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Abstract

In pharmacovigilance, effective automation of
medical data structuring, especially linking en-
tities to standardized terminologies such as
MedDRA, is critical. This challenge is rarely
addressed for German data. With MedLinkDE
we address German MedDRA entity linking for
adverse drug reactions in a two-step approach:
(1) retrieval of medical terms with fine-tuned
embedding models, followed (2) by guided
chain-of-thought re-ranking using LLMs. To
this end, we introduce RENOde, a German real-
world MedDRA dataset consisting of report-
ings from patients and healthcare professionals.
To overcome the challenges posed by the lin-
guistic diversity of these reports, we generate
synthetic data mapping the two reporting styles
of patients and healthcare professionals. Our
embedding models, fine-tuned on these syn-
thetic, quasi-personalized datasets, show com-
petitive performance with real datasets in terms
of accuracy at high top-n recall, providing a
robust basis for re-ranking. Our subsequent
guided Chain of Thought (CoT) re-ranking, in-
formed by MedDRA coding guidelines, im-
proves entity linking accuracy by approxi-
mately 15% (Acc@1) compared to embedding-
only strategies. In this way, our approach
demonstrates the feasibility of entity linking
in medical reports under the constraints of data
scarcity by relying on synthetic data reflecting
different informant roles of reporting persons.

1 Introduction

In the medical domain, particularly in pharmacovig-
ilance, the volume of data continues to grow rapidly
(European Medicines Agency (2024), U.S. Food
and Drug Administration (2024)). A critical task
in processing this vast amount of safety data is
structuring and standardizing the reported infor-
mation (de Oliveira et al., 2021). This includes
mapping medical terms to standardized medical
ontologies, such as MedDRA, SNOMED-CT and

Figure 1: MedDRA entity linking example with original
German text and English translation.

UMLS1, to ensure consistency and interoperability.
Given the increasing volume of data, automation or
semi-automation is essential to reduce processing
time and allow professionals to focus on critical
decision-making tasks (Salvo et al., 2023).

This paper focuses on MedDRA2 (Medical Dic-
tionary for Regulatory Activities), a standardized
medical terminology widely used in pharmacovig-
ilance to encode ADEs (adverse drug events). Its
hierarchical structure provides a consistent frame-
work for reporting and analyzing ADEs across dif-
ferent regulatory bodies and healthcare institutions.
Accurate entity linking to MedDRA is crucial for
ensuring that ADE reports are correctly interpreted,
utilized in pharmacovigilance workflows and down-
stream tasks such as signal detection (Bansal et al.,
2024). In the context of MedDRA entity linking,
the process involves mapping an ADE to a corre-
sponding MedDRA term or code (see Figure 1).
It presents a unique challenge due to variations in
terminology, synonyms, linguistic complexity, and
the vast number of MedDRA entries that must be
accurately mapped (Schroll et al., 2012).

In this paper, we address the challenge of Ger-
man MedDRA entity linking for ADEs by imple-

1The Unified Medical Language System (UMLS) includes
SNOMED-CT and partially mappings to MedDRA, but does
not contain the full MedDRA terminology. https://www.
nlm.nih.gov/research/umls/index.html

2MedDRA® trademark is registered by IFPMA on be-
half of International Council for Harmonisation of Techni-
cal Requirements for Pharmaceuticals for Human Use (ICH).
https://www.meddra.org/
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menting a two-step entity linking process: (1) re-
trieval using fine-tuned embedding models, where
cosine similarity is used for similarity-based match-
ing, and (2) guided CoT re-ranking with a large
language model (LLM) to refine final entity links.
Our goal is to improve entity linking performance
by leveraging synthetic data and advanced ranking
techniques. Our contributions are as follows:

1. We introduce RENOde (REaction NOrmaliza-
tion de), a novel real-world test dataset for
German MedDRA entity linking.

2. We propose a synthetic data generation ap-
proach for fine-tuning embedding models, in-
corporating personae-based text generation to
reflect different linguistic styles used by pa-
tients and healthcare professionals.

3. We explore LLM-based re-ranking using
a guided CoT mechanism and compare it
to LLM-based embedding models, simple
prompting strategies, and classical CoT-based
re-ranking.

By combining embedding-based retrieval and
advanced LLM-based ranking techniques, we aim
to improve the accuracy and efficiency of linking
German MedDRA entities, ultimately contribut-
ing to better pharmacovigilance and ADE report-
ing. The article is organized as follows: Section
2 provides an overview of the biomedical entity
linking research landscape and existing datasets.
Section 3 describes the real and synthetic datasets
developed for this study and details our retrieve-
rerank approach incorporating guided CoT reason-
ing. Section 4 presents experimental results and a
manual error analysis. Section 5 discusses the re-
sults, while Section 6 outlines potential directions
for future research. We conclude by highlighting
the main contributions of the paper (Section 7) and
discussing its limitations (Section 8).

