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Abstract

We present DroidCollection' 2, the most ex-
tensive open data suite for training and evalu-
ating machine-generated code detectors, com-
prising over a million code samples, seven
programming languages, outputs from 43 cod-
ing models, and three real-world coding do-
mains. Alongside fully Al-generated examples,
our collection includes human-Al co-authored
code, as well as adversarial examples explic-
itly crafted to evade detection. Subsequently,
we develop DroidDetect, a suite of encoder-
only detectors trained using a multi-task objec-
tive over DroidCollection. Our experiments
show that existing detectors’ performance fails
to generalise to diverse coding domains and
programming languages outside of their nar-
row training data. We further demonstrate that
while most detectors are easily compromised
by humanising the output distributions using su-
perficial prompting and alignment approaches,
this problem can be easily amended by train-
ing on a small number of adversarial examples.
Finally, we demonstrate the effectiveness of
metric learning and uncertainty-based resam-
pling as way to enhance detector training on
possibly noisy distributions.

1 Introduction

In recent years, language models (LMs) for
code generation (Code-LMs) have become a near-
indispensable accessory in a developer’s toolbox.
Their enhancement of productivity has proliferated
into most of the software development lifecycle, in-
cluding automating unit test generation (Jain et al.,
2025), code infilling (Bavarian et al., 2022), pre-
dicting build errors, and code refactoring, inter
alia, propelling their broad adoption in produc-
tion (Dunay et al., 2024; Froemmgen et al., 2024;
Murali et al., 2024).
'@ https://huggingface.co/collections/

project-droid/droid-683360d8b008214a4273099a

Zrudats https://tudatalib.ulb. tu-darmstadt.de/
items/ebc68cfb-186e-4303-bd46-cbdd15af2045

However, the code authoring and refinement abil-
ities of these models present issues with respect to
domains where the human authorship of the gener-
ated artefacts is paramount and the consequences
of limited human supervision are of concern.

Despite the well-documented productivity ben-
efits of using Al assistance for knowledge work-
ers (Weber et al., 2024b; Li et al., 2023a), there
exists a wide range of scenarios where ensuring the
human authorship of artefacts is vital, resulting in
the need for robust detectors of machine-assisted
code. For instance, in academia, students’ reliance
on LMs for assignments undermines educational
integrity, since students persist in using them even
while recognizing that such use constitutes cheat-
ing (Sullivan et al., 2023). Similarly, conducting
technical hiring fairly and human code annotation
studies accurately requires the ability to ensure that
the submitted artefacts are authentically human-
authored (Veselovsky et al., 2023).

The subtle failure patterns in the outputs of code
LMs demonstrate the need for strong detection
mechanisms as part of the workflow in order to
safeguard against unforeseen side effects. For in-
stance, machine-generated code can introduce se-
rious vulnerabilities (e.g., insecure logic, hidden
backdoors, or injection flaws), which can jeopar-
dise software reliability (Bukhari, 2024) and data
security (Pearce et al., 2025). It can also facili-
tate obfuscation, producing code that is harder to
parse (Vaithilingam et al., 2022), thus effectively
hiding malicious functionality and complicating
debugging (Nunes et al., 2025). These weaknesses
can get amplified over time, creating a danger-
ous feedback loop where (possibly deficient) Al-
generated code enters public repositories and is
leveraged for subsequent training runs, thus increas-
ing the risk of degraded data quality (Ji et al., 2024)
or, even worse, collapsing models (Shumailov et al.,
2024).

31263

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 31263-31289
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://huggingface.co/collections/project-droid/droid-683360d8b008214a4273099a
https://huggingface.co/collections/project-droid/droid-683360d8b008214a4273099a
https://tudatalib.ulb.tu-darmstadt.de/items/ebc68cfb-186e-4303-bd46-cbd015af2045
https://tudatalib.ulb.tu-darmstadt.de/items/ebc68cfb-186e-4303-bd46-cbd015af2045

Despite the increasing interest in detecting Al-
generated code, most current work has notable lim-
itations. Existing work usually covers fewer than
three programming languages (Xu et al., 2025) and
focuses on a narrow set of API-based code gen-
erators (Yang et al., 2023). Moreover, detectors
typically address the problem as a binary classifi-
cation task: machine-generated vs. human-written
code (Jawahar et al., 2020). This ignores com-
mon hybrid operating modes where code is co-
authored by humans and LMs or adversarial scenar-
ios where models are prompted or tuned to evade
detection (Abassy et al., 2024).

Our work addresses these limitations with a com-
prehensive and scalable approach to Al-generated
code detection. Our contributions are as follows:

* We compile and open-source DroidCollection,
an extensive suite of multi-way classification data
for training and evaluating Al-generated code de-
tectors. DroidCollection contains over 1 mil-
lion instances sampled from 43 LMs (spanning
11 model families), 7 programming languages,
and multiple coding domains.

* We propose a novel task: detection of code
generated by adversarially trained LMs, which
mimics intentional obfuscation and evasion be-
haviours. To this end, we compile and release
DroidCollection-Pref, a preference corpus of
157k response pairs designed to encourage lan-
guage models to produce responses that closely
resemble those of humans.

* We open-source DroidDetect-Base and
DroidDetect-Large, two state-of-the-art
Al-generated code detectors fine-tuned from
ModernBERT (Warner et al., 2024) Base
(149M), and Large (396M) models, respectively,
using DroidCollection.

* We conduct extensive out-of-distribution perfor-
mance analysis across languages, coding do-
mains and detection settings. Our evaluation re-
sults demonstrate that there is positive transfer
across related programming languages (Martini,
2015) and across domains. We also find that most
existing models struggle when tasked with detect-
ing machine-refined code and are almost entirely
unusable against adversarially humanised model-
generated code. However, we show that this can
be rectified by incorporating modest amounts of
such data during training.

2 Related Work

We briefly outline three relevant lines of exist-
ing work: 1) Al-generated text detection, 2) Al-
generated code detection, and 3) adversarial eva-
sion of Al-generated content detectors.

2.1 AI-Generated Text Detection

Early research on synthetic data detection has
focused on detecting Al-generated text in spe-
cific, fundamental tasks such as question answer-
ing (Guo et al., 2023), translation, summarisation
and paraphrasing (Su et al., 2023). Major early
contributions to creating comprehensive bench-
marks include M4 (Wang et al., 2024), which in-
troduced a multilingual, multi-generator and multi-
domain benchmark consisting of 122,000 human-
written and machine-generated texts. MULTI-
TuDE (Macko et al., 2023) featured a multilingual
dataset with over 70,000 samples of Al and human-
written texts across 11 languages. Additionally,
MAGE (Li et al., 2024) concentrated on English-
only scenarios, but emphasised evaluating model
robustness by testing across eight distinct out-of-
domain settings to simulate real-world scenarios.
The advancement of this field has been further stim-
ulated by numerous competitions and shared tasks
dedicated to Al-generated text detection, including
RuATD (Shamardina et al., 2022), a shared task at
COLING’2025 (Wang et al., 2025), a shared task
at ALTA (Moll4 et al., 2024), and DagPap (Chame-
zopoulos et al., 2024).

Tools such as MOSS (Puryear and Sprint, 2022)
have shown some effectiveness in identifying Al-
generated code, since their style is out of the ordi-
nary distributions of student solutions. However,
Pan et al. (2024) and JianWang et al. (2024) have
shown that detectors such as GPT-Zero often fail
when applied to code rather than text. This critical
observation, backed up by our experiments in Sec-
tion 4, highlights the inadequacy of directly porting
generic text-based models to the code domain and
strongly motivates the creation of code-specific
detection strategies and specialised datasets. Our
work responds to this need by providing a large-
scale, multifaceted suite specifically curated for
Al-generated code, designed to foster the develop-
ment and rigorous testing of detection techniques
attuned to the unique characteristics of program-
ming languages and Al-generated software.
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2.2 Al-Generated Code Detection

Early attempts at Al-generated code detection us-
ing decision tree learning methods, such as Idi-
alu et al. (2024) and Li et al. (2023b), demon-
strated that code-level statistics (e.g., number of
lines, Abstract Syntax Tree (AST) depth, iden-
tifier length) can serve as reliable indicators of
authorship. However, more sophisticated detec-
tion requires a more involved feature engineering,
which is best performed using deep learning meth-
ods (Tulchinskii et al., 2023). Thus, recent efforts
have mainly focused on training text-based LMs to
detect Al-generated code. A common approach
in existing work, such as GPTSniffer (Nguyen
et al., 2024) and GPT-Sensor (Xu et al., 2025) is
to extract human-written functions from the Code-
SearchNet dataset (Husain et al., 2019) and then
to prepare machine-generated counterparts to them
using ChatGPT. Although similar in their dataset
construction, these two works differ in modelling.
GPTSniffer uses a multi-class classification loss,
whereas GPT-Sensor applies a cosine similarity-
based loss to better separate the embeddings of
Al-generated and human-written code, aiming at
learning more discriminative representations.

