
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 293–309
November 4-9, 2025 ©2025 Association for Computational Linguistics

CompKBQA: Component-wise Task Decomposition for Knowledge Base
Question Answering

Yuhang Tian1, Dandan Song1* , Zhijing Wu1, Pan Yang1,
Changzhi Zhou1, Jun Yang1, Hao Wang1, Huipeng Ma1, Chenhao Li1, Luan Zhang1

1School of Computer Science and Technology, Beijing Institute of Technology, China
{tianyuhang,sdd}@bit.edu.cn

Abstract

Knowledge Base Question Answering (KBQA)
aims to extract accurate answers from the
Knowledge Base (KB). Traditional Semantic
Parsing (SP)-based methods are widely used
but struggle with complex queries. Recently,
large language models (LLMs) have shown
promise in improving KBQA performance.
However, the challenge of generating error-free
logical forms remains, as skeleton, topic Entity,
and relation Errors still frequently occur. To
address these challenges, we propose Comp-
KBQA (Component-wise Task Decomposition
for Knowledge Base Question Answering), a
novel framework that optimizes the process of
fine-tuning a LLM for generating logical forms
by enabling the LLM to progressively learn rel-
evant sub-tasks like skeleton generation, topic
entity generation, and relevant relations gen-
eration. Additionally, we propose R3, which
retrieves and incorporates KB information into
the process of logical form generation. Experi-
mental evaluations on two benchmark KBQA
datasets, WebQSP and CWQ, demonstrate that
CompKBQA achieves state-of-the-art perfor-
mance, highlighting the importance of task de-
composition and KB-aware learning.

1 Introduction

Knowledge Base Question Answering (KBQA) is
a long-standing and pivotal problem in the field of
natural language processing (NLP) (Chowdhary
and Chowdhary, 2020). Its primary objective is
to extract accurate or relevant answers to natural
language questions by leveraging structured infor-
mation stored in a Knowledge Base (KB), such
as Freebase (Bollacker et al., 2008) and DBPe-
dia (Auer et al., 2007). A traditional and widely
used method for KBQA is Semantic Parsing based
methods (SP-based methods) (Berant et al., 2013),
which transform natural language questions into
structured queries like SPARQL (Pérez et al., 2009)

*Corresponding author.

or S-Expression (Gu et al., 2021) for direct exe-
cution on the KB. This process involves multiple
stages: syntactic and semantic analysis, entity and
relation linking, and query generation.

In the era of large language models
(LLMs) (Zhao et al., 2023), the remarkable
generative capabilities of these models have led
to new progress in KBQA. Compared to tradi-
tional SP-based methods, LLM-based methods
demonstrate superior performance and stronger
generalization capabilities, particularly in handling
complex and diverse queries. Recent methods like
KB-BINDER (Li et al., 2023a), KB-Coder (Nie
et al., 2024), QueryAgent (Huang et al., 2024),
and ARG-KBQA (Tian et al., 2024) use LLMs
to generate executable logical forms for KB
queries. Another emerging approach, exemplified
by ChatKBQA (Luo et al., 2024a), relies on
fine-tuned LLMs to generate logical forms from
input questions. Fine-tuning LLMs on labeled
question-query pairs enables more effective
learning of domain-specific query structures,
compared to prompt-based methods that rely on
in-context learning.

Despite advances in the field, current methods
still struggle to generate completely accurate log-
ical forms, with persistent errors in the output.
We analyze the logical forms generated by ChatK-
BQA (Luo et al., 2024a) on the WebQSP dataset
and find that, out of 1,639 questions in the test set,
624 corresponding Logical Forms contain errors,
which mainly fall into three types, as illustrated in
Figure 1: (1) Skeleton Errors occur when query
components are incorrectly nested, misaligned with
the KB schema, or when the overall structure of
the query is inconsistent with the intended logical
framework, appearing 276 times. (2) Entity Er-
rors result from mismatches in surface forms, or
the hallucination of non-existent entities, appear-
ing 364 times. (3) Relation Errors arise when the
model either misidentifies relations between enti-

293

 Entity
 Error

 Question: who did cam newton sign with?
Correct Logical Form:

(JOIN (R base.schemastaging.athlete_salary.team) (JOIN (R
base.schemastaging.athlete_extra.salary) Cam Newton))

Generated Logical Form:
 (JOIN (R base.schemastaging.athlete_salary.team) (ARGMIN (JOIN (R
 base.schemastaging.athlete_extra.salary) Cam Newton)

 sports.sports_team_roster.form)

 Question: what language do the maasai speak?
Correct Logical Form:

(JOIN (R people.ethnicity.languages spoken) Maasai people)
Generated Logical Form:

(JOIN (R people.ethnicity.languages spoken) Maasai)

 Question: which country does greenland belong to?
Correct Logical Form:

(JOIN (R location.administrative_division.country) Greenland)
Generated Logical Form:

(JOIN (R base.biblioness.bibs_location .country) Greenland)

 Relation
 Error

Lack of KB-
Aware

Information
During

Generation

Coarse-
Grained Task
Formulation

 Skeleton
Error

Examples Errors Challenges

Figure 1: Examples of Errors in Logical Form Generation.

ties or generates non-existent relations, appearing
528 times.

These errors arise from the task’s intrinsic com-
plexities, the absence of structured intermedi-
ate reasoning steps, and the unavailability of ex-
plicit KB information during generation. The pri-
mary sources of error are as follows: (1) Coarse-
Grained Task Formulation: Directly generating a
complete logical form based on a natural language
question is a coarse-grained task. Without prior
learning through more fine-grained tasks, such as
generating the skeleton of a logical form or iden-
tifying the topic entities, it is challenging for a
LLM to generate the correct logical form in a sin-
gle step. (2) Lack of KB-Aware Information Dur-
ing Generation: LLMs, which are predominantly
trained on unstructured text, lack direct access to
KB-specific information during the generation of
logical forms. As a result, LLMs frequently pro-
duce hallucinated entities, relations, or query struc-
tures that do not exist in the KB, as demonstrated
by the errors shown in Figure 1.

To address these challenges, we introduce a
framework named CompKBQA: (Component-
wise Task Decomposition for Knowledge Base
Question Answering). Our framework is specif-
ically designed to optimize the process of fine-
tuning a large language model (LLM) for generat-
ing logical forms by enabling the LLM to progres-
sively learn relevant sub-tasks and collect neces-
sary information from KB to assist generation. For
the Coarse-Grained Task Formulation, we propose
CompKBQA framework. Specifically, we train
the LLM to learn sequentially: first generating the
skeleton of the logical form for a given question,

followed by the question’s topic entity and relevant
relations, and finally generating the full logical
form based on these intermediate outputs. For the
Lack of KB-Aware Information During Genera-
tion, we propose R3: Relevant Relations Retriever.
R3 retrieves relevant information from the KB and
incorporates it into the process of logical form gen-
eration by the LLM, thereby guiding the LLM’s
generation process with KB knowledge.

We conduct experiments on two widely used
datasets in the KBQA domain, WebQuestion-
sSP (WebQSP) (Yih et al., 2016) and Complex
WebQuestions (CWQ) (Talmor and Berant, 2018).
The experimental results demonstrate that Comp-
KBQA achieves state-of-the-art (SOTA) perfor-
mance on both datasets, highlighting the effec-
tiveness of providing LLMs with relevant KB in-
formation and decomposing the direct generation
task into multiple training processes, which signifi-
cantly enhances generation accuracy. Besides, we
compare the time consumption of CompKBQA and
ChatKBQA and find their efficiencies to be similar.

In summary, the contributions of our paper are
as follows:

• We propose a novel KBQA framework:
CompKBQA. In contrast to directly gener-
ating logical forms, our framework optimizes
the process by enabling the LLM to learn sub-
tasks step-wise, thereby reducing errors in log-
ical form generation.

