LM-based classification framework of
Gandhi et al. (2025). Bold marks the highest count and
underlined marks the lowest count per column.

Th
ink Pla

n
Cod

e

Kn
ow

led
ge

Ex
am

ple
s

Behavior Type

Th
in

k
Pl

an
Ap

pr
oa

ch

-98 -32 -48 -19 -26

-207 105 -51 -63 -38

iPE

Th
ink Pla

n
Cod

e

Kn
ow

led
ge

Ex
am

ple
s

Behavior Type

Th
in

k
Pl

an
Ap

pr
oa

ch

-60 375 -50 234 -45

-604 -523 -51 -524 -53

pPE

500

250

0

250

Ch
an

ge
 fr

om
 B

as
e

Figure 34: Behavior alignment heatmaps for Qwen2.5
3B: iPE on the left, RFT on the right.

Th
ink Pla

n
Cod

e

Kn
ow

led
ge

Ex
am

ple
s

Behavior Type

Th
in

k
Pl

an
Ap

pr
oa

ch

116 19 4 49 1

136 23 3 57 0

iPE

Th
ink Pla

n
Cod

e

Kn
ow

led
ge

Ex
am

ple
s

Behavior Type

Th
in

k
Pl

an
Ap

pr
oa

ch

-31 -7 0 -67 -7

-33 -8 0 -68 -8

pPE

0

100

Ch
an

ge
 fr

om
 B

as
e

Figure 35: Behavior activation patterns for Llama 3.1
8B under iPE (left) and RFT (right).

Model Backtrack. Back.Chain. Subgoal.Set. Veri.

Qwen2.5-3B 37 1611 10 91

iPE
Think 13 646 5 125
Plan 16 1220 13 46

pPE
Think 6 604 12 42
Plan 0 78 0 6

Llama 3.1-8B 0 31 2 7

iPE
Think 1 18 4 5
Plan 1 14 6 0

pPE
Think 0 2 0 0
Plan 1 0 0 0

Qwen2.5-Coder-7B 25 908 7 644

iPE
Think 6 420 3 24
Code 6 959 17 53

pPE
Think 57 2172 21 313
Code 2 104 12 26

Table 8: Occurrence counts of the four fundamental cog-
nitive behaviors–backtracking (Backtrack.), backward
chaining (Back.Chain.), subgoal settings (Subgoal.Set.),
and verifications (Veri.)–in Qwen2.5-3B, Llama 3.1-8B,
and Qwen2.5-Coder-7B responses under different iPE
and pPE approaches. Counts are obtained via the LM-
based classification framework of Gandhi et al. (2025).
Bold marks the highest count and underlined marks the
lowest count per column under the same base model.

Th
ink Pla

n
Cod

e

Kn
ow

led
ge

Ex
am

ple
s

Behavior Type

Th
in

k
Co

deAp
pr

oa
ch

-287 -226 -16 -222 -36

-260 -197 216 -151 -11

iPE

Th
ink Pla

n
Cod

e

Kn
ow

led
ge

Ex
am

ple
s

Behavior Type

Th
in

k
Co

deAp
pr

oa
ch

655 722 -16 602 49

-478 -465 1126 -416 -33

pPE

0

500

1000

Ch
an

ge
 fr

om
 B

as
e

Figure 36: Behavior heatmaps for Qwen2.5-Coder 7B:
iPE (left) vs. RFT (right).

Model Code Examples Knowledge Plan Think

Qwen2.5-7B 193 77 626 652 711

iPE
Think 31 55 635 622 716
Plan 38 51 616 733 659
Code 704 60 1002 1137 1130
Knowledge 88 112 1168 1155 1289
Examples 68 159 1112 1136 1304

RFT
No PP 16 75 708 716 780

pPE
Think 34 68 662 741 764
Plan 23 57 658 759 757
Code 602 58 640 688 739
Knowledge 14 61 720 722 760
Examples 21 57 632 704 746

Table 9: Occurrence counts of the five elicited
behaviors–code, examples, knowledge, plan, and think–
in Qwen2.5-7B’s responses under different iPE and
pPE approaches. Bold marks the highest count and
underlined marks the lowest count per column.