To address the overdependence on CodeSearch-
Net in prior work, Orel et al. (2025) source addi-
tional code from LeetCode and CodeForces. They
evaluated a wide range of locally deployable LMs
as code generators and provided a systematic anal-
ysis of out-of-distribution (OOD) detection per-
formance across different settings. Importantly,
they go beyond binary classification by introducing
more nuanced scenarios, such as collaborative (or
hybrid) settings where LMs complete or rewrite
human-written programs.

CodeMirage (Guo et al., 2025), another bench-
mark released concurrently with ours, also includes
rewritten code. However, these works lack diver-
sity in terms of generators: CoDet-M4 covers only
5 generators, while CodeMirage covers 10. Fur-
thermore, they overlook the importance of diverse
sampling strategies in the detection of machine-
generated codes and do not consider more adver-
sarial settings where the model-generated code is
artificially humanised. Our work builds upon and
extends the progress of previous works by further
increasing the scale and diversity: we incorporate
three distinct domains — competitive programming
solutions (e.g., LeetCode), open-source GitHub
repositories, and code from research papers.

We use 43 generative models, and cover seven
programming languages. Notably, unlike Codet-
M4 or CodeMirage, our dataset is the first in this do-
main to systematically integrate diverse sampling
strategies using varied generation settings and ad-
versarial data generation scenarios.

2.3 Adversarial Evasion of AI-Generated
Content Detectors

Although specialized detectors for Al-generated
code can be effective against honest actors, their
straightforward training on machine-generated and
machine-refined data makes them vulnerable to ad-
versarially perturbed or humanised text, modified
to evade detection (He et al., 2024; Masrour et al.,
2025). Currently, RAID (Dugan et al., 2024), one
of the most extensive benchmarks in Al-generated
text detection, is notable in being one of the few
efforts exploring adversarial detection settings with
various attack methods such as paraphrasing and
synonym substitution. Our work in Al-generated
code detection builds upon this important aspect.
We extend this focus to the code modality by incor-
porating a diverse set of adversarial attack scenar-
ios specifically engineered to challenge detectors.
Moreover, we move beyond the language manipu-
lations considered by RAID to address the possibil-
ities of adversarial training using targeted mining
of paired preference data and a dedicated collection
of adversarial prompting, which are all aspects that
are vital for assessing detector robustness under
more challenging conditions.

3 TheDroidCollection Corpus

We compare our dataset with existing ones in
Table 1, which shows that our dataset is not
only among the largest to date, but also captures
a broader range of variations. Additional de-
tails about key characteristics are provided in Ap-
pendix B.3. In this section, we detail the curation
of the human-generated, machine-generated, and
machine-refined splits of DroidCollection. The
adversarially humanised data collection is deferred
to Section 3.4.

3.1 Human-Authored Code Acquisition

In order to build the dataset, we collected human-
written samples from multiple sources, covering
C++/C, C#, Go, Java, JavaScript and Python lan-
guages. Then, we generated code, using base and
instruction-tuned LLMs from eleven model fami-
lies.
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Name size Supported No. of Supported Varied Machine Adversarially

Domains Models Languages Sampling Refined Data Humanized Data
GPT-Sniffer (Nguyen et al., 2024) 7.4k 1 1 X X X
CodeGPTSensor (Xu et al., 2025) 1.1M 1 2 X X X
Whodunit (Idialu et al., 2024) 1.6k 1 1 X X X
CoDet-M4 (Orel et al., 2025) 501K 2 3 X X
CodeMirage (Guo et al., 2025) 210k 1 10 10 X X
DroidCollection 1.06M 3 43 7

Table 1: Comparison of DroidCollection to other Al-generated code detection datasets shows broader domain
and model coverage, as well as unique inclusion of varied sampling strategies and adversarially humanized data.

We experimented with Llama (Grattafiori et al.,
2024), CodeLlama, GPT-40, Qwen (Qwen et al.,
2024), IBM Granite (Mishra et al., 2024), Yi (Al
et al., 2024), DeepSeek (Guo et al., 2024), Phi (Ab-
din et al., 2024), Gemma (Gemma et al., 2024),
Mistral (AI, 2025), Starcoder (Li et al., 2023c¢).
The list of generators per model family is de-
tailed in Appendix A. Our dataset covers three
domains: general use code, algorithmic problems,
and research/data-science code.

General Use Code This type of code is nor-
mally deployed for disparate use cases such as web
serving, firmware, game engines, etc. These are
largely hosted on GitHub, and mainly obtained
from StarcoderData (Li et al., 2023c), and The
Vault (Nguyen et al., 2023) datasets.

Algorithmic Problems This category contains
code solutions to competitive programming prob-
lems — algorithmic challenges designed to test
problem-solving skills, commonly featured in com-
petitions. These are retrieved from multiple sources
such as TACO (Li et al., 2023d), CodeNet (Puri
et al., 2021) (mainly AtCoder’ and AIZU* plat-
forms), LeetCode and CodeForces, from the work
of Orel et al. (2025). Its primary distinguishing
feature is its tendency to contain simple and self-
contained routines.

Research Code This data subset is sourced from
the code repositories of research papers, collected
in ObscuraCoder (Paul et al., 2025). To enrich the
variety, we further augmented it with mathematical
and data science code from the work of Lu et al.
(2025). Compared to production or educational
code, this subset is less structured, with minimal
modularity, a predominance of procedural styles,
and extensive comments about experiments, results,
or even the authors’ institutional affiliations.

3https://atcoder‘. jp/
*https://onlinejudge.u-aizu.ac.jp/home

3.2 Al-Authored Code Generation

Generation via Inverse Instruction Since the
data from sources such as CodeNet and Starcoder-
Data do not contain any instructions, we decided
to apply inverse instructions to transform code
from these datasets into instructions, which can
be used to prompt LMs. In our case, the method of
preparing inverse instructions was similar to that
described in InverseCoder (Wu et al., 2025): we
passed the code snippets to an LM, asking it to
build a summary, and a step-by-step instruction
that can be given to an LM to generate a similar
code. The main difference between our approach
and that of InverseCoder is that we sought to min-
imise the costs of the generation and did not split
the summarisation and instruction generation into
separate LM calls. However, in cases where a sum-
mary could be extracted from the response but the
instruction could not, we used the summary to re-
generate the instruction. This experiment with de-
tails about the prompts and the models we used is
illustrated in Appendix B.1. This type of generation
allows us to cover a wide range of prompts, simu-
lating a diversity of user-LM interactions, which is
common in the real world.

Generation Based on Comments Some of the
data sources used in our study provide docstrings
(The Vault Class and Function) or comments (The
Vault Inline) that describe the given code. In this
case, we mainly used base models, which were
prompted with the first line of code and the doc-
string or comment for generation. Instruct models
were given only the docstring and a task to imple-
ment the desired class or function.

Generation Based on a Task The examples from
platforms with algorithmic problems mainly come
with a precise task description or a problem state-
ment. In this case, we only used the description to
prompt the LMs for generation.
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Unconditional Synthetic Data This data is not
conditioned on prior human generations. The ra-
tionale behind this is that the machine-generated
data used to train the majority of Al-generated con-
tent detectors is acquired in a biased manner. It
usually involves completing incomplete human-
written samples or responding to prompts condi-
tioned on existing human generations. This bias,
though rather subtle, leads to a situation where de-
tectors are only exposed to the kinds of synthetic
data that are easiest for the models to learn (Su
et al., 2025). Hence, we seek to obtain synthetic
data that is not conditioned on prior human genera-
tions. Following prior work>, we create synthetic
user profiles on which we condition coding tasks
and, in turn, the final generated code.

To explore how large language models can simu-
late the behaviour profiles of real programmers, we
took inspiration from the PersonaHub dataset (Ge
et al., 2024). We first generated a diverse set of
programmer profiles, and then used an LM to cre-
ate programming tasks that can typically be per-
formed by programmers of such types. These tasks,
along with their corresponding descriptions, termed
DroidCollection-Personas, were then used to
generate code samples. More details about the
DroidCollection-Personas are outlined in the
Appendix B.2.

3.3 Machine-Refined Data

In practice, purely Al-generated code is rare. De-
velopers typically collaborate with LMs, starting
with human-written code and asking the model to
modify or extend it. This makes binary classifi-
cation (human vs. machine) insufficient for real-
world scenarios. Instead, introducing a third class
to capture human-LLM collaboration, as proposed
by Orel et al. (2025), offers a more realistic and
useful approach.

To generate such samples, we designed three
scenarios: (i) Human-to-LLM continuation: A hu-
man initiates the code, and the LM completes
it. We simulated this by preserving the first N%
(N € [10,85]) of the code lines and asking the
model to complete the rest. (ii) Gap filling: The
model generates a missing middle segment given
the beginning and end; (iii) Code rewriting: The
LM is asked to rewrite human-authored code, ei-
ther with no specific prompt or with an instruction
to optimise it.