• We propose R3, which collects question-
related information from the KB. By incor-
porating KB information, the LLM becomes
KB-aware during generation.

294

• We conduct experiments on two widely used
KBQA datasets, WebQSP and ComplexWe-
bQuestions (CWQ), and experimental results
demonstrate that CompKBQA outperforms
strong baselines, achieving state-of-the-art
(SOTA) performance on both datasets.

2 Related Work

2.1 Traditional Semantic Parsing-Based
KBQA

SP-based methods aim to convert natural language
questions into query statements for KB, such as
SPARQL or S-expressions. RnG-KBQA (Ye et al.,
2022), TIARA (Shu et al., 2022), and DECAF (Yu
et al., 2023a) leverage sequence-to-sequence mod-
els to fully generate S-expressions, introducing sev-
eral enhancements to the semantic parsing process.
FC-KBQA (Zhang et al., 2023) focuses on extract-
ing fine-grained knowledge components from KB
and reformulating them into intermediate knowl-
edge pairs, which are then used to generate the
final logical expressions. GMT-KBQA (Hu et al.,
2022) introduces a multi-task generation-based ap-
proach that jointly learns entity disambiguation,
relation classification, and logical form generation
with dense retrieval.

2.2 LLM-Based KBQA

In the era of large language models (LLMs), many
approaches leverage LLMs to generate logical
forms for solving KBQA tasks. For example, Tan
et al. (2023) utilize GPT-3.5 to directly generate an-
swers to natural language questions, incorporating
an answer matching strategy to improve prediction
accuracy. Due to the remarkable few-shot learning
and in-context learning capabilities of LLMs, some
approaches (Gu et al., 2023; Li et al., 2023b; Nie
et al., 2024; Jiang et al., 2023a; Xiong et al., 2024;
Sun et al., 2023) leverage few-shot in-context learn-
ing to prompt LLMs to generate logical forms for
given questions.

However, LLMs which are not specifically
trained struggle to generate correct logical forms.
ChatKBQA (Luo et al., 2024a) introduces a frame-
work which fine-tunes the LLM to directly gen-
erate the logical form and retrieves information
from KB during the execution. Triad (Zong et al.,
2024) proposes a unified framework that utilizes an
LLM-based agent with three roles (generalist, deci-
sion maker, and advisor) to collaboratively handle
the four phases of KBQA: question parsing, URI

linking, query construction, and answer genera-
tion. KBQA-o1 (Luo et al., 2025) further advances
agentic KBQA by introducing a ReAct-based pro-
cess for stepwise logical form generation combined
with Monte Carlo Tree Search (MCTS), which bal-
ances exploration performance and search space.
By leveraging heuristic exploration and incremen-
tal fine-tuning, KBQA-o1 achieves strong perfor-
mance in low-resource settings, substantially im-
proving GrailQA results over prior methods.

Unlike ChatKBQA (Luo et al., 2024a), which
fine-tunes the LLM to directly generate the logical
form without referencing the KB during generation,
and Triad (Zong et al., 2024), which utilizes mul-
tiple LLMs to collaboratively generate SPARQL
queries, our proposed method fine-tunes a single
LLM to progressively learn and generate sub-tasks
related to the logical form. Additionally, KB in-
formation is incorporated during the generation
process, effectively mitigating three types of errors
in the generated logical form.

3 Preliminaries

In this section, we will introduce the two key com-
ponents of KBQA: Knowledge Base (KB) and the
Logical Form.

Knowledge Base (KB) The Knowledge Base
stores knowledge as triples (s, r, o), where s is an
entity, r is a relation, and o is an entity or literal.
Each entity has a unique mid, but the same friendly
name can correspond to multiple mids. For exam-
ple, Lebron James can refer to several entities, such
as m.01jz6d, m.0gg7874, and m.03l26m.

Logical Form A Logical Form is a query that
can be executed on the KB to retrieve results for
a natural language question. Common forms in-
clude SPARQL and S-Expressions. For example,
an S-Expression aggregates various operators, such
as JOIN, AND, ARGMAX, ARGMIN, and others. The
JOIN operator represents a one-hop query of a triple
(s, r, o) on either s or o. Specifically, (?, r, o) is de-
noted as (JOIN r o), while (s, r, ?) is denoted as
(JOIN (R r) s). The AND operator computes the
intersection of two entity sets. Besides, other op-
erators like ARGMAX and ARGMIN filter results from
entity set. In this paper, we represent the entities
using their friendly names.

4 Methodology

Our approach, as illustrated in Figure 2, consists
of two main modules: Logical Form Generation

295

and Logical Form Execution for answer retrieval.
The logical form generation process is carried
out through four stages: (1) Skeleton Generation,
where the structural template of the logical form is
produced, (2) Topic Entity Generation, which iden-
tifies the key entity in the question, (3) Relevant
Relations Generation, including relation retrieval
and question-specific relation prediction, and (4)
Logical Form Generation, where entities and rela-
tions are integrated into a complete logical form. To
accomplish these tasks, we progressively fine-tune
a Large Language Model (LLM) through instruc-
tion tuning, as shown in the left of Figure 2. In
the execution phase, the generated logical form is
matched with the knowledge base (KB), and candi-
date entities and relations are scored to retrieve the
final answer.

4.1 Skeleton Generation

The primary objective of this part is to generate the
logical form skeleton, where entities and relations
are replaced with placeholders. Specifically, for
the questions in the training set, we replace the
relations in logical forms with [REL] and the enti-
ties with [ENT], thereby constructing training data
from questions to skeletons. As shown in Figure 2,
for the question “what did nicolas cage name his
son?”, the corresponding logical form is:

(AND (JOIN (R people.person.children) m.01 vvb4m)
(JOIN people.person.gender m.05 zppz)),

while its corresponding skeleton is:
(AND (JOIN (R [REL]) [ENT]) (JOIN [REL] [ENT])).

By extracting the skeletons of logical forms, we
eliminate specific entity and relation details, allow-
ing the model to focus on structural patterns. We
then apply Instruction Tuning to the LLM, and the
fine-tuned LLM is denoted as Mskeleton.

4.2 Topic Entity Generation

Previous work, such as ChatKBQA (Luo et al.,
2024a), has highlighted entity errors as a common
challenge when fine-tuning LLMs for logical form
generation. To address this, we introduce a task
where the LLM learns to generate the Topic Entity
from the input question. For each training ques-
tion, we extract the entities in its logical form as
Topic Entities, which are then used for training.
We fine-tune Mskeleton with question-entity pairs,
resulting in the model Mte. The Topic Entity is
represented by its surface name rather than the mid
identifier. For example, in the question “What did

Nicolas Cage name his son?”, the Topic Entities
are “Nicolas Cage” and “male”, key components of
the corresponding logical form. Notably, the Topic
Entity may not always be explicitly mentioned in
the question. This task also enables the model to
identify latent entities, those not directly stated but
implied or inferred from the context, improving its
robustness in handling such cases.

4.3 Relevant Relations Generation
In this section, the primary task is to retrieve and
then generate the most relevant relation from the
KB for a given question. The process is broken
down into the following stages: Stage 1: Relevant
Relations Retrieval: We propose a novel retriever
named R3, which is used to retrieve more relevant
relations from the KB for questions. The training
of R3 will be explained in detail in this section.
Stage 2: Question-Specific Relations Genera-
tion: In this stage, the LLM learns to generate the
relations necessary to solve the problem based on
the question and the relations retrieved by R3.

4.3.1 Stage 1: Relevant Relations Retrieval
The primary goal of this stage is to train a retriever
denoted as R3, involving identifying hard negative
examples, fine-tuning the embedding model to dif-
ferentiate relevant relations from irrelevant ones.
And then we use R3 to retrieve more relevant rela-
tions from the KB.