2 Related Work

2.1 Methods for Biomedical Entity Linking

Various dictionary-based approaches have been de-
veloped to normalize biomedical text, including
MetaMap (Aronson and Lang, 2010), cTAKES
(Savova et al., 2010) and MagiCoder (Aronson and
Lang, 2010). These approaches struggle with syn-
onyms and variations in expression (Leaman et al.
(2013), Doğan et al. (2014)).

To address these limitations, ML-based ap-
proaches have been introduced. TaggerOne (Lea-
man and Lu, 2016) and MedDRA Tagger (Humbert-
Droz et al., 2022) take a hybrid approach by inte-
grating it with rule-based methods. Recent studies
go further in this direction and use language mod-
els to extract conceptual embeddings and compute
semantic similarity scores between entity mentions
and their corresponding standardized names. For
example, BioSyn (Sung et al., 2020) uses BioBERT,
while MedLinker (Loureiro and Jorge, 2020) addi-
tionally uses SciBERT and ClinicalBERT as em-
bedding models. CONORM-EN (Yazdani et al.,
2023) extends this by applying a dual-transformer
retrieval approach with Dynamic Context Refining.
Zhang et al. (2022) introduce KrissBERT, a con-
textual mention encoder trained with contrastive
learning and self-supervision, which retrieves can-
didate entities and re-ranks the top-K using cross-
attention mechanisms. BioLORD-2023 (Remy
et al., 2024), a fine-tuned cross-lingual BERT-
based model, enhances biomedical entity linking
by leveraging LLM-generated concept definitions,
contrastive learning, and self-distillation. BERG-
AMOT (Sakhovskiy et al., 2024) integrates struc-
tural knowledge of the ontologies by employing
Graph Neural Networks (GNNs) to model entity re-
lations through graph-based embeddings. However,
challenges remain for contextual embedding mod-
els in the case of ambiguous entity mentions and
fine-grained differences (Kartchner et al. (2023),
Garda et al. (2023)).

LLM-based re-ranking has emerged to account
for these subtle differences. For example, Zhu
et al. (2022) explore LLM-based re-ranking using
prompt learning to account for variability and am-
biguity in entity linking. Similarly, Shlyk et al.
(2024) integrate retrieval-augmented entity linking
(REAL) with LLMs, using GPT-3.5 to re-rank top-
K candidates based on cosine similarity. Yan et al.
(2025) propose a pre-training strategy that incor-
porates linearized knowledge graph (KG) triples
into a generative LLM, improving entity linking ac-
curacy by leveraging semantic relationships from
UMLS. Rouhizadeh et al. (2025) use fine-tuned
LLMs as dense retrievers and rerankers. Instead of
using the LLM as an embedding model, we use it
in an instruction-following manner.

With the introduction of CoT reasoning (Wei
et al., 2022), some studies have combined LLM
prompting with CoT to improve disambiguation
and retrieval accuracy. Wang et al. (2023a) ex-
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plore CoT-based in-context learning for biomedical
entity linking, integrating ontology-driven prompt-
ing to improve entity understanding. Similarly,
we inject MedDRA ontology information into the
prompt to improve the accuracy of re-ranking re-
trieved entities. PromptLink (Xie et al., 2024)
builds on the CoT framework by incorporating a
self-consistency loop to further refine accuracy. In
addition, Liu et al. (2024) introduce OneNet, which
extends the CoT methodology with CoT Exemplar
Pooling and an Adaptive CoT Selector to improve
candidate ranking by effectively combining con-
textual cues and prior knowledge. We extend this
CoT approach by guiding the CoT through LLM
distilled human coding guidelines for MedDRA.

While most studies focus on linking biomed-
ical entities in English, some studies focus on
German data. Becker and Böckmann (2016) ap-
ply a dictionary-based method to match German-
translated terms to UMLS and SNOMED CT.
More recent work explores ML-based approaches.
Mustafa et al. (2024) develop a German biomedi-
cal entity linking model using UMLS on Wikidata,
comparing ScispaCy, SapBERT, M3, and Jina em-
beddings, and releasing a fine-tuned SapBERT-DE
model. Similarly, Idrissi-Yaghir et al. (2024) study
German clinical and biomedical language models,
but framing entity linking as a multi-label classi-
fication task. Their approach includes continuous
pre-training and fine-tuning of BERT-based mod-
els such as MedBERTde, GBERT-Clinical, and
GeBERTa-Clinical.

Our approach also uses embedding models to
compute the semantic similarity between reported
reactions and MedDRA terms. However, we opti-
mize embeddings via contrastive learning on syn-
thetic data reflecting the perspectives of patients
and healthcare professionals. In a second step, we
apply a re-ranking strategy using an LLM that in-
corporates ontology knowledge and guidelines for
human MedDRA coders to guide the model’s deci-
sion making during CoT.