Shttps://huggingface.co/blog/cosmopedia

3.4 Adversarial Samples

With the development of advanced post-training
techniques such as PPO (Schulman et al., 2017),
DPO (Rafailov et al., 2023), and GRPO (Shao
et al., 2024), it has become possible to set up the
training in adversarial ways that enable language
models to evade Al-generated code detectors. Prior
work by Shi et al. (2024) and Sadasivan et al. (2023)
has shown that LM-generated content detectors
are vulnerable to adversarial attacks and spoofing.
This motivated us to include adversarial examples
in DroidCollection in order to improve model
robustness.

To this end, we introduce two types of adversar-
ial attacks: prompt-based attacks and preference-
tuning-based attacks. In the prompt-based setting,
we construct adversarial prompts by instructing
the model to “write like a human” in multiple
ways, relying on the models’ parametric knowl-
edge of how to produce outputs that mimic human-
authored code and thus challenge detection systems.
In the preference-tuning-based setting, we curate
DroidCollection-Pref, a dataset of 157K paired
examples consisting of human-written and LM-
generated code responses to the same prompt. Us-
ing DroidCollection-Pref, we train LMs with
up to 9B parameters — including LLaMA, Qwen,
and Yi —using LoRA (Hu et al., 2022) with rank
128 and DPO for two epochs. These models’ output
distributions are, in effect, steered towards prefer-
ring human-like code, making them less likely to
contain the stylistic features of machine-generated
code. Once trained, the models are used to gener-
ate new “machine-humanised” code samples. We
filter their outputs in the same was as described
in Section 3.6 to keep only high-quality adversar-
ial examples that are in the same distribution as
the rest of the data. Finally, we obtained a nearly
1:1 ratio of prompt-based vs. preference-tuning
adversarial attacks.

3.5 Varying Decoding Strategies

It was previously shown by Ippolito et al. (2020)
that it is easier to detect Al-generated texts after
greedy decoding compared to when other decoding
techniques have been used. In order to capture this
challenging behaviour and reflect the diversity of
generative systems, we further experimented with
a variety different decoding strategies, as shown in
Table 2.
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Strategy Attribute Range

Greedy Decoding - —

Temperature {0.1, 0.4, 0.7, 1.0, 1.5, 2.0}
Sampling Top-k {10, 50, 100}
Top-p {1.0, 0.95, 0.9, 0.8}
Beam Search Beam Width {2, 4, 6, 8}

Table 2: Decoding settings used for the Al-
generated, Al-refined, and Al-humanised splits of
DroidCollection

3.6 Data Filtering

To ensure the quality of our DroidCollection
dataset, we applied a series of filtering criteria, com-
monly used in other code-related works (Lozhkov
etal., 2024; Liet al., 2023c; Paul et al., 2025). First,
we removed code samples that could not be suc-
cessfully parsed into an abstract-syntax tree (AST).
We also filtered samples based on the AST depth,
keeping only those with the depth between 2 and
31, to avoid too simple or too complex codes. We
restricted each sample’s maximum line length to
be between 12 and 400 characters, and the average
line length to fall between 5 and 140 characters, and
used only samples with between 6 and 300 lines of
code. Moreover, we filtered samples according to
the fraction of alphanumeric characters, retaining
only those between 0.2 and 0.75, to avoid the us-
age of configs and auto-generated files. To ensure
English documentation, we used the Lingua lan-
guage detector® and retained only samples where
the docstrings showed greater than 99% confidence
of being English. Finally, we removed duplicate
or near-duplicate samples; for this, we used Min-
Hash (Broder, 1997), with a shingle size of 8 and a
similarity threshold of 0.8.

Note that we did not filter out the human-written
codes which were sourced after the coding copilots
became popular. This means that there is a possi-
bility that among human written codes there could
be samples created with the help of LLMs. This
potential issue is tackled in Section 5.

4 Detection Experiments

4.1 Experimental Setup

We begin by evaluating a diverse set of detectors
in order to better understand the strengths and lim-
itations of current approaches to identifying Al-
generated code. Our evaluation includes several
off-the-shelf detectors, which serve as zero-shot
baselines, as well as models that have been fine-
tuned on DroidCollection.

8GitHub: pemistahl/lingua-py

The baselines include models widely used in
related papers: (i) GPT-Sniffer (Nguyen et al.,
2024), a CodeBERT-based binary classifier fo Al-
Generated code detection; (ii) CoDet-M4(Orel
et al., 2025), a UnixCoder model trained on out-
puts from multiple code generators; (iii) M4 classi-
fier(Wang et al., 2024), for general Al-generated
text detection; (iv) Fast-DetectGPT(Bao et al.,
2024), a distribution-based zero-shot detector; and
(v) GPT-Zero’, an API-based detector (as this API
is paid, we evaluated it on a representative sam-
ple of 500 code snippets for each label-language
and label-domain pair). Since most of these base-
lines use binary classification, we map our ternary
labels (human-written, Al-generated, Al-refined)
into binary targets for fair comparison.

Additionally, we train other models directly on
our dataset using a multi-class objective: (i) a sim-
ple GCN(Kipf and Welling, 2017); (ii) a CatBoost
classifier(Prokhorenkova et al., 2018), following
procedures similar to the Whodunit paper; and
(iii) two encoder-only transformers, ModernBERT-
Base and ModernBERT-Large (Warner et al.,
2024), denoted as DroidDetectc s-Base and
DroidDetectc s-Large. Full details are provided
in Appendices C.1 and C.2 and section 5.

4.2 RQI1: What is the Value of Extensive Data
Collection for Training Robust Detectors?

Table 1 highlights a key limitation of existing
datasets: they often lack diversity. Tables 3 and 4
show that this limitation significantly impacts de-
tector performance in realistic settings. Baseline
detectors - the ones illustrated in Zero-Shot Base-
lines section of the tables - underperform on our
test split compared to even simple fine-tuned base-
lines like GCN and CatBoost. Among the base-
lines evaluated, zero-shot Fast-DetectGPT consis-
tently yields strong performance across both lan-
guages and domains, outperforming all other base-
lines. In contrast, pre-trained models usually per-
form well only on languages and domains that are
closely aligned with their original training data.
This highlights the limitations of previously col-
lected datasets, which do not cover the diversity of
generations in DroidCollection, and hence are
far from being useful in real-life scenarios.

The Full Training section show Zero-Shot Base-
lines trained on DroidCollection, surpassing
GCN and CatBoost but not Droid-Detectcs.

"https://gptzero.me/
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Model 2-Class 3-Class
General Algorithmic Research/DS  Avg. General Algorithmic Research/DS  Avg.
Fast-DetectGPT (Bao et al., 2024) 75.07 63.05 65.43 67.85 66.43 62.90 64.30 64.54
CoDet-M4 (Orel et al., 2025) 53.41 44.63 65.43 54.49 41.90 46.06 55.43 47.80
Zero-Shot Baselines M4 (Wang et al., 2024) 50.17 57.91 44.67 50.92 56.46 58.13 51.21 55.27
GPTSniffer (Nguyen et al., 2024) 54.25 36.85 32.10 41.07 45.22 31.75 39.88 38.95
GPTZero 54.05 71.96 44.73 56.91 50.56 66.13 30.62 49.10
DroidDetectc s-Basegeneral 99.30 53.73 76.46 76.50 93.05 46.22 76.99 72.09
00D Evaluation DroidDetectcis-Baseaigorithmic 49.63 98.26 60.78 69.56 47.86 92.84 56.58 65.76
DroidDetect s-Basegesearch/ns 47.01 48.02 72.55 55.86 47.86 38.73 59.97 48.85
. . GCN 78.57 60.61 67.79 68.99 56.85 46.91 51.13 51.63
Fine-Tuned Baselines
CatBoost 89.69 87.29 77.21 84.73 78.86 74.01 64.07 72.31
M4t 92.99 89.36 73.99 85.45 80.98 80.72 58.80 73.50
GPT-Sniffergr 97.72 96.52 80.46 91.56 89.42 88.12 70.72 82.75
Full Training CoDet-M4¢r 98.89 98.23 83.77 93.63 85.46 90.41 73.88 83.25
DroidDetectc s-Base 99.22 98.22 87.57 95.00 92.78 93.05 74.46 86.76
DroidDetectc s-Large 99.38 98.39 93.24 97.00 93.08 92.86 80.42 88.78

Table 3: Comparison of models in 2-Class (human- vs machine-generated) and 3-Class (human- vs machine-
generated vs machine-refined) classification setups across programming languages in terms of weighted F1-score.
In the OOD section, we show models trained on each domain individually. FT subscript in Full Training section
means that this model was fine-tuned on DroidCollection The best results are shown in bold.

DroidDetectc s models trained on our exten-
sive training split consistently outperform all base-
lines, achieving near-ideal scores in both binary
and ternary tasks. Notably, the larger backbone
(DroidDetectc s-Large) dominates across all set-
tings, demonstrating that both model size and di-
verse training data are crucial for high classification
performance.

