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Abstract

Minimum Bayes Risk (MBR) decoding has
seen renewed interest as an alternative to
traditional generation strategies. While MBR
has proven effective in machine translation,
where the variability of a language model’s
outcome space is naturally constrained, it
may face challenges in more open-ended tasks
such as dialogue or instruction-following. We
hypothesise that in such settings, applying
MBR with standard similarity-based utility
functions may result in selecting responses
that are broadly representative of the model’s
distribution, yet sub-optimal with respect
to any particular grouping of generations
that share an underlying latent structure. In
this work, we introduce three lightweight
adaptations to the utility function, designed
to make MBR more sensitive to structural
variability in the outcome space. To test our
hypothesis, we curate a dataset capturing
three representative types of latent structure—
dialogue act, emotion, and response structure
(e.g., a sentence, a paragraph, or a list)—and
we propose two metrics to evaluate the
structural optimality of MBR. Our analysis
demonstrates that common similarity-based
utility functions fall short by these metrics. In
contrast, our proposed adaptations consider-
ably improve structural optimality. Finally,
we evaluate our approaches on real-world
instruction-following benchmarks, AlpacaEval
and MT-Bench, and show that increased struc-
tural sensitivity improves generation quality
by up to 13.7 percentage points in win rate.1

1 Introduction

Once a language model has been trained, one fun-
damental problem remains: determining how to
select an output sequence from the model’s learned
probability distribution over possible continuations,
given a particular context. Traditional approaches

1We release experimental code and the structural
variation dataset at https://github.com/Roxot/
structure-conditional-mbr.

Figure 1: The choice of utility function can considerably
impact the Minimum Bayes Risk optimum. When the
outcome space is structured or multimodal, the MBR
optimum may settle between modes, landing in a region
of low probability. Here, we present a continuous exam-
ple featuring a bimodal Gaussian distribution and show
the MBR optima (dashed vertical lines) of two utility
functions with markedly different behaviours.

such as beam search decoding and majority vot-
ing aim to select a high probability continuation
under the model distribution. However, a growing
body of research has shown that model probabil-
ity does not reliably align with human preferences
(Stahlberg and Byrne, 2019; Zhang et al., 2021)
and, in response, Minimum Bayes Risk (MBR;
Kumar and Byrne, 2004; Eikema and Aziz, 2020)
decoding has emerged as a more robust alternative.
MBR casts decoding as a decision-theoretic prob-
lem, where the selected sequence is the one that
minimises risk with respect to a task-specific utility
function, under the uncertainty over continuations
represented by the language model. This utility
typically reflects the degree of agreement between
a candidate and the broader set of outcomes, penal-
ising candidates that diverge significantly from the
consensus. By integrating both model probabilities
and inter-candidate consistency, MBR yields gen-
erations that are better aligned with human prefer-
ences, regularly outperforming conventional meth-
ods (Freitag et al., 2022; Wu et al., 2025).

MBR decoding has gained significant attention
in neural machine translation, where utility is of-
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ten measured by task-agnostic sentence similarity
scores. This corresponds to selecting the sequence
which, in expectation and under the lens of a par-
ticular similarity score, most closely matches the
broader distribution of sequences prescribed by the
model. While this decoding strategy works well
for translation, where outcome space variability
is inherently constrained by the task, it risks be-
ing less effective for tasks with a broader range of
contextually plausible latent structures—and thus
greater variability in realisations—such as dialogue
or instruction-following (Giulianelli et al., 2023).
Consider, for instance, the following dialogue ex-
change: A: The mountains would be a great place
for the lab retreat. B: That’s a wonderful choice. In
response, speaker A could follow up with a state-
ment (The mountains offer many outdoor team-
building activities.), a question (Which aspects of
the mountains are you most excited about?), a di-
rective (Please check out different venues online
to finalise the decision.), or an offer (Shall I make
the necessary arrangements?). Similarly, when
given an instruction like Please summarise Gödel,
Escher, Bach, valid responses could range from a
single-sentence summary to a detailed paragraph,
a multi-paragraph narrative, or even a list of key
topics. In such settings, applying MBR with a stan-
dard similarity-based utility function may result in
selecting an output that is broadly representative of
the model’s outcome distribution, but suboptimal
with respect to any one plausible latent structure
(we illustrate this in Fig. 1 using a continuous dis-
tribution as a simplified example, and in Tab. 1
using a real-world example with a customer ser-
vice language model).

In this work, we propose adapting utility func-
tions for MBR such that they are able to explicitly
account for a language model’s uncertainty over
latent structures. We adopt a broad interpretation
of structure, treating it as a latent variable that
influences the form a generation takes, such as a
dialogue act, the level of detail in a response, or
the emotion conveyed by an utterance. To examine
how reliably MBR selects the highest-consistency
candidate within clusters of generations that share a
latent structure—what we call cluster-optimality—
we semi-automatically construct a dataset of 3,000
curated outcome spaces, for a total of 350,000
candidate generations. These are conditioned on
naturally occurring conversational and instruction-
following contexts, but present controlled uncer-

tainty over three types of structure: dialogue act,
emotion, and response structure (i.e., a single sen-
tence, a paragraph, a list, or a table). Our anal-
ysis of this dataset shows that, under commonly
used utility functions, MBR solutions are cluster-
optimal in fewer than half of the cases. To ad-
dress this, we introduce three new approaches—
Clustering, Structure Embeddings, and Utility Cut-
off—that adapt utility functions to account for a
candidate’s (soft) membership in structure-specific
candidate groups, while preserving the decision-
theoretic foundation of risk minimisation.

Our experiments confirm that adapting the util-
ity function to account for latent structural vari-
ability substantially improves MBR solutions. On
our curated dataset with controlled uncertainty
over dialogue act, emotion, and response struc-
ture, our three proposed methods achieve markedly
higher cluster optimality than standard MBR with
BERTScore or BLEURT utilities. We also ob-
serve gains on real-world instruction-following
benchmarks, demonstrating that our methods can
uncover and exploit latent structural variability
even without explicit structure annotations. In
particular, our methods improve generation qual-
ity on AlpacaEval and MT-Bench, with win rates
against GPT-4o increasing by up to 13.7 percent-
age points on the latter. These findings support
our central claim: structure-aware utility functions
enable MBR to more reliably select high-quality
sequences in tasks where structural variability is
inherent to the outcome space.