2.2 Datasets for Biomedical Entity Linking
Several human-annotated English biomedical
datasets exist, including MedMentions (Mohan and
Li, 2019), a UMLS-linked dataset from PubMed ab-
stracts. SMM4H-2020 (Gonzalez-Hernandez et al.,
2020) provides a manually curated dataset where
adverse event (AE) mentions in tweets have been
mapped to MedDRA. The Biomedical Entity Link-
ing Benchmark (BELB) dataset (Garda et al., 2023)

covers genes, diseases, chemicals, species, and
cell lines, all mapped to UMLS. Additionally, CT-
ADE (Yazdani et al., 2025) is a clinical trial dataset
containing ADEs mapped to MedDRA. Given the
challenges of collecting biomedical text, such as
privacy concerns and the time-consuming nature
of manual annotation (Kartchner et al., 2023), au-
tomated and semi-automated data generation ap-
proaches have emerged. WikiMed-DE (Wang
et al., 2023b) is a silver-standard dataset designed
for German biomedical entity linking, constructed
by automatically mapping German Wikipedia ar-
ticles to UMLS entities. Wang et al. (2024a)
generate an HPO-based synthetic dataset for rare
disease normalization and fine-tuned LLaMA 2-
7B using template-based corpus generation to en-
hance entity linking. Likewise, Remy et al. (2024)
train BioLORD-2023 with LLM-generated train-
ing data, incorporating GPT-3.5-generated concept
definitions and contextual descriptions. Similarly,
Yuan et al. (2022) introduce GenBioEL, a genera-
tive biomedical entity linking framework that em-
ploys knowledge base (KB)-guided pre-training
and synonym-aware fine-tuning. Shlyk et al. (2024)
propose REAL, a retrieval-augmented entity link-
ing framework that generates synthetic entity vari-
ations, including misspellings, abbreviations, and
paraphrases, by prompting GPT-3.5. Sasse et al.
(2024) use LLaMA-2-13B to paraphrase UMLS
disease concepts and mapped to MedDRA terms
via fuzzy matching. All of these existing datasets
have limitations for our specific tasks: They focus
primarily on English data and ontologies, rarely
including the MedDRA ontology, and when they
do, the types of texts analyzed (mostly scientific
publications) are usually different from our use
case, i.e. patient and physician reports. Our REN-
Ode dataset fills these gaps by providing German
MedDRA-annotated data (reactions as reported in
German and German MedDRA terms) specifically
derived from patient and healthcare professional re-
ports. Furthermore, we supplement these data with
synthetically generated training data that reflect the
perspective of the reporting individuals.

3 Materials and Methods

We start with introducing the datasets created for
training and evaluation. We then describe the meth-
ods used, including the fine-tuning of the embed-
ding models used for retrieval and our guided CoT
re-ranking approach. The complete pipeline is il-
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Dataset #Entries Avg. Chars #LLT Codes #PT Codes
Train RENOdeTrain-Real 15,047 61.35 3,921 2,165

RENOdeTrain-Synth 22,221 30.53 3,341 2,023
Dev RENOdeDev 200 28.90 171 144
Test RENOdeTest 200 31.48 169 135

Mantra-MedDRA-DE 276 16.39 / 231

Table 1: Comparison of test dataset statistics with unique codes and length in characters.

Figure 2: The MedLinkDE pipeline
.

lustrated in Figure 2.

3.1 A Novel Real-world Dataset: RENOde
Our real-world dataset RENOde (REaction NOr-
malization de) consists of pairs of reported adverse
events and their corresponding MedDRA terms at
the Lowest Level Term (LLT) level. In some cases,
an alternative MedDRA term is provided when
multiple valid mappings exist. RENOde includes
three dataset splits: (1) RENOdeTest serves as a
test set without identical pairs (i.e., cases where the
reported adverse event exactly matches the Med-
DRA term), (2) RENOdeDev is a development
dataset also containing identical pairs, as well as
(3) RENOdeTrain-Real, a large training dataset.
RENOdeTest was double-checked, while the devel-
opment and training datasets were annotated by a
single annotator following the standard MedDRA
guidelines. Note that due to database specifications
in the training dataset, a reported reaction may in-
clude multiple MedDRA terms, but only one will
be coded at a time. An overview of the number of
entries, characters and entities is given in Table 1.

The dataset originates from the spontaneous
reporting system of the Paul Ehrlich Institute3,
which consists of adverse event reports from both
healthcare professionals and patients. These two
sources differ significantly in their linguistic char-
acteristics. Physician reports typically use pre-

3https://www.pei.de

cise medical terminology and structured phrasing,
while patient reports often lack formal medical
terminology and instead use simple, colloquial
language and subjective descriptions. This con-
trast in reporting styles influences how adverse
events are expressed. For example, a physician
may report “Schlafstörung/insomnia”, while a pa-
tient may describe it with the phrase “konnte nicht
schlafen/could not sleep”. In addition, the re-
ports consist of isolated phrases without a broader
context, which is common in pharmacovigilance
databases.

