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Abstract

Recent studies have suggested a processing
framework for multilingual inputs in decoder-
based LLMs: early layers convert inputs into
English-centric and language-agnostic repre-
sentations; middle layers perform reasoning
within an English-centric latent space; and final
layers generate outputs by transforming these
representations back into language-specific la-
tent spaces. However, the internal dynam-
ics of such transformation and the underlying
mechanism remain underexplored. Towards a
deeper understanding of this framework, we
propose and empirically validate The Transfer
Neurons Hypothesis: certain neurons in the
MLP module are responsible for transferring
representations between language-specific la-
tent spaces and a shared semantic latent space.
Furthermore, we show that one function of
language-specific neurons, as identified in re-
cent studies, is to facilitate movement between
latent spaces. Finally, we show that transfer
neurons are critical for reasoning in multilin-
gual LLMs!.

1 Introduction

Multilingual Large Language Models (LLMs), pre-
trained on multilingual corpora, can process multi-
ple languages within a single model. Recent studies
suggest that decoder-based multilingual LL.Ms op-
erate on a semantic latent space that is independent
of the input language, e.g., language-agnostic latent
space (Zhang et al., 2024; Zeng et al., 2025; Ban-
darkar et al., 2025) and English latent space (Zhao
et al., 2024b; Wendler et al., 2024; Schut et al.,
2025).

The previous findings imply that multilingual
LLMs potentially process inputs by (i) transfer-
ring input into the shared latent space, (ii) perform-
ing semantic processing, and (iii) mapping results

'Our codes are available at https://github.com/
HinaTezuka/emnlp2025-transfer-neurons.
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Figure 1: An Overview of the Transfer Neurons Hy-
pothesis. We hypothesize that specific neurons in MLP
module move representations from language-specific
latent spaces to a shared semantic latent space, and vice
versa.

back to the input language, as shown in Fig. 1 (a).
However, the dynamics of internal representation
transformation and the underlying mechanism of
the representation transfer remain underexplored,
preventing a comprehensive understanding of se-
mantic processing in multilingual LLMs.

To address these issues, first, we study how inter-
nal representations evolve across layers and exam-
ine the existence of a shared semantic latent space
in the middle layers. Second, as a plausible expla-
nation for the representation transfer mechanism,
we propose the Transfer Neurons Hypothesis: spe-
cific neurons in the Multi Layer Perceptron (MLP)
module are responsible for this transfer. As shown
in Fig. 1 (b), we hypothesize that certain neurons,
named transfer neurons, are sensitive to the input
language, and that their firing results in adding cor-
responding value vectors to the residual stream,
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thereby facilitating the representation transfer.

Our Contributions are summarized as follows:

* We uncover the dynamics of internal repre-
sentations in multilingual LLMs: initial repre-
sentations are language-specific, subsequently
converge into a shared latent space across lan-
guages, and finally diverge again (§3).

* We empirically demonstrate the existence of
transfer neurons that mediate transitions be-
tween language-specific latent spaces and the
shared semantic latent space. We further show
their necessity for the representation transfer
through intervention experiments (§4, §5).

* We suggest that one of the key role of
language-specific neurons identified in recent
studies is to facilitate movement between la-
tent spaces, and show that transfer neurons are
essential for downstream tasks (§6).

2 Background
2.1 Related Works

The Framework for Multilingual Processing.
By detecting and controlling language-specific neu-
rons, Zhao et al. (2024b) introduced the MWork
framework, arguing that LLMs process multilin-
gual queries in the first few layers, reason in En-
glish in the middle layers, and subsequently gen-
erate responses in input language. Although they
do not explicitly define it as English-centric, Zeng
et al. (2025) proposed a similar framework by intro-
ducing the concept of a Lingua Franca — a com-
mon semantic latent space that facilitates language-
agnostic processing. Assuming language-agnostic
reasoning occurs in the middle layers, Bandarkar
et al. (2025) improved multilingual reasoning per-
formance using a layer swapping technique. They
trained language-expert and reasoning-expert mod-
els separately, then merged them by assigning the
language-expert to the first and last few layers, and
the reasoning-expert to the middle layers. Wendler
et al. (2024); Schut et al. (2025) observed that when
non-English queries are presented, the models of-
ten identify an answer in English internally, and
then translate it into the target output language.

Language-Agnostic Representations. It has
been shown that knowledge neurons cross-lingually
encoding specific concepts exist (Chen et al., 2024;
Zhao et al., 2024a; Zhang et al., 2025). Building

on findings that encoder-based LLMs exhibit a de-
gree of language-agnosticism (Pires et al., 2019; Li-
bovicky et al., 2020), Yoon et al. (2024) developed
the LangBridge model, which connects a multilin-
gual encoder to LLM, and improved performance
on reasoning tasks even in low-resource languages.

Language-Specific Regions. Recent studies (Ko-
jima et al., 2024; Tang et al., 2024; Zhao et al.,
2024b; Zeng et al., 2025; Duan et al., 2025) have
revealed the existence of language-specific regions
or neurons in decoder-based LLMs, which respond
strongly to inputs in a particular language. These
regions are primarily distributed in the initial and
final few layers of the models, a finding that is
also supported by our experiment in Appendix H.3.
Mondal et al. (2025) demonstrated that fine-tuning
only these neurons is not sufficient for cross-lingual
improvements on downstream tasks. The role of
these regions or neurons, however, has not yet been
sufficiently revealed.

Although these studies offer valuable yet frag-
mentary evidence, the overall process of the la-
tent space transitions still remains unclear and lack
quantitative demonstration.

2.2 Neuronic View of MLPs in Transformers

Given an input vector & € R%, the MLP module in
Transformer at layer [ operates as follows:

MLPZ(£) = a(lillp)M(liown ey

where a represents a non-linear activation func-
tion, and Mll1p € Rdxdm Mt € RIm*d refer
to the up and down projection matrices, respec-
tively. Geva et al. (2021) proposed a vector-based
key-value store view of the MLP module. Here,
the keys are d,,, column vectors in Mflp, the values
are d,,, row vectors in Myown, and the query is .
Viewing o! = a(a?Mép) as the relevance scores
between the keys and query, the MLP module can

be rewritten as follows:
MLP!(z) = &' M}, = Y _olvl  (2)

where 'ull- represents i-th row vector in M Cllown. In
our experiments, we adopt the MLP module with
a gating mechanism (Shazeer, 2020; Liu et al.,
2021), namely o = a(mMéate) O a:Mlllp, where
o, Méate € R¥*dm represents element-wise mul-
tiplication and gated projection, respectively. Fol-

lowing Dai et al. (2022), we call each ol neuron.
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Figure 2: The results of PCA applied to hidden language representations for capturing spatial transitions

(LLaMA3-8B). Japanese, , Duch, English and

hidden representations, respectively. Each input

sentence from each language has the same meaning. The results for other layers and models can be found in

Appendix F.

3 The Dynamics of Hidden States

Based on the findings of prior work (Zhao et al.,
2024b; Wendler et al., 2024; Schut et al., 2025),
we assume that a shared semantic latent space is
predominantly English-centric. In other words,
the English latent space effectively serves as the
shared semantic space across languages. Accord-
ingly, we adopt English as the core language within
this shared latent space throughout the experiments
in this study.