2 Language Modeling and Decision Rules

A language model P is a distribution over strings
Σ∗, where Σ is an alphabet, i.e., a finite, non-empty
set of symbols, and Σ∗ its Kleene closure, i.e., the
set of all strings formed by concatenating symbols
in Σ, including the empty string ε. We define Y
as a random variable over sequences in Σ∗. Every
language model can be expressed in autoregressive
form by decomposing the probability of a string
y ∈ Σ∗ as the product of conditional probabilities
of each of its symbols, followed by an end-of-string
event EOS:

P (Y = y) = P (EOS | y)
|y|∏

t=1

P (yt|y<t) (1)

where each conditional distribution P (Yt | y<t) is
a probability distribution over Σ ∪ {EOS}. This
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formulation underlies most modern autoregressive
language models, where each conditional probabil-
ity is produced by a learned parametric model. We
assume an implicit conditioning on a set of neural
network parameters θ, estimated during training
on a given dataset. Furthermore, because language
models are commonly conditioned on an input, or
a prompt, x ∈ Σ∗, we are typically only interested
in the conditional probability distribution over re-
sponses P (Y |x). In the rest of this work, we will
always assume the presence of such an input x,
such as an instruction or dialogue history.

2.1 Decision Rules

To obtain a generation from a trained language
model P , given some input x, it is necessary to
decide on a single “best” outcome in Σ∗. Formally,
this requires a decision rule that defines a mapping
from a distribution P to such an outcome y∗. A
common choice is to output the highest probability
outcome under P (Y |x), a decision rule known
as maximum-a-posteriori, typically approximated
using beam search or majority voting:

y∗MAP = argmax
h∈Σ∗

P (Y = h|x) (2)

However, studies have shown that model probabil-
ity does not reliably align with human preferences
(Stahlberg and Byrne, 2019; Zhang et al., 2021),
and Minimum Bayes Risk (MBR) has become a
popular alternative. MBR stems from the prin-
ciple of maximisation of expected utility (Berger,
1985). It requires choosing a utility function u(h, r)
that measures the benefit of choosing hypothesis
h given an ideal decision r. In natural language
generation, u is typically chosen to be a strong sen-
tence similarity metric such as BLEURT (Sellam
et al., 2020; Freitag et al., 2022), COMET (Rei
et al., 2020; Fernandes et al., 2022) or BERTScore
(Zhang et al., 2020; Suzgun et al., 2023). MBR
then selects the outcome maximising utility in ex-
pectation under the model distribution:

y∗MBR = argmax
h∈Σ∗

E
P (Y |x)

[u(h, Y )] (3)

A sampling-based approximation of MBR has re-
cently gained popularity. It generates a set of un-
biased samples from the model and ranks them us-
ing Monte Carlo estimates of their expected utility
(Eikema and Aziz, 2020, 2022). In this work, we
will focus on this sampling-based approximation.

2.2 Structural Variation in Language Models

The importance of modelling uncertainty in natural
language generation systems has received growing
attention in recent years (Baan et al., 2023). Cru-
cially, uncertainty extends beyond surface-form
variations in outcome space to encompass deeper
variation in latent space. To capture such varia-
tion, metrics like semantic entropy (Kuhn et al.,
2024) and similarity-sensitive entropy (Cheng and
Vlachos, 2024) have been proposed, primarily to
identify when high uncertainty may signal poten-
tial model errors. Complementary work has ex-
amined similar measures with a different aim: to
assess whether the uncertainty exhibited by lan-
guage models aligns with the natural variability
found in human-generated responses (Deng et al.,
2022; Giulianelli et al., 2023; Ilia and Aziz, 2024).

Recent applications of MBR have largely fo-
cused on neural machine translation—a relatively
constrained task where, nonetheless, models have
been shown to capture less variation than what
human translators consider plausible (Giulianelli
et al., 2023). Extending beyond translation, a
few studies have applied MBR to other genera-
tion tasks. For example, Suzgun et al. (2023)
successfully use BERTScore-based MBR for sum-
marisation, data-to-text generation, textual style
transfer, and image captioning. However, these
tasks also tend to involve a limited range of plau-
sible outputs. More recently, Wu et al. (2025) ap-
plied MBR to instruction-following tasks, using
an LLM-as-a-judge as a utility function. While
this method yields strong results, it relies on a
distillation step to approximate the utility, as di-
rectly querying an LLM judge during decoding
is computationally prohibitive. In this work, we
propose three lightweight adaptations to standard
similarity-based utility functions, specifically de-
signed for open-ended tasks characterised by high
variability in latent structure.

3 Structure-Conditional Optimality

The central question addressed in this paper is how
commonly employed utility functions for MBR
decoding behave when complex structural varia-
tion is present. In Fig. 1, we illustrate the problem
with a simplified example, highlighting how the
choice of utility function can influence decision-
making—particularly when the outcome space con-
tains multiple distinct modes. In this example, the
outcome space is modelled as a bimodal Gaussian,
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Prompt: You are a support agent. The customer wrote: “My new Wi-Fi router keeps dropping the connection
every hour. I have deadlines today.” Please respond in exactly ONE of these ways: 1) STEPS: give a concrete
step-by-step fix; or 2) EMAIL: draft a warranty-replacement request email. Pick one format only.

Type Candidate Selected by

Instructions Follow these steps: 1) Unplug the modem for 60s . . . 2) Update firmware . . .
3) Split SSIDs . . . 4) Disable band steering . . . 5) . . . factory reset . . .

–

Instructions Try this sequence: 1) Move the router . . . 2) Install latest firmware . . . 3) Turn
off Smart Connect . . . 4) Lock 5 GHz . . . 5) Reboot and test . . .

–

Email Subject: Router Disconnects — [Router Model] Hello [Store], My [Router
Model], purchased on [date], disconnects every hour . . . Please process a
replacement . . . Order #[number], Serial [serial] . . .

–

Email Subject: Warranty Replacement Request — [Router Model] Dear [Retailer],
Since purchase on [date], this router drops Wi-Fi hourly . . . I have attempted
resets, firmware updates . . . I am requesting a warranty replacement . . . Order
#[number] . . .

–

Email Subject: Faulty Unit — Replacement Needed Dear [Retailer], This router
consistently drops Wi-Fi . . . even after firmware updates, resets . . . Kindly
issue a replacement under warranty . . . Order #[number]; Serial [serial] . . .

Structure-
conditional

MBR
Compromise Here’s what you can try: 1) reboot the router, 2) check for firmware updates,

and 3) split the Wi-Fi bands. Also, here’s a line you could send to the store:
“My router disconnects every hour, please replace it.” Hope one of these helps!

