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Abstract

Recent works in Natural Language Inference
(NLI) and related tasks, such as automated
fact-checking, employ atomic fact decomposi-
tion to enhance interpretability and robustness.
For this, existing methods rely on resource-
intensive generative large language models
(LLMs) to perform decomposition. We pro-
pose JEDI, an encoder-only architecture that
jointly performs extractive atomic fact decom-
position and interpretable inference without re-
quiring generative models during inference. To
facilitate training, we produce a large corpus
of synthetic rationales covering multiple NLI
benchmarks. Experimental results demonstrate
that JEDI achieves competitive accuracy in dis-
tribution and significantly improves robustness
out of distribution and in adversarial settings
over models based solely on extractive ratio-
nale supervision. Our findings show that in-
terpretability and robust generalization in NLI
can be realized using encoder-only architec-
tures and synthetic rationales.1

1 Introduction

Natural language inference (NLI) tasks (Gi-
ampiccolo et al., 2007; Bowman et al., 2015)
require models to determine whether a given
hypothesis logically follows from a premise. While
state-of-the-art NLI models have achieved high
accuracy, their decision-making processes often
remain opaque. This has motivated a growing
body of research focused on building interpretable
NLI systems that not only predict a label but
also justify their predictions in a transparent and
faithful way (Camburu et al., 2018; DeYoung et al.,
2020; Stacey et al., 2022, 2024).

A common approach to interpretability in NLI
involves extractive rationales, where the model

1Code and data: https://jedi.nicpopovic.com

Figure 1: Illustration of abstractive and extractive fact
decomposition for an example premise from the ANLI
dataset. Abstractive atomic facts are based on the gener-
ated facts provided by Stacey et al. (2024). Extractive
facts are shown as colored spans corresponding to the
contents of the abstractive atomic facts.

highlights parts of the premise or hypothesis that
support its decision. While easily interpretable,
such rationales often fail to capture the underlying
logical structure of inference and can obscure
shallow pattern matching (McCoy et al., 2019).
In response to these limitations, recent work
has turned to atomic fact decomposition, which
breaks the premise into minimal, semantically
coherent sub-facts (atoms) against which the
hypothesis is then validated individually (Stacey
et al., 2024). By adding symbolic reasoning
over these atomic units, this approach improves
transparency, robustness and more closely reflects
the compositional reasoning involved in NLI.

However, atomic fact decomposition currently
relies on generating atomic facts using large
language models (LLMs), which introduces
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additional computational overhead. Further, LLMs
have been shown to hallucinate inaccuracies
that can negatively impact inference and may
be difficult to identify since atomic facts are not
immediately traceable to explicit premise spans.
Such hallucinations are especially problematic in
longer documents, making verification challenging
and hindering scalability. This raises the central
question of our work: Can atomic fact decomposi-
tion be distilled into encoder-only architectures to
enable fast, scalable, and faithfully interpretable
NLI without requiring LLMs at inference time?
To answer this, we propose reframing atomic fact
decomposition as an extractive task, similar to
existing extractive rationale-based approaches.
Rather than generating textual statements, our
model identifies spans in the premise correspond-
ing directly to atomic facts. These spans are then
classified with respect to the hypothesis using
logical rules, enabling fact-level interpretability in
a single encoder forward pass.

Our contributions in this paper are as follows:

• We propose an encoder-only architecture
(JEDI2) that performs extractive atomic fact
decomposition and logical inference jointly,
enabling interpretable NLI without text gener-
ation during inference.

• We construct a large corpus of synthetic ra-
tionales (SYRP3) to supervise span-level ex-
traction in the absence of annotated data. In
addition to the annotations required for this
paper, we provide synthetic rationales across
seven additional datasets to facilitate future
research in interpretable NLI.

• We demonstrate that our approach produces
competitive results both in distribution and
out of distribution while offering fine-grained,
faithfully interpretable predictions grounded
explicitly in the premise.

2 Related Work

2.1 Extractive Rationales in NLI
Natural Language Inference (NLI) (Giampiccolo
et al., 2007; Bowman et al., 2015) has long served
as a key task for evaluating model reasoning
capabilities. Early work on interpretability

2JEDI: Joint Encoder for Decomposition and Inference
3SYRP: SYnthetic Rationales for Premises

emphasized extractive rationale methods, which
highlight input spans presumed to justify model
predictions (DeYoung et al., 2020). For instance,
e-SNLI (Camburu et al., 2018) introduced human-
annotated rationales aligned with entailment labels
to support more transparent decision-making.
However, subsequent studies, exemplified by
the work of Chen et al. (2022), revealed that
rationale supervision leaves models vulnerable
to adversarial attacks, such as superficial pattern
matching (McCoy et al., 2019). This motivates
a shift toward more structured and granular
reasoning frameworks.

2.2 Atomic Fact Decomposition

Recent approaches decompose NLI examples into
atomic units to support finer-grained inference.
While Stacey et al. (2022) focused on span-level
predictions grounded in noun phrase segmentation
of the hypothesis, their subsequent work (Stacey
et al., 2024) proposes training models using atomic
facts derived from premise decomposition via
LLMs. These methods aim to disentangle model
reasoning from shallow heuristics by isolating
semantically meaningful units and applying rule-
based reasoning. Decomposition-based strategies
have also been explored in related domains such as
summarization (Yang et al., 2024b), fact-checking
(Min et al., 2023), and claim verification (Kamoi
et al., 2023; Chen et al., 2024). The reliance on
generative LLMs for decomposition introduces
computational overhead, limited scalability,
and potential inaccuracies (hallucinations) in
inference, motivating our exploration of alternative
extraction-based approaches.