In this section, we provide several evidence sup-
porting the latent space transitions across layers and
the existence of the shared semantic latent space in
middle layers, as illustrated in Fig. 1(a).

3.1 Spatial Transition Phenomenon

Representations Form Language-Specific La-
tent Spaces and a Shared Latent Space in Hid-
den State Space. We encode 5k sentences from
MKQA dataset (Longpre et al., 2021), a multi-
lingual dataset of parallel QA sentences in five
languages, using LLaMA3-8B (1k sentences per
language). We extract the hidden states correspond-
ing to the final token of each sentence from each
layer, apply PCA, and plot the results along the
top two principal components in Fig. 2. It shows
that in the initial layers, each language forms its
own latent space, which gradually converges into a
shared latent space towards the middle layers. In
the final layers, each language re-establishes its
distinct latent space, which confirms our hypothe-
sis. An unexpected finding, however, is that two
latent spaces specific to Dutch and , which
have linguistic proximity to English, remain close

to the English latent space even in the initial and
final layers, in contrast to Japanese and
Additionally, Japanese and Korean, which are lin-
guistically more distant from English, do not fully
converge into the shared latent space even in the
middle layers. These trends are consistent across
models (see Appendix F). These results suggests
that while representations tend to converge into the
English-centric shared semantic latent space, the
degree of convergence varies across languages.

3.2 Geometry of Language-Specific Latent
Spaces

Hidden States Reside in Language Latent
Spaces. To investigate whether hidden states for
each language can be captured by low dimen-
sional latent space, we conduct a Singular Value
Decomposition (SVD) to a matrix formed by hid-
den states of each language and compute the cu-
mulative explained variance ratio, to estimate the
number of basis vectors necessary to form each lan-
guage latent space. Let M ]l_% € R™*? be a matrix
containing hidden state vectors at layer [ (each of
dimension d) for n sentences in language L;. Then,
M lLZ is decomposed as follows:

Mj, =UsV" 3)

where U and V' are orthogonal matrices that can
be interpreted as a set of orthonormal basis for
row space and column space, respectively. X is
a diagonal matrix containing the singular values
of M lLZ_, which represent the magnitude of each
corresponding component in the lower dimensional
latent space in hidden state space. These singular
values are ordered in descending order. Finally, we
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Figure 3: Dimensionality of language latent spaces
across layers estimated via SVD and CEVR
(LLaMA3-8B).

compute the cumulative explained variance ratio as
follows:

k
CEVR, =S % 4
i Z ST g2 )
i=1 Ti=1"]

where 01-2 denotes the ¢-th singular value, k is the
number of components retained, and 7 is the total
number of non-zero singular values. The CEVRILZ_
thus represents the proportion of the total variance
explained by the top-k singular values.

The results are shown in Fig. 3. As indicated, in
initial and final few layers where hidden states spe-
cific to each language form their own latent space,
most (95%) of representations lie in a relatively
low-dimensional latent space, a tendency that is
expecially pronounced for languages that are more
distant from English (i.e., Japanese and Korean).
On the other hand, representations in the middle
layers, where semantic processing and inference
mainly occur, form a relatively high-dimensional
latent space. Additionally, as quantitatively demon-
strated in Appendix D.2, the transitions of the dis-
tance among the centroids of language-specific la-
tent spaces across layers are well aligned with the
observation of spatial transition in §3.1 and Fig. 2.
The results for other variance thresholds and mod-
els can be found in Appendix D.1.

These results indicate that the hidden states of
each language shown in Fig. 2 lie in a relatively
low dimensional latent space of the hidden state
space.

3.3 The Existence of a Shared Semantic
Latent Space in Middle Layers

Sentence Representations with Similar Mean-
ings across Languages Converge to Similar
Locations in Middle Layers. To numerically
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Figure 4: Kernel-based similarity between language
latent spaces across layers (LLaMA3-8B and Aya
expanse-8B, k=5). English-Italian, English- s
English-Japanese, English-Korean pairs, respectively.

demonstrate whether language-agnostic semantic
processing indeed occurs in the shared semantic la-
tent space shown in Fig. 1(a), we measure Mutual
k-Nearest Neighbor Alignment Metric proposed
in (Huh et al., 2024), between a set of parallel
sentence representations across language pairs. If
similarities peak in middle layers, it suggests that
semantically similar or equivalent sentence repre-
sentations converge to similar positions across lan-
guages in hidden state space. This increases shared
nearest neighbors, indicating aligned latent spaces
and language-agnostic semantic processing. The
computation is formalized in Appendix E.1.

Fig. 4 shows that latent space similarity between
English and other languages peaks in the middle
layers, suggesting shared, language-agnostic se-
mantic processing. As noted in Appendix E.2, this
pattern holds across models.

Additionally, in Appendix C, we measured the
similarity of hidden states and activation patterns
for parallel sentences across languages, as well as
the linear separability of representations for parallel
and non-parallel sentences, further supporting the
existence of this processing.

4 Identifying Transfer Neurons

4.1 Hypothesis: Specific Activations and
Value Vectors Facilitate a Parallel Shift of
Representations to the Target Latent
Space

Based on the Eqgs. 1 and 2, we hypothesize that
certain activations and their corresponding value
vectors alv! are responsible for shifting internal
representations between language-specific latent
spaces and the shared semantic latent space, as
described in Fig. 1(b). These activation units are

what we define as the Transfer Neurons.
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4.2 Preparation: Two Types of Transfer
Neurons

As discussed in §1, we consider two types of neu-
rons in the context of transfer neurons:

1. Neurons that transfer input representations
from the language-specific latent space to the
shared semantic latent space, located in the
initial layers (Type-1 Transfer Neurons).

2. Neurons that transfer reasoned representations
from the shared semantic latent space to the
language-specific latent space for output gen-
eration, located in the final layers (Type-2
Transfer Neurons).

Based on the observation that the difference in rep-
resentation similarity between parallel and non-
parallel sentence pairs widens in specific layers
(Fig. 10 in Appendix C.1), we target layers 1-20
for detecting Type-1 neurons and layers 21-32 (up

to the final layer) for detecting Type-2 neurons>.

4.3 Scoring the Candidate Neurons

Our goal is to assign higher scores to candidate
neurons whose activations and value vectors move
the representation closer to the desired latent space,
when the model is given an input sentence in the
target language.

Centroids Estimation for Latent Spaces. We
begin by estimating the centroids of each represen-
tational latent space, which allows us to compute
the distances to these latent spaces. Let h£2 .. de-
note the hidden state from the [-th layer corresi)ond-
ing to the k-th sample sentence in the particular
non-English language “L2”. The centroids of the
respective latent spaces are estimated as follows:

1 n
C£2 = n Z hlL2,k &)
k=1

1 n
Céhared = E Z mean(h’én,k: h’iQ,k) (6)
k=1

where C!,, denotes the centroid of the L2-specific
latent space in the [-th layer, whereas Céhared is the
centroid of the shared semantic latent space in the
l-th layer, and n is the total number of sample sen-
tences. To compute Eq. 6, we use parallel sentence
pairs from an English-L2 pair. This is because, as

2All LLMs adopted in this study have 32 decoder layers.

mentioned in §3, we assume that the English latent
space serves as the shared semantic latent space’.