4.3 RQ2: How Well Do Models Generalise in
OOD Settings?

We evaluated the DroidDetectc s-Base backbone
in OOD settings under language shift and domain
shift conditions: training it on a single program-
ming language or domain. Comparing the multi-
domain and the multi-lingual performance of the
baselines to our backbone models trained in such
restricted conditions allows us (i) to uncover pos-
sible shortcomings in the training data curation
process of popular baseline models, as they can be
compared head-to-head to both the split-specific
and fully-trained variants of our backbone, and (ii)
to assess the inherent ease with which models are
robust to transfer along these settings, by-proxy out-
lining the value of extensive training data curation.
We selected the base version of the backbone for
this restricted training scenario since it was compa-
rable to most of the chosen baselines in terms of its
size.

Table 4 shows that, under restricted training con-
ditions, models tend to generalise better to syntac-
tically similar languages. For example, a model
trained on C/C++ performs reasonably well on C#
and Java.

However, for typologically isolated languages
such as Python or JavaScript, all models not trained
specifically for it tend to struggle in this setting.
Table 3 illustrates that the models trained on a sin-
gle domain have a high discrepancy in scores for
other domains. For example, as can be seen in
the OOD Evaluation section, the classifiers trained
on algorithmic problems suffer with the general
codes, and show comparable low performance on
Research/DS codes, and vice versa.

4.4 RQ3: How Robust are Models to
Adversarial Samples?

Finally, we test adversarial robustness using chal-
lenging samples designed to evade detection (Ta-
ble 5). Here, many baseline detectors struggle:
for instance, GPT-Zero achieves only 0.10 recall.
M4 and CoDet-M4 show higher recall on adver-
sarial samples but also have high false positives,
misclassifying human-written code. Interestingly,
fine-tuning on DroidCollection also improves
the recall of baselines for human-written cases. Re-
markably, the recall of M4 on adversarial cases
drops from 0.73 to 0.67, while the recall on human-
written cases increases significantly from 0.40 to
0.91. A similar pattern is observed for CoDet-M4,
while for GPT-Sniffer, both scores increase.

In contrast, DroidDetectc s-Base, trained with
explicit exposure to such samples, maintains strong
performance with a recall above 0.9. This shows
that training on diverse, adversarially crafted ex-
amples further enhances robustness and reduces
susceptibility to trivial evasion strategies.
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Model 2-Class 3-Class

C/C++ C# Go Java Python JS  Avg. C/C++ C# Go Java Python JS  Avg.

Fast-DetectGPT (Bao et al., 2024) 81.33 72.77 81.16 76.03 73.60 74.59 76.58 77.85 66.37 72.73 69.45 70.34 69.11 70.98

CoDet-M4 (Orel et al., 2025) 61.12 50.68 19.66 56.15 58.75 41.44 47.97 53.81 40.74 18.28 45.26 53.51 36.09 41.28

Zero-Shot Baselines M4 (Wang et al., 2024) 62.22 40.73 57.59 48.39 61.47 64.44 52.81 65.33 50.38 60.49 56.25 61.21 53.64 57.92
GPTSniffer (Nguyen et al., 2024) 63.02 48.90 79.89 40.30 38.34 45.94 52.40 64.18 42.29 76.19 34.94 34.94 47.22 49.96

GPTZero 58.32 45.69 13.64 74.65 73.19 63.16 54.81 61.00 50.38 28.89 61.25 52.63 54.78 51.48

DroidDetectc s-Basec/cs+ 98.98 96.59 67.32 96.97 74.45 91.15 87.58 92.62 81.67 56.43 79.45 56.43 69.72 72.72

DroidDetectc s-Basecy 93.66 99.20 78.89 95.20 71.13 89.87 87.99 80.95 92.93 57.74 84.17 54.25 65.18 71.04

00D Evaluations DroidDetectc s-Basego 93.33 86.00 98.94 89.97 71.45 88.72 88.07 80.74 63.61 92.93 74.18 50.38 65.37 71.20
DroidDetectc s-Basejava 95.53 96.42 94.57 99.31 75.59 80.26 90.28 85.00 84.43 58.85 93.38 63.25 64.57 74.91

DroidDetectc s-Basepython 80.27 85.48 82.28 88.80 98.85 86.62 86.75 67.59 75.56 53.70 79.31 93.08 69.96 73.20

DroidDetectc s-Baseys 95.76 97.38 75.27 96.45 68.98 97.80 88.61 87.96 87.58 52.78 86.32 60.78 89.67 77.52

Fine-Tuned Baselines GCN 79.06 78.33 84.33 80.04 72.49 69.69 77.32 65.97 58.03 65.20 60.13 55.22 54.72 59.88
CatBoost 94.00 91.20 90.57 92.26 89.51 82.55 90.02 84.57 81.32 81.54 82.42 78.15 70.98 78.83

M4gr 94.18 89.98 92.19 92.63 87.19 93.61 91.63 79.56 75.55 77.63 79.55 69.63 77.53 76.57

GPT-Snifferer 97.64 97.36 97.33 97.96 95.07 97.94 97.22 85.14 85.75 85.78 86.97 79.02 88.28 85.16

Full Training CoDet-M4¢r 99.36 99.22 99.31 99.04 98.28 99.24 99.08 89.98 88.94 89.73 91.70 85.80 91.46 89.60
DroidDetectc s-Base 99.29 99.33 99.32 99.45 98.87 98.38 99.11 94.43 94.06 93.98 93.93 93.95 90.99 93.56

DroidDetectc s-Large 99.31 99.51 99.32 99.45 99.11 98.67 99.23 94.24 93.87 94.42 94.05 94.13 91.27 93.66

Table 4: Comparison of models in 2-class (human- vs. machine-generated) vs. 3-class (human- vs. machine-
generated vs. machine-refined) classification setups across programming languages in terms of weighted F1-score.
In the OOD section, we train on each programming language individually. The best results are highlighted in bold.

‘FastDetectGPT GPTSniffer M4  CoDet-M4 GPT-Zero M4gr GPT-Sniffergr CoDet-M4pr DroidDetectc s-Base DroidDetectcs-Large

Human-written 0.84 0.65 0.40 0.38 0.53 0.91 0.97 0.96 0.93 0.98
Adversarial samples 0.48 0.49 0.73 0.63 0.10 0.67 0.55 0.51 0.92 0.92

Table 5: Recall for human-written vs. adversarial examples. The red cells show that despite having high recall on
adversarial samples, M4 and CoDet-M4 struggle to detect human-written code. The best results are in bold.

5 Detector Training and Ablations We then address the issue of class separability,
which can arise because adversarial and refined
code is similar to human-written code. We explore
training our models using triplet loss (Hoffer and
Ailon, 2015) in a supervised contrastive (Khosla
et al., 2020) setup using the class labels. This
metric-learning approach encourages the model to
place samples of the same class closer to each other
in the embedding space while pushing dissimilar
samples apart, and it has been demonstrably effec-
tive in other detection scenarios that require high
precision (Deng et al., 2019; Li and Li, 2024). We
refer to these models as DroidDetectsc . Table 6
demonstrates the small but consistent performance
gain unlocked using metric learning.

Finally, we addressed the problem of noisy and
mislabelled training data. Despite data filtering,
it is possible that some code samples curated as
human-written may have been generated by coding-

We conducted a series of ablation experiments start-
ing from our DroidDetectc s backbone to system-
atically identify the most effective model architec-
ture and training strategy.

As an architectural ablation, we explore whether
incorporating the structural representation of code
could improve the detector’s performance. Specif-
ically, we trained a 4-layer Graph Convolutional
Network over the AST representation of codes to
evaluate its ability to distinguish Al-generated from
human-written code. The results are shown in Ap-
pendix C.1. We can see that while structural signals
are informative, GCNs alone are not sufficient to
achieve strong generalisation.

Next, we explored early fusion of textual and
structural representations by combining a text en-
coder with a GCN encoder. For text encoding,

we used the base (149M) and large (396M) vari- copilots. The presence of such examples could neg-
ants of ModernBERT (Warner et al., 2024), a atively impact training. To address this, we applied
N ’ MC Dropout (Hasan et al., 2022) to estimate the

uncertainty of the model on the human-written por-
tion of the training set. As a result, we identified
that the top 7% most uncertain samples—those for
which a pre-trained model exhibited low prediction
confidence—and resampled the dataset, removing
them.

transformer pre-trained on natural language and
code. This model was selected for inference effi-
ciency (Warner et al., 2024) and suitability for code-
related tasks. However, as shown in Appendix C.3,
this fusion strategy yielded only a marginal or no
improvement at all. Consequently, we decided to
use a text-only encoder for the final model.
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Model Variant 2-class 3-class 4-class
Base Large Base Large Base Large
DroidDetect 99.18 99.25 94.36 95.17 92.95 94.30
- Resampling
99.15 99.22 93.86 94.43 92.52 93.14
[DroidDetectsc ]
- Triplet Loss
99.14 99.18 90.51 94.07 89.63 92.65

[DroidDetectcs]

Table 6: Weighted Fl-score for DroidDetect across
training ablations. The best results are shown in bold.