2.3 Joint Architectures

Recently, Lu et al. (2025) argue that pipeline archi-
tectures involving fact decomposition suffer from
error propagation and advocate for joint training to
reduce reliance on intermediate supervision. In this
work, we draw a parallel to a different natural lan-
guage processing task in which joint architectures
are common: We take inspiration from joint entity
and relation extraction (Eberts and Ulges, 2021;
Zhou et al., 2021; Popovic et al., 2022; Hennen
et al., 2024) where span extraction and complex
classification are at the core of the task. We propose
an extractive approach to fact decomposition, en-
abling a single encoder-based model to jointly learn
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both decomposition and inference. Joint models,
however, require rich annotated data to effectively
learn both decomposition and inference. Given
the lack of existing annotations at this granular-
ity, we create a synthetic dataset spanning multiple
NLI benchmarks, generated via LLMs, to facilitate
training and evaluation.

3 Extractive Fact Decomposition

The core premise of this work is to view the
process of atomic fact decomposition from an
extractive point of view, rather than the abstractive
approach seen in recent works (Stacey et al.,
2024; Yang et al., 2024b; Min et al., 2023; Chen
et al., 2024), which make use of generative
models. Figure 1 provides an illustration of the
two annotation types. While abstractive atomic
fact decomposition has demonstrated improved
robustness compared to extractive rationale-based
interpretability methods, this work explores the
hypothesis that the observed robustness improve-
ments may not inherently depend on abstraction
via generation, but rather on the structured
reasoning over clearly defined semantic units, and
therefore also be achievable via extractive methods.

Further motivation for exploring an extractive
framing stems from several practical and method-
ological considerations: Extractive rationales, as
demonstrated in prior interpretability research
(DeYoung et al., 2020; Camburu et al., 2018),
provide explicit pointers to the relevant portions
of the input text (the premise, for NLI), which
is especially valuable when dealing with long or
complex contexts. By providing a more transparent
and readily verifiable means to trace predictions
directly to explicit spans in the input, an extractive
approach can help reduce risks introduced by
potential hallucinations associated with generated
facts. Finally, extractive rationales lend themselves
more naturally to encoder-only architectures.
These models are typically significantly more
lightweight than generative ones and continue to
be used in many downstream natural language
understanding (NLU) tasks for their efficiency.

4 SYRP: SYnthetic Rationales for
Premises

Data in existing NLI datasets typically consists
of premise, hypothesis, and label. For NLI via

Figure 2: Illustration of fact spans (yellow/orange) and
salient spans (red) for an example premise and hypoth-
esis from the ANLI dataset. The example contains a
single salient span highlighting information contradict-
ing the hypothesis. During training, we treat fact spans
which contain salient spans (shown in orange) as salient
spans as well.

extractive fact decomposition we require two
additional types of span annotations shown in
Figure 2, which we refer to as fact spans and
salient spans. Fact spans define spans in the
premise corresponding to individual atomic facts,
while salient spans correspond to the spans in the
premise which are most relevant to the predicted
label (equivalent to extractive rationales).

To address this annotation gap, we synthetically
create fact and salient span annotations in a
multi-step process shown in Figure 3: First, we
create synthetic salient spans for several NLI
benchmarks (Section 4.1). Using the atomic facts
Stacey et al. (2024) generated for ANLI (Nie et al.,
2020), a challenging benchmark central to recent
research in NLI, and a token classification model
trained on our synthetic rationales (Section 4.2),
we then create annotations of fact spans (Section
4.3).

4.1 SYRP corpus
We create synthetic salient span annotations, for
the training and development splits of the ANLI
dataset (Nie et al., 2020) using an LLM4 and
carefully designed prompt templates detailed in
Appendix A, Figures 5 and 6. The final configura-
tion of model and prompt templates were chosen
based on an evaluation of 15 different models

4We selected Qwen2.5-32B-Instruct-GPTQ-Int4 based on
performance and efficiency.
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NLI Data
(premise, hypothesis, label)

LLM
(task: span highlighting)

LLM
(task: fact decomposition)
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(based on label)
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(abstractive)

finetuning
(section 4.2)

apply SYRPFT
(section 4.3)
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(for each atomic fact)

SYRP Corpus (4.1)

Stacey et al. (2024)

Figure 3: Overview of the pipeline for data collection as described in Section 4.

and 20 different prompt templates, conducted on
manually annotated data. More details can be
found in Appendix A.

Broadly, we frame the annotation task by
providing an instruction tuned model with the
premise, hypothesis, and gold label. This way
the model no longer has to perform the full task
of verifying the hypothesis, but only needs to
provide relevant spans. This means that even a
model which does not achieve state-of-the-art
performance on NLI can produce rationales for
a given data sample. We evaluate annotation
quality using intersection-over-union (IoU)
with manually annotated spans, achieving an
IoU of 69%, indicating substantial agreement
(IoU > 50% is considered indicative of good
agreement by DeYoung et al. (2020)). To ensure
annotations reflected genuine task comprehension,
we additionally evaluated accompanying natural
language explanations. We found only 2 out of 30
explanations to be of low quality, further validating
robustness.5

While our primary focus is ANLI, we have addi-
tionally generated a corpus comprising roughly one
million annotated samples across eight NLI bench-
marks, publicly available to support future research
in interpretable NLI. Statistics for this dataset, the
SYRP corpus, can be found in Appendix B.