Scoring Methodology. We score each candidate
neuron in the target layers with the following com-
putations:

L = dist ((hﬁ;l + AL, Cl) %)

N = dist ((Ri7 + Al + ol ol,),C") ®)

(N}, — L}) 9)
k=1

l

Score; =

SN

where h;g_l is the hidden state from the previous
layer, and Af,f is the output of the self-attention in
the [-th (current) layer. Here, k refers to the index
of the sample sentence. Therefore, (hﬁ;l + AL)
represents the hidden state at the /-th layer imme-
diately before the MLP module for the k-th input
sample. The dist function measures how close two
vectors are®, L%C denotes the layer score, which indi-
cates how close the hidden state before the MLP is
to the [-th layer centroid of the target latent space.
Nil . denotes the neuron score, which expresses
how effectively the neuron and its corresponding
value vector, on their own, bring the representation
closer to the centroid of the target latent space, in
comparison to L.

If the score of the i-th neuron in the [-th layer,
Scorel > 0, it indicates that the neuron and value
vector brings representations closer to the centroid
of the target latent space for most of the samples.
Conversely, if Scoreé < 0, it suggests that the neu-
ron pushes the hidden states further apart from
the centroid across various samples. We set C' to
Céhare q for detecting Type-1 neurons, and to C’IIJ2
for detecting Type-2 neurons. The larger the Scoreﬁ
is, the more effectively the neuron and its corre-
sponding value vector bring the representations
closer to the target latent space. Finally, we sort
all candidate neurons in descending order based on
Score!, and extract the top-n neurons.

3The rationale for using the centroid for every candidate
layer is explained in Appendix B.

*We adopt Cosine similarity as a dist function in this
study; however, we also experimented with Euclidean dis-
tance, which yielded similar results.
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Figure 5: Similarity of hidden states and activation patterns across layers while deactivating top-1k Type-1
Transfer Neurons (LLaMA3-8B). The upper figures present the similarity of hidden states, and the lower ones

present the similarity of activation values.

S Detecting and Controlling Transfer
Neurons

5.1 Distribution

Fig. 6 and Appendix H.1 shows the distributions
of two types of transfer neurons across layers. For
Type-1 neurons, the first layers and the middle lay-
ers contain a noticeable amount. In contrast, Type-
2 neurons are predominantly found in the final
layer, which aligns with the observation that repre-
sentations exhibit the largest shift in the final layers,
as shown in Appendix F. Additionally, these distri-
butions closely resemble those of language-specific
neurons, as shown in Appendix H.3. These tenden-
cies are consistent across languages and models.

5.2 Representation Similarity Measurement
while Deactivating Transfer Neurons

Type-1 Neurons Facilitate the Mapping of Rep-
resentations to the Shared Semantic Latent
Space. Fig. 5 presents the similarity of hidden
states and MLP activation patterns for parallel and
non-parallel English—L2 sentence pairs. The mea-
surements are taken while deactivating the top-1k
Type-1 neurons, which account for only 0.2% of
the total neuron population®. Although only a very
small proportion of neurons were deactivated, we
observe a sharp reduction in the difference in sim-
ilarity between parallel and non-parallel sentence

SHere, "deactivating" refers to setting the activation values
of the target neurons to zero, thereby nullifying their effect.

Type-2 Neurons (n=1000)

Type-1 Neurons (n=1000)
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Figure 6: Distribution of top-1k Transfer Neurons
(LLaMA3-8B). Left shows Type-1 neurons, whereas
right shows Type-2 neurons.

pairs for both activation patterns and hidden states.
By contrast, the baseline — defined as deactivat-
ing 1k randomly sampled neurons from the same
layers as the Type-1 neurons — has almost no ef-
fect on the similarity compared to the original state
(Fig. 10 and 11 in Appendix C.1). This tendency is
consistent across other language pairs and models.

These results indicate that the models deacti-
vated Type-1 neurons are unable to map input rep-
resentations to the correct positions in the shared
semantic latent space in a way that reflects sentence
meaning, since the similarity remains nearly un-
changed regardless of whether the pairs are parallel
or non-parallel. This indicate that Type-1 neurons
we detected play a critical role in this mapping
process.

Also, we surmise that the relatively remaining
difference of similarity between parallel and non-
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Top-1000 ja nl ko it
Type-1 TN |0.16 0.03 0.05 0.03 Type-1TN [0.16 0.02 0.05 0.03

Type-2 TN 017 006 Type-2TN 0.19
025 02 040 027 033

Table 1: Correlation ratio of top-100 and top-1k Transfer Neurons for language specificity (LLaMA3-8B).
Typically, a correlation ratio above 0.1 suggests a correlation, above 0.25 suggests a moderately strong correlation,

Top-100 ja nl ko it

and above 0.5 indicates a strong correlation.

Top-1000 ja-nl ja-ko nl-it ja-it
Type-1 TN 039 051 0.75 041
Type-2TN 023 037 051 0.26

Table 2: Jaccard index for top-1k Transfer Neurons
across language pairs. (LLaMA3-8B). A score closer
to 1 indicates a greater overlap between the neurons of
each language pair.

parallel sentence pairs in the en-nl (Dutch) and
en-it (Italian) settings across models (Fig. 5 and
Appendix G.2.2) — even after the deactivation of
the top-1k Type-1 neurons — is due to the linguistic
and spatial proximity of these languages to English.
That is, even if we disturb representations from
shifting into the shared semantic latent space by
deactivating Type-1 neurons, they are already very
close to the english-centric shared semantic latent
space (see §3.1 and Appendix F).

Appendix G.2.1 shows that deactivating Type-1
neurons significantly reduces kernel-based similar-
ity, underscoring their role in aligning representa-
tions to a shared semantic latent space.

Ablation studies, including experiments with dif-
ferent numbers of deactivated neurons, are pro-
vided in Appendix G.2.2.

The results of deactivating Type-2 neurons are
presented in Appendix G.3, including evidence of
a significant inhibition in latent space transitions
when the neurons are deactivated.

6 The Nature of Transfer Neurons

6.1 Language and Language-Family
Specificity

Language Specificity. To investigate the lan-
guage specificity of transfer neurons, we measure
the correlation ratio between neuron activations and
sentence labels®, assigning 1abel1 to sentences in
the target language and label® to all others. This
allows us to measure the strength of the correlation
between the activations of the transfer neurons and
inputs in a specific language.

®Detailed explanation about the correlation ratio is given
in Appendix H.6

As shown in Tab. 1, Type-1 neurons generally do
not exhibit correlation, except for those involved
in shifting representations from the Japanese la-
tent space to the shared semantic latent space. We
surmise that this is because the Japanese-specific
latent space in first few layers is highly distant from
the English-centric shared latent space (see PCA
results in Appendix F), which is why certain Type-1
neurons must undergo a considerable shift to align
with the shared latent space.