Our dataset includes reports with a significant
proportion related to COVID-19 vaccine cases,
which introduces a potential bias towards specific
adverse events. To our knowledge, this is the first
German dataset for MedDRA-based entity linking
in the context of pharmacovigilance databases.

In addition to RENOde, we use the publicly
available Mantra-GSC dataset4 (Kors et al., 2015),
which contains Medline abstract titles, drug labels,
and biomedical patent claims in multiple languages,
including English, French, German, Spanish, and
Dutch. For our purposes, we extract only the Ger-
man subset. Since the annotations in Mantra-GSC
are provided in UMLS, we use the Concept Unique
Identifier (CUI) to map entities to their correspond-
ing MedDRA PTs (Preferred Term) where possible.
Since UMLS integrates several medical ontologies,
not every CUI corresponds to a MedDRA term. As
the proportion of German entries that can also be
mapped to MedDRA in the overall dataset is small,
we merge all three sources – Medline abstract titles,
drug labels, and biomedical patent claims – into a
unified test dataset that we call Mantra-MedDRA-
DE. It has a total of 276 records (see Table 1).

3.2 Synthetic Dataset

A central contribution of our work is to generate
and provide a synthetic dataset that reflects the two
roles in the context of medical event reporting: pa-
tients and healthcare professionals. To this end,

4We use the Mantra GSC exclusively as a test dataset, in
accordance with its CC BY-NC 4.0 license.
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we generate RENOdeTrain-Synth to evaluate how
well the models perform in scenarios where real
data is limited or unavailable. This will allow us to
compare model performance on real and synthetic
datasets to assess the usefulness, reliability, and po-
tential limitations of using LLM-generated text in
MedDRA entity linking. To maintain consistency
with real data, we follow the same MedDRA LLT
distribution when generating synthetic phrases. To
ensure that the generated data is consistent with
a realistic pharmacovigilance scenario, we model
two personae:

1. First, the patient perspective, where phrases
are formulated in layman’s terms, using non-
technical language that reflects how patients
typically describe symptoms, conditions or re-
actions. Regarding this group of persons, the
focus is on subjective experiences, sensations
and emotional expressions rather than clinical
terminology.

2. Second, the perspective of healthcare profes-
sionals, where phrases are generated using
formal medical language that reflects how pro-
fessionals name, describe, and discuss diag-
noses, symptoms, and treatments.

To enforce this binary distinction, we include
a one-shot example in the prompt to demonstrate
the expected language style for each persona (see
Appendix A for the prompt). Additionally, we
apply guided decoding in vLLM5 to structure the
output in JSON format for consistent extraction.
We set the temperature to 0.8 to encourage diverse
expressions. However, since guided decoding is not
always perfectly reliable due to JSON format errors,
we attempt generation five times for each MedDRA
term. If extraction fails on all five attempts, we
discard the term. This occurs in approximately
15% of the cases.

For synthetic data generation, we use Llama-3.1-
Nemotron-70B-Instruct-HF in combination with
vLLM for efficient and scalable generation. The
synthetic data generation took approximately 14
hours and was executed (as well as the later fine
tuning and re-ranking) on a cluster of four NVIDIA
A100 GPUs (GA100, 20b5 rev a1, 80GB HBM2e).
See Table 2 for an example of the synthetic data
generated and Appendix B (Table 4) for a more de-
tailed statistic of the RENOdeTrain-Synth dataset.

5An open-source inference engine designed for fast,

Figure 3: Fine-tuning approach for embedding
model. Abbrevations: SOC=System Organ Class;
HLGT=High Level Group Term; HLT=High Level
Term; PT=Preferred Term; LLT=Lowest Level Term;
Augm=Augmented; FT=Fine-Tuned

3.3 Retrieving with Embedding Models

3.3.1 Setup
Both reported reactions and all MedDRA terms
at the LLT level are embedded using a pretrained
model, specifically the M3 embedding model6

(Chen et al., 2024). Cosine similarity is then com-
puted between the embeddings to identify the most
relevant matches. To optimize retrieval efficiency,
we employ k-nearest neighbors search.

3.3.2 Fine-Tuning Embedding Model
We use BGE-M3 for fine-tuning due to its strong
Acc@100 performance (see section 4 for a compar-
ison of different pre-trained models). Our primary
goal at this stage is to maximize Acc@100 to en-
sure a solid foundation for the next step, re-ranking,
rather than focusing solely on Acc@1.