4.2 Token Classification Models (SYRPFT)

Using the synthetic rationales produced for
ANLI above, we finetune encoder-based token-
classification models, SYRPFT. For this, we pass
premise and hypothesis to the encoder with a lead-
ing CLS token and a separator token (SEP) to mark
the end of the premise. Each token in the premise

5We do not use the natural language explanations in the
remainder of this work, but evaluated them in the initial model
selection as a proxy for task comprehension and include the
generations as part of the SYRP corpus for future research.

is classified as either neutral (non-salient), entailed
(supporting entailment), or contradicted (support-
ing contradiction). During inference, we follow
logic from prior work (Stacey et al., 2024), predict-
ing contradiction if any contradicted tokens exist,
entailment if entailed tokens exist without contra-
dictions, and neutral otherwise. As a result, any
predictions produced by SYRPFT are traceable to
salient tokens in the premise.

4.3 Span-Level Supervision from Generated
Atomic Facts

With salient span annotations in place (i.e., ratio-
nales decisive to entailments and contradictions),
the remaining supervision signal we require is
for fact spans (spans representing atomic facts,
including those that are not directly relevant to the
hypothesis), as illustrated in Figures 1 and 2.

To obtain these, we convert the atomic facts
generated by Stacey et al. (2024) for ANLI into
fact spans. We use SYRPFT

6 to identify the salient
tokens in the premise that supports each generated
fact (supplied to the model as a hypothesis) and
convert these to coherent spans. In cases where
no fact span corresponding to an atomic fact was
detected, we discarded the generated fact as this
may indicate a hallucinated statement.

This results in a dataset that includes not only
salient spans for interpretable NLI, but also fact
spans corresponding to individual atomic facts in
the premise.

5 JEDI: Joint Encoder for Decomposition
and Inference

In this section, we describe our model architecture
for joint fact decomposition and interpretable nat-
ural language inference, an overview of which is

6We used DeBERTaLARGE as the base encoder for this step.
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Encoder LM

CLS SEP

span start?

span end for start?

neutral or not?

Classification rules

Any contradictions?
If so -> hyp. contradicted
If not -> any entailment?

If so -> hyp. entailed
If not -> neutral

span-wise NLI

span embedding

1. encoder forward pass
2. initial global classification
3. span extraction
4. span-wise classification
5. logical reasoning over spans

Overview

1

2

3 4

5

if so -> neutral
if not -> steps 3-5

Prediction: Contradicted.
Evidence: The Ottawa Sun is a daily tabloid newspaper in Ottawa,
Ontario, Canada. It is published by Sun Media. It was first published in
1983 as the "Ottawa Sunday Herald", until it was acquired by (then)
Toronto Sun Publishing Corporation in 1988 . In April 2015, Sun Media
papers were acquired by Postmedia.

The Ottawa Sun is a daily tabloid newspaper in
Ottawa, Ontario, Canada. It is published by...

Toronto Sun Publishing acquired the
Ottawa Sun in the late nineties

Interpretable predictionPremise Hypothesis

The Ottawa Sun is a daily tabloid newspaper

it was acquired by (then) Toronto Sun Publishing Corporation in 1988

April 2015, Sun Media papers were acquired by Postmedia.

Figure 4: Overview of the proposed architecture (JEDI) for performing fact-level span extraction and logical
reasoning to perform interpretable natural language inference in a single forward pass.

provided in Figure 4. We combine modeling ap-
proaches from information extraction for example,
(Eberts and Ulges, 2021; Zhou et al., 2021; Hennen
et al., 2024), where efficient and effective span ex-
traction and classification is at the heart of the task,
with the logical rule-based framework for atomic
fact-based natural language inference proposed by
Stacey et al. (2024). This results in an encoder-only
model architecture which performs premise decom-
position and atom-level interpretable classification
while requiring only a single forward pass and no
LLM at inference time. We refer to the architec-
ture by the acronym JEDI for Joint Encoder for
Decomposition and Inference.

5.1 Encoder forward pass

Given a premise and a hypothesis, we pass both to
the encoder with a leading CLS token and a separa-
tor token (SEP) to mark the end of the premise. For
the subsequent computations we discard any em-
beddings produced for hypothesis tokens and use
only the CLS token embedding, eCLS, the token-
wise premise embeddings [ep,1, ..., ep,n], and the
SEP token embedding, eSEP.

5.2 Initial global classification

Taking inspiration from relation extraction models
(Zhou et al., 2021), we perform an initial global
classification P (x|eCLS, eSEP) using a group bilin-

ear layer7 applied to the embeddings eCLS and eSEP
as follows:
[
z1

CLS; ...; z
k
CLS

]
= eCLS,

[
z1

SEP; ...; z
k
SEP

]
= tanh (eSEP) ,

P (x|eCLS, eSEP) = σ

(
k∑

m=1

zm⊺
CLSW

m
x zm

SEP + bx

)

where W i
r ∈ Rd/k×d/k for m = 1...k are model

parameters and P (x|eCLS, eSEP) is the probability
that the hypothesis is neutral, entailed, or contra-
dicted.