Standard
MBR

Table 1: An example comparing standard BLEURT MBR with our proposed structure-conditional variant (Cosine).
We prompt a customer service model to respond in one of two ways: either a set of troubleshooting instructions or a
warranty replacement email. For brevity, generations are shortened with “. . . ”. Standard MBR selects a compromise
generation that mixes both formats, which is not optimal for either cluster and is undesirable given the prompt. In
contrast, structure-conditional MBR opts for the cluster-optimal generation within the dominant cluster (i.e., the
generation that standard BLEURT MBR would pick if it would only observe samples from the email cluster).

and the decision problem is to select a single “best”
outcome on the real line. If we use the negative
squared error as our utility function,2 the theoret-
ical optimum corresponds to the mean of the bi-
modal distribution (the light blue line in Fig. 1).
This solution may be undesirable as the mean lies
in a region of low probability mass and is unlikely
to be sampled in practice. If we apply a sampling-
based approximation to the decision rule, as is com-
mon in language generation applications of MBR,
the approximation selects an outcome near this
theoretical optimum, which typically resides at the
boundary of one of the clusters. Alternatively, if we
adopt a different utility function—such as a radial
basis function kernel—the theoretical optimum
shifts to the mode of the largest cluster (Fig. 1, dark
blue line). This outcome, being more representa-
tive of a high-probability region, may be more de-
sirable than either the low-probability intermodal
mean or an outcome near the edge of a cluster.

In probability distributions over natural lan-
guage, multiple such “modes” may also be present,

2Equivalently, one may frame this as minimising the risk
under a squared error loss function.

albeit more difficult to define and detect. For ex-
ample, generations might cluster around various
semantically distinct plausible answers to a ques-
tion, different intended dialogue acts in a response,
or varying discourse structures. Depending on the
utility function used, this can result in behaviours
analogous to those shown in Fig. 1. Whether a
certain behaviour is desirable depends on the mod-
eller; for instance, a between-cluster solution may
be appropriate if the model assigns probability
mass to responses like The answer could be ei-
ther [A] or [B], but in other cases, it could lead
to suboptimal decisions. We illustrate this more
concretely in Tab. 1, where we show an example
in which standard MBR chooses an arguably sub-
optimal compromise between two clusters of valid
responses. In this work, we investigate this phe-
nomenon and propose simple adaptations to utility
functions that encourage behaviour more similar to
that of the RBF utility in the continuous example.

3.1 Evaluating Structural Sensitivity in MBR

To quantify the extent to which the MBR solu-
tion with commonly used utility functions respects
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structural variability in outcome spaces over nat-
ural language, we introduce two complementary
metrics. These metrics evaluate whether MBR
solutions align with, or differ from, solutions ob-
tained when conditioning on latent structures.

Cluster Optimality. This metric quantifies
the proportion of cases, over a test set, in which
the MBR solution under the distribution P (Y |x)
matches the MBR solution under the conditional
distribution P (Y |x, s), where s denotes an
annotated structure (e.g., a dialogue act) that we
additionally condition on. Formally, let

ŷi = argmax
h

E
P (Y |xi)

[u(h, Y )] (4)

be the MBR solution for input i, and

ŷ
(s)
i = argmax

h
E

P (Y |xi,s)
[u(h, Y )] (5)

the MBR solution conditioned on s. The cluster
optimality metric is then defined, for test set D, as

CO =
1

|D|
∑

i∈D
1{ŷi = ŷ

(s)
i } (6)

where 1{·} is the indicator function.

Cluster-Optimal Rank Correlation. In addition
to the top-ranked solution, we also examine the
full rankings produced by MBR. For each input
i, consider a fixed set of hypothesis generations
H(s)

i = {hi1, . . . , hin} corresponding to structure
s. Define the rankings:

Rij = rank of hij by E
P (Y |xi)

[u(hij , Y )] (7)

R
(s)
ij = rank of hij by E

P (Y |xi,s)
[u(hij , Y )] (8)

The cluster-optimal rank correlation is then the
average Spearman’s rank correlation coefficient ρ
between these two rankings over the test set:

CORC =
1

|D|
∑

i∈D
ρ
(
Ri, R

(s)
i

)
(9)

4 Standard Utility Functions are Not
Structure-Conditionally Optimal

We now demonstrate that MBR solutions de-
rived using standard utility functions, such as
BERTScore or BLEURT, often diverge from those
obtained when conditioning on latent structures.

While this divergence may be acceptable from
the perspective of the modeller, our analysis as-
sumes a language production process in which the
speaker first selects a latent structure—implicitly
or explicitly—and then realises it through an utter-
ance. Under this assumption, a generation should
be optimal with respect to some latent structure,
specifically the one selected by the speaker.3

To investigate how sensitive the MBR solution
is to structural uncertainty in the outcome space,
we consider three representative types of latent
structure—dialogue act, emotion, and response
structure—each of which defines a plausible
axis of variation in generated text (see §4.1).
For each structure, we construct a dataset that
reflects the outcome space of a hypothetical model
with uncertainty over that structure’s possible
instantiations. We then compute the standard
MBR solution over the entire outcome space, and
assess its optimality using the evaluation criteria
introduced in §3.1. The results of this analysis are
summarised in Tab. 2 and presented in §4.2.

4.1 Constructing Outcome Spaces with
Controlled Structural Uncertainty

We ground our analysis in three types of latent
structure. This section defines each structure type
and describes how we construct datasets to model
uncertainty over their possible instantiations.

4.1.1 Types of Latent Structure

We examine three types of latent structure that
are representative of structural variability in the
outcome spaces of open-ended generation tasks.

Dialogue Act. A dialogue act represents the com-
municative function or intent of an utterance within
the context of a conversation. Following the taxon-
omy proposed by Amanova et al. (2016), we focus
on four dialogue act types: INFORM, QUESTION,
DIRECTIVE, and COMMISSIVE.

Emotion. Another latent factor that shapes the
form of an utterance in conversation is the emotion
the speaker aims to express. In this work, we adopt
Ekman’s six basic emotions (Ekman, 1992): HAP-
PINESS, SADNESS, FEAR, ANGER, SURPRISE, and

3Note that we do not model the initial stage of this process,
i.e., the selection or planning of the latent structure. Instead,
we take it as given and focus on the requirement that the
resulting generation be optimal within plausible realisations
of the chosen structure.
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Metric Utility Dial. Act Emotion Resp. Str. All (Avg)

CO
BERTScore 0.370 0.330 0.390 0.363
BLEURT 0.410 0.510 0.530 0.483

CORC
BERTScore 0.081 0.084 0.080 0.082
BLEURT 0.144 0.155 0.123 0.141

Table 2: Cluster Optimality (CO) and Cluster-Optimal
Rank Correlation (CORC) of MBR solutions obtained
using BERTScore and BLEURT utility functions over
constructed outcome spaces.