Mining Hard Negative Examples In this stage,
we aim to identify hard negative examples, which
are relations similar to the golden relations but ir-
relevant to the question. For each question q, we
perform an initial retrieval to identify these hard
negatives. We define an embedding model M that
encodes both q and all the relations r ∈ R from the
KB. The relations are ranked based on the cosine
similarity between their vector representations, and
the topk relations as selected as candidate relations
for further processing. The cosine similarity be-
tween the question embedding vq and the relation
embedding vr is computed as

cosine_similarity(vq,vr) =
vq · vr

∥vq∥∥vr∥
. (1)

The top-ranked relations obtained from this simi-
larity computation, denoted as Relini, serve as the
basis for the subsequent fine-tuning of the embed-
ding model.

Once the initial set of candidate relations Relini
is obtained, the corresponding golden relations

296

Training Process Logical Form Generation

Topic Entity: nicolas cageSkeleton: (AND (JOIN (R [REL])
[ENT]) (JOIN [REL] [ENT]))

Stage 1: Skeleton Generation Stage 2: Topic Entity Generation

Stage 3.1: Relevant Relations Retrieval

Logical Form Execution

Question Question

 Relevant Relations:
 people.person.children,
 people.person.gender

Stage 4: Logical Form Generation

Logical Form: (AND (JOIN (R [people , person , children]) [Nicolas Cage]) (JOIN [people , person , gender] [Male]))

Answer
Entitiy Candidates

 Nicolas Cage:
 m.01vvb4m,...
 Male: m.05zppz,...

Relation Candidates
people.person.children:
people.person.children,...
people.person.gender:
people.person.gender,...

Logical Form Candidates
 1. (AND (JOIN (R people.person.children)
 m.01vvb4m) (JOIN people.person.gender
 m.05zppz))
 ... KB

KB

Question

Training process of

Stage 3.2: Question-Specific Relations Generation

1. Mining Hard Negative Examples

M
Embedding

Model

2. Finetuning Embedding Model

Question

KB
Fine-tuned
Retriever

KB

Question

Question

Initial
Retriever

Contrastive

Learning

 Logical Form: (AND (JOIN (R [people , person , children]) [Nicolas Cage])
 (JOIN [people , person , gender] [Male]))

Topic Entity
Question Relvant

Relations

Base_Model

Question: what did nicolas cage name his son?

Stage 3: Relevant Relations Generation

Figure 2: Overview of CompKBQA. CompKBQA is composed of two main components: Logical Form Generation
and Logical Form Execution. The Logical Form Generation component is further divided into four distinct stages.

Relgolden for each question q are acquired from
the training data, which means relations in q’s
logical form. For each question, the relations in
Relini but not in Relgolden are treated as negative
samples, denoted as Relneg, while the relations in
Relgolden are considered as positive samples, de-
noted as Relpos. Formally, we define:

Relneg = {r ∈ Rel1st | r /∈ Relgolden}

Relpos = Relgolden

Fine-tuning the Embedding Model We then
fine-tune the embedding model M (BAAI/bge-
large-en-v1.51) by optimizing a contrastive learn-
ing loss to distinguish between positive and nega-
tive samples. The loss function is defined as:

L = −
∑

i

log
esim(vq,vreli

)/τ

∑
j e

sim(vq,vrelj
)/τ

, (2)

where sim(vq,vrel) represents the cosine sim-
ilarity between the question embedding vq and
relation embedding vrel, and τ is a temperature
scaling parameter.

This fine-tuning process enhances the model’s
ability to correctly differentiate between relevant
and irrelevant relations, resulting in the fine-tuned
embedding model R3.

1https://huggingface.co/BAAI/bge-large-en

Retrieving Candidate Relations In this final
stage, the fine-tuned embedding model R3 is em-
ployed to retrieve relevant candidate relations. For
each question q, similarly, we encode both the ques-
tion and all the relations r ∈ R from the KB using
R3 to obtain their vector representations v1q and
v1r. The cosine similarity between these vectors
is calculated, and the topk most relevant relations
are selected as Relnew. It is important to note that
Relnew is retrieved directly from the KB, rather
than being based on the initial set Relini. These
candidate relations are then forwarded to the next
stage for final selection and generation.

4.3.2 Stage 2: Question-Specific Relations
Generation

Although R3 retrieves highly relevant relations for
the query, the retrieved results inevitably contain
some noise (irrelevant relations). Therefore, it is es-
sential for LLMs to select or generate truly relevant
relations from noisy candidate relations set.

Specifically, we train the model Mte using a
dataset where each instance consists of a question
paired with candidate relations as input and the
corresponding golden relations as output. In the
prompt, we specify that the model should generate
the correct question-relevant relations based on the
candidate relations. It is allowed to select relations
from the candidate set, and if necessary relations

297

https://huggingface.co/BAAI/bge-large-en

are missing, it can generate new ones. The specific
prompt can be found in the Case Study I. This fine-
tuning process results in the model Mrg (relation
generation), which enhances the model’s ability to
accurately generate the correct relation based on
the retrieved candidates, addressing the issue of
noisy or irrelevant relations.

4.4 Logical Form Generation
In this stage of training, starting with Mrg, we fine-
tune the model to generate the final logical form,
resulting in the model Mlf . The input consists of
the question, the topic entity produced by Mte, and
the relations generated by Mrg.The objective of
fine-tuning is to enable the model to generate the
correct logical form based on the provided question
and content.

During inference, we apply Mlf with inputs con-
sistent with those used in training and apply beam
search to generate the logical forms.

4.5 Logical Form Execution
After generating the logical form candidates, we
need to address potential misalignments between
the entities(represented by their surface names) and
the relations, which may not necessarily match
those in the KB. Thus, it is crucial to map the enti-
ties in the logical form to their corresponding mid-
identifiers and align the relations with the actual
relations in the KB before execution.

Entity Alignment In this phase, for a given sur-
face name Nent, we first check for exact matches
in the KB. If any entities share the same name, we
assign the Nent to Esame and select the top-kent
entities, Ecand, based on their popularity score,
FACC1 (Gabrilovich et al., 2013). If no exact
match exists, we apply the BM25 (Robertson et al.,
2009) algorithm to select the most similar entities
from the KB using Nent. We then apply the FACC1
score again to select the topkent entities as Ecand.

Relation Alignment In the relation alignment
phase, for each Nrel, if an identical relation exists
in the KB, no replacement is made. If no exact
match is found, we use SimCSE (Gao et al., 2021)
to identify the topkrel relations, denoted as Rcand,
that are most similar to Nrel.

After completing both alignment stages, we gen-
erate combinations of entities and relations from
the Ecand and Rcand sets, selecting the top − klf
combinations for execution. The execution stops
as soon as a non-empty result is obtained, and this

result is taken as the final answer, denoted as the
answer set. If no valid answer is found, an empty
set is returned.

5 Experiments

In this section, we present the experimental val-
idation of CompKBQA, which includes dataset
descriptions, implementation details, results, and
a comprehensive analysis. Our analysis is orga-
nized around the following four research questions
(RQs): RQ1: How does CompKBQA perform
in comparison to other approaches, and does it
mitigate errors in the generated Logical Forms?
RQ2: How effective is the approach of decom-
posing direct logical form generation into progres-
sively learned sub-tasks? RQ3: Does R3 enhance
relation retrieval? RQ4: Can CompKBQA achieve
high efficiency and be plug-and-play?

Besides, we provide a case study in Appendix I
to illustrate the reasoning process of our framework.
In addition, Appendix F presents an efficiency anal-
ysis of our method, and Appendix G reports the
experimental results obtained with the T5 model,
which further verify the necessity of leveraging
LLMs in our approach.

5.1 Datasets

We conduct experiments using two widely
used KBQA datasets: WebQuestionsSP (We-
bQSP) (Yih et al., 2016), a well-known KBQA
dataset based on Freebase, containing 4,737 nat-
ural language questions and their corresponding
SPARQL queries, and Complex WebQuestions
(CWQ) (Talmor and Berant, 2018), also based
on Freebase, which includes 34,689 natural lan-
guage questions and their corresponding SPARQL
queries. The details of these datasets are provided
in Appendix A.

