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Abstract

Natural Language Inference (NLI) is a fun-
damental task in natural language process-
ing. While NLI has developed many subdi-
rections such as sentence-level NLI, document-
level NLI and cross-lingual NLI, Cross-
Document Cross-Lingual NLI (CDCL-NLI)
remains largely unexplored. In this paper, we
propose a novel paradigm: CDCL-NLI, which
extends traditional NLI capabilities to multi-
document, multilingual scenarios. To support
this task, we construct a high-quality CDCL-
NLI dataset including 25,410 instances and
spanning 26 languages. To address the lim-
itations of previous methods on CDCL-NLI
task, we further propose an innovative method
that integrates RST-enhanced graph fusion
with interpretability-aware prediction. Our ap-
proach leverages RST (Rhetorical Structure
Theory) within heterogeneous graph neural
networks for cross-document context model-
ing, and employs a structure-aware semantic
alignment based on lexical chains for cross-
lingual understanding. For NLI interpretabil-
ity, we develop an EDU (Elementary Dis-
course Unit)-level attribution framework that
produces extractive explanations. Extensive
experiments demonstrate our approach’s su-
perior performance, achieving significant im-
provements over both conventional NLI mod-
els as well as large language models. Our
work sheds light on the study of NLI and
will bring research interest on cross-document
cross-lingual context understanding, hallucina-
tion elimination and interpretability inference.
Our code and dataset are available at CDCL-
NLI-link.

1 Introduction

Natural Language Inference (NLI) is a fundamen-
tal task in natural language processing, aiming
to determine the logical relationship between the
∗Equal contribution.
†Corresponding author.

Premise Hypothesis

CDCL-NLI Label

Document1
in English

Document2
in French Entailment

Figure 1: A CDCL-NLI example. Premise in English
and French. The Entailment label requires combining
information from both documents in premise.

Paradigm Premise Hypothesis Language

Sentence-NLI Sentence Sentence Mono/Multi
Document-NLI Doc Sent/Doc Mono
CDCL-NLI Multi Doc Sentence Multi

Table 1: Comparison of different NLI paradigms.

given premise and hypothesis pair (Dagan et al.,
2005; MacCartney and Manning, 2009). While
traditional NLI tasks primarily deal with single-
language, short-text validations (Rodrigo et al.,
2007), document-level NLI (Yin et al., 2021) ex-
pands the scope of NLI to longer contexts.

Table 1 compares different NLI paradigms sys-
tematically, highlighting the progressive evolu-
tion of NLI tasks. Sentence-NLI involves low-
complexity reasoning on short sentence pairs,
evolves from single-language approaches (Bow-
man et al., 2015; Herlihy and Rudinger, 2021) to
multilingual settings (Conneau et al., 2018; Heredia
et al., 2024), and is mainly used for fact verifica-
tion (Wadden et al., 2020; Klemen et al., 2024).
Document-level NLI extends NLI to reasoning
over full-length documents within a single lan-
guage (Wang et al., 2019; Yin et al., 2021), focus-
ing on content comprehension (Yang et al., 2024).

However, the increasing globalization of infor-
mation flow requires even more sophisticated infer-
ence capabilities across both language and doc-
ument boundaries. In this paper, we introduce
Cross-Document Cross-Lingual Natural Language
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Inference (CDCL-NLI), a novel paradigm extend-
ing traditional NLI to multi-document and multilin-
gual settings. Figure 1 illustrates that CDCL-NLI
jointly reasons over premise documents in English
and French to verify the hypothesis. The correct
Entailment prediction relies on integrating comple-
mentary information from both documents.

While CDCL-NLI addresses a real-world task
with broad applications, it faces key challenges:
1) Lack of existing datasets, which necessitates
the construction of new resources to support re-
search. 2) Multilingual Semantic Alignment, re-
quiring resolution of grammatical and conceptual
differences across languages while preserving se-
mantic consistency (Conneau et al., 2020). 3)
Cross-Document Structure Alignment, essential
for capturing structural correspondences and im-
plicit logical relations between documents of vary-
ing complexity (Wang et al., 2021); and 4) Inter-
pretability, demanding transparent reasoning pro-
cesses and verifiable confidence in inference out-
comes (Bereska and Gavves, 2024).

To address the first challenge, we curated a
CDCL-NLI dataset through collecting diverse
premise documents from GlobeSumm (Ye et al.,
2024), generating hypotheses with GPT-4o (Ope-
nAI, 2024) using customized prompts to ensure
label diversity and balance and manually review-
ing hypotheses and annotated explanations. The
dataset contains 25,410 samples spanning 26 lan-
guages and 370 events.

To address the rest challenges, we proposed a
novel method that comprises three key compo-
nents. 1) Graph Construction Module: This
component promotes semantic alignment by fus-
ing graphs based on lexical chains, effectively
linking semantically related concepts across doc-
uments. 2) Graph Representation Module: Uti-
lizing an RST-enhanced Relation-aware Graph At-
tention Network (RGAT) (Mann and Thompson,
1988; Busbridge et al., 2019), this module sup-
ports structure alignment by capturing hierarchi-
cal discourse structures and cross-document depen-
dencies through multi-head attention mechanisms.
3) Interpretability Attribution Module: Lever-
aging Elementary Discourse Units (EDUs) (Mann
and Thompson, 1988), this module generates ex-
tractive explanations that significantly enhance
model interpretability and provide transparent in-
sights into its decision-making process.

Extensive experiments on the CDCL-NLI and
DocNLI datasets demonstrate that our method out-

performs conventional NLI approaches and three
state-of-the-art large language models, surpassing
the strongest baseline by 3.5% on our dataset. In
the end, we highlight our main contributions as
follows:
• We propose CDCL-NLI as a new task and

construct a corresponding dataset covering 26
languages with 25,410 high-quality manually-
annotated instances.

• We propose a novel method that leverages RST-
enhanced graph fusion to align semantic con-
cepts and discourse structures. The approach
also enhances interpretability by generating ex-
tractive, EDU-level explanations.

• We conduct extensive experiments demonstrat-
ing our method’s effectiveness, outperforming
all baselines by at least 3.5% and establishing a
new benchmark for the CDCL-NLI task.

2 Related Work

2.1 Sentence-level NLI

Monolingual Methods. Sentence-level NLI
benchmarks like SNLI (Bowman et al., 2015)
and MultiNLI (Williams et al., 2018) have driven
model evolution from ESIM (Chen et al., 2017) to
transformer architectures (Devlin et al., 2018; Liu
et al., 2019) and recent LLMs (OpenAI, 2023).

Cross-lingual Methods. Cross-lingual NLI re-
lies on datasets like XNLI (Conneau et al., 2018)
(15 languages) and XNLIeu (Heredia et al., 2024)
(European languages). Multilingual models such
as XLM-R (Conneau et al., 2020) and XLM-E (Chi
et al., 2022) enable zero-shot transfer, while align-
ment methods like SoftMV (Hu et al., 2023) and
prompt-based MPT (Qiu et al., 2024) improve
cross-lingual semantic understanding.

Interpretability Mechanisms. Interpretability
uses feature attribution methods like Integrated
Gradients (Sundararajan et al., 2017) and (Huang
et al., 2024) to highlight decision-driving features.
Datasets such as e-SNLI (Camburu et al., 2018)
provide human explanations, supporting explicit
reasoning and interpretability benchmarks.

2.2 Document-level NLI

Datasets and Benchmarks. Document-level
NLI benefits from datasets like DocNLI (Yin et al.,
2021) with over one million instances. Domain-
specific datasets such as ContractNLI (Koreeda and
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Manning, 2021) focus on the challenges posed by
long documents and specialized text genres.

Inference Methods. Recent approaches empha-
size discourse structure and long-range dependen-
cies (Chen et al., 2025). R2F (Wang et al., 2022)
introduces explicit reasoning extraction, and DocIn-
fer (Mathur et al., 2022) uses hierarchical encoding
to model document structure, highlighting the need
to capture document-level semantics.

Interpretability Mechanisms. Interpretability
research focuses on evidence extraction and ex-
planation generation. Systems like Evidence-
Net (Chen et al., 2022) and R2F (Wang et al.,
2022) automatically identify evidence to enhance
reasoning transparency. LLM-based approaches
like Chain-of-Thought (Wei et al., 2022) and Re-
thinking (Singh et al., 2024) further enable self-
explanatory reasoning capabilities.

2.3 Graph-based Reasoning for NLI

Leveraging graph structures for semantic reasoning
has emerged as a powerful paradigm. Discourse-
aware graph networks model logical relationships
within text for tasks like logical reasoning (Hou
et al., 2022; Galitsky and Ilvovsky, 2025). Simi-
larly, AMR-based graph reasoning uses Abstract
Meaning Representation (AMR) to enhance ques-
tion answering by providing a structured semantic
representation (Huang and Zhang, 2025). Further-
more, prior work on graph merging and fusion has
explored combining structures like AMR, RST, and
CST for tasks such as multi-document summariza-
tion and inference (Banarescu et al., 2018; Liao
et al., 2021; Shi et al., 2024).