During inference, if this classification is neutral,
we end computation here and output neutral as
the predicted class. If, however, the prediction is
contradicted or entailed, we proceed with the span
extraction. During training, steps 3-5 are followed
even for neutral examples, as we have a supervision
signal from the atomic facts. This is in contrast to
purely rationale-based approaches, as no salient
spans are available for neutral examples.

5.3 Span extraction
In short, for the span extraction, we take inspiration
from Liu et al. (2022) and Hennen et al. (2024) by

7A variant of bilinear classifiers which reduces the number
of parameters by splitting the embedding dimensions into k
equal-sized groups (Zhou et al., 2021).
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first identifying tokens likely starting an atomic
fact, followed by pairing these potential start
tokens with possible end tokens, forming candidate
atomic fact spans.

For each token at index i in the premise we pre-
dict the probability that it represents the first token
of a span:

P (iis_left|ep,i) = σ
(
ep,iW

⊺
is_left + bis_left

)
,

and then, for each token at index j in the premise,
compute the probability that the span (i, j) repre-
sents a relevant span (or “atomic fact”):

ei,j = [ep,i; ep,j ]W
⊺
red,1 + bred,1,

P (iis_span|ei,j) = σ
(
Wspan · ei,j + bspan

)
,

where [ep,i; ep,j ] ∈ R2d is the concatenation of the
embeddings of the start and end tokens of the span,
Wred,1 ∈ Rh×2d and bred,1 ∈ Rh are parameters of
a linear layer used to project the concatenated token
embeddings into a fixed-size span representation
ei,j ∈ Rh, and Wspan ∈ R1×h, bspan ∈ R are the
parameters of a binary classifier that outputs the
probability that the span (i, j) expresses a relevant
atomic fact.

5.4 Span-wise classification

Next, given the extracted spans which represent
fact atoms, we perform span-wise classification to
determine whether the hypothesis is neutral, en-
tailed, or contradicted by a given span (i, j). After
applying a separate reduction using a linear layer:

ei,j = [ep,i; ep,j ]W
⊺
red,2 + bred,2,

Using the same group bilinear classifier as for the
initial global classification, we compute the follow-
ing:

[
z1

CLS; ...; z
k
CLS

]
= eCLS,

[
z1

i,j; ...; z
k
i,j

]
= tanh (ei,j) ,

P
(
x|eCLS, ei,j

)
= σ

(
k∑

m=1

zm⊺
CLSW

m
x zm

i,j + bx

)

where P
(
x|eCLS, ei,j

)
represents the probabilities

of neutrality, entailment, or contradiction for a
span.

5.5 Logical reasoning over spans

Finally, we apply the logical rules for training
and inference on fact atoms proposed by Stacey
et al. (2024). This way, each span’s classification
directly informs the final prediction, ensuring
the interpretability of the model by tracing every
prediction explicitly back to concrete spans.

Training: if a given hypothesis is neutral, all
extracted spans are to be labelled as neutral. If it
is entailed, the salient spans are to be labelled as
entailments, while all other spans are to be labelled
neutral. If the hypothesis is contradicted, the
salient spans are to be labelled as contradictions,
while any other extracted spans (fact spans) are
masked from the loss calculation. This is because,
in the case of a contradiction, other atomic facts
might still be in agreement with the hypothesis.

Inference: only if the initial global prediction
is that the hypothesis is contradicted and a con-
tradiction is found among the spans, will the final
prediction be contradiction. Similarly, only if the
initial global prediction is that the hypothesis is
entailed and any span is found to be in agreement,
will the final prediction be entailment. In all other
cases, neutral is returned as the prediction. This en-
sures that any prediction is faithfully interpretable
in the sense that it can be traced back to a specific
span in the text.

5.6 Loss functions and Negative Sampling

The training loss consists of a total of four separate
loss calculations: For the span extraction, two
loss values are calculated for the predictions of
P (is_left) and P (is_span) using binary cross-
entropy loss. For the initial global classification,
as well as the span-wise classification, we apply
adaptive thresholding loss (Zhou et al., 2021),
which is an effective means of managing class
imbalances towards a single majority class (neutral
applies to most atomic facts) during training, as
used in relation extraction (to balance the most
common “no relation” class).

To accelerate training, gold spans are always
included as positives, and we additionally sample
50 random spans per instance as negatives for span
classification and span-wise NLI. For span-wise
NLI, a sampled span is re-labeled as positive if at
least 80% of its tokens fall within a salient span.
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6 Experiments

6.1 Datasets and Baselines

Since it is our main baseline of interest, we repli-
cate the experiment setup for FGLR (Stacey et al.,
2024) as closely as possible for our evaluation.
This involves using ANLI (Nie et al., 2020) for
training and in-distribution evaluation, as well
as out-of-distribution evaluations on ConTRoL
(Liu et al., 2021), RTE (Wang et al., 2018), and
WNLI (Wang et al., 2019; Levesque et al., 2011).
Finally, we add the HANS dataset (McCoy et al.,
2019) to our evaluation in order to examine the
robustness of our models, as this has been a con-
cern with extractive rationale-based models in NLI.