Fine-tuning is conducted using both real-world
and synthetic data. We apply contrastive fine-
tuning with hard negative examples, where for each
given positive MedDRA term, we randomly select
another LLT under the same PT as a hard nega-
tive, as shown in Figure 3, and assign the pair a
similarity score of 0.9 to indicate that, although
incorrect, it is still semantically close. We focus
exclusively on hard negatives because general em-
bedding models often struggle with fine-grained
distinctions between terms that have very similar
meaning. The fine-tuning is done using the BGE
fine-tuning script7 with the following default con-
figuration: 2 epochs, batch size of 2, learning rate
of 1e-5 and 10% warm-up ratio.

efficient generation with LLMs: https://github.com/
vllm-project/vllm

6https://huggingface.co/BAAI/bge-m3
7https://github.com/FlagOpen/FlagEmbedding/

tree/master/examples/finetune/embedder
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MedDRA LLT Health Professional Patient
Beweglichkeit vermindert Eingeschränkte Gelenkbeweglichkeit Ich kann mich kaum bewegen
(Mobility decreased) (Restricted joint mobility) (I can hardly move)
Schwellung der Zunge Linguale Ödeme Zunge fühlt sich geschwollen an
(Swollen tongue) (Lingual edema) (My tongue feels swollen)
Bauschmerzen persistierende Unterbauchschmerzen Bauch tut weh
(Abdominal pain) (Persistent lower abdominal pain) (My tummy hurts)

Table 2: Example of reactions as reported in synthetic data for health professional and patient perspective with
English translations.

3.4 Re-ranking with Guided CoT Reasoning
To improve the accuracy of MedDRA term selec-
tion, we implement a guided CoT reasoning ap-
proach that incorporates established coding guide-
lines. We base our reasoning on the “ICH-Endorsed
Guide for MedDRA Users”8, which provides best
practices for term selection, coding conventions,
and handling ambiguous cases. To increase effi-
ciency and applicability within our model, we also
use Llama-3.1-Nemotron-70B-Instruct-HF to gen-
erate an abbreviated version of the lengthy original
guidelines (62 pages), which is then refined by a
human to ensure that key decision-making princi-
ples are explicitly incorporated into the re-ranking
process. By distilling complex rules into a struc-
tured format, the model can prioritize medically
and contextually appropriate MedDRA terms, es-
pecially when multiple candidate terms have high
similarity scores.

Our guided CoT prompting framework consists
of four components, as illustrated in Figure 4:

1. First, we provide a general instruction to re-
rank a given list of terms based on their simi-
larity to a target reaction term.

2. Second, we include a condensed version of
the MedDRA coding guidelines, as described
above, to serve as structured reasoning steps
to guide the model’s decision making. All
seven reasoning steps that are integrated in the
prompt framework are shown in Appendix C.

3. Third, we present three examples to illustrate
the desired behavior.

4. Fourth, we present the initial candidate pool
consisting of the top 100 MedDRA LLTs re-
trieved via embedding similarity. For each of
these candidates, we inject hierarchical infor-
mation from the MedDRA ontology, includ-

8https://admin.meddra.org/sites/default/files/
guidance/file/001006_termselptc_r4_24_mar2024.
pdf

ing relations across the LLT, PT, HLT (High
Level Terms), HLGT (High Level Group
Terms), and SOC (System Organ Classes) lev-
els. Finally, we output a structured JSON
object.

In contrast to generic CoT prompting, our
method introduces a structured and domain-
informed order, resembling a constraint satisfac-
tion process in which the system must reason while
adhering to MedDRA-specific constraints. To eval-
uate the effectiveness of our guided CoT re-ranking
approach, we compare it to alternative methods, in-
cluding LLM-based embedding re-ranking, simple
prompting strategies, and classical CoT approaches.
This comparative analysis allows us to evaluate
whether guided reasoning improves term selection
accuracy over more general LLM-based methods.
For all re-ranking strategies we use Qwen2.5-14B-
Instruct9 (Yang et al., 2024).

4 Experiments and Evaluation

To evaluate MedLinkDE, we consider models that
are relevant in terms of size, currency, and language
coverage, with a focus on German and multilingual
models including German. For general-purpose
embedding models, we include models that have
been widely used in previous studies (Mustafa et al.
(2024), Rouhizadeh et al. (2025)) and demonstrate
robust performance across multiple tasks, specifi-
cally BGE-M3 and Multilingual-E5 (Wang et al.,
2024b). We also select SapBERT-DE, BioLORD-
2023-M, and BERGAMOT because these models
are specifically designed for biomedical entity link-
ing while also supporting German or multilingual
biomedical text processing. As an additional base-
line, we use a rule-based method based on normal-
ized indel similarity using fuzzy string matching to
compare reactions as reported and MedDRA terms.
We implement this method using RapidFuzz10. To

9https://huggingface.co/Qwen/Qwen2.
5-14B-Instruct

10https://rapidfuzz.github.io/RapidFuzz/
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Model RENODde200 Mantra-MedDRA-DE

@1 @5 @10 @20 @60 @100 @1 @5 @10 @20 @60 @100

Rule-Based 11.39 11.39 11.39 11.39 11.39 11.39 60.07 61.15 61.15 61.15 61.15 61.15