Although prior studies have advanced sentence-
level and document-level NLI, and graph-based
methods have been applied to various reasoning
tasks, the challenges in cross-document and cross-
lingual NLI remain largely unaddressed. Our work
fills this gap by introducing the CDCL-NLI dataset
and proposing a systematic integration of an in-
terpretable RST-enhanced graph fusion method to
tackle these unique complexities.

3 CDCL-NLI Task Formulation and
Dataset Construction

As shown in Figure 2, our CDCL-NLI dataset is
constructed through a systematic pipeline involving
stratified random sampling of premise documents
across all topics, LLM-generated hypotheses, and

Topic 1
EN
--

------

RU
--

------

FR
--

------
... ...

Premise
FR
--

----

EN
--

----

Hypothesis
Sample

The attackers carefully planned the attack, prepa
ring weapons and a list of targets, demonstrating
premeditation.

Hypothesis Explanation in

Premise

Au total neuf personnes sont mortes fusillées, ce
mercredi 3 mai au matin, dans ... La réaction du go
uvernement… il était armé d'un pistolet de 9 mm,
d'un autre de petit calibre et de quatre cocktail
s L‘assaillant présumé avait planifié la fusillade
pendant un mois et élaboré une liste des enfant
s visés, a déclaré la police dans un communiqué.

Corrected Hypothesis

Extracted
Explanation：

EntailmentLabel

A teenager...Six other children and a teacher were
injured and hospitalized. The young attacker had
two guns and two Molotov cocktails and had plan
ned to... names of children he wanted to kill an
d their classes, he said at a press conference. Ser
bia's Interior Ministry said. A...

Figure 2: Overview of the CDCL-NLI dataset construc-
tion process and a data example. Premise contains D1

and D2. Explanation is extracted from premise to en-
hance interpretability. Human annotation is based on
language translated into English.

human verification to ensure data quality. In the
dashed box, the figure shows a CDCL-NLI instance
with a premise of two documents in different lan-
guages, an English hypothesis, a label, and EDU-
based explanations for interpretability.

3.1 Task Formulation
Similar to the traditional NLI task, the goal of
CDCL-NLI is to determine the inference label:

Label ∈ {"Entailment", "Neutral", "Contradiction"},

between a given premise P and hypothesis H.
Specifically, the premise P consists of two docu-
ments D1 and D2, written in different languages
but discussing the same topic. The hypothesis H
is a sentence-level statement. The task requires
reasoning over the combined information from P
with H to determine their entailment relationship,
involving both cross-document and cross-lingual
premise integration.

3.2 Premise Data Collection
We collect our premises from GlobeSumm (Ye
et al., 2024), a multi-document cross-lingual sum-
marization dataset covering 370 topics across 26
languages. In GlobeSumm, documents for each
topic span diverse media outlets, publication times,
and languages, providing a rich foundation for
cross-document and cross-lingual inference tasks.
We curated CDCL-NLI dataset by stratified ran-
domly selecting documents for each topic to form
premise pairs. To enhance cross-lingual coverage,
we strategically expanded our document collec-
tion through translation. **To address the cross-
lingual aspect of the task, we used the DeepL API
to translate the original English documents from
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Figure 3: Statistic visualization of token length, EDU numbers, label distribution and language composition.

GlobeSumm into 25 target languages. This transla-
tion process ensures consistent, high-quality mul-
tilingual premises.** After rigorous quality filter-
ing, our final dataset consists of high-quality in-
ference instances covering 26 languages. Detailed
premise establishment criteria and quality filtering
standards are provided in Appendix A.1.

3.3 Hypothesis Generation and Label
Specification

For each pair, we generate hypotheses across three
NLI categories. Initial hypotheses are generated by
GPT-4o (OpenAI, 2024) following specific guide-
lines (Wang et al., 2024) to ensure balanced label
distribution and sufficient reasoning depth. Entail-
ment hypotheses require joint or consistent support
from the premise documents. Neutral hypotheses
are plausible but neither supported nor contradicted.
Contradiction hypotheses explicitly conflict, focus-
ing on cross-document inconsistencies. To reduce
hallucination, GPT-4o first generates explanations
before finalizing hypotheses. Detailed prompts and
protocols are included in Appendix A.2.

3.4 Manual Annotation and Quality Control

Our annotation involved two phases: hypothesis
verification and EDU-based explanation (Figure 2).
All human annotation was conducted on the origi-
nal English versions of the premises and hypothe-
ses. This design choice ensures that annotators did
not require multilingual capabilities, and it mini-
mizes the language gap during the critical verifica-
tion process. To assess inter-annotator agreement,
we randomly divided our training data into three
equal parts. Each part was independently anno-
tated by two of our three graduate students. This
setup allowed us to calculate Cohen’s κ for each
of the three annotator pairs, yielding an average κ
of 0.71 across these pairs, which indicates strong

Dataset CD CL Interp. Avg.Tks Labels

MultiNLI × × × 33.7 3
XNLI × X × 50 3
e-SNLI × × X 45.1 3
DocNLI X × × 412 2

CDCL-NLI X X X 1,456 3

Table 2: Characteristics of NLI datasets showing cross-
document (CD), cross-lingual (CL), and interpretabil-
ity (Interp.) capabilities, along with average tokens per
instance (Avg.Tks) and number of label classes.

agreement. For explanations, annotators selected
minimal EDU sets supporting their decisions, with
high agreement (Jaccard: 0.91; span overlap: 0.94;
conclusion: 1.00). All annotations were recon-
ciled through discussions to ensure quality (see
Appendix A.3). The final dataset contains multi-
lingual premise-hypothesis pairs, NLI labels, and
EDU node indices for explanation, with clear meta-
data indicating the source of each document.

3.5 Dataset Statistics

We summarize the key characteristics of different
NLI datasets in Table 2, which shows substan-
tial variations in their cross-document and cross-
lingual capabilities. Our CDCL-NLI dataset con-
sists of 25,410 cross-document, cross-lingual NLI
instances spanning 26 languages and 370 events.
We partitioned the dataset by event topics, yielding
22,200/1,605/1,605 train/dev/test instances with
mutually exclusive event distributions. Figure 3a
shows similar data characteristics across training,
validation, and test sets; Figure 3b depicts token
count variations across consecutive segments; and
Figure 3c illustrates balanced label distributions
(33.3% each) with roughly uniform language dis-
tribution within each label. We provide more infor-
mation about our dataset in Appendix A.4.
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4 Our Method: RST-enhanced Graph
Fusion with EDU Level Interpretability

Our approach offers a robust solution for cross-
document and cross-lingual NLI by leveraging
RST-enhanced graph fusion and explanation pre-
diction. As illustrated in Figure 4, the framework
comprises three main components: RST graph con-
struction and fusion module, graph representation
generation module and interpretability and classifi-
cation module.

We employ DM-RST (Liu et al., 2021) parser
for discourse modeling as it offers an optimal
balance between structural richness and computa-
tional feasibility. Compared to the locally-focused
PDTB (Prasad et al., 2008), RST’s hierarchical
structure effectively captures document-level or-
ganization essential for cross-document reason-
ing. While SDRT (Asher and Lascarides, 2003)
is semantically richer, its O(n3) complexity is pro-
hibitive for large-scale tasks. Our ablation study
(Table 3) empirically validates the effectiveness of
our RST parser, showing that including the RST
graph module can significantly improve perfor-
mance despite potential parsing errors.

4.1 RST Graph Construction and Fusion

RST Information Extraction. We employ DM-
RST (Liu et al., 2021), a top-down multilingual
document-level rhetorical structure parsing frame-
work, to extract RST information from the premise
documents. As shown in Figure 5, DM-RST
generates two key features for document D: 1)
EDU boundary indices and 2) RST tree parsing
outputs. By processing these features, we get
D = {EDU1, EDU2, ..., EDUn} and rhetorical
structure tree T . EDUi represents the i-th EDU’s
textual content. T is formally defined as:

T =

{
(EDU[s→t], EDU[t+1→u], rst, rtu) |
s, t, u ∈ [1, n], s ≤ t < u, rst, rtu ∈ R

}
,

whereEDU[s→t] denotes an EDU group that forms
either a leaf node (when s = t) or a branch node
(when s < t), and rst represents the rhetorical rela-
tion. This tree structure captures both local EDU
relationships and global discourse organization.

Embedding Model. To handle inconsistent
cross-lingual encoding from premise documents
in different languages, we use XLM-RoBERTa-
Large (Conneau et al., 2020) as the base encoder,
which supports over 100 languages and excels at

multilingual semantic representation. For each
EDUi in the RST structure, its initial vector is
hEDUi = φ(EDUi) ∈ Rd, where φ denotes XLM-
RoBERTa-Large and d = 1024. The hypothesis
vector hhypo is computed similarly.