We include the following baselines grouped by
how fine-grained their interpretability mechanisms
are: For uninterpretable methods we report the re-
sults of the encoder-LM fine-tuned on the ANLI
dataset8. For sentence atom interpretability, we
include SenLR9 (Stacey et al., 2024) and a vari-
ant of JEDI, JEDIsent, which uses sentence bound-
aries provided in the input instead of learning span
extraction for span embeddings10. We group to-
gether span and fact atoms as the most relevant
approaches to compare to our JEDI: We include
SLR-NLI (Stacey et al., 2022), which provides
span-level interpretability on the hypothesis using
noun phrases as spans, and represents our primary
LLM-free, span-level baseline. Naturally, as we
aim to distill its behavior into JEDI, we include the
results reported by Stacey et al. (2024) for FGLR,
which is the only baseline method requiring an
LLM at inference time and for which our method
represents the extractive counterpart. Finally, we
evaluate SYRPFT, the token classifiers described
in 4.2, which allow for token-level interpretability.
SYRPFT being extractive but lacking atomic fact
decomposition, directly tests our hypothesis that
decomposition itself, rather than abstraction over
extraction, drives improved robustness.

8For consistency, we report the scores reported by Stacey
et al. (2024), which we were able to reproduce with minor
differences attributable to differences in random seeds.

9Equivalent to using FGLR without an LLM at inference
time and substituting premise sentences for the generated
facts.

10Note that in contrast to SenLR, we provide a supervision
signal for salient sentences based on our synthetic rationales.

6.2 Implementation Details

We train models based on DeBERTaBASE and
DeBERTaLARGE (He et al., 2023) implemented us-
ing Huggingface’s Transformers (Wolf et al., 2020)
and trained using mixed precision. We use AdamW
(Loshchilov and Hutter, 2019) as optimizer (learn-
ing rates ∈ [7e−6, 9e−6, 1e−5, 3e−5, 5e−5] for
the encoders, and 1e−4 for all other parameters).
Final hyperparameters were chosen empirically
based on validation performance, ensuring a fair
comparison across models. We train using linear
warmup (1 epoch) (Goyal et al., 2017) followed by
a linear learning rate decay. We train each model
for 25 epochs and perform early stopping based on
development set accuracy.

6.3 Results and Discussion

The overall results for DeBERTaLARGE are shown
in Table 1 while those for DeBERTaBASE are
shown in Table 4. In Table 2, we further show
the results for the HANS dataset, while Table 3
contains results of an ablation study. Below, we
summarize our key findings based on the research
questions stated earlier.

JEDI is capable of joint fact decomposition and
inference. While JEDI’s accuracy (65.6%) does
not quite match that of FGLR (67.7%), which
uses an LLM at inference time, it exceeds that of
the span-level baseline not relying on generative
models (64.1%, SLR-NLI). This demonstrates
that atomic decomposition can indeed be effec-
tively distilled into encoder-only architectures,
addressing scalability and interpretability without
compromising significantly on performance.

In terms of accuracy, sentence atoms are a strong
alternative to fact atoms. Consistent with prior
work by Stacey et al. (2024), we find sentence-level
interpretability to yield high accuracies (67.9%
for JEDIsent and 67.5% for SenLR). This finding
suggests that if span- or fact-level granularity are
not essential, sentence-level supervision provides a
highly competitive and simpler alternative.

Synthetic rationales are sufficiently high
quality to act as supervision signals. All
our presented approaches rely on the synthetic
supervision signals created for SYRP. The overall
competitiveness of results when compared to
state-of-the-art methods indicates that this does
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In-distribution Out-of-distribution
Model R1 R2 R3 ANLI-all ConTRoL RTE WNLI
not interpretable:
DeBERTaLARGE 78.3% 66.5% 61.7% 68.1% 56.0% 90.4% 68.9%
sentence atoms:
SenLR 76.7% 64.8% 62.0% 67.5% 56.3% 86.3% 64.5%
JEDIsent (ours) 77.4% 65.1% 62.3% 67.9% 57.6% 90.6% 67.8%
span/fact atoms:
SLR-NLI 74.7% 60.4% 58.3% 64.1% 54.7% 87.5% 65.8%
JEDI (ours) 75.5% 63.1% 59.4% 65.6% 54.3% 87.7% 73.7%
FGLR (+GPT-3.5-turbo) 76.2% 64.8% 63.1% 67.7% 52.7% 82.0% 77.0%
token atoms:
SYRPFT (ours) 75.9% 63.3% 59.3% 65.8% 46.3% 88.8% 65.3%

Table 1: Test set scores for DeBERTaLARGE. Results are averaged accuracies across 10 random seeds.

Model Acc.BASE Acc.LARGE

SYRPFT 31.6% 33.0%
JEDI 75.0% 76.9%

JEDIsent 80.6% 83.1%

Table 2: Accuracies measured for models on the HANS
dataset, designed to detect whether NLI models rely on
shallow syntactic heuristics. The results show clearly
that JEDI is more robust than SYRPFT. For this evalua-
tion we used the models with the highest accuracy on
the development split of ANLI.

not negatively impact performance. We conclude
that the annotations are of sufficiently high quality
to act as supervision signals. Importantly, this
does not imply that the LLMs used for annotation
themselves perform strong extractive NLI: the
annotation model was provided with the gold
instance label and only tasked with highlighting
supporting or contradicting spans.