5.2 Baselines

We compare CompKBQA against 25 methods,
which are categorized into five major groups: 1) IR-
based KBQA Methods, 2) SP-based KBQA Meth-
ods, 3) LLM-based KBQA Methods (Prompting),
where we employ the same setup as RoG (Luo
et al., 2024b), in which the LLM is directly used to
generate answers for the given questions; 4) LLMs
+ KGs-based KBQA Methods (Prompting), where
it is important to note that GPT-4o (1-shot) and
DeepSeek-V3 (1-shot) involve inputting the skele-
ton, topic entities, and relevant relations generated

298

by our model into the LLM to generate the logical
form; and 5) LLMs + KGs-based KBQA Meth-
ods (Fine-tuning). Detailed descriptions of each
baseline method can be found in Appendix B.

5.3 Evaluation Metric
Consistent with prior work, we use F1 score,
Hits@1, and Accuracy (Acc) to measure the cover-
age of all answers, the top-ranked answer, and the
strict exact-match accuracy, respectively.

5.4 Implementation Details
During LLM fine-tuning, we use LLaMA-2-7B for
WebQSP and LLaMA-2-13B for CWQ as the base
model, following the setup of ChatKBQA (Luo
et al., 2024a). For the Relevant Relations Re-
trieval stage, we fine-tune the embedding model
with BAAI/bge-large-en-v1.5. All experiments are
run on two NVIDIA A6000 GPUs. Implementation
details are provided in Appendix H.

5.5 Main Results (RQ1)
As shown in Table 1, we compare CompKBQA
with other baselines on the WebQSP and CWQ
datasets. Consistent with ChatKBQA (Luo et al.,
2024a), we use beam search during the inference
phase: a beam size of 15 on LLaMA-2-7B for
WebQSP and a beam size of 8 on LLaMA-2-13B
for CWQ. Compared to the best baseline model,
our method achieves a 0.6% increase in F1 and a
2.1% improvement in ACC on WebQSP. On CWQ,
CompKBQA outperforms the best baseline with
a 1.6% increase in F1, a 1.1% improvement in
Hits@1, and a 2.8% improvement in ACC. These
results demonstrate that, through our component-
wise task decomposition, the LLM gains a better
understanding of the logical structure of questions,
while also narrowing the gap between the question
and the KB schema (relations and entities) from
the LLM’s perspective.

At the same time, as shown in Table 1, even
powerful models like GPT-4o and DeepSeek-V3
struggle to generate the correct logical form, de-
spite being provided with the skeleton, topic en-
tities, and relevant relations. Detailed analysis is
shown in Appendix D.

Futhermore, we conduct a comparative analysis
of the number of distinct error types in the Logi-
cal Forms generated by CompKBQA and ChatK-
BQA on the WebQSP dataset, as detailed in the
Table 2. As shown in the table, the three types of er-
rors, including Skeleton Errors, Topic Entity Errors,

WebQSP CWQModel F1 Hits@1 Acc F1 Hits@1 Acc
IR-based KBQA Methods

NSM 62.8 68.7 - 42.4 47.6 -
KGT5 - 56.1 - - 36.5 -
Subgraph Retrieval* 64.1 69.5 - 47.1 50.2 -

SP-based KBQA Methods
ArcaneQA 75.6 - - - - -
RnG-KBQA 75.6 - 71.1 - - -
DecAF 78.8 82.1 - - 70.4 -
FC-KBQA 76.9 - - 56.4 - -
TIARA* 78.9 75.2 - - - -

LLMs-based Methods (Prompting)
GPT-3.5-Turbo - 67.8 - - 39.8 -
GPT-3.5-Turbo+CoT - 69.0 - - -
GPT-4o - 71.2 - - 50.6 -
GPT-4o+CoT - 71.4 - - 53.2 -
DeepSeek-V3 - 72.1 - - 53.0 -
DeepSeek-V3+CoT - 73.3 - - 55.9 -

LLMs+KGs-based Methods (Prompting)
GPT-4o (1-shot) 11.5 11.0 10.3 - - -
DeepSeek-V3(1-shot) 13.7 14.3 12.4 - -
KB-Binder 74.4 - - - - -
KB-Coder 75.2 - - - - -
QueryAgent* 63.9 - - - - -
ARG-KBQA 75.6 - - - - -
KELDaR 76.7 - - 44.2 - -
FIDELIS 78.3 84.4 - 64.3 71.5 -

LLMs+KGs-based Methods (Fine-tuning)
RoG 70.8 85.7 - 56.2 62.6 -
ReasoningLM 71.0 78.5 - 64.0 69.0 -
ChatKBQA 79.8 83.2 73.8 77.8 82.7 73.3
RGR-KBQA 80.7 84.5 72.1 76.6 82.0 72.2
CompKBQA(ours) 81.3 84.2 75.9 79.4 83.6 76.1

Table 1: KBQA comparison of CompKBQA with other
baselines on WebQSP and CWQ datasets. The results
of the models are mainly taken from their original paper.
* denotes using oracle entity linking annotations. Bold
numbers indicate the best performance. GPT-4o (1-shot)
and DeepSeek-V3 (1-shot) means that we input skeleton,
topic entities, and relevant relations to LLM to directly
generate the logical form.

Model Skeleton Entity Relation

ChatKBQA 276 364 528
CompKBQA 262 232 451
∆ ↓ 5.1% ↓ 36.3% ↓ 14.6%

Table 2: Comparison of Skeleton, Entity, and Rela-
tion Error Counts in Logical Forms by ChatKBQA and
CompKBQA on WebQSP

and Relation Errors, have been mitigated, which
demonstrates the effectiveness of CompKBQA.

5.6 Ablation Study (RQ2)

To validate the effectiveness of each component of
CompKBQA, we conduct the following ablation
experiments on the WebQSP dataset.

Comparison with Direct Generation of All

299

Model F1 Hits@1 Acc

CompKBQA 81.3 84.2 75.9
all_in_output 79.6 82.6 72.4
all_from_base 80.3 83.3 74.2
w/o ske_gen 77.7 80.7 72.4
w/o topic_entity_gen 78.6 82.1 72.7
w/o rrg & rr 78.6 81.6 73.2
w/o rrg & w gr 90.5 91.9 87.4

Table 3: Ablation study results of CompKBQA compo-
nents. “all_in_output” refers to generating all content
in one step. “all_from_base” refers to Mte, Mrg, and
Mskeleton were trained independently from the same
base model. “w/o ske_gen” removes the skeleton gener-
ation module, “w/o topic_entity_gen” removes the topic
entity generation module, “w/o rrg & rr” removes rel-
evant relations generation and relations, and “w/o rrg
& w gr” removes relevant relations generation and uses
golden relations.

Content We use the question as input and generate
the Logical Form Skeleton, Topic Entity, Candi-
date Relations, and Logical Form as outputs, fine-
tuning the LLM using instruction tuning. This
model, called “all_in_output”, shows a significant
performance drop compared to the multi-stage fine-
tuning approach, as seen in Table 3. This highlights
that even with a Chain-of-Thought (COT) (Wei
et al., 2022) reasoning process, the LLM struggles
to generate the correct Logical Form in one step,
underscoring the need for task decomposition in
CompKBQA.

Effectiveness of Skeleton and Topic Entity
Generation We experiment by removing Skele-
ton Generation, referred to as ‘w/o ske_gen (skele-
ton generation)”, and Topic Entity Generation, re-
ferred to as ‘w/o topic_ent_gen (Topic Entity Gen-
eration)”, and compare their performance with the
CompKBQA model. The detailed results are pre-
sented in Table 3. The results demonstrate the ne-
cessity of training for skeleton generation and topic
entity generation. In Appendix E, we analyze the
transferability of the training in these two stages.