Single Graph Construction. Based on the RST
tree T , we construct graphs GD1 and GD2 for each
document D1 and D2 respectively as shown in Fig-
ure 4. For graph G(V,E,R), we define:
• Node Set V = {vi | EDU[s→t] ∈ T }, where

each vi has features: Textvi , φvi , and Typevi (e.g.,
nucleus or satellite).

• Edge Set E = {(vi, vj) | vi 6= vj , (vi, vj , r) ∈
T }, representing typed, bidirectional edges with
rhetorical relations.

• Relation SetR is from rhetorical relations in T .
For detailed relations and definitions of node fea-
tures, please refer to the Appendix B.1, B.2.

Graph Fusion. After obtaining heterogeneous
graphsGD1(VD1 , ED1 , R) andGD2(VD2 , ED2 , R)
for the premise, we then merge them via lexical
chains to enhance cross-document reasoning by:
• Node Feature Fusion: VP = VD1 ∪ VD2 , retain-

ing all nodes and features.
• Cross-document Edge: Add bidirectional lex-

ical edges between vi ∈ VD1 and vj ∈ VD2 if
CosineSim(vi, vj) > δ, and obtain EP .1

• Adding Edge Types: ExtendRwith a new "Lex-
ical" relation R′ to support lexical alignment.

The merged graph GP (VP , EP , R
′) preserves in-

dividual features while aligning semantics across
documents, effectively supporting CDCL-NLI.

4.2 Graph Representation Generation

Node-level Representation. As shown in Fig-
ure 4, there are two layers of RST-GAT to process
nodes’ features. RST-GAT builds upon the Relation-
aware Graph Attention Network (RGAT) (Bus-
bridge et al., 2019), which extends Graph Attention
Network (GAT) (Velickovic et al., 2018) to handle
relation-specific edge types in graphs.

Taking a graph G(V,E,R) as an example, the
initial node embeddings h0

V are obtained as de-
scribed in Section 4.1. Node representations are
then updated through two layers of relation-aware
multi-head attention as follows:

h
(l)
vi = 1

|R|
∑
r∈R

αr · 1
K

K∑
k=1

∑
vj∈Nr(vi)

β
r,(l)
ij,k Wr,kh

(l−1)
vj (1)

1Threshold δ is chosen empirically; see Appendix B.3 for
detailed justification.
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span span
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Prediction

MLP

Pooling

Relation
Weights

Attention
Weights

GAT 
Multi-Head

Droupout
ELU

Flatten

...

...

...

Lexical

Lexical

RST Graph Construction and Fusion Graph Representation Generation Interpretability and Classification

NLI Label

Explanation

Input Data

Relation
Weights

Attention
Weights

GAT 
Single-Head

RST- GA
T

Layer 2

RST- GA
T

Layer 1

Hypothesis

Figure 4: Our CDCL-NLI framework processes premise documents (D1, D2) and a hypothesis through a multi-
stage process: 1) RST Graph Construction, where an RST parser generates initial discourse structures (GD1 and
GD2 ) which are then fused into a single premise graph (GP ) using semantic edges derived from XLM-RoBERTa
embeddings; 2) Graph Representation, where the fused graph is processed by RST-GAT layers; and 3) Inter-
pretability and Classification, which extracts node-level explanations and uses the graph representations (hGp

)
and hypothesis representation (hhypo) to predict the final NLI label.

span

span attribution

same-unit span

elaboration

temporalspan

RST M
odule

Although the report, which has 
released before the stock market
opened, didn't trigger the 
190.58 point drop in the Dow 
Jones Industrial Average, 
analysts said it did play a role in
the market's decline.

3

6

12

30
33

45

EDU boundary indices: EDU nodes 
with text spans: [0,3] [4,6] [7,12] [13,30] [31,33] [34,45][ 3,  6,  12,  30,  33,  45 ]

same-unit attribution

Root

Figure 5: RST graph construction. The RST mod-
ule first segments text into EDUs(EDU1-EDU6), with
boundaries in blue, and then organizes an RST tree T
showing discourse relations.

where l = 1, 2. Here, αr denotes the softmax-
normalized weight of relation r, capturing the rela-
tive importance among relations, while βr,(l)ij,k rep-
resents the attention coefficient over neighboring
nodes, indexed by node pairs (vi, vj), attention
head k, relation r, and layer l. After two layers of
message passing, the resulting node embeddings
are denoted as hV = {h(2)

vi }. The same update pro-
cedure is applied independently to GD1 , GD2 , and
GP , producing embeddings hVD1

,hVD2
, and hVP

,
respectively. Detailed formulations of the attention
weights and parameter configurations are provided
in Appendix B.4.

Graph-level Representation. The global
representation(hGP

) of the merged graph GP is
obtained by averaging node features after two
RST-GAT layers. This pooling captures discourse-
level semantics while preserving local rhetorical
relations, enabling effective classification.

Classification Loss. Given the concatenated
graph representation hGp and hypothesis features

hhypo, the classification loss is computed using the
standard cross-entropy (CE) formulation:

Lcls = CE(y, Softmax(MLP(hGp ⊕ hhypo)) ∈ R3), (2)

where y denotes the ground-truth label and p de-
notes the predicted probability distribution.

Enhanced Triplet Loss. Triplet loss (Wein-
berger and Saul, 2006; Schroff et al., 2015) is a
metric learning method that encourages the anchor-
positive distance to be smaller than the anchor-
negative distance. Leveraging the structure of our
CDCL-NLI dataset, where each premise aligns
with three hypotheses (entailment, neutral, contra-
diction), we propose a neutral-constrained triplet
loss:

Ltriplet = max(0, d(a, p)− d(a, n) + σ)

+max(0, d(a, neu)− d(a, n) + θ),
(3)

where d(x, y) is the Euclidean distance, and
a, p, neu, n denote the premise paired with entail-
ment, neutral, and contradiction hypotheses, re-
spectively. Margins σ and θ enforce the semantic
order: entailment < neutral < contradiction.

4.3 EDU-level Explanation Prediction
For interpretability, we propose an attention-based
method to extract explanation nodes.

Node Importance. Using multi-head attention
weights from the first RST-GAT layer, the impor-
tance score Ii of node vi in GD1 , GD2 is

Ii =
1
K

∑K
k=1

∑
r∈R

∑
vj∈N in

r (vi)
β
r,(1)
ji,k . (4)

Let H = [hv0 ; . . . ;hvn ] be node features and
I = [I0, . . . , In]

> importance scores. Weighted
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features are H ′ = I � H , where � denotes
element-wise product with broadcasting.

Hypothesis-aware Interaction. Given hypoth-
esis embedding hhypo ∈ Rdout , attention over
weighted features H ′ ∈ Rn×dout produces interac-
tion features:

O = Attention
(
hhypoH

′>
√
dout

)
H ′. (5)

Feature Fusion and Classification. The model
is optimized by Binary Cross-Entropy (BCE) loss:

Lexp =
1

N

N∑

i=1

BCE
(
yi,Sigmoid(MLP([h′i ⊕ oi]))

)
(6)

where yi ∈ {0, 1} is ground truth label of node i,
h′i and oi are the weighted and interaction features
for node i respectively.

The total loss combines all components:

Ltotal = γLexp + λ(Lcls + Ltriplet), (7)

where γ and λ are balancing hyperparameters set
as 0.2 and 0.8 respectively through grid search on
the validation set.

5 Experiments

5.1 Experiment Settings
Metrics. Model evaluation considers classifica-
tion and explanation quality. For classification on
DocNLI (imbalanced), we report Micro F1 and
Weighted F1. On CDCL-NLI dataset, we use
Macro Precision, Macro Recall, and Macro F1
for balanced class performance. Explanation qual-
ity is assessed using BLEU (1-4), ROUGE-1/2/L,
and METEOR.

Baselines.
• Conventional NLI Models: We compare two

well-established models, both trained on our
dataset: DocNLI (Yin et al., 2021), a document-
level NLI model tailored for long texts, and
R2F (Wang et al., 2022), a retrieval-based
framework for document-level NLI. All conven-
tional baselines and our proposed method are
built upon the same underlying pretrained lan-
guage model to ensure fair comparison. Train-
ing details are provided in Appendix C.1.

• Large Language Models: We evaluate three
LLMs: Llama3-8B-Instruct (Meta AI, 2024),
Qwen-3-8B (Qwen, 2025) and GPT-4o (Ope-
nAI, 2024), where the LLaMA and Qwen model
is further fine-tuned with LoRA adapters. All
models are tested in a few-shot setting, with
fine-tuning configurations in Appendix C.2.