On the other hand, it turns out that for Type-
2 neurons, the more their activations and cor-
responding value vectors move representations
towards the language-specific latent spaces, the
stronger the correlation with the input sentences
of the target language. In other words, the neu-
rons that strongly shift representations from the
shared semantic latent space to each language-
specific latent space for output generation can be
considered language-specific. This is further sup-
ported by the high similarity in the distributions
between language-specific neurons and Type-2 neu-
rons, as demonstrated in Appendix H.1 and H.3.

For both Type-1 and Type-2 neurons, the
strength of the correlation ratio score correlates
with the linguistic distance from English, suggest-
ing that the greater the distance neurons must
shift to the target latent space, the more language-
specific those neurons are likely to be (As shown
in Tab. 1, §3.1, Appendices F, and H.4).

Additionally, when comparing the distributions
of the language-specific neurons (detected in Ap-
pendix H.3) with PCA results of language-specific
latent spaces (Appendix F) and the correlation ratio
scores, we observe that languages whose original
latent spaces are closer to the English-specific la-
tent space in the initial layers (such as Dutch and
Italian) tend to exhibit significantly sparser dis-
tributions of language-specific neurons in those
layers, along with relatively low correlation ra-
tio scores. We surmise that this is because these
languages require fewer language-specific neurons,
as they are already closely aligned with the English-
centric shared semantic latent space.
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These results suggest one of the key roles of
language-specific neurons, as identified in recent
studies: facilitating the movement of internal
representations between language-specific latent
spaces and a shared semantic latent space.

The results for other values of n (i.e., top-n neu-
rons) and models can be found in Appendix H.4.

Language-Family Specificity. Tab. 2 presents
the Jaccard Index measurements for transfer neu-
rons specific to each language, providing insight
into the extent of overlap among transfer neurons.
As shown, language pairs that are linguistically
similar tend to exhibit relatively greater overlap,
with this effect being particularly pronounced in
Type-2 neurons. The results suggest that, from
the perspective of the shared semantic latent space,
the locations of each language-specific latent space
within the hidden state space of the model are likely
to be similar, which explains why there are many
overlapping neurons used to shift to the target latent
space. This is further supported by the visualization
of each language latent space (Fig. 2, Appendix F).
In Appendix H.5.2, we show the results of other
models and correlation ratio measurement to fur-
ther verify language-family specificity of these neu-
rons.

The results of the hypothesis testing conducted
to verify the reliability of the correlation scores
reported above are provided in Appendix H.7.

6.2 Assessing the Importance of Transfer
Neurons in Reasoning

In this section, we examine the role of Type-1 neu-
rons in enabling reasoning. Specifically, we test
whether disrupting the shift of input representations
to the shared semantic latent space during inference
degrades performance. A notable drop when de-
activating these neurons — thereby disrupting the
inference framework of the hypothesis in Fig. 1 —
would suggest that the model struggles to generate
appropriate responses when inputs are misaligned
with the shared semantic latent space.

Task and Evaluation Metric. We use a simple
multilingual knowledge QA task called MKQA
(Longpre et al., 2021), which consists of 10k knowl-
edge question-answer pairs aligned across 26 lan-
guages. Following the original work, we adopt the
token-based F1 score as the evaluation metric.

We conduct the following three experimental se-
tups for the same questions to investigate the influ-
ence of Type-1 neurons: (a) Performance without
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Figure 7: Token-based F1 score when deactivat-
ing top-1k Type-1 transfer neurons (LLaMA3-8B).
Green denotes the score with intervention in the Type-1
neurons, while red represents the score with interven-
tion in the randomly sampled neurons (i.e., baseline).
Points below the y = x line indicate a decrease in the
score due to the intervention, whereas points above the
y = « line indicate an increase in the score. Points on
the y = x line denote no change in the score before and
after the intervention.

MKOQA (F1) ja nl ko it

(a) w/o Intervention  0.66 0.64 0.64 0.64
(b) Type-1 A -0.15 -041 -0.06 -0.49
(c) Baseline A -0.01  -0.03 -0.01 -0.04

Table 3: Changes in token-based F1 scores for ques-
tions with original scores above 0.5 (LLaMA3-8B).

any intervention. (b) Performance with deactiva-
tion in the top-1k Type-1 neurons. (c) Performance
with deactivation in 1k randomly sampled neurons
from the same layers as Type-1 neurons (baseline
neurons). Answer generation was performed under
a zero-shot setting.

Type-1 Transfer Neurons are Critical for Rea-
soning. Fig. 7 and Tab. 3 shows the intervention
results for questions of each language where the
model’s generated answer, under setup (a), exceeds
an F1 score of 0.5. This allows us to examine how
interventions in neurons affect questions that the
model is originally able to answer to some extent.
As indicated, although the number of deactivated
Type-1 neurons is very small (only 0.2% of all
neurons), deactivating them causes a significant
degradation, while deactivating baseline neurons
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has almost no effect. These results suggest that
Type-1 neurons play an essential role in eliciting an
answer. This tendency was consistent across mod-
els. The results for other models and F1 threshold
can be found in Appendix J.1.

To further validate the influence of deactivat-
ing Type-1 neurons, we conducted the same ex-
periments on MMLU-ProX (Xuan et al., 2025), a
multilingual benchmark designed to evaluate com-
prehensive reasoning ability. The results are highly
consistent with the MKQA results reported above
and are provided in Appendix J.2.

7 Discussion, Future Studies and
Conclusion

Discussion 1: The Direction of Representa-
tional Transfer Suggests Language-Specificity of
Transfer Neurons. We surmise that the unique
direction of the representational shift is highly cor-
relate with the language-specificity of the transfer
neurons. That is, if the direction of the transfer (i.e.,
the direction of the target latent space) is language-
specific, the neurons which strongly facilitate the
representational shift towards the direction tend
to be language-specific. This explains why most
Type-1 neurons are less language-specific, while
Japanese Type-1 neurons and Type-2 neurons are
more likely to be language-specific, as discussed
in §6.1 and Appendix H.4. In our hypothesis il-
lustrated in Fig. 1, Type-1 neurons share the same
target latent space (i.e., the English latent space).
Consequently, as representations move closer to
the English latent space towards the middle layers,
languages exhibit greater overlap in Type-1 neu-
rons as indicated in Figs. 8 and 34, revealing their
language-agnostic nature.

Discussion 2: The Difference between Trans-
fer Neurons and Language-Specific Neurons.
As mentioned in §2.1, although language-specific
neurons and regions were discovered in previous
studies, their functional role was not clearly iden-
tified. In contrast, our work empirically proves
(i) certain neurons facilitate the movement of hid-
den states between language latent spaces, and (ii)
some of the transfer neurons we identify tend to
be language-specific (e.g., most Type-2 neurons),
while others tend not to be (e.g., most Type-1 neu-
rons). Therefore, it is highly likely that some of the
language-specific neurons discovered in previous
studies correspond to the Type-2 neurons identified
in our work. However, our analysis goes further by

LLaMA3-8B

— janl
ja-ko
— ja-it

0.8

Jaccard Index

o
IS
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Figure 8: Overlap ratio of Type-1 transfer neurons
across language pairs and decoder layers (LLaMA3-
8B). The higher the value on the vertical axis, the greater
the overlap of neurons across languages.

also identifying Type-1 neurons and non-language-
specific Type-2 neurons, which were not captured
in the previous studies. The reason why not all
transfer neurons are fully language-specific, is that,
as discussed in Discussion 1 above, the trajectories
for representational transfer can be partly shared
by languages especially those with linguistic and
spacial proximity. This might be the rationale for
language-family specificity of transfer neurons.