Effectiveness of the chained fine-tuning strat-
egy To validate the effectiveness of the chained
fine-tuning strategy, we conduct experiments on
WebQSP with a model variant referred to as
all_from_base. In this setting, Mte, Mrg, and
Mskeleton are trained independently from the same
base model, while the generation of Logical Forms
is fine-tuned by using the outputs of Mte and Mrg

as inputs for Mskeleton. The results, reported in
Table 3 under the all_from_base row, show that
training models independently from a base model

leads to a noticeable performance drop compared
to our chained fine-tuning approach. This finding
confirms that knowledge transfer indeed occurs
throughout the chained training process.

Effectiveness of Relevant Relations Selection
We conduct two ablation study experiments. The
first, “w/o rele_rel_gen (relevant relations genera-
tion) & rele_rel (relevant relations)”, removes the
Relevant Relations Generation module, omitting
relevant relations during the Logical Form Gener-
ation stage. The second, “w/o rele_rel_gen & w
gold_rel (golden relations)”, removes the module
and inputs the golden relations directly. As shown
in Table 3, the first experiment performs signifi-
cantly worse than the CompKBQA model, while
the second yields better results. These findings
suggest that providing relevant relations helps the
LLM generate more accurate logical forms.

5.7 Effectiveness of R3 (RQ3)

Model Top-3 Top-5 Top-10 Top-20

BM25 5.00% 5.67% 6.47% 14.03%
SimCSE 15.62% 21.23% 28.74% 36.24%
Contriever 14.21% 19.71% 25.87% 32.52%
IEM 22.76% 29.47% 38.87% 47.53%
R3 69.74% 77.12% 83.10% 86.03%

Table 4: Comparison of relation retrieval performance
on WebQSP

To evaluate the effectiveness of R3, we com-
pare its retrieval accuracy on the WebQSP dataset
against BM25, SimCSE, Contriever, and the ini-
tial embedding model (denoted by IEM) by cal-
culating the proportion of retrieved relations that
match the ground-truth relations for each ques-
tion. As shown in Table 4, the original BAAI/bge-
large-en-v1.5 model achieves only a 22.76% top-
3 hit rate, while R3 substantially improves this
to 69.74% and consistently achieves superior per-
formance across all retrieval metrics, obtaining
69.74%, 77.12%, 83.10%, and 86.03% on Top-3,
Top-5, Top-10, and Top-20 hit rates, respectively,
significantly outperforming all baselines.

5.8 Can CompKBQA achieve high efficiency
and be plug-and-play? (RQ4)

Effiency analysis To ensure a fair comparison,
we evaluate the training and inference times for
both ChatKBQA and CompKBQA on the WebQSP
dataset, using a single NVIDIA A6000 GPU. The
total training time for ChatKBQA was 14 hours

300

Model F1 Hits@1 Acc

Flan-T5-XL 76.8 75.1 67.7
LLama2-7B 81.3 84.2 75.9
LLaMA-3.1-8B 81.7 84.5 75.8
Qwen-2.5-7B 81.8 84.3 75.4
LLaMA-3-8B 82.0 84.4 76.1

Table 5: Comparison of results between other models
and LLaMA2-7B

and 16 minutes, while the total training time for
CompKBQA was 19 hours and 46 minutes, with
CompKBQA taking slightly longer. The average
inference time for ChatKBQA was 3.43 seconds,
and the average inference time for CompKBQA
was 4.20 seconds, with both having similar speeds.
The detailed results are presented in Table 8 and
Table 9, respectively.

The plug-and-play characteristics To evaluate
the adaptability of CompKBQA with different base
models, we conduct experiments employing Flan-
T5-XL, LLaMA-3-8B, LLaMA-3.1-8B, and Qwen-
2.5-7B within the CompKBQA pipline on the We-
bQSP dataset. The results of these experiments are
presented in Table 5. As evidenced by the results,
CompKBQA consistently achieves promising per-
formance across these diverse base models, thereby
highlighting its plug-and-play characteristics.

6 Conclusion

In this work, we propose CompKBQA, a novel
framework that decomposes the task of fine-tuning
large language models (LLMs) for KBQA into four
core components: Skeleton Generation, Topic En-
tity Generation, Relevant Relations Selection, and
Logical Form Generation. By breaking down the
process into these subtasks, we address key chal-
lenges including the lack of KB-aware information
and coarse-grained task formulation. Experimen-
tal results on WebQSP and CWQ demonstrate that
CompKBQA achieves state-of-the-art performance,
highlighting the effectiveness of task decomposi-
tion and providing LLMs with relevant KB infor-
mation.

Limitations

In this paper, we introduce CompKBQA, a novel
framework that decomposes the task of fine-tuning
large language models (LLMs) for Knowledge
Base Question Answering (KBQA) into four core
components. While CompKBQA demonstrates sig-

nificant improvements in LLMs’ ability to generate
accurate logical forms, there are several limitations
worth noting. First, the performance of Comp-
KBQA is highly dependent on the quality and com-
pleteness of the underlying Knowledge Base (KB).
If the KB is incomplete, outdated, or inaccurate,
errors in entity identification and relation genera-
tion are likely to arise. Second, fine-tuning large
language models across multiple subtasks can be
resource-intensive, posing scalability challenges.
Finally, as analyzed in Appendix C, CompKBQA
still suffers from errors such as incorrect entity dis-
ambiguation, relation matching, and structural is-
sues in logical forms. We leave addressing these er-
ror types as an important direction for future work.

Ethics Statement

In this work, we use publicly available datasets
and do not collect any personally identifiable in-
formation. All datasets and models are utilized in
full compliance with their intended purposes and
respective licenses. The primary goal of this work
is to mitigate the three types of errors in the logi-
cal form generation of the LLM; we condemn any
potential misuse.

Acknowledgements

This work was supported by the National Key
Research and Development Program of China
(Grant No. 2022YFC3302100) and the National
Natural Science Foundation of China (Grant No.
62476025). We would like to express our sincere
gratitude to Prof. Jing Jiang of the Australian Na-
tional University for her insightful guidance and
generous help on this work.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. In
international semantic web conference, pages 722–
735. Springer.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533–1544.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human

301

knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

KR1442 Chowdhary and KR Chowdhary. 2020. Natu-
ral language processing. Fundamentals of artificial
intelligence, pages 603–649.

Tengfei Feng and Liang He. 2025. Rgr-kbqa: Gen-
erating logical forms for question answering using
knowledge-graph-enhanced large language model. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 3057–3070.

Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag
Subramanya. 2013. Facc1: Freebase annotation of
clueweb corpora, version 1 (release date 2013-06-26,
format version 1, correction level 0).

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate,
discriminate: A proposal for grounding language
models to real-world environments. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4928–4949, Toronto, Canada. Association for
Computational Linguistics.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid:
three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, pages 3477–3488.

Yu Gu and Yu Su. 2022. Arcaneqa: Dynamic pro-
gram induction and contextualized encoding for
knowledge base question answering. arXiv preprint
arXiv:2204.08109.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. In Proceedings of the 14th ACM
International Conference on Web Search and Data
Mining, WSDM ’21, page 553–561, New York, NY,
USA. Association for Computing Machinery.

Xixin Hu, Xuan Wu, Yiheng Shu, and Yuzhong Qu.
2022. Logical form generation via multi-task learn-
ing for complex question answering over knowledge
bases. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 1687–
1696, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Xiang Huang, Sitao Cheng, Shanshan Huang, Jiayu
Shen, Yong Xu, Chaoyun Zhang, and Yuzhong Qu.
2024. Queryagent: A reliable and efficient reasoning
framework with environmental feedback based self-
correction. arXiv preprint arXiv:2403.11886.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin
Zhao, and Ji-Rong Wen. 2023a. StructGPT: A gen-
eral framework for large language model to reason
over structured data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9237–9251, Singapore. Associa-
tion for Computational Linguistics.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, Yaliang Li,
and Ji-Rong Wen. 2023b. Reasoninglm: Enabling
structural subgraph reasoning in pre-trained language
models for question answering over knowledge graph.
arXiv preprint arXiv:2401.00158.