5.2 Experiment Results and Analysis

Main Results and Ablation Study. Table 3
presents a performance comparison of our pro-
posed method against several competitive baselines
on two test sets. TestSet1 is a cross-lingual test set
(the original test set of the CDCL-NLI dataset).
TestSet2 is an English-translated version of Test-
Set1, designed to evaluate model robustness in a
cross-document scenario without language barri-
ers, and to quantify the performance degradation
caused by cross-lingual factors. This dual evalu-
ation framework enables a clearer analysis of the
impact of language variation on NLI performance.2

Our model consistently achieves the best re-
sults on both test sets, with macro F1 scores of
68.95% on the cross-lingual set and 70.68% on
the English-translated set, surpassing strong base-
lines such as DocNLI and R2F by notable margins.
The generally higher scores on the English test
set highlight the relative ease of reasoning within
a single, well-resourced language, in contrast to
the added challenges of cross-lingual understand-
ing, which requires effective language transfer and
alignment. The hypothesis-only baseline, which
trains solely on the hypothesis, attains near-random
performance ( 36% F1), indicating minimal dataset
artifacts in the hypothesis statements.

Among the large language models evaluated in
the few-shot setting, Qwen3-8B achieves the best
performance, with F1 scores of 59.86% on the
cross-lingual set and 67.34% on the English set,
outperforming both GPT-4o and Llama3-8B. Nev-
ertheless, our approach surpasses Qwen3-8B by
9.09% on the cross-lingual set and 3.34% on the
English set, highlighting the effectiveness of our
method. Detailed prompts and zero-shot results
and reported in Appendix D.1, Appendix D.2.

The ablation study highlights the importance of
each component: removing the explanation module
(- Exp) results in a moderate performance drop
of 1.89% on both cross-lingual and English test
sets; removing the graph module (- Graph) causes
a more pronounced decline of 17.58% and 8.97%,
respectively. When both components are removed
(- Exp & Graph), performance sharply decreases
on both test sets, demonstrating that these modules
jointly contribute to the model’s robustness under
different language conditions.

2Unless noted, all reported test results refer to TestSet1.
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Model Type Model TestSet1:Cross-Lingual TestSet2:English TrainedPrecision Recall F1 Macro Precision Recall F1 Macro

Conventional
Model

Hypothesis-only 35.78 36.02 35.84 35.89 35.97 35.91 X
DocNLI 64.75 64.30 64.46 69.29 68.39 68.70 X

R2F 65.04 65.42 65.42 67.18 68.47 67.13 X
Large

Language
Model

Llama-3-8B 45.94 52.62 48.07 51.69 57.98 53.03 X
GPT-4o 52.50 56.30 54.00 62.50 65.00 64.50 ×

Qwen3-8B 60.34 56.29 59.86 71.71 67.62 67.34 X

CDCL-NLI
Model

Ours 71.09 70.84 68.95 72.65 72.46 70.68 X
- Exp 65.99 67.29 65.86 69.01 69.97 68.79 X

- Graph 53.07 57.38 51.37 68.64 64.55 61.71 X
- Exp & Graph 49.15 52.71 48.70 49.15 52.71 50.67 X

Table 3: NLI model performance on cross-lingual (TestSet1) and English (TestSet2) sets. Our full model achieves
the highest F1 scores, showing clear gains from explanation and graph components. Large language models
perform well but are generally outperformed. X indicates training on target data;×means no training. Explanation
- Exp.
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Figure 6: NLI performance using single documents
(D1, D2) versus combined (D1 + D2). The F1 gain
confirms the need for cross-document reasoning, with
both documents contributing similarly.

Single-Document vs Cross-Document. To vali-
date the cross-document nature of our dataset, we
compare the performance of models using only
a single document (D1 or D2) against those us-
ing the D1 + D2, as illustrated in Figure 6. The
substantial performance gap—at least a 7% F1 im-
provement—demonstrates that effective inference
requires integrating information from both doc-
uments. Additionally, the similar F1 scores for
Document1 (63.2%) and Document2 (62.8%) in-
dicate that both documents provide equally impor-
tant information, underscoring the necessity of syn-
thesizing evidence from both sources rather than
relying on either alone. Additional results are pre-
sented in Appendix D.3.

Cross-Lingual Generalization. To further as-
sess the robustness and generalization of our ap-
proach, we conduct cross-lingual transfer experi-
ments in a challenging scenario where the training

F1 Scores on Target Language (Ours vs. R2F)

ES→RU ES→FR ES→IT ES→EN
55.53/25.03 58.28/27.31 54.68/29.31 57.94/34.21

RU→ES RU→FR RU→IT RU→EN
52.83/46.26 46.67/35.50 50.89/39.77 49.67/47.78

FR→ES FR→RU FR→IT FR→EN
50.31/43.25 56.6/22.24 58.65/39.32 49.67/47.22

IT→ES IT→RU IT→FR IT→EN
53.72/36.01 57.19/36.21 53.17/37.22 56.67/47.21

EN→ES EN→RU EN→FR EN→IT
60.31/49.94 51.27/32.46 60.28/30.80 55.11/38.33

Table 4: Cross-lingual performances (macro F1 scores)
of our method and R2F. Source languages are colored.
Spanish (ES), Russian (RU), French (FR), Italian (IT)
and English (EN). Our method demonstrates superior
generalization across languages compared to baselines.

and testing languages are distinct. Specifically, we
select five typologically and geographically diverse
languages—Spanish, Russian, French, Italian, and
English—to ensure comprehensive coverage and
to reflect real-world multilingual settings. For each
source language, we translate the data into all tar-
get languages, resulting in 20 transfer directions.
Models are trained on one language and evaluated
on a different target language, with no overlap be-
tween training and test languages. As shown in
Table 4, our method consistently outperforms the
R2F baseline across most transfer directions, of-
ten by substantial margins. R2F is chosen as it
improves upon DocNLI for cross-document rea-
soning. These results demonstrate the effectiveness
of our approach in synthesizing information from
cross-lingual document pairs and its strong trans-
ferability to diverse language pairs, validating the
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Figure 7: Explainability comparison between our
method and R2F on CDCL-NLI and DocNLI datasets
using BLEU, ROUGE (1/2/L), and METEOR metrics.
Our method consistently outperforms R2F across all
metrics and datasets.

Method Dev Test
W. F1 Mi. F1 W. F1 Mi. F1

DocNLI 88.05 86.25* 87.09 85.06*
R2F 90.18* 89.15 89.16* 87.86
Ours 91.58 88.61 90.30 88.47

Table 5: Performance comparison on the document-
level DocNLI. Results marked with * are from our re-
production. Weighted F1 -W. F1, Micro F1 - Mi. F1

design of our experimental setup and the broad
applicability of our method in multilingual cross-
document NLI tasks.

Interpretability Study. To evaluate our
method’s effectiveness, we compared it against
the R2F baseline using five standard metrics
(ROUGE-1/2/L, BLEU, METEOR) on both CDCL
and DocNLI datasets. As shown in Figure 7, our
method (solid line) consistently outperforms r2f
(dashed line) across all metrics on both datasets.
The improvements are particularly pronounced
in ROUGE-L, where our method achieves 0.34
versus 0.30 on CDCL-NLI and 0.50 versus 0.37
on DocNLI, demonstrating enhanced capability
in preserving structural coherence. It is worth
noting that the interpretability data for DocNLI
was provided by R2F.

Comparison on DocNLI Dataset. We evaluate
the generalization of our method on the DocNLI
dataset using weighted and micro F1 metrics. As
shown in Table 5, our approach achieves state-of-
the-art weighted F1, outperforming both the Doc-
NLI baseline and R2F, but slightly underperforms
R2F on micro F1. This is mainly due to class im-
balance between training and evaluation sets, and
R2F’s advantage on the simpler reasoning tasks

common in DocNLI, while our method is opti-
mized for more complex reasoning. These results
suggest that balanced sampling or improved adapt-
ability could further boost performance.

6 Conclusion

This work systematically investigates CDCL-NLI,
addressing key challenges in cross-document rea-
soning and multilingual understanding. We in-
troduce a novel CDCL-NLI dataset spanning 26
languages and comprising 25,410 meticulously
annotated instances. And we propose an RST-
enhanced graph fusion mechanism with explana-
tion prediction. Through extensive experiments
and analyses, we demonstrate that our method ef-
fectively captures both structural and semantic in-
formation across documents and languages. Specif-
ically, the RST-enhanced graph fusion mechanism
and explanation prediction component not only im-
prove model interpretability but also enhance per-
formance, as validated by our ablation studies.
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A Dataset Details

A.1 Premise Establishment Criteria
To ensure the quality and reliability of our CDCL-
NLI dataset, we establish the following criteria for
premise selection:
• Content Parallelism: The document pairs

must discuss the same topic while being natu-
rally written in their respective languages, rather
than being translations of each other. This en-
sures authentic cross-lingual reasoning scenar-
ios.