BGE-M3 43.07 64.36 75.25 80.20 90.59 91.09 67.99 80.22 83.45 86.33 92.09 92.81
Multilingual-E5 (large) 37.63 64.36 71.78 75.74 84.16 90.09 68.71 80.58 83.81 87.77 91.01 92.45
SapBERT-DE 31.68 51.49 58.42 65.84 77.23 80.20 55.76 79.14 85.97 89.21 91.01 93.17
BioLORD-2023-M 51.49 68.81 76.73 81.68 87.13 88.61 83.09 88.49 91.73 93.53 95.32 96.04
BERGAMOT 22.28 46.04 52.97 60.40 68.81 71.78 45.32 68.71 78.42 83.09 89.57 92.09

Our (BGE-M3 ft. real data) 59.90 86.14 90.10 91.58 95.05 96.04 78.78 85.61 90.29 92.07 94.60 95.68
Our (BGE-M3 ft. synth. data) 48.51 70.79 77.72 88.12 94.06 95.54 74.82 85.97 91.01 93.53 95.32 96.40
Our (BGE-M3 ft. real & synth. data)⋆ 58.91 85.15 89.11 91.09 95.54 97.52 76.26 85.97 91.37 92.45 95.68 96.76

Our (BGE-M3 ft. synth. data) +
Guided CoT Prompt 71.78 89.11 91.01 91.59 91.59 91.59 83.09 90.65 93.17 93.53 93.53 93.53

Our (BGE-M3 ft. real. data) +
Guided CoT Prompt⋆ 74.75 89.60 90.59 90.59 91.09 91.09 83.09 91.73 93.53 93.53 93.88 93.88

Our (BGE-M3 ft. real & synth. data) +
LLM Embedding 23.67 43.07 55.45 68.31 89.10 97.52 51.80 67.27 73.02 80.94 93.17 96.76
Simple Prompt 72.77 90.59 92.57 94.55 95.54 95.54 80.58 90.29 91.27 92.45 93.88 93.88
Standard CoT Prompt 71.29 89.60 91.58 92.08 93.07 93.56 77.70 87.41 91.37 92.45 93.88 93.88
Guided Prompt 73.76 92.57 94.06 94.55 95.05 95.05 82.73 92.81 94.60 94.96 94.96 94.96
Guided CoT Prompt 74.26 91.09 92.57 92.57 92.57 92.57 82.37 90.65 93.53 94.24 94.24 94.24

Table 3: Evaluation of fine-tuned embedding models and re-ranking approaches on RENOdeTest and Mantra
datasets with Accuracy@n at PT level. Our best performing MedLinkDE approach marked with ⋆: BGE-M3 ft. real
data + Guided CoT prompt re-ranking. Abbreviations: ft=fine-tuned; synth=synthetic.

Figure 4: Guided prompt framework (for the guided
CoT prompt we add ’Think step by step’ to the general
instruction).

evaluate the performance at the MedDRA PT level,
we map the predicted LLT to the corresponding
PT and then compare it to the test dataset. Ta-
ble 3 shows the results for the baseline models, our
fine-tuned embedding models, and comparisons be-
tween different re-ranking strategies: For the REN-
Ode dataset, fine-tuning on real data generally out-
performs synthetic data at lower Acc@n, though

Figure 5: Manual error analysis for guided CoT prompt
re-ranking on RENOdeTest.

differences diminish at higher Acc@n levels. Com-
bining real and synthetic data shows slightly higher
results at Acc@100 with around 1.5%. All re-
ranking methods (except LLM embedding) show
significant improvement (up to 15%) in Acc@1 us-
ing a guided CoT prompt. For the Mantra dataset,
fine-tuning with real or synthetic data improves per-
formance by about 10% compared to pre-trained
embeddings, with real data performing better at
lower Acc@n, while synthetic data slightly outper-
forms BioLORD-2023-M at Acc@100 by 0.36%.
Combining the datasets yields a marginal improve-
ment at higher Acc@n. Unlike the RENOde
dataset, re-ranking yields a less pronounced im-
provement for Mantra. The guided prompt without
CoT slightly outperforms the guided CoT prompt.
At Acc@1 the performance is slightly below that
of BioLORD-2023-M, but at Acc@5 it exceeds
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it by about 3%. For both RENODe and Mantra-
MedDRA-DE, the guided CoT reranking approach
achieves competitive results even when using only
synthetic embedding model outputs, compared to
using only real data. We performed an error anal-
ysis of the guided CoT prompt re-ranking results
on the RENOde200 dataset, as shown in Figure 5.
It shows that most errors occur when the model
selects a MedDRA term that is very similar to the
gold standard term, which could also be considered
partially correct. In most other cases, the model
selects terms that contain overly specific informa-
tion that is not reflected in the reported reaction.
In addition, the model often selects terms with the
wrong intensity - either higher or lower - or terms
that are too general compared to the reported re-
action. Occasionally, re-ranking fails because the
correct MedDRA term is missing from the initial
list of 100 terms. A more detailed description of
the error types can be found in Appendix D.