Future Studies. We argue that transfer neurons
play a central role in reasoning and cross-lingual
transfer between high- and low-resource languages
in multilingual LLMs. A practical implication is to
exploit these neurons to enhance multilingual abil-
ity: after multilingual pretraining, selectively fine-
tuning transfer neurons could better align hidden
states of low-resource languages with the English-
centric latent space where reasoning occurs. Such
alignment may allow low-resource languages to
leverage conceptual and structural representations
learned from high-resource languages, thereby im-
proving multilingual performance.

Conclusion. In this study, we proposed and em-
pirically validated the Transfer Neurons Hypoth-
esis. We provided evidence for language-specific
latent spaces and a shared semantic latent space,
identified transfer neurons highlighting their lan-
guage and language family specificity, and showed
that transfer neurons are essential for reasoning.
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Limitations

Linear Transformation as Representational
Transfer. Throughout the series of experiments,
we hypothesize that neurons in the MLP module
are responsible for transferring internal represen-
tations to and from a shared semantic latent space.
As described in Egs. 1 and 2, the MLP computation
ultimately reduces to a weighted sum of activations
and their corresponding value vectors in down pro-
jection matrix. Therefore, when considering only
the MLP module, the transformation between la-
tent spaces can be interpreted as a parallel shift (i.e.,
vector summation). This implies that our analysis
is limited to linear transformations in the represen-
tational space. We did not consider other modules
that might induce alternative types of vector move-
ments, which may represent a limitation of this
study.

Other Languages and Datasets. In this study,
we used three LLMs and validated four languages
for each model, including both those with lin-
guistic proximity to English (i.e., Dutch and
Italian) and those without such proximity (i.e.,
Japanese and Korean). As sentence datasets, we
primarily employed tatoeba (Tiedemann, 2020) and
MKQA (Longpre et al., 2021) for neuron detection
and validation. Although we believe the settings
demonstrate the generalizability of our findings
well, other types of languages and datasets (e.g.,
those involving longer input sentences) warrant fur-
ther investigation.
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A Experimental Settings

Models. Throughout the experiments in this
study, we used LLaMA3-8B(Grattafiori et al.,
2024), Mistral-7B(Jiang et al., 2023), and Aya
expanse-8B(Dang et al., 2024).

Datasets. For the similarity measurements in §5,
we used the Tatoeba parallel corpus (Tiedemann,
2020). This dataset was also used to investigate the
language and language-family specificity of trans-
fer neurons in §6, by randomly sampling sentences
for each language.

For the QA task and the dimensionality reduc-
tion presented in §3.1 and Appendix F, we used the
MKQA dataset (Longpre et al., 2021).

For similarity measurements of hidden states
and activation patterns, computation of centroids
of each latent spaces, identifying transfer neurons,
applying PCA to hidden representations, and in-
vestigating language specificity of transfer neurons,
we sampled 1k sentences per language. Finally, for
SVD experiments described in §3.2, we sampled
1k hidden states per layer and per language using
MKQA sentences.

Train-Test Split for Identifying and Controlling
Transfer Neurons. We split the sentence data
into a 50:50 ratio (train:test), using 1k samples
for each split (2k samples in total) to identify and
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Figure 9: Similarity between layer-wise trajectories
and linear path from decoder layer 1 to the middle
layers for the centroid of the English latent space.

deactivate transfer neurons. In other words, the sim-
ilarity re-measurements described in §5 were con-
ducted using sentences different from those used
to identify the transfer neurons, in order to prove
their generalization performance. We believe that
this setting further strengthens the reliability of our
findings.

Representations. Throughout the experiments,
we extracted representations corresponding to the
final token of each input, reflecting our focus on
sentence-level rather than word-level semantic pro-
cessing.

Computational Resources. We conducted the
experiments using NVIDIA A40 (48 GB), A100
(40 GB), and H200 (141 GB) GPUs. However, all
experiments are reproducible on a single A100, and
the majority can be executed with a single A40.

B Trajectory of the English Latent Space
Moving towards Middle Layers

Computational Settings. Does English latent
space move towards the middle layers in a linear
or non-linear manner? To answer this question, we
computed the similarity between a linear trajectory
and actual layer-wise trajectory of centroid of the
English latent space across layers.

If the similarity is high, it indicates that the
layer-wise trajectory closely follows a linear path,
suggesting that the representations move almost
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linearly towards a target convergence point in the
middle layers, where semantic processing and rea-
soning primarily occur. On the other hand, if the
similarity is relatively low, it indicates that the rep-
resentations move non-linearly.

Computations are as follows:

P,=C"-Cl (10)
T!, =C.L -Cl', 1e{2,...,m} (D
Sim_score! = cos(T!,, Puy) (12)

where P,, denotes a vector expressing the linear
path of the centroid of the English latent space
from decoder layer 1 to layer m (the middle layer).
It is defined as the difference vector between the
centroid at layer m, C[?, and the centroid at layer 1,
C.,. A vector T! represents the actual trajectory
step of the centroid of the English latent space
between layer [ — 1 and layer [. As we mentioned,
the higher the similarity score (Sim_scorel), the
more linearly the centroid moves in hidden state
space from layer [ — 1 to layer [, indicating that the
internal representations move linearly towards the
target convergence point in the middle layers. To
the contrary, lower scores across layers indicates
that the representations move non-linearly.

Based on the observations from hidden states
and activation patterns similarity (Figs. 10 and 11),
kernel-based similarity (Fig. 4 in §3.3 and Fig. 19
in Appendix E), and PCA visualization of language
latent spaces (Figs. 16 and 17), we set m to 10 rep-
resenting middle layer where each language latent
spaces aligns well.

English Latent Space Transitions Non-Linearly
towards Middle Layers. Fig. 9 present the re-
sults. As indicated, English latent space move non-
linearly, and this tendency is highly consistent with
all the models adopted in this paper.

Based on this observation, we adopt the layer-
wise centroid, C, as the target centroid to detect
transfer neurons with Egs. 7 and 8 in §4.3. This
is because using the centroid of a specific layer
instead of layer-wise centroids could significantly
hinder the effective identification of neurons that
contribute to the shift of representations towards
the moving English latent space, given that English
latent space moves non-linearly.