We then retrained the model on the remaining
data, thereby getting rid of the influence of po-
tentially mislabelled or ambiguous samples. This
manner of self-bootstrapping datasets has an exten-
sive track record in image (Yalniz et al., 2019; Xie
et al., 2020) and text (Wang et al., 2022) represen-
tation learning, relying on the tendency of neural
networks to understand patterns in clean labels be-
fore they overfit to noisy data (Feldman and Zhang,
2020). Incorporating this filtering into our train-
ing yielded our final DroidDetect models, which,
as shown in Table 6, perform the best across the
classification settings.

We trained all models for three epochs, us-
ing the AdamW (Loshchilov and Hutter, 2019)
optimiser, setting the top learning rate to Se-5,
and applying the linear warmup (proportion 0.1)
with a cosine decay learning rate scheduler. The
batch size is 64 for DroidDetect-Base and 40 for
DroidDetect-Large.

6 Conclusion and Future Work

We have presented DroidCollection, a new large
and diverse suite of datasets that facilitate the train-
ing and evaluation of robust Al-generated code
detectors. DroidCollection aims to support the
most common modes of operation of LLM code
copilots, i.e., for code completion and rewriting,
as well as potentially adversarial use cases. Com-
pared to previously existing openly available cor-
pora for training Al-generated content detectors,
DroidCollection offers the most exhaustive cov-
erage with respect to number of generators, genera-
tion settings, programming languages, and number
of domains covered. Based on DroidCollection,
we further developed DroidDetect, a suite of Al-
assisted code detection models in two sizes (base
and large), compared them to existing models
(which showed superior performance on variety
of tasks), and conducted extensive ablation studies
to evaluate which training strategies yield the most
effective results for this task.

In future work, we plan to enhance the cover-
age of DroidCollection and the robustness of
DroidDetect. We will incorporate code samples
from more closed-source API-based generators,
broadening the diversity of the code samples. We
will also add generations from reasoning LMs to
enhance the applicability of our detectors. Finally,
we plan to expand language coverage to include
languages such as PHP, Rust, and Ruby, thus mak-
ing our benchmarks more representative.

Limitations

Corpus Updates and Coverage Possessing a
perfect coverage over all major models in the
current fast-paced release environment is an in-
tractable task. We acknowledge that the re-
lease of new model families with unseen out-
put distributions presents a challenge for all Al-
generated content detectors. Since we have mature
pipelines for machine-generated, machine-refined
and adversarially-humanised data acquisition, we
plan to update DroidCollection with generations
sourced from future model releases.

Cost Effectiveness Owing to cost realities, the
majority of training samples in our study are
sourced from locally deployable models. The high
costs of API invocations are the primary reason
why our study leaves data collection from recently
released reasoning/thinking models such as An-
thropic’s Claude 3.7, DeepSeek R1, and Google’s
Gemini 2.5 for future work. For similar rea-
sons, our evaluation of API-based detectors such
as GPTZero was limited to a subset of the test set.

Potential Data Contamination In spite of the
thorough curation and extensive filtering under-
taken for DroidCollection, we acknowledge the
possibility that a small number of Al-generated or
Al-assisted code samples may still be mislabeled
as human-authored, due to the inherent nature of
the data sources used for the dataset construction.
Seeking to limit the negative effects of mislabeled
or noisy data, our work explores uncertainty-based
dataset re-sampling using a pre-trained classifier,
which we show to be effective in improving the
model’s performance by identifying ambiguous
samples to discard during training. In the released
dataset, we include flags for code snippets identi-
fied as suspicious, enabling downstream users to
apply additional filtering or analysis as needed.
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Ethics Statement

The human-written code samples in our dataset are
sourced exclusively from publicly available code
corpora vetted for appropriate licensing and PII
removal. Additionally, all code generation was
conducted in compliance with the terms of use of
the respective model providers.

DroidDetect and DroidCollection aim to
promote transparency in code authorship, espe-
cially in academic and research settings. While
there is a risk that they could be misused to train
models to evade detection, we strongly discourage
any malicious or privacy-invasive applications.
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A List Of Models Used

Table 7 shows 11 model families, including both
instruct and base variants, spanning 2B—72B pa-
rameters, with open-weights and API-accessible
models.

B Dataset Creation and Statistics
B.1 Inverse Instructions Setup

We following LLMs for inverse instruction — GPT-
40-mini, Llama3.1 8B, Qwen2.5 7B, and Phi-3
Small (7B): prompting them with code to generate
a summary and the prompt likely to produce it (see
Listing 1).

# Code Analysis and LLM Prompt
Generation

You are an experienced software engineer
using “{language}” programming
language skilled in analyzing,
summarizing, and writing code. When
provided with code, you break it
down into its constituent parts,
summarize its functionality
concisely, and create prompts to
guide an LLM in replicating similar
outputs.

## Your Tasks:

1. *xCode Summary#**: Analyze the given
code and summarize its purpose,
logic, and functionality. Enclose
this summary within [SUMMARY] and [/
SUMMARY] tags.

2. **Prompt Creationxx: Write a clear
and specific LLM prompt that, if

provided to a language model, would
generate code with similar
functionality and structure. Enclose

the LLM prompt within [LLM_PROMPT]
and [/LLM_PROMPT] tags.
Interaction will be in the following way

##4# INPUT:
[CODE]

{{code}}
[/CODE]

### OUTPUT:
[ SUMMARY ]

{{summary}}
[/ SUMMARY ]

[LLM_PROMPT]

{{prompt}}
[/LLM_PROMPT]

Listing 1: Prompt for code analysis and LLM prompt
generation.
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Model Family Model

Yi-Coder-9B
Yi-Coder-9B-Chat
Yi-Coder-1.5B-Chat
Yi-Coder-1.5B

Yi

GPT-40-mini
GPT-40

GPT

Qwen2.5-Coder-7B
Qwen2.5-Coder-7B-Instruct
Qwen2.5-Coder-1.5B-Instruct
Qwen Qwen2.5-Coder-32B-Instruct
Qwen2.5-72B-Instruct
Qwen2.5-Coder-1.5B
Qwen2.5-Coder-14B-Instruct

codegemma-7b-it
Gemma codegemma-7b

codegemma-2b

CodeLlama-70b-Instruct-hf
CodelLlama-34b-Instruct-hf
CodeLlama-7b-hf

CodeLlama

deepseek-coder-6.7b-instruct

deepseek-coder-6.7b-base
Deepseek

deepseek-coder-1.3b-instruct

deepseek-coder-1.3b-base

. granite-8b-code-instruct-4k
Granite
granite-8b-code-base-4k

Llama-3.1-8B-Instruct
Llama-3.2-3B
Llama-3.1-7@B-Instruct
Llama-3.3-7@B-Instruct
Llama-3.3-70B-Instruct-Turbo
Llama-3.2-1B

Llama-3.1-8B

Llama

Phi-3-small-8k-instruct
Phi-3-mini-4k-instruct
phi-4
Phi-3-medium-4k-instruct
phi-2
Phi-3.5-mini-instruct

Mistral Mistral-Small-24B-Instruct-2501

starcoder2-15B

starcoder
StarCoder

starcoder2-7b

starcoder2-3b

Table 7: Model families and their selected models used
in DroidCollection.

Examples of code and corresponding inverse in-
structions are shown in Tables 15 to 17.

B.2 DroidCollection-Personas creation

To generate DroidCollection-Personas, we
started by identifying the main characteristics of
a programmer. Our final list contains 9 features:
Primary Programming Language, Preferred Frame-
works, Field of Work, Code Commenting Style,
Error-Proneness, Debugging Strategies, Code Aes-
thetics, Documentation Habits, Function Length
Preference. The possible values for each feature
are listed in Table 8.

Then we did a Cartesian product to combine
all the possible combinations of these properties,
and started generating the tasks, which could be
performed by this programmer. For task generation,
we used the GPT-40 model, and prompted it in the
way shown in Listing 2.

I have the following description
of a programmer:

{description}

Write a non-trivial programming
task

which matches what this person
probably does at work,

you can ignore some of the person
's traits. Return only the
task.

Listing 2: Prompt for Persona’s task generation.

After the tasks were generated, we deduplicated
them using MinHash with the same parameters as
for the dataset filtering. After that, the resulting
tasks were used for code generation.