DISGUST. These emotional states influence both
lexical choice and broader stylistic features.

Response Structure. This structure type cap-
tures how information is organised within an
instruction-following response. We consider four
ad-hoc categories: BRIEF, a single-sentence reply;
PARAGRAPH, a more developed, single-paragraph
answer; LIST, a bullet-pointed set of items; and
TABLE, a structured tabular presentation.

4.1.2 Dataset Construction
For each type of latent structure, we construct
a dataset that simulates the outcome space of a
hypothetical model with uncertainty over possi-
ble instantiations of that structure. We randomly
sample conversational contexts from the DailyDi-
alog corpus (Li et al., 2017)—1,000 each for di-
alogue act and emotion—and take the first 1,000
instructions from the Alpaca dataset (Taori et al.,
2023) for response structure. We then prompt the
instruction-tuned, 13B parameter variant4 of the
OLMo 2 model suite (OLMo et al., 2025) to gener-
ate outputs for each category within each structure
type, using hand-curated prompts (see App. A for
details). For every context, we generate 25 re-
sponses per structure category (e.g., 25 BRIEF, 25
PARAGRAPH, 25 LIST, and 25 TABLE responses).
This procedure results in 3,000 distinct outcome
spaces, corresponding to 350,000 candidate gen-
erations in total. In Tab. 4 (App. D), we provide
examples from the dataset, contrasting standard
MBR solutions with cluster-optimal ones.

4.2 Structural Sensitivity of Standard MBR
Utility Functions

Tab. 2 presents cluster optimality (CO, Eq. 6) and
cluster-optimal rank correlation (CORC, Eq. 9)
scores for MBR solutions under two standard
utility functions across our three types of latent
structure. These metrics quantify how often the

4allenai/OLMo-2-1124-13B-Instruct

MBR-selected response is optimal with respect to
the latent structure (CO), and how well it aligns
with the structure-optimal ranking (CORC).

Across all structure types, we observe a con-
sistent degree of suboptimality. The CO scores
indicate that in fewer than half of the cases, the
MBR solution is optimal with respect to its under-
lying structure (36.3% using BERTScore, 48.3%
with BLEURT). This misalignment persists across
dialogue act, emotion, and response structure, with
no evident correlation to the number of clusters
involved. This suggests that the failure to recover
structure-optimal responses is not merely a conse-
quence of increased structural granularity. More-
over, while slight differences are present between
BLEURT and BERTScore, both utility functions
consistently select suboptimal generations and
yield relatively weak ranking correlation. Overall,
this analysis shows that standard utility functions
possess low sensitivity to structural uncertainty.

5 Structure-Conditional MBR Decoding

To address the limitations of MBR decoding with
standard utility functions in the presence of latent
structural variability, we propose three structure-
aware decoding approaches.

Utility Cut-off. Standard utility functions may
implicitly penalise structural mismatches, but they
do not prevent structurally dissimilar candidates
from influencing the ranking of outputs. To mit-
igate this, we introduce a simple utility cut-off
mechanism that filters out low-utility comparisons
when computing expected utility. Specifically, we
modify the utility function u(y, y′) as follows:

ucut(y, y
′) =

{
u(y, y′) if u(y, y′) ≥ τ,

δ otherwise
(10)

where τ is a threshold fixed across the dataset,
and δ is a small constant (or zero). This limits
the influence of distant or structurally irrelevant
samples, aligning the MBR solution more closely
with local modes in the outcome distribution.

Clustering. A more explicit approach to
structure-aware decoding is to first partition the
outcome space into clusters—each corresponding
to a distinct latent structure—and then apply MBR
within the dominant cluster. We implement this by
clustering candidate generations using sequence
embeddings ϕ(y) derived from a model ϕ fine-
tuned to detect particular structures of interest
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(e.g., dialogue act, response structure, or affective
content). Formally, let H = {h1, . . . , hn} be the
set of candidates, and let C1, . . . , Ck denote the re-
sulting clusters, with H =

⋃k
j=1Cj . At inference

time, we restrict MBR decoding to the members of
the largest cluster C⋆ = argmaxCj

|Cj | such that

ŷcl = argmax
h∈C⋆

E
P (Y |x)

[u(h, Y ) | Y ∈ C⋆] (11)

To recover a full ranking over candidates (e.g., for
evaluation), we first rank clusters by size, and then
rank candidates within each cluster based on ex-
pected utility. This two-stage approach prioritises
high-utility responses as judged against structurally
consistent pseudo-references, reducing the risk of
inter-modal averaging in the selected outputs.

This procedure could theoretically also be for-
mulated as an adaptation of the utility function:

ucl(y, y
′) =1{C(y) = C(y′)}×

× u(y, y′)× 1{C(y) = C∗} (12)

where C∗ represents the cluster with highest proba-
bility mass under P (Y |x). Decoding then becomes
standard MBR maximisation of expected utility un-
der the adapted utility function.

Structure Embeddings. As an alternative to ex-
plicit clustering, we propose incorporating struc-
tural sensitivity into the utility function by leverag-
ing structure-aware sequence embeddings. Specifi-
cally, we fine-tune a sequence embedding model ϕ
to encode the structural property of interest and
redefine the utility function to weight candidate
comparisons by candidate similarity in this em-
bedding space. Formally, for a candidate y and a
reference y′, we compute the modified utility as:

uemb(y, y
′) = u(y, y′) · cos

(
ϕ(y), ϕ(y′)

)
(13)

where u(y, y′) is the original utility and cos(·)
denotes the cosine similarity between structure-
sensitive embeddings. To further reduce the influ-
ence of structurally mismatched samples, we also
experiment with a threshold on cosine similarity:
values below the threshold are set to zero, remov-
ing the contribution of the utility comparison to the
expected utility altogether. In contrast to the Clus-
tering approach, Structure Embeddings allow us to
softly bias the MBR solution toward structurally
coherent outputs without requiring the prediction
of hard labels, potentially leading to greater robust-
ness against imperfections in the clustering model.

6 Experiments

To evaluate the effectiveness of the proposed meth-
ods, we conduct a series of experiments on the
dataset we constructed in §4, as well as two real-
world instruction-following datasets. All our exper-
iments use either BERTScore or BLEURT as the
base utility function, two commonly employed util-
ity functions in natural language generation (Fre-
itag et al., 2022; Suzgun et al., 2023).