JEDI improves robustness by reducing reliance
on shallow heuristics. Though SYRPFT, which
uses salient token classification to perform NLI,
performs on par or even slightly better on in-
distribution data (65.8%), JEDI generalizes bet-
ter to out-of-distribution data: The evaluation on
the HANS dataset (McCoy et al., 2019), which is
specifically designed to assess whether NLI models
rely on shallow syntactic heuristics is presented in
Table 2. The strikingly low scores for SYRPFT fur-
ther emphasize that it is much less robust, which is
in line with previous researchers’ finding on extrac-
tive rationale supervision. The fact that JEDIsent
scores even higher on HANS suggests that a part
of the robustness originates from the span-wise

Model interp.? ANLI HANS
JEDI ✓ 65.6% 76.9%

DeBERTaLRG ✗ 68.1% ↑ 79.1% ↑
JEDIglobal only ✗ 68.2% ↑ 80.1% ↑
JEDIno global ✓ 59.7% ↓ 73.3% ↓
JEDIw/o ATLoss ✓ 65.3% ↓ 74.5% ↓
JEDIsent ✓↓ 67.9% ↑ 83.1% ↑
SYRPFT ✓↑ 65.8% ↑ 33.0% ↓

Table 3: Results of ablation study for models with
DeBERTaLARGE as backbone. interp.? indicates
whether interpretability is preserved despite the changes,
with ✗ indicating no interpretability, and ✓(↑ / ↓) indi-
cating interpretability at a higher or lower level of detail.
Arrows ↑↓ indicate direction of changes over JEDI.

inference architecture, and not just the fact decom-
position. This robustness also extends to ConTRoL
and WNLI, where JEDI consistently outperforms
SYRPFT, reinforcing the interpretation that its span-
wise reasoning architecture at least partially miti-
gates shortcut learning behaviors.

6.4 Ablations

In Table 3 we report ablation results. Using only
global classification (JEDIglobal only) yields perfor-
mance nearly identical to a standard sequence
classifier (DeBERTaLARGE), showing that the addi-
tional span-level losses do not substantially affect
global classification. Removing global classifica-
tion (JEDIno global), however, causes clear drops,
indicating its importance. Replacing ATLoss with
cross-entropy (JEDIw/o ATLoss) leads to modest de-
creases, suggesting ATLoss is beneficial though not
decisive. Finally, JEDIsent and SYRPFT illustrate
the trade-off between accuracy and interpretability
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In-distribution Out-of-distribution
Model R1 R2 R3 ANLI-all ConTRoL RTE WNLI
not interpretable:
DeBERTaBASE 71.2% 54.0% 51.7% 58.5% 53.7% 85.0% 59.6%
sentence atoms:
SenLR 71.5% 55.0% 52.3% 59.1% 53.4% 83.7% 53.8%
JEDIsent (ours) 72.0% 55.5% 52.1% 59.4% 52.6% 85.0% 62.4%
span/fact atoms:
SLR-NLI 65.5% 47.8% 47.1% 53.0% 48.9% 82.3% 56.3%
JEDI (ours) 69.0% 53.2% 50.1% 57.0% 49.3% 83.3% 58.5%
FGLR (+GPT-3.5-turbo) 71.8% 56.1% 55.3% 60.7% 49.1% 80.8% 70.7%
token atoms:
SYRPFT (ours) 69.2% 53.0% 51.7% 57.6% 49.5% 82.2% 55.7%

Table 4: Test set scores for DeBERTaBASE. Results are averaged accuracies across 10 random seeds.

granularity: sentence-level aggregation improves
accuracy at the cost of coarser explanations, while
token-classification substantially harms robustness
(accuracy on HANS) despite providing finer inter-
pretability.

7 Conclusion

We introduced JEDI, a joint encoder-only archi-
tecture capable of performing atomic fact decom-
position and interpretable inference in NLI tasks
without relying on large generative models at infer-
ence time. Our experiments confirmed that JEDI ef-
fectively balances interpretability, robustness, and
scalability, outperforming span-level baselines and
substantially reducing reliance on shallow heuris-
tics. Furthermore, we demonstrated the utility of
synthetic rationales, releasing a large-scale corpus
(SYRP) to support future interpretability research.
Overall, we hope that our work contributes to the
development of transparent and scalable NLI sys-
tems, highlighting that fine-grained interpretabil-
ity and robust generalization can be achieved effi-
ciently in encoder-only frameworks.

Limitations

JEDI’s interpretability relies on extracting and clas-
sifying spans from the premise alone, while hy-
potheses remain undecomposed. Extending JEDI
to accommodate atomic decomposition of multi-
sentence hypotheses would be necessary for apply-
ing the method more broadly. We note that, given
appropriate supervision data, our architecture is, in
theory, easily expandable to this case, since it is
modeled on relation extraction, where classifica-
tion between spans (atoms) is an inherent part of

the task.

Next, our approach relies heavily on synthetic ra-
tionales generated by large language models, which
may have introduced inaccuracies, despite our tar-
geted model selection procedure designed to min-
imize such risks. These inaccuracies could po-
tentially propagate errors into the model’s inter-
pretability, especially when used on datasets or
domains distinct from those evaluated here.