5 Discussion

Our results demonstrate that MedDRA entity link-
ing can be significantly improved by combining
customized embedding fine-tuning with guided
(CoT) re-ranking. In particular, our embedding
model, fine-tuned on approximately 22k synthetic
training pairs, outperforms general biomedical
models such as BioLORD-2023-M, which relies
on over 100 million concept-definition pairs, for
higher Acc@n. This highlights the importance of
incorporating the reporter perspective – such as that
of patients and clinicians – into synthetic data gen-
eration to better account for linguistic variability,
rather than relying solely on formal ontology def-
initions. Our approach was particularly effective
on the RENODeTest dataset, which consists of ad-
verse reaction reports from patients and healthcare
professionals. Our findings indicate significant po-
tential for scaling this approach to all 60k+ LLTs
within MedDRA. With respect to the re-ranking
component, the incorporation of re-ranking signifi-
cantly mitigated the challenges of embedding mod-
els with lower Acc@n scores. Our results illustrate
that human coding guidelines can be effectively in-
tegrated into prompts, either in a guided fashion or
supplemented by CoT reasoning. Explicitly embed-
ding these guidelines in prompts effectively guides
the reasoning processes of LLMs, seems promis-
ing for improving semantic alignment and decision
accuracy. The improvements achieved through our

re-ranking are substantially larger (around 10%)
on RENODeTest compared to the publicly avail-
able Mantra-MedDRA-DE dataset. We attribute
this to the fact that Mantra-MedDRA-DE primarily
consists of short, simple phrases, which make the
entity linking task relatively easier. In such cases,
embedding-based models like BioLORD already
perform reasonably well. In contrast, many real-
world clinical texts consist of noisier and more am-
biguous phrases under which our guided re-ranking
approach demonstrates clearer advantages. Our
findings also highlight that existing benchmarks
may underestimate the true complexity of Med-
DRA entity linking tasks.
We conducted a power analysis using the statsmod-
els Python package11 to assess the statistical
strength of our evaluation. Using the current test
dataset, RENOdeTest, which contains 200 entries,
we estimated the power of McNemar’s test for com-
paring guided CoT prompt reranking on top-1 ac-
curacy results from two embedding models: one
trained exclusively on synthetic data (71.78% ac-
curacy) and the other on real data (74.75% accu-
racy). The resulting power is 12.3%. To achieve
the threshold of 80% power, approximately 2,000
entries would be required. These results suggest
a promising direction in using embedding models
trained on persona-based synthetic data combined
with guided CoT reranking, but also highlight the
need for further validation using larger datasets.

6 Future Work

Future work should explore the optimal number of
retrieved results to consider during re-ranking. Cur-
rently, 100 retrieved candidates are considered, but
to determine the ideal number, the optimal number
of candidates should be investigated. A low num-
ber of candidates could lead to a necessary failure
of re-ranking if the correct entity is not in the ini-
tial retrieved entity list, while too many candidates
could degrade model performance due to informa-
tion overload. In addition, future work should in-
vestigate scenarios where reported reactions need
to be mapped to multiple MedDRA terms. The
guided CoT approach is particularly beneficial in
these cases, as the guidelines and prompt frame-
work can be specifically tailored. Currently, such
complex cases are not addressed, which represents
a valuable direction for further research. Finally,
additional research efforts could evaluate, compare,

11https://www.statsmodels.org
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and benchmark alternative LLMs for their effec-
tiveness in the re-ranking task, and also examine
dedicated reasoning models such as DeepSeek-R1
(DeepSeek-AI et al., 2025).

7 Conclusion

In this paper, we have presented an approach that
aims to improve entity linking in the field of Ger-
man pharmacovigilance using the MedDRA on-
tology. To this end, we have developed a new
dataset, RENOde, which is based on an approach
to generating synthetic data using persona-sensitive
prompts. Our results show that synthetic data with
this specific role-based perspectivity enable fine-
tuning of embedding models that achieve compet-
itive Acc@n for high n, comparable to models
trained on real data. This shows a new perspective
for their effective use for downstream re-ranking
tasks, especially in the context of data-poor environ-
ments. For re-ranking, we have developed a guided
CoT approach that takes into account human Med-
DRA coding guidelines and the ontology context
for the retrieved entities. This combined approach
of MedLinkDE effectively improves the accuracy
of the re-ranked results and thus the performance
of German medical entity linking.

8 Limitations

Our study has several limitations: First, the test
dataset includes a limited number of terms with
a bias toward the COVID-19 vaccine case, which
may limit the evaluation. Second, the synthetic data
generation uses only a small subset of all MedDRA
terms. Third, the current implementation focuses
on German. Fourth, the approach depends on ex-
isting entity coding guidelines, which may change
over time and vary between institutions. Therefore,
scenarios where guidelines need to be generated
entirely synthetically require further investigation.
Fifth, cases where multiple MedDRA terms apply
to a single reported reaction were not considered
in the current evaluation. In addition, explicit test-
ing of negations within reported reactions was not
performed.