6.1 Cluster Optimality Under Controlled
Structural Uncertainty

We first assess our methods on the three datasets
constructed in §4, which contain generations con-
sisting of various types of structural uncertainty:
over dialogue acts, emotions, and response struc-
tures. Recall that we treat these generations as
hypothetical outcome spaces of a language model.
That is, we consider all generations for a given con-
text to be unbiased samples from a language model
that we wish to perform MBR decoding with. We
split the 1,000 contexts in each dataset into training,
validation, and test sets using an 800/100/100 split.

Hyperparameter Selection. For each method
proposed in §5, we use the training and valida-
tion splits to select hyperparameters and train the
sequence embedding models. The threshold in
the Utility Cut-off approach is optimised sepa-
rately for BERTScore and BLEURT, resulting in
different thresholds. We base our sequence em-
bedding models on the all-mpnet-base-v25

Sentence Transformer (Reimers and Gurevych,
2019), which we further fine-tune using a triplet
loss and gold annotations of underlying structure
to enhance sensitivity to the structural variation
present in our datasets. We use the same sequence
embedding models for our Clustering and Structure
Embeddings approaches. We find that jointly fine-
tuning and selecting thresholds on the combination
of all three types of latent structure leads to the
most robust performance in terms of CO,6 and we
use the resulting settings for the experiments below.
Further details on the hyperparameter selection and
fine-tuning procedures can be found in App. B.

Results. We compare each of our proposed meth-
ods against standard sampling-based MBR decod-

5https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

6Generally, we find CO and CORC in validation proce-
dures to align reasonably well.
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Figure 2: Cluster Optimality and Cluster-Optimal Rank Correlation on the constructed outcome spaces of §4.1. We
compare standard BERTScore and BLEURT MBR with the three adaptations to the utility functions proposed in §5.

ing using either BERTScore or BLEURT as the
utility function, and measure both cluster optimal-
ity (CO, Eq. 6) and cluster optimal ranking corre-
lation (CORC, Eq. 9). Results are shown in Fig. 2.
All the methods we proposed improve cluster opti-
mality compared to the baseline utility functions.
Utility Cut-off yields the smallest improvement
over standard BERTScore and BLEURT MBR, on
average increasing CO by 11.7% and 5.6%, re-
spectively, and CORC by 0.091 and 0.002, respec-
tively. The Clustering and Structure Embeddings
approaches perform considerably better than the
baseline MBR. Clustering improves CO on average
by 37.3% / 27.7% and CORC by 0.382 / 0.320 over
standard BERTScore and BLEURT MBR, respec-
tively. Similarly, Structure Embeddings improve
CO on average by 38.7% / 29.3% and CORC by
0.354 / 0.287. We note that higher CO does not
always correspond to higher CORC, indicating that
achieving the cluster-optimal MBR solution is gen-
erally easier than recovering the entire ranking ac-
curately. Additionally, we observe that some types
of latent structure are more difficult to capture ef-
fectively than others.

6.2 Instruction-Following

Next, we evaluate our methods on two real-world
instruction-following datasets: AlpacaEval (Li
et al., 2023) and MT-Bench (Zheng et al., 2023).
In this case, we do not have access to any labelling
of potential latent structure. We use the same

Benchmark MBR Cut-off Cluster Embeddings

AlpacaEval 96.5% 96.1% 97.0% 96.1%
MT-Bench (single) 76.3% 90.0% 80.0% 78.8%
MT-Bench (multi) 71.3% 70.0% 72.5% 74.4%

Table 3: AlpacaEval and MT-Bench Prometheus
win rates versus text-davinci-003 (AlpacaE-
val) / GPT-4o (MT-Bench). We compare standard
BERTScore MBR with the approaches introduced in §5:
Utility Cut-off, Clustering and Structure Embeddings.

hyperparameters and sequence embedding mod-
els from the previous set of experiments, tuned
on the combination of all three datasets from §4.
As a language model, we select OLMo 2 (13B)
(OLMo et al., 2025), and obtain 30 unbiased sam-
ples per prompt for use in MBR decoding. To
measure task performance, we use Prometheus7

(Kim et al., 2024) as a judge, conducting relative
grading against text-davinci-003 and GPT-
4o (OpenAI, 2024), for AlpacaEval and MT-Bench,
respectively.8 All experiments employ BERTScore
as the base utility. Further details on the generation
and evaluation procedures are provided in App. C.

Results. Tab. 3 reports win rates against
text-davinci-003 and GPT-4o for standard
MBR decoding with a BERTScore utility, along-
side our structure-conditional utilities from §5. On

7prometheus-eval/prometheus-7b-v2.0
8We did not find any available multi-turn system genera-

tions for the full MT-Bench dataset. Therefore, we generated
our own from OpenAI’s GPT-4o, using greedy decoding.
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AlpacaEval, the Clustering method outperforms
standard MBR. In the single-turn MT-Bench set-
ting, both Clustering and Utility Cut-off surpass
standard MBR, with Utility Cut-off achieving a
notable 13.7 percentage point improvement and
reaching a 90% win rate over GPT-4o. This indi-
cates responses are often judged clearer, more help-
ful, accurate, and fully aligned with the intended
purpose of the instruction. Performance declines
across the board in the more challenging multi-turn
MT-Bench setting. However, both Clustering and
Structure Embeddings continue to outperform stan-
dard MBR, demonstrating improved structural sen-
sitivity also in extended interactions. Smaller gains
here may stem from reduced uncertainty as con-
versational context accumulates, resulting in less
diverse outcome spaces. In such cases, structure-
conditional utilities likely yield results similar to
standard MBR, reducing the relative benefit of
structural adaptations. We also observe that Struc-
ture Embeddings tend to outperform Clustering,
possibly because soft partitioning better captures
subtle structural differences, whereas hard cluster-
ing might inadvertently exclude partially similar
candidates. Nevertheless, the lower overall MBR
performance in multi-turn tasks suggests that these
scenarios are inherently more challenging, beyond
the effect of reduced variability.9

Overall, the consistent improvements of
structure-aware MBR methods over standard MBR
suggest that incorporating latent structural informa-
tion not only enhances the theoretical optimality
of MBR solutions but also improves generation
quality in practical settings.