Further, while extractive fact decomposition has
clear benefits in terms of computational demands
and traceability to explicit text segments, abstrac-
tive decomposition can yield paraphrases that are
in some cases more natural or easier to interpret.
However, abstractive methods are prone to hallu-
cination and may compromise factual accuracy,
whereas extractive methods remain grounded in
the source text. The relative merits of clarity ver-
sus precision are highly context-dependent and not
easily captured by current benchmarks, making a
fair comparison difficult without carefully designed
user studies for specific use cases. Exploring this
trade-off in applied settings such as fact-checking
constitutes an important avenue for future work and
is outside the scope of the present study.

Lastly, our empirical evaluations focus primarily
on a limited set of English-language datasets in
a small selection of domains. It remains unclear
how JEDI would perform on languages or linguistic
structures significantly different from those in our
evaluation. Specialized domains such as medical
NLI were also not evaluated in this work. Address-
ing multilingual capabilities and broader linguistic
and domain coverage constitutes an important di-
rection for future research.
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Annotation prompt for entailed hypotheses (used with Qwen/Qwen2.5-32B-Instruct-GPTQ-Int4)

<|im_start|>system
You are a helpful assistant. You highlight information in text.<|im_end|>
<|im_start|>user
Highlight in the following text any passages supporting the statement that "The trolleybus system has over 2 urban
routes":

The Parma trolleybus system (Italian: "Rete filoviaria di Parma" ) forms part of the public transport network of
the city and "comune" of Parma, in the region of Emilia-Romagna, northern Italy. In operation since 1953, the
system presently comprises four urban routes.

Make only minimal changes, keep everything else unchanged.<|im_end|>
<|im_start|>assistant
```json
{

"explanation": "The text states that the Parma trolleybus system has *four urban routes*. This supports the
statement that the trolleybus system has over 2 urban routes.",
"phrases_to_highlight": ["the system presently comprises four urban routes"],
"highlighted_text": "The Parma trolleybus system (Italian: \"Rete filoviaria di Parma\" ) forms part of the
public transport network of the city and \"comune\" of Parma, in the region of Emilia-Romagna, northern Italy.
In operation since 1953, *the system presently comprises four urban routes*."

}
```<|im_end|>
<|im_start|>user
Wow! Great job! Let's try another one:

Highlight in the following text any passages supporting the statement that "{hypothesis}":

{premise}

Make only minimal changes, keep everything else unchanged.<|im_end|>

Figure 5: Prompt used for annotating entailed hypotheses SYRP corpus.

Annotation prompt for contradicted hypotheses (used with Qwen/Qwen2.5-32B-Instruct-GPTQ-Int4)

<|im_start|>system
You are a helpful assistant. You highlight information in text.<|im_end|>
<|im_start|>user
Highlight in the following text any passages supporting the statement that "Jesse James was a guerrilla in the
Union army during the American Civil War.":

The Centralia Massacre was an incident during the American Civil War in which twenty-four unarmed Union soldiers
were captured and executed at Centralia, Missouri on September 27, 1864 by the pro-Confederate guerrilla leader
William T. Anderson. Future outlaw Jesse James was among the guerrillas.<|im_end|>
<|im_start|>assistant
```json
{

"explanation": "The text states that Jesse James was among the *pro-Confederate* guerrillas. This
contradicts the statement that Jesse James was a guerrilla in the Union army.",
"phrases_to_highlight": ["pro-Confederate guerilla", "Jesse James was among the guerrillas"],
"highlighted_text": "The Centralia Massacre was an incident during the American Civil War in which twenty-four
unarmed Union soldiers were captured and executed at Centralia, Missouri on September 27, 1864 by the

*pro-Confederate guerrilla* leader William T. Anderson. Future outlaw *Jesse James was among the guerrillas*."
}
```<|im_end|>
<|im_start|>user
Wow! Great job! Let's try another one:

Highlight in the following text any passages contradicting that "{hypothesis}":

{premise}

Make only minimal changes, keep everything else unchanged.<|im_end|>

Figure 6: Prompt used for annotating contradicted hypotheses SYRP corpus.
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Choice of Language Models. In order to ensure
reproducibility, we opt to use only those large lan-
guage models for which weights are openly acce-
sible. Furthermore, we limit the maximum model
size to approx. 70 billion parameters due to hard-
ware and compute time constraints. The above
criteria, as well as general benchmark performance
of various models result in the following selection
of 15 models:

• Llama3.1 70B- and 8B-Instruct (Grattafiori
et al., 2024), Tulu-3-70B (Lambert et al.,
2024), Nemotron-70B-Instruct (Wang et al.,
2025)

• Llama3.2 3B- and 1B-Instruct (Grattafiori
et al., 2024)

• Qwen2.5 72B-, 32B-, 14B-, 7B-, 3B-, 1.5B-
, 0.5B-Instruct (Yang et al., 2024a; Qwen-
Team, 2024)

• Ministral 8B-Instruct 11

• Mistral Nemo-Instruct 12

For larger models, we also perform experiments
using quantized variants.