Property Name Values / Options

Python, Java, JavaScript, PHP,

C, C#, C++, Go, Ruby, Rust

Web Development, AI/ML,
Game Development,

System Programming, Embedded
Systems, Data Engineering,
Research, Distributed

Systems Developer, IoT

Primary Programming Language

Field of Work

Concise, Detailed, Minimal
High, Medium, Low

Print Statements, Debugger, Log-
ging

Highly Readable, Functional,
Minimalist, Hard to Comprehend

Code Commenting Style
Error-Proneness

Debugging Strategies
Code Aesthetics

Documentation Habits Detailed, Minimal, Occasional

Function Length Preference Short, Medium, Long

Table 8: List of attributes and characteristics in
DroidCollection-Personas.
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B.3 Dataset Statistics

In this section, we present key statistics of our
dataset and compare them with existing alterna-
tives. As shown in Table 9, our dataset includes a
broader class distribution and shows greater diver-
sity in code structure, as reflected by higher AST
depth percentiles and longer line lengths. It sug-
gests that our dataset captures more complex and
varied code patterns, making it a more challeng-
ing and real-life-oriented benchmark for evaluating
Al-generated code detection models. The impor-
tance of varying code lengths and difficulties is also
shown in Appendix D.1. We also show the num-
ber of samples per generator, and programming
language (not considering the datasets with <=2
languages or generators). Several qualitative exam-
ples of samples belonging to different classes in
our dataset are shown in Tables 18 and 19.

C Detailed Architectural Ablations
C.1 GCN Experiments

We used a simple 4-layer Graph Convolutional Net-
work (GCN) to evaluate how effectively a GCN can
capture structural and semantic features of code.
As input, we utilised AST representations of the
code, treating them as graphs. To assess the impact
of node-level information, we experimented with
three types of node features:

* Dummy features — no meaningful features
were provided at the node level;

* One-hot encoded node types — encoding the
syntactic type of each AST node;

* Node content embeddings — textual embed-
dings derived from the string content of each
node. To reduce computational overhead,
we used the HashingVectorizer, which con-
verts strings into sparse vectors by hashing
tokens to fixed-dimensional indices without
maintaining a vocabulary in memory.

As shown in Table 11, features based on the
textual content of the node yielded the best perfor-
mance, showing that the semantic information is
important in distinguishing between human-written
and Al-generated code.

C.2 CatBoost Experiments

Following Idialu et al. (2024); Orel et al. (2025), we
compute 733 structural code features — e.g., counts
of various AST nodes, line length, whitespace ratio,
count of empty lines, code maintainability index,
and others.

These features were used to train CatBoost clas-
sifiers with automatically tuned hyperparameters.
Figure 1 shows the top unique features ranked
by SHAP (SHapley Additive exPlanations) val-
ues (Lundberg and Lee, 2017). Interestingly, the
most informative features vary across the 2-, 3-,
and 4-class classification tasks, suggesting that dif-
ferent granularities of classification are dependent
on different aspects of code structure.

Nonetheless, some patterns persist across all se-
tups. In particular, features related to the length
of identifiers (variable names) and the density of
comments consistently present as strong indica-
tors for distinguishing Al-generated/Refined from
human-written code.

C.3 Does Structure-Based Late-Fusion
Improve Robustness?

To decide whether fusion is helpful for improving
the detection, we combined the GCN from Ap-
pendix C.1 with our text-only classifier using early
fusion of embeddings. We used OOD-based gen-
eralisation, and compared how well the models
perform for 2, 3, and 4-class classification in OOD
settings (since when trained directly, it is hard to
measure the significance of the performance dif-
ference), and then compared in which scenarios
each method provides a better weighted F1-score.
Table 12 shows that there is no clear trend of one
approach being better than another: in the binary
classification task, there are more ties, fusion has
a higher win-rate in 4-class classification, while
the model without fusion performs best in the 3-
class case. Then we compared how the difference
in F1-scores between models compares to the in-
terquartile range within the model’s predictions. As
shown in Figure 2, the interquartile range is much
larger than the model difference, so both models
with and without fusion perform nearly equally.

D DroidDetect Stress Tests
D.1 Input Length Stress Tests

Table 10 shows that while existing approaches per-
form best on short code snippets — likely due to
being trained on compact samples such as individ-
ual functions, as evidenced in Table 9 — our mod-
els exhibit improved performance as input length
increases. This suggests our detectors are better
aligned with real-world usage, where code is often
composed of multi-function modules, class defini-
tions, or entire scripts spanning hundreds of lines.
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Metric CoDet-M4 CodeGPTSensor GptSniffer DroidCollection
AST@75 15.00 12.00 15.00 15.00
AST@90 18.00 15.00 18.00 18.00
AST@99 23.00 20.00 23.15 25.00
Line@75 90.00 93.00 99.00 107.00
Line@90 113.00 112.00 117.00 135.00
Line@99 228.00 169.00 153.60 314.00
Al - 50% Al - 50% AL - 90% Al - 25%

Human - 50%

Class Distribution

Human - 50% Human - 10% Human - 47%

Refined - 13%

Adv. - 15%
Avg. # of samples per language 166,850 - - 148,491
Avg. # of samples per generator 50,866 - - 8,458

Table 9: Comparison of AST depth percentile, line length percentile, class distribution, and average samples per
language/generator between DroidCollection and existing datasets.

2-class Feature Importances

feat_whiteSpaceRatio feat_lineCount

feat_astDensity_import feat_whiteSpaceRatio
feat_lineCount

feat_maintainabilitylndex

feat_astDensity_system_lib_string feat_astDensity_comment

Feature name
Feature name

feat_avgidentifierLength feat_avgdentifierLength

feat_astDensity_package_declaration feat_astDensity__
feat_astDensity_tuple_pattern

feat_astDensity_import

feat_astDensity_import_declaration feat_avgFunctionLength

0 1 2 3 4 0

Importance

3-class Feature Importances

4-class Feature Importances

feat_astDensity__

feat_avgldentifierLength

feat_lineCount

feat_whiteSpaceRatio

Feature name

feat_maintainabilityindex

feat_astDensity_identifier

feat_astDensity_comment

feat_astDepth

1 2 3 4 5 ) 1 2 3 4
Importance Importance

Figure 1: Feature importances.

Model Truncation Length
128 256 512
GptSniffer 57.05 57.20 56.64
M4 59.69 53.10 51.13
CoDet-M4 72.28 70.62 61.68
DroidDetect-Base 91.90 96.25 99.18
DroidDetect-Large 94.91 98.31 99.25

Table 10: Impact of input length truncation (measured
using the ModernBERT tokeniser) on weighted F1-
scores for binary classification. The most competitive
numbers are highlighted in bold.

Features 2-class 3-class 4-class
Dummy 60.02 39.27 34.17
Node Type 50.12 39.54 33.12
Text 76.67 59.10 51.14

Table 11: Comparison of different feature types used
as node-level features in a GCN, based on the weighted
F1-score on the validation set. The most competitive
numbers are highlighted in bold.

Another important thing is how stable our
models remain across different input lengths.
When we cut the input from 512 to 128
tokens, DroidDetect-Base only drops 7.28
Fl-score points (from 99.18 to 91.90), and
DroidDetect-Large drops just 4.34 points (from
99.25 to 94.91). This consistency suggests the gen-
eralisability of our models to various inputs.
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Figure 2: Weighted F1-score comparison between mod-
els with and without fusion.

L. A Tie With Without
Classification . .
(%) Fusion (%) Fusion (%)
2-Class 60.0 40.0 0.0
3-Class 40.0 20.0 40.0
4-Class 20.0 60.0 20.0
Table 12: Comparative task-level win-rates of

DroidDetect with and without GCN late-fusion ag-
gregated over OOD classification tasks.

D.2 Additional OOD Stress Testing

To evaluate the generalisation ability of our models,
we tested them on additional open-source datasets
containing Al-generated code. Specifically, we
sampled 15,000 examples from the Swallow-Code
dataset (Fujii et al., 2025), a high-quality collec-
tion of Python code from The Stack v2 (Lozhkov
et al., 2024) synthetically refined by LLaMA3.3-
70B-Instruct model. This dataset was concurrently
released with our work and is highly unlikely to be
part of the training distribution of any of our mod-
els, thus serving as a strong test for our models’
recall on machine-rewritten code.

We also randomly selected 15,000 samples per
programming language from The Heap (Katzy
et al., 2025) dataset. This dataset contains illiber-
ally licensed code with metadata about its presence
in existing code-retraining corpora. We specifi-
cally filter for samples that are not exact- or near-
duplicates with any sample in major pre-training
corpora (Li et al., 2023c; Lozhkov et al., 2024; We-
ber et al., 2024a). Jointly, these ensure that our
curated split is extremely unlikely to be seen by
models during pre-training, thus constituting a stiff
test of our detectors’ recall on human-written code.

Both DroidDetect-Base and
DroidDetect-Large were evaluated on these
datasets: on Swallow-Code, they achieved 98.95%
and 99.11% recall; on The Heap, 94.14% and
96.28%. This demonstrates strong cross-dataset
robustness.

E Error Analysis and Interpretation
E.1 Error Analysis

In this section we describe and demonstrate com-
mon errors, observed in predictions of DridDetect
models.