C Similarity and Linear Separability of
Internal Representations

C.1 Similarity of Hidden States and
Activation Patterns for Parallel Sentences
across Languages

Similar Hidden States for Similar Semantics in
Middle Layers. To quantitatively investigate the
similarity of hidden states across languages, given
{(st, )}V ., a set of I-th layer hidden states for

i bi) Si=1-
parallel sentences, and {(u}, v!)}¥,, the ones for

1) 7
non-parallel sentences, we show the difference be-
tween >, cos(st,t!) and & 3", cos(ul, vl) at
each layer in Fig. 10. The w; are fixed to the set
of hidden states for English sentences. Clearly,
models process similarly for parallel sentence
pairs compared to non-parallel ones, especially
in the middle layers. The relatively pronounced
divergence in similarity between parallel and non-
parallel ones observed in the middle layers sug-
gests that, at these stages, the inputs are processed
within a shared semantic latent space, wherein se-
mantically similar sentences are more likely to be
mapped to proximate locations. On the other hand,
the relatively small divergence observed in the ini-
tial and final layers might be attributed to the model
operating within language-specific representational
latent spaces at these stages, where the primary fo-
cus is on processing the input and generating the
output in the specific language. We found that this
tendencies are consistent across other pair patterns
and models.

Similar Activations for Similar Semantics in
Middle Layers. Interpreting the MLP as key-
value memory, activation values reflect how
strongly the model accesses value vectors, which
encode concepts across languages (Geva et al.,
2021, 2022; Dai et al., 2022; Chen et al., 2024).
From this perspective, relatively high similarity in
activation patterns for parallel sentences compared
to non-parallel ones suggests the model encodes
similar concepts across languages, supporting the
existence of a shared semantic latent space.

Fig. 11 show the similarity of the activation pat-
terns across layers with the same inputs as similar-
ity measurement of hidden states, which is calcu-
lated as 3; >, cos(atl, ;, af , ;) where o denotes
the activation values vector in [-th layer described
in Eq. 2, and n represents the number of sample
sentence pairs. L2 denotes the languages other than
English. Similar to the results for hidden states sim-
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Figure 10: Similarity of hidden states across layers.

ilarity, the difference in similarity between parallel
and non-parallel inputs is particularly prominent
in the middle layers, supporting the existence of a
shared semantic latent space. This tendency is con-
sistent across other language pairs and models, and
it also aligns with the findings of Zeng et al. (2025),
despite differences in experimental settings.

C.2 Investigating Linear Separability between
Parallel and Non-Parallel Inner
Representations with Logistic Regression
Model

To investigate linear separability between paral-
lel and non-parallel pairs of representations, we
trained a logistic regression model on the hidden
representations from each layer. For each sentence
pair (parallel or non-parallel), the input features
were constructed by concatenating their hidden
states. Parallel pairs were labeled as 1, and non-
parallel pairs as @ (1000 samples for label 1 and
label 0, respectively). We employed stratified
10-fold cross-validation to ensure balanced evalu-
ation across classes. As shown in Fig. 12, except

for the initial few layers, most layers achieve an
test accuracy of approximately over 70%. More-
over, we observe that layers with higher similarity
between hidden language latent spaces — where
the shared semantic latent space appears to exist, as
shown in Figs. 4, 18, and 19 — tend to yield higher
classification accuracy. This result suggests that
the model can effectively classify whether a pair
of input sentences in two languages is parallel or
non-parallel in the middle layers. This results also
support the existence of a shared semantic latent
space in middle layers.

D Latent Space Property of Hidden States

D.1 Dimensionality of Latent Spaces Across
Layers

Fig. 13 shows the estimated dimensionality (i.e,
the number of orthonormal basis) of the latent
space across languages and layers. As shown, each
language latent spaces has lower dimensionality
than that of hidden states, indicating they are latent
spaces in the hidden state space.
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Figure 11: Similarity of activation patterns in MLP module across layers.

D.2 Distance among Language Latent Spaces

To quantitatively demonstrate the spacial transition
phenomena and measure distance among language
latent spaces, we compute cos(C}, , Cl, ), where
both Cil and C’IZJ2 are the centroid of each latent
space computed by Eq. 5.

Figs. 14 and 15 show the results. As indicated,
these results are well align with the hypothesis
shown in Fig. 1 (a): in the initial and final few lay-
ers, language latent spaces remain relatively distant
from each other, while they become closer in the
middle layers where language-agnostic semantic
processing and reasoning are mainly occurred.

E Mutual k-Nearest Neighbor Alignment
Metric

E.1 Formalization of the Computation for
Mutual k-NN Alignment Metric across
Layers and Input Language Pairs

This metric was originally for computing the sim-
ilarity between representations formed by seman-
tically equivalent inputs from different modalities,

each residing in separate model spaces. In our set-
ting, however, we adapt it to compare hidden latent
spaces formed by different input languages within
a single model, allowing us to assess kernel-based
layer-wise similarity between language-specific la-
tent spaces (English—L.2). Building on Huh et al.
(2024), we adjust the computation as follows:

Let f be a single model (LLM), and let x; and y;
denote an English sentence and its corresponding
sentence in another language (L2), respectively,
both expressing the same meaning.

(13)

W= f(yh)

where ¢, 1! are hidden states in (-th layer. Collec-
tion of these representations are denoted as:

' = {4}, ... 8}
U= (g, b}

Then for each representations pair {¢!, 1!}, we
compute the respective nearest neighbor sets S ((bﬁ)

(14)

(15)

(16)
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Figure 12: Test accuracy of logistic regression model trained on parallel semantic features and non-parallel
semantic features for each layer. The y-axis indicates the language pairs, and the x-axis denotes the layer indices.

and S(1!):
oo (0, D\ @) = S(4)) (17)
i (W1, UN\PH) = S(4) (18)

where d{mn returns the set of indices of its k-nearest
neighbors. Finally, we measure its average inter-
section via:

(6l vh) = LIS NSEhl 19)

where | - | is the size of intersection.

E.2 Result of Mistral-7B

The left column of Figs. 19 and 18 show the result
of computing the mutual k-NN alignment metric
across layers of the models including Mistra-7B.
As shown, we obtain results of Mistral-7B simi-
lar to those of LLaMA3-8B and Aya-expanse-8B
(Fig. 4). Additionally, inputs from languages that
belong to language families relatively close to En-
glish (Dutch, Italian) tend to form more similar
latent spaces compared to those that do not.

F Visualization of Language Latent
Spaces

Figs. 16 and 17 present the results of PCA applied
to the hidden language representations across lay-

ers of models.

G Detecting and Controlling Transfer
Neurons

G.1 The Definition of Neurons in This Study

While several studies (Suau et al., 2022; Tang et al.,
2024; Wang et al., 2024; Hiraoka and Inui, 2025;
Mondal et al., 2025) have investigated neuron-level
analysis or identification in LLMs, these studies
primarily regard the output of the non-linear activa-
tion function as activation values and treat them as
the fundamental unit of neurons. Throughout the
experiments in this study, however, we defined neu-
rons as the activation values o} denoted in Egs. 1
and 2 (i.e., the output of element-wise product).
We adopted this definition because, even when the
output of the activation function is large, the actual
activation value aé can be small depending on the
output of the up projection, given that the mod-
els we adopted has a gated-MLP. As a result, the
impact on subsequent neurons may be attenuated,
which renders aﬁ a more appropriate indicator of
neuron activity in the context of our analysis.