• Information Complementarity: While main-
taining topic consistency, documents in differ-
ent languages should present complementary
perspectives or details, enabling meaningful
cross-document inference tasks.

• Language Distribution: Premise document
pairs are randomly sampled from different lan-
guages to reflect real-world cross-lingual scenar-
ios. Each pair must consist of documents in two
distinct languages, ensuring the dataset captures
authentic cross-lingual reasoning challenges.

These criteria ensure that our dataset captures
genuine cross-lingual reasoning challenges while
maintaining natural language expression across dif-
ferent languages.

A.2 CDCL-NLI Label Definitions and
Hypothesis Generation

Label Definitions. We define three inference la-
bels for CDCL-NLI, considering various evidence
distribution scenarios across documents:
• Entailment: The hypothesis is supported when

either:
– Evidence from both documents jointly sup-

ports the hypothesis through cross-document
reasoning, or

– One document provides sufficient supporting
evidence while the other document contains
no contradicting information
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In both cases, the conclusion must be logically
derivable without requiring external knowledge.

• Contradiction: The hypothesis is contradicted
when either:

– Information from either document directly
contradicts the hypothesis, or

– The combined information from both docu-
ments leads to a logical conclusion that con-
tradicts the hypothesis, or

– The two documents present mutually contra-
dictory evidence regarding the hypothesis

• Neutral: The relationship is neutral when:
– Neither document alone nor their combina-

tion provides sufficient evidence to support
or contradict the hypothesis, or

– The documents contain only partially relevant
information that doesn’t allow for a definitive
conclusion, or

– The hypothesis introduces new information
or claims that go beyond what can be verified
from the documents

These definitions account for the complex nature
of cross-document reasoning, where evidence may
be distributed asymmetrically across documents
and require different levels of information integra-
tion for reaching conclusions.

Hypothesis Creation. To generate high-quality
hypotheses for our CDCL-NLI dataset, we de-
signed a structured prompt for GPT-4o that speci-
fied detailed requirements for each label. The com-
plete prompt template is reproduced in Figure 12.
This prompt design requires GPT-4o to generate
evidence explaining the reasoning behind each hy-
pothesis, which significantly reduces hallucination
and improves alignment with the source documents.
The structured output format facilitates automated
processing while ensuring that each hypothesis is
accompanied by clear justification of its entailment
category. The generated hypotheses were subse-
quently reviewed by human annotators to ensure
quality and adherence to the specified criteria.

A.3 Data Quality Assessment

Explanation Annotation Guidelines. We estab-
lish the following principles for EDU-based expla-
nation annotation:
1. Minimal Sufficiency: Annotators should select

the minimal set of EDUs that are necessary and
sufficient to support the inference conclusion,
avoiding redundant or irrelevant units.

2. Cross-document Coverage: Selected EDUs

must include evidence from both premise doc-
uments when the inference requires cross-
document reasoning, ensuring the explanation
captures cross-lingual interactions.

3. Logical Completeness: The selected EDUs
should form a complete logical chain that clearly
demonstrates how the inference conclusion is
reached.

Quality Metrics. We measured CDCL-NLI
dataset using multiple metrics as shown in Table 6

The explanation component of our annotations
was evaluated using three complementary metrics,
all showing exceptional improvement after recon-
ciliation:
• EDU Selection achieved 76% Jaccard similarity,

indicating strong consensus on evidence selec-
tion

• Span Coverage reached 81% overlap ratio,
demonstrating precise identification of relevant
text spans

• Explanation Consistency achieved 85%, ensuring
logical coherence in reasoning
Our annotation quality assessment demonstrated

strong reliability across all NLI categories. Our
initial inter-annotator agreement score is 0.71 and
annotation quality is further improved through ad-
judication.

Through our rigorous quality control and filter-
ing process, we refined our dataset from an initial
collection of 27,750 potential instances to 25,410
high-quality inference pairs. This 8.4% reduction
reflects our commitment to maintaining high stan-
dards in both label accuracy and explanation qual-
ity, ensuring the dataset’s reliability for both classi-
fication and interpretability research.

A.4 Data Information
Language Distribution. Figure 8 illustrates the
language distribution of our dataset, where Span-
ish (15.3%), Russian (10.4%), and French (8.4%)
represent the top three most frequent languages,
while languages like Hebrew, Czech, and Hindi
each accounts for approximately 1-2% of the data.
This distribution not only reflects the imbalanced
nature of multilingual usage in real-world scenarios
but also ensures broad coverage of linguistic phe-
nomena, enabling the study of diverse cross-lingual
inference patterns.

Language Pair Distribution. As shown in Fig-
ure 9a, the dataset exhibits diverse language combi-
nations across 24 languages. Spanish demonstrates
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Category Description (Metric) Score

Entailment (Cohen’s κ) 0.72
NLI Label Neutral (Cohen’s κ) 0.71

Contradiction (Cohen’s κ) 0.71

EDU Selection (Jaccard Sim.) 0.76
Explanation Span Coverage (Overlap Ratio) 0.81

Explanation Consistency (Align.) 0.85

Table 6: Dataset quality assessment results.

Figure 8: Language distribution of CDCL-NLI dataset.

the highest interaction frequency with other lan-
guages, particularly evident in Spanish-Russian
(224 instances) and Spanish-Portuguese (178 in-
stances) pairs. The heat map reveals several inter-
esting patterns:
• Most language pairs maintain a balanced bidirec-

tional relationship, with similar instance counts
in both directions

• Romance languages (Spanish, French, Por-
tuguese, Italian) show stronger interconnections

• Less-resourced languages like Albanian and
Macedonian have fewer cross-lingual pairs

• Russian and Spanish serve as central hub lan-
guages, connecting with most other languages in
the dataset

EDU Count Distribution by Language Pair.
The violin plot in Figure 9b illustrates the distribu-
tion of Elementary Discourse Units (EDUs) across
the top language pairs. Several key observations
emerge:
• Most language pairs show a median EDU count

between 80 and 120 units
• The distributions are generally symmetric, indi-

cating consistent EDU patterns regardless of the

source language
• Romance language pairs (Romanian-Spanish,

Portuguese-Spanish, Italian-Spanish) exhibit sim-
ilar EDU distribution patterns

• Some pairs, particularly those involving Spanish
as one of the languages, show wider distributions,
suggesting more diverse discourse structures

• The violin shapes indicate that extreme EDU
counts (very low or very high) are relatively rare
across all language pairs
This analysis suggests that while the dataset

maintains diverse language coverage, it also pre-
serves consistent discourse complexity across dif-
ferent language combinations.

B Graph Construction Details

B.1 Relation Types

RST Graph Construction with Selected Re-
lation Types. In constructing individual RST
graphs for each document, we select a subset of
relation types to focus on the most salient discourse
and semantic connections. Specifically, we use the
following relation types: Temporal, Summary, Con-
dition, Contrast, Cause, Background, Elaboration,
Explanation, and lexical chains. This selection bal-
ances coverage and complexity, ensuring that the
resulting graph captures essential discourse rela-
tions and key semantic links without introducing
excessive sparsity or noise. The inclusion of lex-
ical chains further strengthens semantic cohesion
by linking related words and expressions across
different segments.

Graph Fusion with Extended Relation Types.
During the fusion of RST graphs from multi-
ple documents, we expand the set of relation
types to include a broader range of discourse
and organizational structures. The extended set
comprises: Temporal, TextualOrganization, Joint,
Topic-Comment, Comparison, Condition, Contrast,
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(a) Heat map of premise language combinations across the
dataset.

(b) Distributions of EDU counts across top-20 language pairs.

Figure 9: Statistic visualization of language pair distributions and their EDU characteristics.

Evaluation, Topic-Change, Summary, Manner-
Means, Attribution, Cause, Background, Enable-
ment, Explanation, Same-Unit, Elaboration, and
Lexical chains. This comprehensive set allows for
richer cross-document alignment by capturing di-
verse forms of rhetorical and semantic relationships.
Both in single-document and fused graphs, these
relations serve as edge types in the construction
of the Relation-aware Graph Attention Network
(RGAT), enabling the model to effectively encode
complex discourse and semantic structures.

B.2 Node Feature Definition
Specifically, for leaf nodes, we define:

φ(vi) = φ(EDUs),Textvi = EDUs,Typevi = 1.

For branch nodes, we define:

φ(vi) =
1

2
(φ(vj) + φ(vk)),

Textvi = Textvj ⊕ Textvk ,Typevi = 0,

where vj , vk are the children of vi, and ⊕ denotes
concatenation. For completeness, we provide the
detailed formulas for the relation-level and node-
level attention mechanisms used in updating node
embeddings.