7 Conclusion

In this work, we examined the limitations of
MBR decoding in open-ended generation scenar-
ios, where outcome spaces might exhibit high struc-
tural variation. We hypothesised that commonly
used utility functions are insufficiently sensitive
to latent structural uncertainty, leading to subopti-
mal generation choices within structurally coherent
clusters of responses. To test this hypothesis, we
constructed a dataset featuring naturally occurring
contexts paired with outcome spaces that exhibit

9To investigate whether structure-conditional MBR offers
greater benefits in high structural-variability cases, we at-
tempted to bin test items based on their structural variability
(measured as average dispersion of structure embeddings from
the fine-tuned embedding model); however, this analysis did
not reveal any clear trends.

controlled variation in dialogue act, emotion, and
response structure. Our findings confirm that MBR
decoding under standard utilities frequently fails to
select cluster-optimal candidates, with suboptimal
selections occurring in more than half of the cases.

To address this issue, we proposed three
approaches to adapt utility functions to be
more structurally aware. The corresponding
approaches—Utility Cut-off, Clustering, and Struc-
ture Embeddings—demonstrate significant im-
provements in both cluster optimality (reaching up
to 98% for response structure) and cluster-optimal
rank correlation (reaching up to 0.89 for response
structure). Importantly, these methods incur only
modest additional computational cost, requiring
only lightweight fine-tuning of a sequence embed-
ding model or performing a hyperparameter search
for a threshold value. Once optimised, they can
be applied directly to unlabelled data. Our exper-
iments indeed show improvements in generation
quality on the real-world benchmarks AlpacaE-
val and MT-Bench without additional supervision.
While further investigation is required to clarify the
scope of these zero-shot capabilities, we speculate
that structure embeddings may generalise because
they capture structures similar to those seen dur-
ing fine-tuning (e.g., other emotion categories) or
leverage features the model was already sensitive
to from pre-training (e.g., semantically varying gen-
erations). Joint fine-tuning on multiple structure
types may further enhance this type of generali-
sation, potentially enabling the model to handle
entirely unseen structural variations.

Based on our positive results in both con-
trolled and real-world settings, we recommend
adopting structure-aware MBR decoding in
tasks characterised by medium to high outcome
space variability, such as instruction-following
and conversational tasks. We encourage future
research into structure-sensitive utility func-
tions that build on this work to achieve even
greater cluster optimality, generation quality, or
inference-time efficiency. We also see value in
further investigating the relationship between
outcome space variability and the effectiveness of
structure-aware MBR, as well as between cluster
optimality and overall generation quality.

Limitations

To test our hypothesis on the suboptimality of
standard similarity-based MBR utility functions,
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we relied on a curated dataset that captures three
representative types of latent structure commonly
found in open-ended natural language generation
tasks. However, this dataset does not exhaustively
cover all possible structural variations present in
natural language. Additionally, our evaluation as-
sumes that language models accurately represent
uncertainty over latent structures—an assumption
that may not always hold in practice (see, e.g.,
Giulianelli et al., 2023). For example, in a dia-
logue setting, a model might assign most of its
probability mass to responses aligned with the IN-
FORM dialogue act category, even though human
responses would display a broader range of struc-
tural types. As discussed in §6.2, we tried binning
test items according to their measured structural
variability to assess whether structure-conditional
MBR provides greater benefits in high-variability
cases. This analysis, however, did not yield any
clear trends. Furthermore, while our study focuses
on standard similarity-based utility functions such
as BLEURT and BERTScore, we acknowledge
that task-specific or learned reward models could
serve as alternative MBR utilities. Exploring how
such utilities behave in the presence of structural
variation is a promising direction for future work.

In terms of computational requirements, our
methods introduce minimal overhead beyond stan-
dard MBR decoding. It is worth noting, however,
that MBR decoding itself is significantly more com-
putationally demanding than greedy decoding or
sampling a single generation. Since our approaches
build on MBR, they inherit this higher computa-
tional cost. Nevertheless, we believe our methods
stand to benefit from recent advances aimed at im-
proving the efficiency of MBR decoding (Cheng
and Vlachos, 2023; Vamvas and Sennrich, 2024;
Yang et al., 2024).

Finally, in our evaluation on instruction-
following datasets, we rely on Prometheus as an
LLM judge (Kim et al., 2024). LLM judges are im-
perfect evaluators, may be biased towards particu-
lar types of responses (Wang et al., 2024; Stureborg
et al., 2024)—for example, longer or more elab-
orate ones—and do not always align with human
judgements (Zeng et al., 2024; Bavaresco et al.,
2024). Additionally, Prometheus relies on a prede-
fined rubric, and its performance may be sensitive
to the specific formulation of that rubric. We did
not conduct extensive experiments with alternative
rubric designs, which may influence the robustness

of the results.
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A Data Generation

In §4.1.2, we semi-automatically construct a nat-
ural language dataset of hypothetical outcome
spaces with varying underlying latent structure: di-
alogue act, emotion, and response structure. Here,
we describe the full generation procedure in more
detail.

A.1 Generation Procedure

We use dialogue contexts from the DailyDialog
dataset (Li et al., 2017) as a basis for the dialogue
act and emotion subsets, and prompts from the
Alpaca (Taori et al., 2023) dataset as a basis for
the response structure subset. We sample genera-
tions from the 13B OLMo 2 model (OLMo et al.,
2025).10

1. Pre-processing. We preprocess DailyDialog
by removing extra white spaces and keeping
only dialogues with at least two turns. For
each dialogue, we then randomly select a
number of turns to include, chosen between
two and the total number of turns minus two.
Each turn is prefixed with "A:" or "B:" to in-
dicate the speaker. For the Alpaca dataset,
we simply discard prompts that contain an
additional input field.

2. Prompt creation. We randomly select 2,000
dialogues from the DailyDialog dataset—
1,000 for dialogue act and 1,000 for emo-
tion chosen independently—and the first
1,000 instructions without input field from
the Alpaca dataset. We then fill out the
predefined prompt templates (as defined in

10allenai/OLMo-2-1124-13B-Instruct
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App. A.2) with the selected examples, result-
ing in prompts for each category within every
latent structure. In total, we create 1,000 ×
4 = 4,000 inputs for the dialogue act subset,
1,000 × 6 = 6,000 inputs for the emotion
subset, and 1,000 × 4 = 4,000 inputs for re-
sponse structure subset.

3. Generation. Using OLMo 2 (13B), we then
generate 25 unbiased samples for each of the
14,000 constructed input prompts.

4. Post-processing. We finalise the procedure
by removing quotation marks around the gen-
eration and stripping any "A:" or "B:" prefixes
at the start of generations.

A.2 Prompt Templates
To generate prompts covering all categories within
a latent structure, we define three types of prompt
templates—one for each latent structure.