Jinhao Jiang, Kun Zhou, Xin Zhao, and Ji-Rong Wen.
2023c. Unikgqa: Unified retrieval and reasoning for
solving multi-hop question answering over knowl-
edge graph. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023a. Few-shot in-context learn-
ing for knowledge base question answering. arXiv
preprint arXiv:2305.01750.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023b. Few-shot in-context learn-
ing on knowledge base question answering. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 6966–6980, Toronto, Canada. Associ-
ation for Computational Linguistics.

Yading Li, Dandan Song, Changzhi Zhou, Yuhang Tian,
Hao Wang, Ziyi Yang, and Shuhao Zhang. 2024.
A framework of knowledge graph-enhanced large
language model based on question decomposition
and atomic retrieval. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
11472–11485, Miami, Florida, USA. Association for
Computational Linguistics.

Haoran Luo, Haihong E, Yikai Guo, Qika Lin, Xiaobao
Wu, Xinyu Mu, Wenhao Liu, Meina Song, Yifan
Zhu, and Luu Anh Tuan. 2025. Kbqa-o1: Agentic
knowledge base question answering with monte carlo
tree search. CoRR, abs/2501.18922.

Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng,
Yikai Guo, Wentai Zhang, Chenghao Ma, Guant-
ing Dong, Meina Song, Wei Lin, Yifan Zhu, and
Anh Tuan Luu. 2024a. Chatkbqa: A generate-then-
retrieve framework for knowledge base question an-
swering with fine-tuned large language models. In
Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pages 2039–2056. As-
sociation for Computational Linguistics.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2024b. Reasoning on graphs: Faithful
and interpretable large language model reasoning. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

302

https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.18653/v1/2023.acl-long.270
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://aclanthology.org/2022.coling-1.145/
https://aclanthology.org/2022.coling-1.145/
https://aclanthology.org/2022.coling-1.145/
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://openreview.net/forum?id=Z63RvyAZ2Vh
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2024.findings-emnlp.670
https://doi.org/10.18653/v1/2024.findings-emnlp.670
https://doi.org/10.18653/v1/2024.findings-emnlp.670
https://doi.org/10.48550/ARXIV.2501.18922
https://doi.org/10.48550/ARXIV.2501.18922
https://doi.org/10.48550/ARXIV.2501.18922
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.122
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.122
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.122
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://openreview.net/forum?id=ZGNWW7xZ6Q

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and
Xudong Liu. 2024. Code-style in-context learning for
knowledge-based question answering. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 18833–18841.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez.
2009. Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS), 34(3):1–
45.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. arXiv preprint
arXiv:2203.10321.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje F Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
Tiara: Multi-grained retrieval for robust question an-
swering over large knowledge bases. arXiv preprint
arXiv:2210.12925.

Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang,
and Bryan Hooi. 2024. Fidelis: Faithful reasoning in
large language model for knowledge graph question
answering. Preprint, arXiv:2405.13873.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Heung-Yeung Shum,
and Jian Guo. 2023. Think-on-graph: Deep and
responsible reasoning of large language model with
knowledge graph. arXiv preprint arXiv:2307.07697.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643.

Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu,
Yongrui Chen, and Guilin Qi. 2023. Can chatgpt
replace traditional KBQA models? an in-depth anal-
ysis of the question answering performance of the
GPT LLM family. In The Semantic Web - ISWC
2023 - 22nd International Semantic Web Conference,
Athens, Greece, November 6-10, 2023, Proceedings,
Part I, volume 14265 of Lecture Notes in Computer
Science, pages 348–367. Springer.

Yuhang Tian, Dandan Song, Zhijing Wu, Changzhi
Zhou, Hao Wang, Jun Yang, Jing Xu, Ruanmin Cao,
and Haoyu Wang. 2024. Augmenting reasoning ca-
pabilities of llms with graph structures in knowledge
base question answering. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 11967–11977.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Guanming Xiong, Junwei Bao, and Wen Zhao. 2024.
Interactive-kbqa: Multi-turn interactions for knowl-
edge base question answering with large language
models. Preprint, arXiv:2402.15131.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. RNG-KBQA: generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2022, Dublin,
Ireland, May 22-27, 2022, pages 6032–6043. Associ-
ation for Computational Linguistics.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang.
2023a. Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang.
2023b. DecAF: Joint decoding of answers and log-
ical forms for question answering over knowledge
bases. In The Eleventh International Conference on
Learning Representations.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 5773–5784.
Association for Computational Linguistics.

Lingxi Zhang, Jing Zhang, Yanling Wang, Shulin Cao,
Xinmei Huang, Cuiping Li, Hong Chen, and Juanzi
Li. 2023. FC-KBQA: A fine-to-coarse composition
framework for knowledge base question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1002–1017, Toronto, Canada.
Association for Computational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Chang Zong, Yuchen Yan, Weiming Lu, Jian Shao,
Yongfeng Huang, Heng Chang, and Yueting Zhuang.
2024. Triad: A framework leveraging a multi-role

303

https://arxiv.org/abs/2405.13873
https://arxiv.org/abs/2405.13873
https://arxiv.org/abs/2405.13873
https://doi.org/10.1007/978-3-031-47240-4_19
https://doi.org/10.1007/978-3-031-47240-4_19
https://doi.org/10.1007/978-3-031-47240-4_19
https://doi.org/10.1007/978-3-031-47240-4_19
https://arxiv.org/abs/2402.15131
https://arxiv.org/abs/2402.15131
https://arxiv.org/abs/2402.15131
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://doi.org/10.18653/V1/2022.ACL-LONG.417
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://openreview.net/forum?id=XHc5zRPxqV9
https://doi.org/10.18653/V1/2022.ACL-LONG.396
https://doi.org/10.18653/V1/2022.ACL-LONG.396
https://doi.org/10.18653/V1/2022.ACL-LONG.396
https://doi.org/10.18653/v1/2023.acl-long.57
https://doi.org/10.18653/v1/2023.acl-long.57
https://aclanthology.org/2024.emnlp-main.101

llm-based agent to solve knowledge base question an-
swering. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2024, Miami, FL, USA, November 12-16,
2024, pages 1698–1710. Association for Computa-
tional Linguistics.

Appendix

A Datasets

In this work, we use two mainstream KBQA
datasets: WebQuestionSP (WebQSP) (Yih et al.,
2016) 2 and Complex WebQuestions (CWQ) (Tal-
mor and Berant, 2018) 3.

WebQSP is a well-known KBQA dataset
based on Freebase, containing 4,737 natural lan-
guage questions and their corresponding SPARQL
queries. The primary goal of this dataset is to as-
sess the generalization ability of models in an i.i.d.
setting, as both the training and testing data involve
the same entities and relations.

CWQ is another prominent KBQA dataset, also
based on Freebase, with 34,689 natural language
questions and corresponding SPARQL queries.
The questions in CWQ are more complex, with
up to 4-hop queries.

The statistics of the datasets are given in Table 6.
The statistics on the number of relations involved
in the Logical Forms of questions in the dataset are
shown in Table 7.

For both WebQSP and CWQ datasets, reason-
ing can be performed using Freebase knowledge
graphs4 (Bollacker et al., 2008). To make the
knowledge graphs more manageable in size, we cre-
ated a Freebase subgraph, following the approach
of previous studies (Jiang et al., 2023c; Luo et al.,
2024b; Sui et al., 2024). This subgraph was con-
structed by selecting all triples that fall within the
maximum reasoning hop distance from the ques-
tion entities in WebQSP and CWQ.