31757



LLaMA3-8B - 90% Variance

L1LaMA3-8B - 95% Variance

11aMA3-8B - 99% Variance

500
Language 600 800
8 ja |2 2 700
400
§ — nl E:) 500 Langui.ige é 600 Langua}ge
s} — S 400 a 5] a
g 300 ko 8 J 2 500 -~
] — it ] S nl 100 — nl
S 200 o —— ko 1] — ko
en
o R — it O 300 it
* 100 * 00
100 — en — en
100
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layers Layers Layers
Mistral-7B - 90% Variance Mistral-7B - 95% Variance 900 Mistral-7B - 99% Variance
500
600 800
2 400 2 2 200
g Language qa) 500 Language g 600 Language
E 300 ja g 400 ja 8 ja ——\
2, - o 8,500
g —nl Saoo) — Ml £ 100 —nl
Q2001 i 53 — ko =3 — ko
) . O 200 : O 300 -
4 1001 7 it 3 7= At # 200 =t
— en 100y —— en — en
0 100
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layers Layers Layers
Aya-8B - 90% Variance 200 Aya-8B - 95% Variance Aya-8B - 99% Variance
900
0 5% © 600 «n 800
= =1 = = 700
e 4001 Language — ) 500 Language = 0 8 Language ~——
2,300 7 8,400 - 8~500 ;
] — nl g — nl £ — nl
G200 — ko 8 300 — ko Gao — ko
— it 200 ——-it 300 — it
# 100 3# #*
— en 100 — en 200 — en
[) 5 10 15 20 25 30 [} 5 10 15 20 25 30 0 5 10 15 20 25 30
Layers Layers Layers

Figure 13: Estimated dimensionality of latent spaces across layers (LLaMA3-8B, Mistral-7B, and Aya expanse-
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G.2 Deactivating Type-1 Transfer Neurons

G.2.1 Kernel-Based Similarity between
Latent Spaces

The middle columns of Figs. 18 and 19 presents
the results of kernel-based similarity between En-
glish and L2 latent spaces while deactivating top-
1k Type-1 neurons, computed using the Mutual .-
NN Alignment Metric formalized in Appendix E.1.
As shown, deactivating the top-1k Type-1 neurons
leads to a substantial drop in similarity, particularly
in the middle layers where similarity originally
peaked — suggesting the presence of a shared se-
mantic latent space. This also suggests that the
Type-1 neurons identified in §5 play a pivotal role
in shifting representations towards this shared la-
tent space. As explained in §5.2, we surmise that
the relatively high remaining similarity in the en-nl
(Dutch) and en-it (Italian) settings — even after
deactivating Type-1 neurons — suggests that their
specific latent spaces are already close to each other
in even early layers, as shown in the PCA results

(83.1).

G.2.2 Hidden States and Activation Patterns
Similarity

Figs. 20, 21, and 22 illustrate the similarity of hid-

den states across all models when the top 1k, 3k,

and 5k Type-1 neurons are deactivated. Similarly,

Figs. 23, 24, and 25 present the corresponding sim-
ilarities in activation patterns.

G.2.3 Quantitative Distance among Language
Latent Spaces

Figs. 26 and 27 show the distance among centroids
of language latent spaces with Type-1 neurons deac-
tivated. As shown, deactivation of Type-1 neurons
hinder the movements towards English latent space
significantly, compared to those of deactivation of
randomly sampled neurons (baseline). This ten-
dency is consistent across languages and models.

G.3 Deactivating Type-2 Transfer Neurons

G.3.1 Deactivating Type-2 Transfer Neurons
Significantly Inhibit Spatial Transition
from the Shared Semantic Latent Space
to the Language-Specific Latent Spaces

Fig. 28 and 29 show the results of PCA applied to
hidden representations specific to each language,
while deactivating top-1k Type-2 neurons (English
features are the only ones visualized without in-
tervention). As shown, although only 0.2% of all
neurons in the model were deactivated, the deacti-
vation caused a significant delay in the movement
of representations towards each language-specific
latent space — especially in the final layers where
most Type-2 neurons reside — compared to the
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baseline (i.e., deactivating the 1k neurons randomly
sampled from the same layers as the Type-2 neu-
rons). These results support the functional impact
of the detected Type-2 neurons.

G.3.2 Quantitative Distance among Language
Latent Spaces

Figs. 30 and 31 show the distance among centroids
of language latent spaces while deactivating Type-2
neurons. As indicated, deactivating Type-2 neurons
significantly inhibit the movements towards each
language specific latent space in final layers. This
observation is well aligned with the PCA visualiza-
tion while deactivating top-1k Type-2 neurons, as
presented in Appendix G.3.1 above.

H The Nature of Transfer Neurons

H.1 Distribution

Figs. 32 and 33 show the distribution of Type-1 and
Type-2 neurons.

H.2 Overlap Ratio of Transfer Neurons

Type-1 Transfer Neurons. Fig. 34 shows the
overlap ratio (i.e., Jaccard Index) for Type-1 neu-
rons across language pairs for Mistral-7B and Aya
expanse-8B. As indicated, their overlap ratio in-
crease as language representations move closer to
each other towards the shared latent space in mid-
dle layers.

Type-2 Transfer Neurons. Fig. 35 shows the
overlap ratio (i.e., Jaccard Index) for Type-2 neu-
rons across language pairs for all the models. As
shown, their overlap ratio decrease as language rep-
resentations move to each language-specific latent
space for output generation.

H.3 Detecting Language-Specific Neurons

Building on the method proposed by Kojima
et al. (2024), we independently identify language-
specific neurons. Kojima et al. (2024) detected
such neurons by computing the Average Precision
(i.e., Area Under the Precision-Recall Curve) be-
tween each neuron’s activation — defined as the
output of the non-linear activation function in the
MLP module — and language-labeled sentences’.
Sentences in the target language were labeled as
1, and those in other languages were labeled as
0. They defined both the top-1k and bottom-1k

(2k neurons in total) neurons in the score ranking

"This method was originally proposed by Suau et al.
(2022).

as language-specific neurons, considering not only
those positively correlated with the target language
but also those negatively correlated.

However, their method is ambiguous regarding
how many neurons should be selected from the top
and bottom rankings. Therefore, in our approach,
we adopt the Correlation Ratio (Appendix H.6) in-
stead of Average Precision as a metric, as it allows
us to capture both positive and negative correla-
tions simultaneously, with a single explicit value
for each neuron that reflects the strength of the
correlation.

Let S be the set of all sentences across all lan-
guages, i.e., the union of English, Japanese, Dutch,
Korean, and Italian sentence sets:

S = {Senvsja7Sn17Sk07Sit} (20)

Each language contains 1k sentence samples (Sk
in total). For instance, to detect Japanese-specific
neurons, we assign label1 to all 1k Japanese sen-
tences and label® to sentences from all other lan-
guages. Then, for each neuron, we compute the
correlation ratio between its activation values and
the labels of the Sk sentence samples.

Figs. 36, 37, and 38 show the distribution of de-
tected language-specific neurons. As shown, the
stronger the correlation between a neuron’s acti-
vations and the target language labels, the more it
tends to be located in the initial and final layers.
This tendency is well aligned with the findings of
previous studies. Also, as we described in §5.1,
their distribution is similar to those of transfer neu-
rons.