Code and Data Availability

The code is available at https://github.com/
RomanChristof/MedLinkDE under the MIT Li-
cense. The RENOde datasets are not publicly
accessible due to privacy and license restrictions.

What is available, however, is the complete pro-
cedure for generating this synthetic data, which
generates analogous data given input terms of Med-
DRA.

Ethics Statement

This study used data that is derived from sources
that are not freely accessible to the public. It does
not include any direct personally identifiable infor-
mation or patient-specific details. It only contains
reported adverse reactions and corresponding Med-
DRA terms. The dataset is biased towards COVID-
19 vaccine cases and therefore represents only a
limited number of adverse events.
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A Synthetic Data Generation Prompt

The following prompt is used to generate synthetic
training data in German for different roles (health-
care professional and patient), based on a given
MedDRA term:

Erstelle fünf Variationen, wie ein {personae}
diesen MedDRA-Begriff in einer kurzen Phrase
berichten könnte.

Beispiel:
{example}

Gib das Ergebnis für diese MedDRA-Begriffe
{meddraterm} im JSON-Format zurück:

pesonae = ["Arzt", "Patient"]

One shot example for patient:

MedDRA term: Insomnia
{

"medra_term": "Insomnia",
"reactionasreported": {

"1": "schlaflos",
"2": "kann nicht schlafen",

"3": "Schwierigkeiten beim Einschlafen",
"4": "kann nicht einschlafen",

"5": "kann nachts kaum schlafen"
}

}

One-shot example for healthcare professional:

MedDRA term: Insomnia
{

"medra_term": "Insomnia",
"reactionasreported": {

"1": "Dauerhafte
Insomnie-Symptomatik",

"2": "Patient klagt über anhaltende
Schlaflosigkeit",
"3": "Persistierende Insomnie",
"4": "Primäre Insomnie",
"5": "Chronische Ein- und
Durchschlafstörung"

}
}

B Synthetic Dataset Statistics

Table 4 shows in more detail the statistics for the
synthetic RENOde dataset.

C Guided Reasoning Steps

The following seven guided reasoning steps are
integrated in the prompt framework:

1. Always choose the most specific LLT (Low-
est Level Term): Choose the MedDRA LLT
that most accurately represents the reported
information. Example: For ’Abscess on face,’
the LLT ’Abscess on the face’ is more specific
than ’Abscess.’

2. Apply medical judgment when selecting
terms: If no exact match is found, choose
an existing LLT that best covers the concept.

3. Verify the MedDRA hierarchy: Check the hi-
erarchy above the LLT (e.g., PT, HLT, HLGT,
SOC) to ensure the correct meaning. This is
especially important for medication errors and
product quality issues.

4. Consider all reported information: Choose
terms for all reported adverse reactions
(ARs/AEs), medication errors, medical his-
tory, etc. Example: For ’Abdominal pain, ele-
vated serum amylase and lipase,’ select sepa-
rate terms rather than just ’Pancreatitis.
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Personae #Entries Avg. Chars #LLT Codes #PT Codes
Doctor 7,237 32.98 1,403 1,013
Patient 14,984 28,08 2993 1,860
Total 22,221 30.53 3,341 2,023

Table 4: Comparison of personae statistics in RENOdeTrain-Synth.

Error Type Description Example
Embedding Model Failed The correct MedDRA term is

not present in the Acc@100 out-
put from the first step (the em-
bedding model), making a cor-
rect re-ranking result impossi-
ble.

/

Wrong Location The linked entity refers to an in-
correct anatomical location.

Injektionsstelle instead of Arm

Wrong Intensity The entity does not match the
severity level of the original
term.

Hypohidrose instead of An-
hidrose

Temporal Mismatch The linked entity represents an
incorrect timeframe.

Verzögert instead of Verfrüht

Too Specific The entity is overly detailed Alopecia Areata instead of
Apolezie

Too General The entity is too broad and lacks
necessary specificity.

Kopfschmerzen instead of Kopf-
schmerzen im Zusammenhang
mit einem Verfahren.

Likely Correct Variant The linked entity is a plausible
but not the gold standard term.

Parese instead of Beweglichkeit
vermindert

Table 5: Error Taxonomy with examples.

5. Diagnoses with/without signs and symptoms:
For definitive diagnoses without symptoms,
select only the diagnosis. For preliminary di-
agnoses, prioritize the diagnosis and symp-
toms.

6. Treat death and outcomes as terms: Death is
treated as an outcome, not an AR/AE; choose
the appropriate terms if reported.

7. Combine or split terms as needed: Combine
terms when meaningful (’Retinopathy due to
diabetes’ -> ’Diabetic retinopathy’). Split re-
ports into multiple terms if it provides more
clinical information (e.g., ’Diarrhea and vom-
iting’ coded separately).

D Error Taxonomy

The following Table 5 presents the error taxonomy
used in the manual error analysis:
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