B Baselines

We compare CompKBQA with the following base-
lines divided into five classes: 1) IR-based KBQA
Methods, 2) SP-based KBQA Methods, 3) LLM-
based KBQA Methods (Prompting), 4) LLMs +
KGs-based KBQA Methods (Prompting), and 5)
LLMs + KGs-based KBQA Methods (Fine-tuning).

B.1 IR-based KBQA Methods
NSM (He et al., 2021) proposes a teacher-student
approach for multi-hop KBQA, where the teacher
network uses bidirectional reasoning to generate re-
liable intermediate supervision signals, improving
the student network’s reasoning capacity.

2https://www.microsoft.com/en-us/download/
details.aspx?id=52763

3https://www.tau-nlp.sites.tau.ac.il/compwebq
4https://github.com/microsoft/FastRDFStore

304

https://aclanthology.org/2024.emnlp-main.101
https://aclanthology.org/2024.emnlp-main.101
https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://www.tau-nlp.sites.tau.ac.il/compwebq
https://github.com/microsoft/FastRDFStore

Datasets #Train #Test Max #hop #Entity #Relation 1hop 2hop 3hop
WebQSP 3,098 1,639 2 2461 628 65.49% 34.51% 0.00%
CWQ 27,639 3,519 4 11422 845 40.91% 38.34% 20.75%

Table 6: The statistics of WebQSP and CWQ

Number of relations used
Datasets 1 2 3 4 >=5
WebQSP 55.44% 23.14% 16.89% 3.85% 0.69%

CWQ 0.00% 32.88% 34.04% 20.51% 12.28%

Table 7: The statistics of number of relations in Logical Forms

KGT5 (Saxena et al., 2022) demonstrates that an
off-the-shelf encoder-decoder Transformer model,
when applied as a sequence-to-sequence task for
knowledge graph link prediction and question an-
swering.

SubgraphRetrieval (Zhang et al., 2022) intro-
duces a trainable subgraph retriever (SR) decoupled
from reasoning, enabling a plug-and-play frame-
work to enhance subgraph-oriented KBQA models.

B.2 SP-based KBQA Methods

ArcaneQA (Gu and Su, 2022) dynamically gen-
erates the query based on results from previous
steps.

Rng-KBQA (Ye et al., 2022) first enumerates
all possible queries and then finetune T5 model to
get the final output.

DecAF (Yu et al., 2023b) proposes a framework
that jointly generates logical forms and direct an-
swers for KBQA, combining their strengths to im-
prove accuracy.

FC-KBQA (Zhang et al., 2023) introduces FC-
KBQA, a Fine-to-Coarse Composition framework
that extracts fine-grained knowledge components
from KBs and reformulates them into middle-
grained pairs to ensure generalization and excitabil-
ity.

TIARA (Shu et al., 2022) enhances PLM-based
KBQA by incorporating multi-grained retrieval to
provide relevant KB context and constrained de-
coding to improve logical form generation.

B.3 LLM-based KBQA Methods

In this type of method, we use the same setup as
RoG (Luo et al., 2024b) and directly prompt the
LLM to generate the answer.

GPT-3.5-Turbo, GPT-4o, and DeepSeek-V3
are powerful closed-source LLMs that could follow
instructions to conduct complex tasks.

CoT uses the Chain-of-thought prompt (Wei
et al., 2022) to improve the reason ability of Chat-
GPT.

B.4 LLMs + KGs-based KBQA Methods
(Prompting)

GPT-4o (1-shot) and DeepSeek-V3 (1-shot)
means inputting the skeleton, topic entities, and
relevant relations generated by our model into the
LLM to generate the logical form.

KB-Binder (Li et al., 2023b) enables few-shot
KBQA using large language models and BM25
matching, achieving strong performance across
datasets without training.

KB-Coder (Nie et al., 2024) proposes a code-
style in-context learning method for KBQA, con-
verting logical form generation into code genera-
tion for LLMs, reducing format errors.

QuertAgent (Huang et al., 2024) introduces
a framework with ERASER, a step-wise self-
correction method using environmental feedback,
significantly improving reliability and efficiency in
semantic parsing.

ARG-KBQA (Tian et al., 2024) proposes a
framework that enhances LLMs for KBQA by re-
trieving question-related graph structures using a
two-stage ranker.

KELDaR (Li et al., 2024) enhances LLMs for
KGQA by introducing question decomposition and
atomic retrieval, using a decomposition tree to
guide atomic-level KG subgraph retrieval for an-
swering complex questions.

FIDELIS (Sui et al., 2024) introduces a retrieval-
augmented reasoning method that enhances KGQA
by anchoring responses to verifiable reasoning
paths, using keyword-enhanced retrieval and step-
wise beam search to ensure accuracy.

305

B.5 LLMs + KGs-based KBQA Methods
(Fine-tuning)

RoG (Luo et al., 2024b) proposes a method that in-
tegrates LLMs with KGs using a planning-retrieval-
reasoning framework to generate faithful and inter-
pretable reasoning paths.

ReasoningLM (Jiang et al., 2023b) introduces a
PLM enhanced with subgraph-aware self-attention
and adaptation tuning, enabling direct subgraph
reasoning for KGQA.

ChatKBQA (Luo et al., 2024a) presents a
generate-then-retrieve KBQA framework that uses
fine-tuned LLMs to generate logical forms and un-
supervised retrieval to replace entities and relations.

RGR-KBQA (Feng and He, 2025) proposes a
semantic parsing method that enhances knowledge
base question answering by using a two-step re-
trieval process to reduce hallucination issues in
large language models.

C Error Analysis

To better understand the remaining limitations of
CompKBQA, we conduct a detailed error analysis
on its incorrect predictions over the WebQSP test
set. We analyze all incorrect cases and categorize
them as follows:

• Skeleton correct, but entity/relation errors
(42.5%): The logical structure is correct, but
incorrect entities or relations are generated.

• Skeleton errors (24.6%): Fundamental struc-
tural issues occur in the generated logical
forms.

• Correct LF in beam search, but wrong final
answer (17.5%): The correct logical form
appears in the beam search results but is not
selected as the final output.

• Generated LF correct, but execution failed
(7.9%): The logical form is correct, but exe-
cution errors arise during entity/relation align-
ment.

• No answer retrieved (6.0%): The system
fails to retrieve any answer from the KB.

• LF completely correct but parsing failed
(1.4%): The logical form and alignment are
correct, but technical parsing issues prevent
successful execution.

This analysis reveals that most errors stem from
incorrect entity disambiguation or relation match-
ing during the alignment phase, even when the

logical structure itself is correct. Future work will
therefore focus on improving the entity linking pro-
cess, for example by performing entity linking prior
to logical form generation.

D Comparison with GPT-4o and
DeepSeek-V3

Our objective is to investigate the capability of com-
mercial large language models, such as GPT-4o and
DeepSeek-V3, to generate correct Logical Forms
directly from a given question, the associated sub-
ject entity, and relevant relations, without any fine-
tuning. Specifically, we feed LLM the question,
topic entity, and relevant relations as input, with
the expected output being the correct logical form.
A sample prompt is shown in Figure 3. In the
zero-shot setting, GPT-4o and DeepSeek-V3 fails
to generate a valid form in the expected format. We
then conduct a one-shot experiment, providing a
fixed example for all queries to guide the model. A
sample prompt is shown in Figure 4.

In the one-shot experiment, GPT-4o generates
syntactically correct logical forms, but accuracy
remains limited. Specifically, only 642 out of 1639
forms have correct skeleton structures, and only
194 are fully correct, the detailed results are shown
in Table 5. These results suggest that, despite im-
provements in formatting, commercial large lan-
guage models like GPT-4o or DeepSeek-V3 strug-
gle with accuracy due to a limited understanding of
question structures and the structure of KB. Even
with the topic entity and candidate relations pro-
vided, models like GPT-4o, unfamiliar with the KB
query structure, continue to make errors.