31233

Model Code Examples Knowledge Plan Think

Qwen2.5-3B 51 53 554 545 630

iPE
Think 3 27 535 513 532
Plan 0 15 491 650 423

pPE
Think 1 8 788 920 570
Plan 0 0 30 22 26

Llama 3.1-8B 0 8 71 9 36

iPE
Think 4 9 120 28 152
Plan 3 8 128 32 172

pPE
Think 0 1 4 2 5
Plan 0 0 3 1 3

Qwen2.5-Coder-7B 16 54 577 525 669

iPE
Think 0 18 355 299 382
Code 232 43 426 328 409

pPE
Think 0 103 1179 1247 1324
Code 1142 21 161 60 191

Table 10: Occurrence counts of the five elicited
behaviors–code, examples, knowledge, plan, and think–
in Qwen2.5-3B, Llama 3.1-8B, and Qwen2.5-Coder-
7B responses under different iPE and pPE approaches.
Bold indicates the best performance per column under
the same base model; underlined indicates the second
best per column under the same base model.

F Qualitative Examples

To illustrate the behavioral differences induced by
each pPE approach, we present qualitative outputs
from models trained with different prior prompts
in response to a shared math problem. Examples of
model responses for each pPE approach are shown
in Figures 38 to 42, using the shared prompt in
Figure 37.

Example Prompt

How many positive whole-number divisors does 196
have?

Figure 37: The shared prompt used to probe all models
in this qualitative comparison. The question requires
the model to determine the number of positive whole-
number divisors of 196.

G Declaration of AI Assistance

We utilized ChatGPT for grammatical checking
and LaTeX support of the content presented in this
study but did not use it for the initial draft of this
study. Cursor was utilized for trivial and boilerplate
code completion during data analysis. We declare
that all content presented and code utilized in this
study has been reviewed and edited by the authors.

Qwen2.5 7B RFT with Think

<think>
To determine the number of positive whole-number
divisors of 196, we first need to find its prime
factorization.

1. Start by dividing 196 by the smallest prime
number, which is 2:

196÷ 2 = 98

So, 196 = 2 x 98.

2. Next, divide 98 by 2:

98÷ 2 = 49

So, 196 = 2 x 2 x 49.

3. Now, 49 is not divisible by 2, so we move
to the next smallest prime number, which is 3.
However, 49 is not divisible by 3 either. The next
prime number is 5, and 49 is not divisible by 5. The
next prime number is 7:

49÷ 7 = 7

So, 196 = 2 x 2 x 7 x 7.

4. We can write this in exponential form:

196 = 22 × 72

To find the number of divisors, we use the
formula for the number of divisors based on the
prime factorization. If a number n has a prime
factorization of pe11 × pe22 × · · · × p

ek
k , then the

number of divisors D(n) is given by:

D(n) = (e1 + 1)(e2 + 1) · · · (ek + 1)

For 196, the exponents in the prime factoriza-
tion are 2 and 2. Therefore, the number of divisors is:

D(196) = (2 + 1)(2 + 1) = 3× 3 = 9

So, the number of positive whole-number di-
visors of 196 is 9.
</think>
<answer>
9

</answer>

Figure 38: Response from Qwen2.5 7B trained with the
<think> prior prompt. The model demonstrates step-
by-step reasoning throughout its solution.

31234

Qwen2.5 7B RFT with Plan

<plan>
1. Identify the prime factorization of 196.
2. Use the formula for finding the number of divisors
from the prime factorization.
</plan>

<answer>
To find the number of positive whole-number
divisors of 196, we first need to determine its prime
factorization.

1. Prime factorization of 196:
- 196 is even, so it is divisible by 2: 196÷ 2 = 98.
- 98 is also even, so it is divisible by 2: 98÷ 2 = 49.
- 49 is not even, but it is divisible by 7: 49÷ 7 = 7.
- 7 is a prime number.