False Positives and False Negatives Among mis-
classifications in the binary classification task, we
observe that approximately 34% are false positives,
with the remainder being false negatives. This dis-
tribution is reasonable given the larger number of
negative-class samples in the dataset

Worst-Performing Language and Domain As
shown in Table 3, Research/DS domain consis-
tently yields the lowest performance for both the
Base and the Large DroidDetect models, likely
due to the comparatively longer and more com-
plex code typical in this domain. In Table 4, we
observe that detecting machine-generated code in
JavaScript is particularly challenging, which aligns
with findings from Orel et al. (2025). We attribute
this to the greater variability of coding practices
found in JavaScript programs - modern frameworks
of JavaScript mix coding paradigms (functional
programming, OOP) - and it is also not typologi-
cally related to the rest of the languages considered
in our work.

Correlation with Preserved Human-Written
Code in Hybrid Cases In hybrid scenarios, both
models achieve similar F-scores for rewriting and
continuation cases (91.42% and 92.47% on aver-
age). We also find a moderate negative correla-
tion (-0.43 on average) between the proportion of
preserved human-written code and the model’s F-
score, indicating that the more original human code
1s retained, the more difficult detection becomes.

Misclassification on Adversarial Samples As
shown in Figure 5, for both the Base and Large
DroidDetect models, most misclassifications oc-
cur between the Al-generated and Refined classes.
Notably, adversarial samples are more frequently
misclassified as human-written rather than as other
machine-generated (or refined) classes. This sug-
gests that our adversarial training strategy effec-
tively makes these examples more human-like.

E.2 Interpretation of Predictions

We studied the patterns behind models’ predictions,
using gradient attribution (Ancona et al., 2018) and
the attention maps of our models.
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matrix. matrix.

Figure 5: Confusion Matrixes for DroidDetect models.

Although these results are somewhat noisy and
may not always be fully faithful (Laugel et al.,
2019; Lyu et al., 2024), several common patterns
emerge. Notably, much of the model’s attention is
directed toward punctuation symbols (e.g., colons,
semicolons, arrows), consistent with the findings of
Clark et al. (2019), who showed that BERT-based
models frequently focus on punctuation. A more
detailed gradient-based analysis reveals that stylis-
tic choices, such as long, descriptive comments and
detailed explanations, typical of LLM-generated
code, significantly impact the model’s decisions.
Additionally, consecutive empty lines and extra
spaces influence predictions, aligning with the Cat-
Boost feature behaviour described in Appendix C.2.
Together, these findings suggest that the structural
and stylistic conventions of LLM-generated code
differ from human-written code.

Examples of some misclassifications and their
explanations based on gradient attribution and at-
tention maps are given in Tables 13 and 14.

F Qualitative Examples
F.1 Inverse Instructions Examples

In Tables 15 to 17 we show examples of code with
the corresponding inverse instructions. It is clear
that in general instructions match the code.

F.2 Dataset Samples

In this appendix (Tables 18 and 19), we provide a
small portion of code per class, written by differ-
ent models in different languages. To check the
diversity of our dataset, it is suggested to check the
release repository.
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Code

True Label

Predicted Label

Explanation

import java. i
import java.util.®;
public class randoms {

public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parselnt(st.nextToken());
int k = Integer.parselnt(st.nextToken());
int[1[] nums = new int[n][2];
for(int i= 0; i<n; i++){
st = new StringTokenizer(br.readLine());
nums[i][@] = Integer.parseInt(st.nextToken());
nums[i][1] = Integer.parseInt(st.nextToken());

long sum = @;
boolean[1[] dp = new boolean[n+11[k];

dpfe][e] = true;

for(int i=1; i<=n; i++){
sum += nums[i-11[0] + nums[i-11[1];
for(int j = @; j<k; j++){

int rem = nums[i-1][0]%k;
dp[ilC3] = dpLi-11L(F - rem + k)%k];
for(int back = @; back <= Math.min(k-1, nums[i-1][0]); back++){
if(nums[i-1101] + (nums[i-1][@] - back)%k >= k){
dplil[j] = dp[il[j] || dpLi-110(j - back + k)%k1;

}

long ret = @;
for(int i = 0; i<k; i++){
if(dplnI[il){
ret = (sum - i)/k;
break;

}

¥
pw.println(ret);
pw.close();
br.close();

Human-Written

Al-Generated

Gradient attribution

shows that this
prediction could
be based mainly on
consequtive whie—
spaces in the last
comment, use
comments that are
common for LLMs
during code
explanation like "
basically say it
is 1-D", "to use".

#include "chrome/browser/ash/borealis/features.h”
#include <string>

#include "ash/constants/ash_features.h”
#include "base/check.h”

#include "chrome/grit/generated_resources.h”
#include "components/prefs/pref_service.h”

void SetBorealisEnabledAndAllowed(PrefServicex pref_service, bool should_allow, bool should_enable) {
DCHECK (pref_service);
pref_service->SetBoolean(ash: : features: :kLauncherShowBorealisAppId, should_allow && should_enable)
feature_list->InitializeFromCommandLine(kProfileFlag, should_enable)
cros_settings->SetBoolean(ash: :kAccessibilitySpokenFeedbackEnabled, should_enable);

Al-Generated

Human-Written

Despite of inclusion

of "// Generative
code" comment, our
models made
mistake while
classifying this
code. Both
gradient
attribution and
attention maps
point to the
comment which
talks about
license as the
main reason to
label it as Human—
written code.

Table 13: Examples of Model misclassification and their explanations (Part 1).
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Code

True Label

Predicted Label

Explanation

while (k > 0 and ) {

if ((v[i] - sum) % k or (v[il - sum) <= @) {

11 d = (v[il - sum) / k;

sum += (d%2);

if (f == 1) cout << "YES" << endl;
else cout << "NO” << endl;

¥

return 0;

Human-Written

Al-Generated

Extra spacing between
lines

def gedIter(a,b):

test=min(a,b)
while test>=1:
if a%test==0 and b%test==0:
return test
test-=1

import fractions
S,te=list(map(int,input().split(’ ')))

already_occured=[]
while tc:

te=te-1
A=int(input())

ged=fractions.gcd(A,S)

if ged in already_occured:
print(-1)

else:
already_occured.append(gecd)
print(ged)

Human-Written

Al-Generated

Both attention maps
and gradient
attribution
trigger on "# Your
code here"
comment, which is
similar to "Here
is your code",
which is a common
part of LLMs
response .

#include <tuple>

template <int Arg>
class TestObj
{

public:
int getArg()
{

return Arg;

enum class EnumType
Member,
Subclass

¥

template <EnumType Arg> class EnumTemplate;

template <>

class EnumTemplate<EnumType: :Member>

{

public:

EnumTemplate(int m) :
m_member (m)

{

¥

int getMember() const

{

return m_member;

}

protected:
int m_member;

¥

Al-Generated

Human-Written

Consequitive spaces
and the format of
comments ,
highlighted by
attention maps and
gradient
attribution .

Table 14: Examples of Model misclassification and their explanations (Part 2).
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Language | Instruction Code
C++
Write a C-style function to static unsigned long __init
retrieve the bus speed of a [||Prpmc750_get_bus_speed(void)
bpe&,lflc device , gl\ferf s unsigned long tbl_start, tbl_end;
UART's baud clock divisor , |||unsigned long current_state, old_state, bus_speed;
base baud clock, and time unsigned char lcr, dll, dlm;
. . . int baud_divisor, count;
base reading functionality .
The function should set
the DLAB. read the DLL and lcr = readb(PRPMC750_SERIAL_0_LCR);
’ writeb(ler | UART_LCR_DLAB, PRPMC75@_SERIAL_@_LCR);
DLM, calculate the baud dl1 = readb(PRPMC750_SERIAL_0_DLL);
clock divisor, update the dlm = readb(PRPMC750_SERIAL_Q_DLM);
. writeb(ler & ~UART_LCR_DLAB, PRPMC750_SERIAL_@_LCR);
DLAB, and then loop: to find ||| 5 "oivicor = (d1n << 8) | dlL;
the first edge of the baud
clock, get the starting
and ending time base values
, and finally compute the
bus speed from these values
count = PRPMC750_BASE_BAUD / (baud_divisor * 16);
old_state = readb(PRPMC750_STATUS_REG) & PRPMC75@_BAUDOUT_MASK;
do {
current_state = readb(PRPMC750_STATUS_REG) &
PRPMC75@_BAUDOUT_MASK ;
} while(old_state == current_state);
old_state = current_state;
tbl_start = get_tbl();
do {
do {
current_state = readb(PRPMC750_STATUS_REG) &
PRPMC750_BAUDOUT_MASK ;
} while(old_state == current_state);
old_state = current_state;
} while (--count);
tbl_end = get_tbl();
bus_speed = (tbl_end-tbl_start)*128;
return bus_speed;
}
Python