E Analysis on the transferability of Stage
1 and Stage 2 Training

We find that Stage 1: Skeleton Generation
and Stage 2: Topic Entity Generation are KB-
independent. To investigate the necessity of re-
training these stages across different datasets, We
use the models trained through Stage 1 and Stage
2 on CWQ to continue with Stage 3 and Stage 4 on
WebQSP. For comparison, we also train Stage 3 and
Stage 4 directly on the base model without the prior
training of Stage 1 and Stage 2. The experimental
results are presented in Table 10.

As seen from the table, continuing training Stage
3 and Stage 4 using the models that completed
Stage 1 and Stage 2 training on CWQ results in
better performance compared to directly applying

306

Model Skeleton Topic Entity Relvant Relations Logic Form Total Time

ChatKBQA - - - 14h16min 14h16min
CompKBQA 4h13min 5h8min 4h23min 6h2min 19h46min

Table 8: Comparison of training time

Model Topic Entity Relvant Relations Logic Form Total Time Average Time per question
ChatKBQA - - 1h33min 1h33min 3.42s

CompKBQA 2min 5min 1h48min 1h55min 4.20s

Table 9: Comparison of inference time

Zero-shot Prompt

Given a KBQA question, generate only the L
ogic Form query that retrieves the relevant in
formation from the knowledge base. You will
be provided with entities and relations to assi
st in creating the query. Do not include any e
xplanations or additional text in the output o
nly provide the Logical Form.
Question:{what does jamaican people spea
k}
Entities: jamaican
Relations:

location.country.languages_spoken
location.country.official_language
people.ethnicity.languages_spoken

Logic Form:

Figure 3: Prompt for zero-shot GPT-4o experiment

Model F1 Hits@1 Acc
CompKBQA 81.3 84.2 75.9
w/o S1 && S2 78.1 79.8 71.2
w S1 && S2 from CWQ 80.2 82.8 73.4

Table 10: The experimental results of the reusability of
Stage 1 and Stage 2 Training

Stage 3 and Stage 4 to the base model. This demon-
strates the transferability of the training results
from Stage 1 and Stage 2. However, there is still
a slight gap when compared to full training on the
WebQSP dataset. This is because each dataset has
different question structures, such as varying hop
counts, which lead to differences in the skeleton of
the logical query statements.

F Comparison of Time Complexity with
Baseline

In this section, we compare the training and infer-
ence times of CompKBQA and ChatKBQA (Luo
et al., 2024a).

One-shot Prompt

Given a KBQA question, generate only the L
ogic Form query that retrieves the relevant in
formation from the knowledge base. You will
be provided with entities and relations to assi
st in creating the query. Do not include any e
xplanations or additional text in the output o
nly provide the Logical Form. And I will sho
w you a example.
Example:
Question:{what is the name of justin bieber
brother}
Entities: justin bieber
Relations:

people.sibling_relationship.sibling
people.person.sibling_s
people.person. gender

Logic Form: (AND (JOIN (R [people , si
bling relationship , sibling]) (JOIN (R [pe
ople , person , sibling s]) [Justin Bieber])
) (JOIN [people , person , gender] [Male]
))
Question:{what does jamaican people spea
k}
Entities: jamaican
Relations:

location.country.languages_spoken
location.country.official_language
people.ethnicity.languages_spoken

Logic Form:

Figure 4: Prompt for one-shot GPT-4o experiment

307

F.1 Training Time
we compare the training times of CompKBQA with
ChatKBQA, and the results are shown in Table 8.
To ensure a fair comparison, we tested the training
times for both ChatKBQA and CompKBQA on the
WebQSP dataset using a single NVIDIA A6000
GPU. It can be observed that CompKBQA takes
longer to train than ChatKBQA.

F.2 Inference Time
We compared the inference time of CompKBQA
with that of ChatKBQA on the WebQSP dataset
using a single NVIDIA A6000 GPU, and the re-
sults are shown in Table 9. It can be observed that
the inference time of our model is similar to that
of ChatKBQA. This is because the additional two
components, which generate the Topic Entity and
Relevant Relations for each question, use greedy
decoding during inference and employ multithread-
ing, making the process very fast. As a result, the
efficiency of the inference phase is minimally im-
pacted.

G Comparison with T5 model

We use the Flan-T5-XL, following the same train-
ing pipeline, which includes skeleton generation,
topic entity generation, relevant relations genera-
tion, and logical form generation. Their perfor-
mance is compared with CompKBQA, as shown
in Table 5. The results show that larger models
generate more accurate logical forms after training,
highlighting the importance of using models like
Llama2-7B for improved performance.

H Implementation Details

In this section, we introduce the implementation
details of each module.

The hyperparameters for each stage of Comp-
KBQA are summarized in Table 11.

I Case Study

To provide a comprehensive understanding of the
CompKBQA framework, we present a case study in
Table 12, which demonstrates that when faced with
the same question, ChatKBQA generated an incor-
rect Logical Form, while CompKBQA, through
step-by-step decomposition, was able to generate
the correct Logical Form.

308

Hyperparameter WebQSP CWQ
Logical Form Generation

LLM LLaMA-2-7B LLaMA-2-13B
Fine-tuning Type LoRA LoRA
Train Batch Size {1,2,3,4} {1,2,3,4}
Learning Rate {5e-5,1e-4,4e-4} {5e-5,1e-4,4e-4}
Train Epoch {10,50,100} {10,50,100}

Test Batch Size {1,2,3,4} {1,2,3,4}
Beam Size {1,2,5,8,15} {1,2,5,8}

R3

top_k for Hard Negative Examples 20 20
Train Epoch 20 10

Learning Rate 1e-5 1e-5
top-k for Retrieving Candidate Relations 1,3,5,10 1,3,8,10

Logical Form Execution
Retrieval Type SimCSE SimCSE
top− kent 50 50
top− krel 15 15

Table 11: Hyperparameter in CompKBQA’s each stage

Question where did rick santorum attend high school?
ChatKBQA

Skeleton Generation

Input
Generate a Logical Form query that retrieves the information corre-
sponding to the given question.
Question: where did rick santorum attend high school

Output Logical Form: (AND (JOIN [common , topic , notable types] [
School]) (JOIN (R [education , education , institution]) (JOIN (
R [people , person , education]) [Rick Santorum])))

CompKBQA

Skeleton Generation

Input
Given a KBQA question, you should generate a skeleton of the Logical
Form query that retrieves the information corresponding to the given
question.
Question: where did rick santorum attend high school

Output Skeleton: (AND [REL] (JOIN (R [REL]) (JOIN (R [REL])
[ENT])))

Topic Entity Generation
Input

Given a KBQA question, you should generate the topic entity of this
question, which will be used to generate the Logical Form query.
Question: where did rick santorum attend high school

Output Entities: rick santorum

Relevant Relations Selection

Input

Given a KBQA question, I will provide you with some relations that
might be helpful for generating the Logic Form query. You need to
select the most relevant relations to use, and if necessary, you can
create relations.
Question: where did rick santorum attend high school
Candidate relations:
education.education.institution, people.person.education,
education.education.degree

Output Relations:
education.school
people.person.education
education.education.institution

Logic Form Generation

Input

Given a KBQA question, you should generate a Logical Form query
that retrieves the information corresponding to the given question.
And I will provide you with entities and relations that might be help-
ful for generating the Logical Form query.
Question: where did rick santorum attend high school
Entities: rick santorum
Relations: education.school, people.person.education, educa-
tion.education.institution

Output Logical Form: (AND [education , school] (JOIN (R [education ,
education , institution]) (JOIN (R [people , person , education]) [
Rick Santorum])))

Table 12: Case Study of CompKBQA vs. ChatKBQA on Logical Form Generation

309