B.3 Justification of the Cross-Document
Edge Threshold δ

The threshold δ for adding cross-document lexi-
cal edges is set to 0.8 based on empirical analysis
balancing sparsity and relevance of edges. We eval-
uated different threshold values on a validation set
using the following metrics:

Figure 10: Effect of threshold δ on graph sparsity and
task performance. Edge count (blue) decreases as δ in-
creases, while task performance (red) peaks at δ = 0.8
(dashed line), providing optimal balance between rele-
vant connections and noise reduction.

• Edge Sparsity: Higher thresholds reduce the
number of edges, leading to sparser graphs that
help avoid noise.

• Semantic Relevance: Lower thresholds intro-
duce more edges but may include irrelevant or
weakly related node pairs.

• Downstream Task Performance: We observed
that δ = 0.8 achieves the best trade-off, maximiz-
ing performance on the target task (e.g., accuracy
or F1 score).

Figure 10 shows the impact of varying δ on edge
count and task performance, confirming the choice
of 0.8 as a reasonable and effective threshold.

B.4 Graph Attention Formulas

Relation Weight. The relation importance
weights αr are learnable parameters normalized by
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Baseline Base Model Optimizer LR Batch Size Max Length Epochs

Hypothesis-only XLM-R Large AdamW 3× 10−6 16 512 20
DocNLI XLM-R Large AdamW 3× 10−6 16 512 20
R2F XLM-R Large AdamW 1× 10−6 16 512 20
Ours XLM-R Large AdamW 1× 10−5 16 512(per EDU) 20

Table 7: Training hyperparameters for conventional baseline models and our model. These configurations, includ-
ing the consistent use of the XLM-RoBERTa-Large base model and AdamW optimizer, were utilized to ensure
reproducibility and fair comparison.

softmax:

αr =
exp(wr)∑

r′∈R exp(wr′)
,

where wr is a trainable scalar parameter for rhetor-
ical relation r.

Hyperparameters. For the model defined in
Equation 1, the following settings are used: The
first layer uses K = 4 attention heads. The second
layer uses K = 1 attention head. Residual con-
nections and dropout with rate 0.1 are applied after
each layer.

Node-level Attention Coefficients. The atten-
tion coefficients βr,(l)ij,k measure the importance of
neighbor node vj to node vi under relation r, head
k, and layer l. They are computed as:

β
r,(l)
ij,k =

exp
(
ψ
(
a
(l)>
r,k

[
Wr,kh

(l−1)
vi ‖Wr,kh

(l−1)
vj

]))

∑

vm∈Nr(vi)

exp
(
ψ
(
a
(l)>
r,k

[
Wr,kh

(l−1)
vi ‖Wr,kh

(l−1)
vm

])) ,

(8)

where Wr,k is the trainable linear transformation
matrix for relation r and head k, a(l)r,k is the learn-
able attention vector for relation r, head k, and
layer l, [·‖·] denotes vector concatenation, ψ(·) is
the ELU activation function.

Additional Details. Each layer uses residual con-
nections and dropout with a rate of 0.1 to improve
training stability. The first layer uses K = 4 atten-
tion heads, while the second layer uses K = 1.

C Training Details

C.1 Model Training Hyperparameters
All the models are implemented in PyTorch and
trained on an NVIDIA A100 GPU. To ensure fair
comparison and reproducibility of results, all con-
ventional baseline models and our model were fine-
tuned under consistent experimental settings. As

detailed in Table 7, each baseline utilizes the XLM-
RoBERTa-large pretrained model as the base ar-
chitecture and the AdamW optimizer for training.
The learning rates are carefully selected for each
model variant to optimize performance, while main-
taining a uniform batch size of 16, a maximum in-
put sequence length of 512 tokens, and training for
20 epochs. These standardized hyperparameters
guarantee that performance differences stem from
model design rather than training discrepancies,
thereby supporting the validity and reproducibility
of our comparative evaluation. Specially, for our
model, as we split the documents into EDUs, so
the maximux length is for one single EDU. By pro-
cessing shorter EDUs instead of full documents,
our model in long-text scenarios minimizes infor-
mation loss, leading to improved performance.

C.2 LLM Fine-tuning Hyperparameters

For fine-tuning the Llama3-8B-instruct and Qwen3-
8B model, we employed LoRA (Low-Rank Adapta-
tion) to efficiently adapt the large-scale pretrained
model with limited computational resources. The
key hyperparameters for LoRA tuning included a
rank of 16, which balances adaptation capacity and
parameter efficiency, and a dropout rate of 0.1 to
mitigate overfitting. The learning rate was set to
2 × 10−4 with a linear warmup over the first 500
steps, followed by a constant decay. We used a
batch size of 64 sequences and capped the maxi-
mum input length at 1024 tokens to fully leverage
the model’s context window. Training was con-
ducted for 10 epochs, which empirically provided
a good trade-off between convergence and training
cost. These hyperparameters were chosen based on
prior LoRA tuning best practices and preliminary
experiments to ensure stable and effective adap-
tation of the Llama3-8B-instruct and Qwen3-8B
model. The prompt is shown in Figure 11.
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Fine-tunning Prompt

You are skilled in the NLI task. Given a premise consisting of two documents and a hypothesis,
each with its specified language, your task is to determine the natural language inference (NLI)
relationship between the hypothesis and the premise. Note that the premise and hypothesis may be
in different languages. The output should be one of three labels: Entailment, Contradiction, or
Neutral.
Input format:
Premise 1 (Language: <Lang1>): <Premise1 text>
Premise 2 (Language: <Lang2>): <Premise2 text>
Hypothesis: <Hypothesis text>
Output format:
One of the labels: Entailment, Contradiction, or Neutral
—
Example:
Premise 1 (Language: English): The cat is sitting on the mat.
Premise 2 (Language: French): Le chat est assis sur le tapis.
Hypothesis: The animal is resting on a rug.
Output: Entailment
—
Now, given the input premises and hypothesis, provide the NLI label.

Figure 11: Llama3-8B-Instruct and Qwen3-8B Finetuning Prompt.

Model TestSet1: Cross-Lingual TestSet2: English
Precision Recall F1 Macro Precision Recall F1 Macro

Llama-3-8B 44.00 50.00 46.00 49.00 55.00 50.00
GPT-4o 50.00 54.00 52.00 59.00 62.00 61.00
Qwen3-8B 58.00 54.00 57.00 68.00 64.00 63.00

Table 8: Zero-shot performance of large language models on the CDCL-NLI dataset.

D Additional Experiments

D.1 LLM Few-shot Prompt

As shown in Figure 13, one example is provided
to demonstrate how to determine the logical rela-
tionship between the premise and the hypothesis.
The model is instructed to output exactly one of
three labels: entailment, contradiction, or neutral.
This prompt effectively guides the model to under-
stand the task objective and output format, thereby
enhancing its reasoning capability across multiple
languages and documents during the few-shot vali-
dation stage (Chen et al., 2024).

D.2 LLM in Zero-shot Scenario

The zero-shot results reported in Table 8 are ob-
tained using the same prompt design as the few-
shot experiments, differing only in the absence of

in-context examples. As expected, all models per-
form worse under the zero-shot setting compared
to their few-shot counterparts, demonstrating the
effectiveness and necessity of providing exemplars
in the prompt for this task. Despite the overall
performance drop, the relative ranking of the three
models remains consistent with the few-shot sce-
nario, with Qwen3-8B achieving the highest scores,
followed by GPT-4o, and then Llama-3-8B. This
consistency indicates that these models’ capabil-
ities in handling the CDCL-NLI task are stable
across different prompting strategies. Moreover,
the results highlight the challenge of zero-shot
cross-document and cross-lingual natural language
inference, emphasizing the importance of prompt
engineering and in-context learning to boost model
performance on complex multilingual and multi-
document reasoning tasks.
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Model Single Document1 Single Document2 Combined Documents

DocNLI 54.22 54.95 64.46
R2F 57.09 57.12 65.42

Table 9: F1 Macro scores for different methods across premises with varying numbers of documents.

EDU Text EDU Text

1 7. května 22 řekl prokurátor Giovanni Matos místní televizní
stanici Canal N.

4 Společnost okamžitě nereagovala na žádost o ko-
mentář.

24 jsou 27 obětí,“

7 (Reuters) - 25 „Informace jsou správné,
11 1© Úřadníci uvedli v neděli, že nehoda v malé zlaté

dolině na jihu Peru odnesla život 27 pracovníků.
26 potvrdila je policie v Yanaquihuě,

12 Jedná se o jeden z nejúmrtnějších důležitých
událostí v těžebním průmyslu v tomto jihoamer-
ickém státě.

27 „Jedná se o formální dolinu (...),

15 2© Nehoda se stala v sobotu ráno v těžební společnosti
Yanaquihua, která se nachází v provincii Con-
desuyos v departementu Arequipa.

30 dodal.