Task Framing. In general, we pose the task by
providing premise, hypothesis, as well as the
label (entailment or contradiction) and request an
explanation following a specific format. Gener-
ating natural language explanations is relatively
straightforward to elicit from instruction-tuned
models by requesting it in a prompt, as it is a
generative task. For span-based explanations,
however, the task is not primarily generative, with
token classification being a more natural framing.
We design two different generative task settings
to evaluate: (1) highlighting, in which the prompt
requests for the model to generate the premise text
while highlighting the most salient spans, similar
to the task given to annotators of the e-SNLI
dataset (Camburu et al., 2018). (2) redaction,
in which the prompt requests for the model to
generate the premise text while redacting any
passages entailing or contradicting the hypothesis.

Output Format. In order to make the generated
outputs easily parseable, the prompts include

11https://huggingface.co/mistralai/
Ministral-8B-Instruct-2410

12https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

instructions on how to format the response. Here
we examine Markdown and JSON as two possible
formats.

Example Placement. All experiments are
conducted in a one-shot in-context learning setting.
Since all the used models allow for three roles,
system, user, and assistant, this gives us two
fundamentally different options for the placement
of the example: (1) The example can either be
included in the context as part of the system
message, or (2) as a query by a user, followed by a
response from the assistant containing the correct
solution.

Development Dataset. In order to compare
different choices of hyperparameters, we manually
annotate a dataset consisting of 100 data points (50
of each for cases of entailment and contradiction)
taken from the training set of ANLI.

Evaluation of Span-based Rationales. We
measured the amount of exact matches (which
reached a maximum of 30%), average intersection-
over-union (which reached a maximum of roughly
70%) and the frequency with which a given
model produces annotations that exceed different
threshold values for intersection-over-union.

Evaluation of Natural Language Rationales.
The prompts were structured to include natural
language rationales, not intended as a supervi-
sion signal, but as an evaluation tool to check
how well a given model interprets the data
at hand. We manually assigned binary labels
(acceptable/unacceptable) to 30 explanations
per model. The top performing combination of
model and prompt, which we ended up using,
produced a score of 28/30 acceptable explanations.

Final annotation setup and prompts. Figures 5
and 6 show the bests prompts chosen for annotation.
All other prompts and more details are available at
https://jedi.nicpopovic.com.

B SYRP Corpus

Table 5 contains statistics for the entire corpus,
while Tables 6 and 7 contain statistics for the train
and validation split, respectively. The dataset is
available and an interactive data viewer can be
found at https://jedi.nicpopovic.com.
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Source Domain Samples Entail. Neutral Contra. words
premise

spans
premise Coverage

ANLI Wiki 162,170 51,178 69,857 41,135 54.2 1.27 19.3%
ConTRoL Exams 7,114 2,618 2,183 2,313 439.2 1.53 14.5%
ContractNLI Legal 7,959 3,898 3,243 818 1642.7 1.42 7.6%
ESNLI Captions 539,397 180,937 185,999 172,461 12.9 1.10 61.1%
FEVER Wiki 223,759 127,497 42,305 53,957 60.3 1.51 26.7%
LINGNLI Diverse 51,167 16,940 17,438 16,789 19.6 1.08 54.0%
MNLI Diverse 404,827 134,907 137,152 132,768 19.9 1.12 57.1%
WANLI Diverse 101,180 37,099 48,977 15,104 17.5 1.03 62.7%
Total 1,497,573 555,074 507,154 435,345 37.6 1.20 49.1%

Table 5: Overview of the full SYRP-corpus. Average span statistics have been calculated under omission of neutral
samples, which do not have any annotated spans. The total number of samples with rationale spans is 991, 628.

Source Samples Entail. Neutral Contra. words
premise

spans
premise Coverage

ANLI 159,091 50,177 68,789 40,125 54.1 1.27 19.4%
ConTRoL 6,344 2,344 1,946 2,054 453.9 1.53 14.4%
ContractNLI 6,975 3,418 2,820 737 1632.6 1.41 7.4%
ESNLI 529,905 177,680 182,764 169,461 12.9 1.10 61.1%
FEVER 204,796 121,289 35,639 47,868 60.7 1.51 26.8%
LINGNLI 43,918 14,446 14,995 14,477 19.5 1.08 53.9%
MNLI 385,499 128,076 130,900 126,523 19.9 1.12 56.9%
WANLI 101,180 37,099 48,977 15,104 17.5 1.03 62.7%
Total 1,437,708 534,529 486,830 416,349 36.5 1.19 49.3%

Table 6: Overview of the training split of the SYRP-corpus. Average span statistics have been calculated under
omission of neutral samples, which do not have any annotated spans. The total number of samples with rationale
spans is 951, 721.

Source Samples Entail. Neutral Contra. words
premise

spans
premise Coverage

ANLI 3,079 1,001 1,068 1,010 54.5 1.25 17.3%
ConTRoL 770 274 237 259 317.9 1.55 14.9%
ContractNLI 984 480 423 81 1714.6 1.47 9.5%
ESNLI 9,492 3,257 3,235 3,000 13.9 1.12 59.6%
FEVER 18,963 6,208 6,666 6,089 55.7 1.39 24.7%
LINGNLI 7,249 2,494 2,443 2,312 19.8 1.08 54.6%
MNLI 19,328 6,831 6,252 6,245 19.5 1.10 59.7%
Total 59,865 20,545 20,324 18,996 63.6 1.21 44.7%

Table 7: Overview of the validation split of the SYRP-corpus. Average span statistics have been calculated under
omission of neutral samples, which do not have any annotated spans. The total number of samples with rationale
spans is 39, 907.
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