So, the prime factorization of 196 is 22 × 72.

2. Using the formula for finding the number
of divisors from the prime factorization:
If a number n has a prime factorization of
pe11 × pe22 × . . .× p

ek
k , then the number of divisors

of n is given by (e1 + 1)(e2 + 1) . . . (ek + 1).

For 196, the exponents in the prime factoriza-
tion are 2 and 2. Therefore, the number of divisors is
(2 + 1)(2 + 1) = 3× 3 = 9.

Thus, the number of positive whole-number
divisors of 196 is 9 .
</answer>

Figure 39: Response from Qwen2.5 7B trained with the
<plan> prior prompt. The model outlines a structured
plan before proceeding to execution.

Qwen2.5 Coder 7B RFT with Code

<code>

divisors = []
number = 196

for i in range(1, number + 1):
if number \% i == 0:

divisors.append(i)

</code>
<answer>The number 196 has 9 positive whole-
number divisors.</answer>

Figure 40: Response from Qwen2.5-Coder 7B trained
with the <code> prior prompt. The model uses Python
code to assist in its reasoning process.

Qwen2.5 7B RFT with Knowledge

<knowledge>
To determine the number of positive whole-number
divisors of 196, we first need to find its prime
factorization. The prime factorization of a number is
the product of prime numbers that equals the original
number.

Let’s find the prime factorization of 196:
1. 196 is even, so it is divisible by 2:

196÷ 2 = 98

So, we have 196 = 2× 98.
2. 98 is also even, so it is divisible by 2:

98÷ 2 = 49

So, we have 196 = 2× 2× 49.
3. 49 is not even, but it is divisible by 7:

49÷ 7 = 7

So, we have 196 = 2× 2× 7× 7.
4. 7 is a prime number, so we stop here.

The prime factorization of 196 is 22 × 72.

To find the number of positive divisors, we
use the formula that involves adding 1 to each of
the exponents in the prime factorization and then
multiplying the results:

(2 + 1)(2 + 1) = 3× 3 = 9

Therefore, 196 has 9 positive whole-number
divisors.
</knowledge>
<answer>
9

</answer>

Figure 41: Response from Qwen2.5 7B trained with the
<knowledge> prior prompt. The model first recalls defi-
nitions and relevant facts before solving the problem.

31235

Qwen2.5 7B RFT with Examples

<examples>
To determine the number of positive whole-number divisors of 196,
we first need to find its prime factorization.

1. Start by dividing 196 by the smallest prime number, which is 2:

196 ÷ 2 = 98

So, 2 is a prime factor.

2. Divide 98 by 2 again:

98 ÷ 2 = 49

So, 2 is a prime factor again.

3. Now, 49 is not divisible by 2, so we move to the next
smallest prime number, which is 3. However, 49 is not divisible by
3 either. The next prime number is 5, but 49 is not divisible by 5.
The next prime number is 7:

49 ÷ 7 = 7

So, 7 is a prime factor.

4. Finally, 7 is a prime number itself, so we divide it by
7:

7 ÷ 7 = 1

So, 7 is a prime factor again.

Thus, the prime factorization of 196 is:

196 = 2
2 × 7

2

To find the number of positive whole-number divisors, we
use the formula for finding the number of divisors from the
prime factorization. If a number n has a prime factorization of
p
e1
1 × p

e2
2 × · · · × p

ek
k , then the number of positive divisors of

n is given by:

(e1 + 1)(e2 + 1) · · · (ek + 1)

For 196, the exponents in the prime factorization are 2 and
2. Therefore, the number of positive divisors is:

(2 + 1)(2 + 1) = 3 × 3 = 9

So, 196 has 9 positive whole-number divisors.
</examples>

<answer>
9

</answer>

Figure 42: Response from Qwen2.5 7B trained with
the <examples> prior prompt. The model introduces
illustrative examples to support its reasoning.

31236