A.2.1 Dialogue Act
For the dialogue act subset, we define the
responder as the speaker whose turn it is now
to speak (e.g., if the dialogue excerpt ends at
A’s turn, we define responder = B). For each
dialogue from DailyDialog, we then it-
erate through the four defined dialogue acts and
pass each of them as act_name.

### **Types of Dialogue Acts**
Here are common categories of dialogue

acts, though exact categorizations
may vary depending on the framework:

#### **1. Inform**
- The Inform class contains all

statements and questions by which
the speaker shares information
with the listener. The speaker
assumes the information is
correct and believes the
addressee does not know or is not
aware of it yet.

- **Examples**:
- "The meeting starts at 3 PM."
- "I’ve already emailed the report."
- "I saw John at the store

yesterday."
- "William Shakespeare wrote it."
- "The Eiffel Tower is in Paris."

#### **2. Question**
- The Question class includes speech

acts where the speaker seeks
information by asking a question.
These acts are used when the
speaker wants to know something
and believes the listener has the
answer. Questions can take

different forms, including
Propositional Questions (yes/no
questions), Check Questions
(confirming known information),
Set Questions (open-ended
questions), and Choice Questions
(questions with multiple options).

- **Examples**:
- "Did you finish your assignment?"
- "You’ve met Sarah before, haven’t

you?"
- "What time does the meeting

start?"
- "Could you clarify what you meant

by that?"
- "Do you prefer coffee or tea?"

#### **3. Directive**
- The Directive class includes speech

acts where the speaker wants the
listener to perform an action.
This class covers Requests
(asking someone to do something),
Instructions (giving direct
orders or guidance), Suggestions
(offering recommendations), and
Accepting or Rejecting Offers
(responding to proposals). These
acts differ based on how much
pressure the speaker applies and
their assumptions about the
listener’s willingness and
ability to comply.

- **Examples**:
- "Can you send me the file?"
- "Fill out this form before the

appointment."
- "You should try the new Italian

restaurant downtown."
- "Yes, I’d love to join you for

dinner!"
- "No, I can’t take on another

project right now."

#### **4. Commissive**
- The Commissive class involves

speech acts where the speaker
commits to performing an action
in the future. These acts include
Accepting or Rejecting Requests,
Suggestions, and Offers. By
performing a Commissive act, the
speaker is making a promise or
commitment to carry out the
action requested, suggested, or
offered. These acts reflect the
speaker’s willingness to take
responsibility for fulfilling the
commitment, whether by agreeing
to a proposal or refusing it.

- **Examples**:
- "Fine, I’ll pick you up at 5 PM."
- "Sorry, I can’t do that right

now."
- "That sounds great, I’ll take the

promotion."
- "I promise to finish the report

by the end of the day."

31718



- "I’ll make sure to take care of
it this weekend."

---

### **Dialogue Excerpt**

{dialogue from DailyDialog}

---

### **Instructions**
Please consider the provided dialogue

excerpt and provide a plausible
response (and only a single
response) for {responder} that
reflects the following dialogue
act: {act_name}. Output only
{responder}’s response with no
additional text.<end_of_prompt>

A.2.2 Emotion
For the emotion subset, we again define the
responder in the same way as in App. A.2.1.
For each dialogue from DailyDialogwe
then iterate through the six defined emotions and
pass each of them as emotion_name.

### **Types of Emotions**
Here are seven main categories of

emotions.

#### **1. Anger**
- The Anger category represents

emotions related to feelings of
displeasure, hostility, or
frustration. This emotion often
arises when someone feels wronged
or blocked from achieving their
goal. It can range from mild
irritation to intense rage.

- **Examples**:
- "I can’t believe this is

happening!"
- "This is so unfair!"
- "Why does everything always go

wrong for me?"
- "I’m so frustrated with this

situation!"
- "I’m really mad about how things

turned out."

#### **2. Disgust**
- The Disgust category includes

emotions related to a strong
sense of revulsion, disapproval,
or distaste. It often arises when
something is perceived as
offensive, repellent, or morally
objectionable.

- **Examples**:
- "That food looks awful!"
- "I can’t stand how they treat

people."
- "This is disgusting. I can’t

believe they did that."
- "I feel sick just thinking about

it."

- "That’s absolutely revolting!"

#### **3. Fear**
- The Fear category includes emotions

related to anxiety, nervousness,
and concern about possible danger
or harm. Fear can be rational or
irrational and may cause physical
or psychological distress.

- **Examples**:
- "I’m really scared about what’s

going to happen."
- "I don’t know if I can handle

this situation."
- "What if things don’t go as

planned?"
- "I’m afraid something bad might

happen."
- "I’m nervous about the meeting

this morning."

#### **4. Happiness**
- The Happiness category includes

emotions related to joy,
contentment, and pleasure.
Happiness is often associated
with positive experiences,
accomplishments, and satisfying
events.

- **Examples**:
- "I’m so excited about this

weekend!"
- "This is such a great day!"
- "I feel so happy about my

progress."
- "That sounds amazing, I’m really

looking forward to it!"
- "I’m so glad everything worked

out!"

#### **5. Sadness**
- The Sadness category represents

emotions related to feelings of
loss, disappointment, or sorrow.
It often arises when there is a
sense of unmet expectations,
failure, or grief.

- **Examples**:
- "I feel so down about what

happened."
- "I can’t stop thinking about it,

it’s just so upsetting."
- "I’m really sad things turned out

this way."
- "It’s been a tough time, and I

feel heartbroken."
- "I don’t know how to get over

this sadness."

#### **6. Surprise**
- The Surprise category represents

emotions related to unexpected
events or outcomes, ranging from
shock to awe. This emotion can be
positive or negative, depending
on the nature of the surprise.

- **Examples**:
- "Wow, I didn’t see that coming!"
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- "That’s such a surprise, I can’t
believe it!"

- "I’m totally shocked by what
happened."

- "I wasn’t expecting that at all!"
- "I’m so surprised you did that!"

---

### **Dialogue Excerpt**

{dialogue from DailyDialog}

---

### **Instructions**
Please consider the provided dialogue

excerpt and provide a plausible
response (and only a single
response) for {responder} that
reflects the following emotion:
{emotion_name}. Output only
{responder}’s response with no
additional text.<end_of_prompt>

A.2.3 Response Structure

For the response structure subset, we define four
different prompt templates, one for each category
of response structure. For each prompt from
Alpaca, we then append each of these templates,
resulting in four different prompts—one per
category—per input instruction.

BRIEF

{prompt from Alpaca} Give me a brief
sentence with the answer. Make
sure to restrict your response
to a single sentence.