17 Zdá se, že došlo ke zkratu, která způsobila požár
uvnitř tunelu,

33 musíme jít

18 uvedla regionální vláda. 34 a zjistit, kde jsou mrtví, jestli je tam bezpečné,
37 3© Regionální vláda Arequipy a ministerstvo vnitra

mobilizovaly policie, zdravotníky a sanitky, aby
pomohly při péči o oběti a jejich záchraně.

35 aby se tam mohli dostat policisté a soudní pra-
covníci

39 Podle statistik peruánského ministerstva těžeb a en-
ergie je toto nejvyšší počet obětí v jediném těžebním
nehodě

36 a provést procedury,“

40 nejméně od roku 2000.

Table 10: Elementary Discourse Units (EDUs) from Document1 with their corresponding Spanish text. Seg-
ments highlighted in green represent evidence supporting the Entailment classification. EDU indexes with circled
numbers 1© indicate cross-document "Lexical" chains linking to corresponding EDUs in Document2.

D.3 Baseline Evaluation in Single Document
Scenario

To further demonstrate the cross-document char-
acteristic of our dataset, we add this extra exper-
iment to evaluate the performance using either a
single document (Document1 or Document2) as
the premise compared to using the full combined
premise, as summarized in Table 9. The notice-
able improvement in F1 score when both docu-
ments are combined indicates that effective infer-
ence relies on integrating information from multi-
ple sources. Additionally, the similar results ob-
served between Single Document 1 (54.22% and
57.09% F1) and Single Document 2 (54.95% and
57.12% F1) imply that each document provides
valuable and roughly equal contributions. This fur-
ther supports the notion that reasoning in this task
benefits from synthesizing evidence across docu-
ments rather than focusing on a single source.

E Case Study

E.1 Our Method Case

Our approach employs a multi-stage framework for
analyzing complex multi-document multi-lingual
NLI scenarios. Take the given example in Fig-
ure 13, the Yanaquihua gold mine incident in Con-
desuyos, Peru, where a short circuit-induced fire
resulted in 27 fatalities among workers trapped
within a tunnel, prompting mobilization of local au-
thorities and rescue teams. We begin by parsing the
premise documents using Rhetorical Structure The-
ory (RST), which generates hierarchical discourse
trees wherein each node represents an Elementary
Discourse Unit (EDU). These nodes are assigned
unique indices, with their textual content compre-
hensively documented in Tables 10 and 11.

Following RST parsing, we construct individ-
ual discourse graphs for each premise document.
These discrete graphs are subsequently integrated
into a unified premise graph through the establish-
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ment of "Lexical" chains that leverage semantic
information and discourse relations to facilitate
enhanced inference. As illustrated in Tables 10
and 11, EDU nodes sharing identical uppercase
character designations indicate the presence of
cross-document “Lexical” chains. This consol-
idated graph representation effectively captures
the comprehensive discourse context across the
premises, enabling more robust and coherent se-
mantic modeling.

The classification module processes this unified
graph in conjunction with the hypothesis to predict
the appropriate NLI label. Concurrently, the expla-
nation extraction module identifies a salient subset
of nodes within the premise graph that substanti-
ate the classification decision. These explanation
nodes are visually distinguished through green font
highlighting in Tables 10 and 11, explicitly denot-
ing their explanatory significance.

Our integrated methodology capitalizes on the
hierarchical discourse structure inherent in RST
parsing and the semantic connectivity across docu-
ments, ensuring that the model’s inference is both
accurate and interpretable. The explicit identifica-
tion of explanation nodes within the discourse struc-
ture facilitates transparent, human-comprehensible
rationales grounded in the premise texts, thereby
advancing the explainability of NLI systems in
complex multi-document, multi-lingual scenarios.
This approach proves particularly valuable when
analyzing intricate real-world situations such as
the Yanaquihua mine disaster, where understand-
ing the causal relationships and contextual factors
is crucial for proper inference.

E.2 LLM Answer Case
As shown in Table 3, Qwen3-8B achieves higher
scores compared to Llama3-8B-instruct and the
closed-source GPT-4o. One key reason is that we
evaluate Qwen3-8B using its thinking (chain-of-
thought) mode, as illustrated in Figure 14. We
still take the case in validation prompt(Tabel 13) as
an example, the model systematically parses each
premise, accurately extracts key facts, and performs
detailed cross-checking between the articles and
the hypothesis. It also demonstrates the ability
to handle subtle differences in wording (such as
distinguishing between deaths and rescues) and to
resolve potential ambiguities in translation (e.g.,
the meaning of "obětí" in Czech).

Nevertheless, our proposed approach still out-
performs Qwen3-8B, primarily due to its ability to

explicitly capture document structure through RST
parsing and cross-document, cross-lingual seman-
tic integration via "Lexical" chains. Moreover, our
method demonstrates superior efficiency with sig-
nificantly lower computational requirements and
faster inference time, making it more practical for
real-world applications while maintaining state-of-
the-art performance.
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EDU Text EDU Text

14 informó el Ministerio Público de ese país. 53 [Al menos siete muertos en Texas
15 1© Al menos 27 personas murieron en Perú 54 tras atropellamiento en una parada de autobús cerca

de un refugio para inmigrantes]
17 y otras dos fueron rescatadas 56 lo que impidió que los mineros pudieran escapar.
18 luego de un incendio el sábado en una mina de oro

en la sureña provincia de Condesuyos,
57 Se informó que

21 Según las primeras investigaciones, la tragedia tuvo
lugar

59 el fuego se propagó de manera muy rápida por las
estructuras de madera que sostienen el yacimiento,

23 2© tras producirse un cortocircuito a 100 metros de la
entrada de la mina Yanaquihua,

60 dedicado a la extracción de oro,

24 conocida como Esperanza I. 61 Medios locales peruanos indicaron que
28 informó el Gobierno regional de Arequipa. 63 27 trabajadores quedaron atrapados en la mina
29 “Se habría producido un cortocircuito 64 tras un incendio.
31 que provocó un incendio en el interior del socavón, 65 Getty Images
32 que habría puesto en riesgo la vida de los traba-

jadores”,
71 James Casquino, alcalde de Yanaquihua, dijo que

33 Medios locales indicaron que 73 el dueño de la mina fue a la comisaría de ese distrito
34 27 trabajadores atrapados habían fallecido por as-

fixia.
75 para pedir ayuda en el rescate de las personas

35 La noche del sábado, el Ministerio del Interior con-
firmó en su cuenta de Twitter el accidente.

76 que se encontraban atrapadas.

38 indicó el tuit. 78 [Mueren varios migrantes en un accidente de auto
en Nuevo México cerca de la frontera]

39 “Personal policial se encuentra en el distrito de
Yanaquihua

79 Las autoridades indicaron que

41 para apoyar en las labores de rescate de los cuerpos
de mineros

80 3© hacia la zona se habían movilizado rescatistas.

42 que fallecieron dentro de un socavón en la provincia
de Condesuyos”,

81 Familiares de las víctimas se reunieron frente a la
comisaría de Yanaquihua

49 Imágenes difundidas en redes sociales mostraban
una gran columna de humo negro proveniente de la
mina,

83 para recabar información sobre la suerte de sus seres
queridos

51 y medios locales indicaron que 84 y exigir a las autoridades que agilizaran las labores
de rescate de los cuerpos.

52 en el momento del cortocircuito había personal tra-
bajando a unos 80 metros de profundidad.

85 El fiscal Giovanni Matos indicó a un medio local
que

87 las tareas en la mina podían demorar 89 porque no se sabía si los equipos de rescatistas
podían ingresar a la mina

23 para retirar los cadáveres. 90 para retirar los cadáveres.
91 [Una tormenta de polvo en Illinois causa múltiples

muertes y decenas de hospitalizados tras choque
masivo]

94 indica la compañía en su página web.