Generate Python code that

performs data reading,
trimming , and datetime
conversion for a set of
files located in a
specified directory. The
files should be named in a
pattern
met_sum_insitu_1_obop_hour_2|
<Year>.txt ', and the data
should be trimmed to remove
irrelevant columns, handle
missing values, and create
a datetime column using
the existing year, month,
day, and hour columns. The
resulting data should be
returned as a processed
pandas DataFrame

def metTrim():

root = r'C:\Users\ARL\Desktop\MetData'
ext = list(range(12, 20))

colnames = ['na', 'yr', 'mo', 'dy', 'hr', 'dir', 'spd', 'steady', 'na', 'na', 'na', 'na', 'na', 'na'l
met = pd.DataFrame(columns=colnames)

for yr in ext:

data = pd.read_csv(root + r'\met_sum_insitu_1_obop_hour_20{}.txt".format(yr), delim_whitespace=True,
header=None)

data.columns = colnames

met = met.append(data)

print('Data Imported')

met = met.drop('na', axis=1)

met = met.replace(-999.9, np.nan)
met = met.replace(-9, np.nan)

met = met.replace(-999, np.nan)
met = met.replace(-99.9, np.nan)
met = met.dropna(axis=0, how='any')

metInt = met.applymap(int)

dates = createDatetime(metInt['yr'].values,
metInt['mo'].values,

metInt['dy'].values,

metInt['hr'].values)

met['datetime’] = dates
met = met.drop(['yr', 'mo', 'dy', 'hr'l, axis=1)

return met

Table 15: Code and Corresponding Inverse Instructions (C++, Python).
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Language | Instruction Code

Java
Given a file with blog entries |||private void readIndex(boolean published) {
and their respective dates '_:;1? i;géxziés;(
. if (publishe
, write a :Iava method to indexFile = new File(blog.getIndexesDirectory(), "blogentries-published.index");
read the file, sort the } else {
entries in reverse indexFile = new File(blog.getIndexesDirectory(), "blogentries-unpublished.index");
. }
chronological order, and
separate them into lists if (indexFile.exists()) {
for published and try {
p . N BufferedReader reader = new BufferedReader(new FileReader(indexFile));
unpublished entries. The String indexEntry = reader.readLine();
method should handle while (indexEntry != null) {
Varying file existence indexEntries.add(indexEntry);
conditions and log errors
accordingly . Assume the Date date = new Date(Long.parseLong(indexEntry));
blog entries are stored in Day day = blog.getBlogForDay(date);
lines of the file, with if (published) {
each entry consisling of a publishedIndexEntries.add(indexEntry);
. \ day.addPublishedBlogEntry(indexEntry);
date in 'yyyyMMdd' format } else {
followed by the entry 's ID. |||unpublishedIndexEntries.add(indexEntry);
day.addUnpublishedBlogEntry(indexEntry);
}
indexEntry = reader.readlLine();
reader.close();
} catch (Exception e) {
log.error("Error while reading index”, e);
}
}
Collections.sort(indexEntries, new ReverseBlogEntryIdComparator());
Collections. sort(publishedIndexEntries, new ReverseBlogEntryIdComparator());
Collections.sort(unpublishedIndexEntries, new ReverseBlogEntryIdComparator());
}
JavaScript
Generate a JavaScript function |||var Btc = require(’./btc');
named Teth, which is a var bitcoin = require('bitcoinjs-1ib");
. var _ = require('lodash');
constructor function,
outside of its parent var Tbtc = function() {
function. Teth should
inherit all properties and
methods from its parent this.__proto__ = Tbtc.prototype;
function and add a new this.network = bitcoin.networks.testnet;
. " i
method — getChain. This
method should return the Tbtc.prototype.__proto__ = Btc.prototype;
““""_5 teth". The Teth_ Tbtc.prototype.getChain = function() {
function should attach its return 'tbtc';
prototype to its parent's Y
PrOIOEYDE , MOVnG 1t ene module.exports = Tbtc;

level away. The code should
utilize the Node.js
environment and should
include documentation to
describe the purpose of the
function and its newly
added method.

Table 16: Code and Corresponding Inverse Instructions (Java, JavaScript).
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Language | Instruction Code
Go

Write a Go function that func CreateConstLabels() error {
creates a set of constant / Y i
label f P th if IsiCluster.Site != ""
a e‘s orF rOMCEHIEES ConstlLabels = prometheus.lLabels{"cluster”: IsiCluster.Name, "site”: IsiCluster.Site}
metrics based on ISI } else {
cluster settings . ConstlLabels = prometheus.Labels{"cluster”: IsiCluster.Name}

. ) oy

The function should check if a log.Debugf("ConstLables are %v", ConstLabels)
site has been specified return nil
for the ISI cluster and 3
create labels with both the
cluster name and site name
if available.

Otherwise , it should create
labels with only the
cluster name.

Include a log statement to
display the created labels.

C#

Generate C# code that prompts
the user for a string and
then checks if it is a
palindrome by comparing
characters from the start
and end of the string,
moving towards the center.
If the characters match,
print a message indicating
they are equal; otherwise ,
print a message indicating
they are not equal. The
code should handle strings
of any length and input
user characters until the
string length is reached.

using System;
namespace _76
class Program
static void Main(string[] args)

int cont = 0;

Console.WriteLine("Quantos caracteres seu palindromo tem?");

int max = int.Parse(Console.ReadLine());
string [] caractere = new string [max];

for (cont = @; cont < max; cont++)

Console.WriteLine("Digite” + (cont + 1) + " caracteres da palavra");

caractere[cont] = Console.ReadLine();

int inverso = cont;
for (cont = @; cont < max; cont++)

if (caractere[cont] == caractere[inverso])
{

Console.WriteLine("0 " + (cont + 1) + " caractere

Console.WriteLine("0 " + (cont + 1) + " caractere
inverso--;

U

caractere”);

caractere ");

Table 17: Code and Corresponding Inverse Instructions (Go, C#).
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Language

Class

Generator | Code

Python

LLM-Refined
(re-written)

Qwen2.5-72B

from collections import defaultdict
class Solution:

MAXPRIME = 100001

isPrime = [0] * (MAXPRIME + 1)
isPrime[@] = isPrime[1] = -1

def __init__(self):

for i in range(2, MAXPRIME):

if isPrime[i] == 0:

isPrime[i] = i

for multiple in range(i * i, MAXPRIME + 1, i):
if isPrime[multiple] == 0:
isPrime[multiple] = i

def largestComponentSize(self, A):
label = defaultdict(int)

roots = {}

def find_root(key):

if key not in roots:

roots[key] = key

if roots[keyl!= key:

roots[key] = find_root(roots[key])
return roots[key]

def merge_roots(k1l, k2):

r1, r2 = find_root(k1), find_root(k2)
if r1l=r2:

r1, r2 = min(r1, r2), max(rl, r2)
label[r1] += label[r2]

roots[r2] = ri

return ri

for x in A:

root_id = None

prime_factors = set()

while self.isPrime[x]!= -1:

p = self.isPrime[x]

root_id = find_root(p) if root_id is None else merge_roots(root_id, p)
x //=p

label[root_id] -= 1

return -min(label.values())

Human-written

Human

int

pack_white(char *ptr)
{
int cnt = 0;

char *xtptr, ch;

if (ptr == NULL)

return (0);

tptr = ptr;

while (isspace(*tptr))

tptr++;

for (53) {

while ((ch = xtptr) != '\0' && !isspace(ch)) {
*ptr++ = ch;

tptr++;

3
while (isspace(*tptr))
tptr++;

if (*tptr == '\0')
break;

*ptr++ = ' '

cnt++;

3
*ptr = '\0';
return (cnt);

}

Table 18: Code samples by different models (Part 1).
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Language

Class

Generator Code

Go

Adversarial

Qwen2.5-Coder-7B-Instruct

package main

import (

"context”

"fmt"
"golang.org/x/sync/errgroup”
)
func parallelExecute(ctx context.Context, runners
g := new(errgroup.Group)

for _, runner := range runners {

runner := runner

g.Go(func() error {

return runner(ctx)

»

3}
return g.Wait()
3
func main() {

ctx := context.Background()

runners := [Jfunc(context.Context) error{
func(ctx context.Context) error {

select {

case <-ctx.Done():

return ctx.Err()

case <-time.After(2 * time.Second):
return fmt.Errorf("runner 1 error”)

3}
3,

func(ctx context.Context) error {
select {

case <-ctx.Done():

return ctx.Err()

case <-time.After(3 * time.Second):
return fmt.Errorf("runner 2 error”)
¥
3,
3
err := parallelExecute(ctx, runners...)
if err !=nil {

fmt.Println("First error encountered:",
¥
3

err)

...func(context.Context) error) error {

JavaScript

Al-Generated

Yi-Coder-9B

class Vector2D {
#x;
#y;

constructor(x, y) {
this.#x = x;
this.#y = y;

}
setX(x) {
this.#x = x;
3
setY(y) {
this.#y = y;
3
getx() {

return this.#x;
¥
getY() {

return this.#y;

3

add(vector) {

this.#x += vector.getX();
this.#y += vector.getY();
return this;

3
compare(vector) {
return this.#x
¥
3

=== vector.getX() && this.#y === vector.getY();

Table 19: Code samples by different models (Part 2).
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