PARAGRAPH

{prompt from Alpaca} Write an
extensive paragraph on the
topic. Restrict your answer to a
single paragraph

LIST

{prompt from Alpaca} In your answer,
make sure to include a bullet
point list of items relevant to
the topic. Keep your answer
brief and make sure it contains
a bullet point list.

TABLE

{prompt from Alpaca} In your answer,
include a table relevant to the
topic. Keep your answer brief
and make sure it contains a
table.

B Hyperparameter Selection

We randomly split our generated datasets (dia-
logue act, emotion, and response structure) into
800/100/100 training/validation/testing data points.
All data points consist of an input context and 25
generations per type of latent structure we are con-
sidering for that input (e.g., 25 generations each
for BRIEF, PARAGRAPH, LIST, and TABLE for a
total of 100 generations). We compute BERTScore
and BLEURT MBR solutions conditioned on each
labelled cluster to get cluster-optimal rankings and
MBR solutions to compare to. We use the train-
ing and validation splits for fine-tuning sequence
embedding models and for hyperparameter selec-
tion. We perform all training and hyperparameter
selection both on individual datasets (either dia-
logue act, emotion, or response structure) and on
the combination of all datasets. We find that mod-
els trained on all data perform best overall and thus
use these in our experiments. We proceed here to
discuss the results of hyperparameter selection for
each individual approach in more detail.

Utility Cut-off. We considered both an absolute
threshold on the utility value as well as a threshold
on the deviation from the highest observed utility
in the sample. We do not consider any utility com-
parisons with the candidate itself, i.e., we mask
out the diagonal of the utility matrix. Furthermore,
we experiment with setting utility values below the
threshold to 0 or −1, as well as discarding those
utility comparisons altogether. We test a range of
50 threshold values ranging within reasonable val-
ues for the utility function itself, and order settings
based on cluster optimality on the training data.
We then take the 10 best-performing setups and se-
lect the one with the highest cluster optimality on
the validation data. We tune the threshold indepen-
dently for both BLEURT and BERTScore. We find
an absolute value threshold to work best for both
utilities, with values below the threshold zeroed
out. We find an optimal threshold of 0.512 and
0.918 for BLEURT and BERTScore, respectively.

Clustering. We use the Sentence Transformers
all-mpnet-base-v2 model as a basis for ob-
taining sequence embeddings. We further fine-tune
this model using a triplet loss on triplets from our
labelled datasets. We experiment with learning
rates between 1 × 10−4, 1 × 10−5 and 1 × 10−6,
and find a learning rate of 1 × 10−5 to lead to
best validation loss overall. We then use these se-
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quence embeddings with the k-means algorithm
to obtain clusters. We select a number of clusters
based on the silhouette score for k = [2, 6] and set
a threshold that the silhouette scores need to reach,
otherwise k is set to 1 and we consider all genera-
tions to come from a single cluster. This threshold
is tuned based on prediction accuracy on the num-
ber of clusters for a range of values in (0, 1), using
random subsamples of the validation data with a
random number of clusters per subsample.

Structure Embeddings. Here, we use the same
fine-tuned Sentence Transformer model from the
Clustering approach. We shift and compress cosine
similarity values to range between 0 and 1. We
optionally consider a threshold on cosine similarity
and perform an identical selection procedure to that
for the threshold in the Utility Cut-off approach.
We find that a threshold does considerably improve
cluster optimality, with the best results obtained at
a threshold of 0.918.

Fine-Tuned Utilities: BERTScore and BLEURT.
We also attempted fine-tuning BERTScore and
BLEURT directly to be more sensitive to the la-
tent structures we expect in the data. We experi-
mented with fine-tuning BERTScore with a triplet
loss on the sequence embeddings of the underly-
ing roberta-large model, and used a mean
squared error regression loss to fine-tune BLEURT
to predict comparisons with out-of-cluster gener-
ations as 0 or -1. We attempted a range of hy-
perparameter values, but found that the resulting
utility functions performed poorly across the board.
Hence, we have not included those models in the
main paper.

C Evaluation on AlpacaEval and
MT-Bench

We conducted our evaluation of instruction-
following generations on AlpacaEval and MT-
Bench using Prometheus as an LLM-as-a-judge
model11 and following this procedure:

1. Generation. For each instruction from the
dataset, we generate our answers from each re-
spective decoding method. We use the system
prompt given in Fig. 3. When generating for
single-turn MT-Bench, we only prompt the
model with the first turn and store its output

11prometheus-eval/prometheus-7b-v2.0

You are an advanced AI assistant
specializing in clear,
well-reasoned, and articulate
responses. Your goal is to
provide comprehensive and
accurate answers while ensuring
coherence, logical consistency,
and factual correctness. Be
precise, provide evidence-based
explanations, and use
structured reasoning when
appropriate. If a question has
multiple interpretations,
clarify them before answering.
Avoid unnecessary verbosity
while maintaining completeness.
If uncertain, state your level
of confidence and explain why.

Figure 3: System prompt used, for all decoding meth-
ods, when generating for AlpacaEval and MT-Bench.

for evaluation. When generating for multi-
turn MT-Bench, we first prompt the model
with just the first turn, store its output for eval-
uation, and then we prompt it again with both
turns and the reference GPT-4o generation to
the first prompt.12 The total number of in-
structions for multi-turn MT-Bench is thus
twice the number of instructions for single-
turn MT-Bench.

2. Evaluation. We then pass the instruc-
tion, the reference answer, as well as
the generations of our decoding methods
to Prometheus. The reference answers
for AlpacaEval (included in the dataset)
were generated by text-davinci-003.
For MT-Bench, we collected reference an-
swers via greedy decoding from GPT-4o
through the OpenAI API. We use the
predefined RELATIVE_PROMPT_WO_REF
prompt template for Prometheus to obtain
pairwise judgements—for each pair of com-
peting outputs, Prometheus returns one letter
(A or B) defining which output is preferred.
We define the grading rubric as follows: “Is
the answer clear, helpful, accurate, and fully
aligned with the intended purpose of the in-
struction?”

3. Final Score. For every decoding method, we
then calculate that method’s win rate against
the set of reference generations according to

12We opted to always provide the reference response in
multi-turn MT-Bench to avoid compounding errors.
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Prometheus. In multi-turn MT-Bench, we re-
port the average of the win rates of both turns.

D Dataset Examples

Tab. 4 provides illustrative examples from the
dataset described in §4.1. It contrasts the solu-
tions obtained with standard BERTScore-based
MBR against the cluster-optimal BERTScore-
based MBR solution.
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