95 La mina pertenece a Yanaquihua S. A. C., una em-
presa

96 que reúne a pequeños productores mineros dedica-
dos a la explotación del oro y otros metales,

Table 11: Elementary Discourse Units (EDUs) from Document2 with their corresponding Spanish text. Seg-
ments highlighted in green represent evidence supporting the Entailment classification. EDU indexes with circled
numbers 1© indicate cross-document "Lexical" chains linking to corresponding EDUs in Document1.
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Hypothesis Generation Prompt

[Hypothesis Generation Prompt] We are creating a cross-document cross-lingual NLI dataset.
Below are two documents under the event topic: [CATEGORY], treated as one premise in this NLI
task. Based on them, generate hypotheses in three labels. You must strictly follow the instructions:
1. Hypothesis: The hypothesis should be a factual statement based on the content of the articles.
It must be a simple statement and should not contain any explanation or analysis like “this
contradicts” or “this agrees with” or “this is inconsistent with.”
2. Evidence: The evidence section should explain how the hypothesis relates to the articles,
including any contradictions or confirmations, using specific quotes from the articles.
Document Details:
• Document 1: Date: [DATE_1]; Article: [ARTICLE_1]
• Document 2: Date: [DATE_2]; Article: [ARTICLE_2]
[Task 1: Entailment Generation] Generate an Entailment Hypothesis and evidence.
The hypothesis is supported if evidence from both documents together or from one document alone
(without contradiction in the other) logically supports it.
Guidelines:
• Ensure each detail is verifiable by premise
• Include specific facts (dates, names, etc.)
• No speculation—strictly based on facts
Evidence:
• Quote relevant parts from both articles and explain how they jointly support the hypothesis
[Task 2: Neutral Generation] Generate a Neutral Hypothesis and evidence.
One hypothesis is neutral if there is insufficient or only partial evidence in the premise to confirm
or deny it, or if it contains information beyond what the premise verify.
Guidelines:
• Reasonable speculation or expanded related aspects in a reasonable way
• Propose middle ground if there’s conflicting information
Evidence:
• Show partial support from one or both articles without full confirmation
• Explain how the hypothesis goes beyond but stays consistent with the Document content
Remember, A neutral hypothesis should not be directly confirmed by the premise (which would
make it entailed), nor should it contradict the articles (which would make it conflicting).
[Task 3: Conflicting Generation] Generate a Conflicting Hypothesis and evidence.
One hypothesis is contradicted if either document or their combined information directly opposes
it, or if the documents conflict with each other regarding the hypothesis.
Guidelines:
• Negate or reverse key information in premise
• Complex and multi-faceted hypothesis with multiple contradictions
• Try to combine multiple points of contradiction
• Ensure the hypothesis appears reasonable but actually conflicts clearly
Evidence:
• Show which document(s) the hypothesis contradicts and explain specific points
• If applicable, explain why this hypothesis cannot coexist with the premise content
Output in JSON format:
{ "entail_evidence": "...",

"entail_hypothesis": "...",
"neutral_evidence": "...",
"neutral_hypothesis": "...",
"conflict_evidence": "...",
"conflict_hypothesis": "..."}

Figure 12: Hypothesises Generation Prompt.
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Validation Prompt

You are tasked with a cross-document and cross-language Natural Language Inference (NLI) task.
Your goal is to determine the relationship between the "premise" and the "hypothesis". The premise
consists of two documents presented in different languages. Here is one example:

Premise(Document1 in Spanish)

Al menos 27 personas murieron y dos fueron rescatadas tras un incendio en la mina de oro
Yanaquihua, en Condesuyos, Perú. Las investigaciones apuntan a un cortocircuito ocurrido a
unos 100 metros de la entrada, que provocó un fuego que se expandió rápidamente por las
estructuras de madera del socavón, dificultando la salida de los trabajadores. Autoridades
regionales señalaron que la mayoría de los mineros fallecieron por asfixia. El Ministerio del
Interior confirmó el accidente la noche del sábado y la policía trabaja en el rescate de los
cuerpos. Imágenes difundidas mostraron una densa columna de humo, mientras que medios
locales informaron que había personal laborando a 80 metros de profundidad. El alcalde de
Yanaquihua indicó que el dueño de la mina acudió a la comisaría para solicitar apoyo en el
rescate.

Premise(Document2 in Czech)

7. května (Reuters) - Úřadníci uvedli v neděli, že nehoda v malé zlaté dolině na jihu Peru
odnesla život 27 pracovníků. Jedná se o jeden z nejúmrtnějších důležitých událostí v těžebním
průmyslu v tomto jihoamerickém státě. Nehoda se stala v sobotu ráno v těžební společnosti
Yanaquihua, která se nachází v provincii Condesuyos v departementu Arequipa. Zdá se, že
došlo ke zkratu, která způsobila požár uvnitř tunelu, uvedla regionální vláda. „Informace jsou
správné, potvrdila je policie v Yanaquihuě, jsou 27 obětí,“ řekl prokurátor Giovanni Matos
místní televizní stanici Canal N. Regionální vláda Arequipy a ministerstvo vnitra mobilizovaly
policii, zdravotníky a sanitky, aby pomohly při péči o oběti a jejich záchraně. Podle statistik
peruánského ministerstva těžeb a energie je toto nejvyšší počet obětí v jediném těžebním
nehodě nejméně od roku 2000. Společnost okamžitě nereagovala na žádost o komentář.

Hypothesis and Label

Hypothesis: "The Yanaquihua gold mine in the province of Condesuyos, Peru, experienced a
fatal incident on a Saturday morning due to a short circuit that caused a fire, leading to the
death of 27 workers trapped inside the tunnel, with local authorities and rescue teams being
mobilized to the site."
Output: entailment

Now, given the following input, output exactly one word indicating the NLI label: neutral,
entailment, or contradiction.
Premise:[Premsise]
Hypothesis: [Hypothesis]
Output the NLI label (neutral/entailment/contradiction):

Figure 13: LLM Validation Prompt.
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Qwen3-8B Reasoning Output

Okay, let’s tackle this NLI task. So, the premise has two articles in Spanish and Czech, and the
hypothesis is in English. I need to determine if the hypothesis is entailed, contradicted, or neutral
based on the premises. First, I’ll read through the Spanish article. It mentions that on Saturday,
there was a fire in a gold mine in Condesuyos province, caused by a short circuit 100 meters from
the entrance. The mine is called Yanaquihua, known as Esperanza I. They say 27 people died,
two were rescued. The regional government of Arequipa mentioned the short circuit caused the
fire, risking workers’ lives. Local media said 27 trapped workers died of asphyxia. The Ministry
of Interior confirmed the accident on Saturday, and police were there for rescue. The fire spread
quickly through wooden structures, preventing escape. The mine belongs to Yanaquihua S.A.C., a
company with small miners.
Now the Czech article: Officials said the accident in the small gold mine in southern Peru resulted
in 27 deaths. It happened on Saturday morning at the Yanaquihua mine in Condesuyos province,
Arequipa department. A short circuit caused a fire inside the tunnel. The regional government
confirmed 27 victims. The prosecutor Giovanni Matos said the information is correct, and police
are there to find the dead, check safety for rescue teams. Regional government and interior ministry
mobilized police, medics, and ambulances. It’s the highest number of deaths in a single mining
accident since 2000. The company didn’t respond to a comment request.
Hypothesis: The Yanaquihua gold mine in Condesuyos, Peru, had a fatal incident on Saturday
morning due to a short circuit causing a fire, leading to 27 workers’ deaths trapped inside the
tunnel, with local authorities and rescue teams mobilized. Check each part. The Spanish article
says the fire was caused by a short circuit, leading to 27 deaths. The Czech article confirms the
same: short circuit causing fire, 27 deaths. Both mention Saturday morning (the Spanish says
"sábado" which is Saturday, and the Czech says "v sobotu ráno" which is Saturday morning). The
mine is Yanaquihua in Condesuyos, Peru. The death count is 27, and both mention authorities
and rescue teams being mobilized. The hypothesis states all these points. The Spanish article
also mentions the mine’s name and the company, which the Czech article doesn’t, but that’s not
conflicting. The hypothesis doesn’t mention the company, so that’s okay.
Are there any contradictions? The Spanish article mentions two people rescued, but the hypothesis
says 27 died. Wait, the hypothesis says "leading to the death of 27 workers trapped inside the
tunnel." The Spanish article says 27 died and two were rescued. The Czech article says 27 victims,
which could include the two rescued? Wait, maybe not. If two were rescued, then the deaths would
be 27, and the two rescued are alive. So the hypothesis says 27 workers died, which matches the
Spanish article’s 27 deaths. The Czech article says "27 obětí" which is victims, which could be the
27 who died, but maybe the two rescued are not counted as victims? Or maybe the Czech article is
using "obětí" as victims, which could include those who died and those rescued? Wait, in Czech,
"obětí" is victims, usually meaning those who died. But the Spanish article says 27 died and two
rescued. The Czech article says 27 victims, which might be the same 27, but the two rescued might
not be considered victims. So the hypothesis says 27 workers died, which aligns with both articles.
The Czech article says "27 obětí" which is victims, so that’s consistent.
Also, the hypothesis mentions the fire caused by a short circuit, which both articles confirm. The
mobilization of authorities and rescue teams is mentioned in both. The time is Saturday morning
in both. The mine’s name and location are correct.
Therefore, the hypothesis is fully supported by both articles. So the label should be entailed.

Figure 14: Illustration of Qwen3-8B’s chain-of-thought reasoning process. The model systematically analyzes
premise documents by extracting key facts, performing cross-document verification, and resolving translation am-
biguities (e.g., Czech term "obětí"). While this reasoning approach enables Qwen3-8B to outperform other LLMs
like Llama3-8B-instruct and GPT-4o, our RST-based method achieves superior performance through more intuitive
explanations, explicit discourse structure modeling, and cross-lingual semantic integration, all while requiring sig-
nificantly lower computational resources and faster processing times.
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