H.4 Language Specificity

Tabs. 4, 5, and 6 present the correlation ratios of
transfer neurons with respect to language speci-
ficity across all models. The computation settings
follow those described in §6.1.

H.5 Language-Family Specificity
H.5.1 Jaccard Index across Language Pairs
Tabs. 7, 8, and 9 show the Jaccard Index of transfer

neurons for each language pair, representing the
degree of overlap in neurons between pairs.

H.5.2 Correlation Ratio for Language-Family
Specificity

To investigate language-family specificity from an-

other perspective of view, we computed the corre-

lation ratio by assigning label1 to sentence pairs
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Top-1000 ja nl ko it Top-100 ja nl ko it
Type-1 TN [0.16 0.03 0.05 003 Type-1TN [0.16 0.02 0.05 0.03
Type2TN |005] [0B3] |07 006 mpe27TN [EO B PE§ |00
Top-10 ja nl ko it

Type-1 TN 001 001 003

Type2 TN on 0% o,
Table 4: Correlation ratio of top-10, top-100, and top-1k Transfer Neurons for language specificity (LLaMA3-
8B). Typically, a correlation ratio above 0.1 indicates a correlation, above 0.25 indicates a moderately strong
correlation, and above 0.5 indicates a strong correlation.

Top-1000 ja nl ko it Top-100 ja nl ko it
Type-1 TN | 0.17 0.03 0.06 0.03 Type-1TN [0.18 0.03 0.08 0.03
Type-2 TN - - 0.11 0.18 Type-2 TN - - - -
Top-10 ja nl ko it

Type-1 TN 002 007 003

Type-2 TN

Table 5: Correlation ratio of top-10, top-100, and top-1k Transfer Neurons for language specificity (Mistral-

7B).

that largely belong to the same language family,
and label® to all others, following the settings de-
scribed in Appendix H.3. In this experiment, we
consider English, Dutch, and Italian as belonging
to the same language-family, whereas Japanese and
Korean are grouped into another language-family.
Tabs. 10, 11, and 12 present the results. Language-
family specificity was particularly evident in Type-
2 neurons.

H.6 Correlation Ratio

Correlation ratio is a well established statistical
measure of association between categorical and
quantitative variables. It is computed as follows:

Sp

= — 21
Sw + S @h

corr ratio(n?)
where Sp (between-group sum of squares) mea-
sures the variance between label means, and Sy
(within-group sum of squares) measures the vari-
ance within each label.

That is, in our case, neurons that tend to exhibit
similar activation patterns for sentences within the
same label (i.e., language or language-family), and
distinct patterns for sentences with different labels,
receive higher correlation ratio scores.

H.7 Hypothesis Testing for Reported

Correlation Values

To verify the reliability of the correlation ratio
scores reported in the series of experiments in
this study, we perform hypothesis testing using

Analysis of Variance (ANOVA). ANOVA is a sta-
tistical method used to determine whether there
are significant differences between the means of
multiple groups.

That is, in our context, we test whether there are
significant differences in the activation values of
each transfer neuron depending on the label (i.e.,
language or language family). Note that each trans-
fer neuron has p value.

We present proportions for both Type-1 and
Type-2 neurons whose activations meet following
conditions: (i) statistically significant (p < 0.05)
and (ii) correlation ratio exceeds 0.1 (meaningful
correlation) and 0.25 (moderately strong correla-
tion). The results for language specific correlation
are shown in Tabs. 13, 14, 15, and 16. As presented,
the proportions are well aligned with the results
of correlation analysis in this paper, which shows
Type-1 neurons generally do not exhibit correlation
(except for Japanese ones), whereas most Type-2
neurons exhibit correlation with input languages.

We also present the results for the same testing
method for the correlation with language-family
specificity in Tabs. 17, 18, 19, and 20.

Additionally, as shown in Fig. 39, it turned
out that approximately 80-95% of top-1k transfer
neurons are statistically significant, which further
strengthen our correlation analysis.

Furthermore, we conducted a Mann—Whitney U

test as a non-parametric test under the same set-
tings described above. While ANOVA relies on
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Top-1000 ja nl ko it Top-100 ja nl ko it
Type-1 TN 0.02 0.05 0.03 Type-1TN 0.02 0.03 0.02
Type-2 TN 053 (017 |08 Type2TN 037 040 036
Top-10 ja nl ko it

Type-1 TN 003 003 002

Type2 TN 050 0 om

Table 6: Correlation ratio of top-10, top-100, and top-1k Transfer Neurons for language specificity (Aya

expanse-8B).

ALL ja-nl

ja-ko

nl-it ja-it nl-ko it-ko

Type-1TN 030 039 051
Type-2TN 0.12 023 037

075 041 050 051
051 026 028 0.30

Table 7: Jaccard index for top-1k Transfer Neurons across language pairs. (LLaMA3-8B).

the Central Limit Theorem, assuming that, in our
case, the distribution of the mean activation val-
ues of transfer neurons converges to a Gaussian
distribution. Although it is likely that the mean ac-
tivations follow the theorem, we also performed the
non-parametric Mann—Whitney U test to validate
our findings since activation values are outputs of
non-linear functions. As a result, it yielded results
that were highly consistent with those of ANOVA,
further enhancing the reliability of our analysis.

I The Effects of Transfer Neurons on
Internal Representations under
Cross-Lingual Deactivation

Experimental Setup. To analyze cross-lingual
effects of transfer neurons in hidden state space,
we compute the centroids of L2 hidden states
(L2 latent space) at each layer: (i) CIZJQ: without
any deactivation, (ii) CISLITN : with L1 transfer
neurons deactivated, and (iii) Ci;LQTN: with L2
transfer neurons deactivated. We then compute
cos(Cl,, CLM ™) to assess the effect of cross-
lingual deactivation on both types of neurons, using

cos(Cl,, CIZJELQTN) as a reference point.

Results. We report the results for final layer of
each type of neurons (i.e., 20th layer for Type-1
neurons and final layer for Type-2 neurons) for
LLaMA3-8B, Mistral-7B, and Aya expanse-8B
across all the languages in Tabs. 21, 22, and 23.
Deactivating Type-1 neurons for L1 had a similar
impact as the L2 deactivation baseline, indicating
that these neurons have a noticeable effect on the
hidden state dynamics of L2 inputs. This aligns
with our finding in §6.1 that Type-1 neurons are less
language-specific. On the other hand, deactivating
Type-2 neurons for L1 had a much smaller impact

compared to the L2 deactivation baseline, indicat-
ing that these neurons have little to no influence on
the hidden state dynamics of L2 inputs. A limited
degree of influence was observed in cases where
the target latent spaces of L1 and L2 were spatially
close (e.g., L1 = Dutch and L2 = Italian). This
is consistent with our finding in §6.1 that Type-2
neurons are more language-specific.

J Downstream Reasoning Tasks while
Deactivating Transfer Neurons

J.1 Multilingual Knowledge QA (MKQA)

Figs. 40, 41, and 42 and Tabs 24, 25, 26, 27, and 28
show all the results for MKQA task described in
§6.2. As shown, the results are highly consistent
with those reported in §6.2.

J.2 MMLU-ProX

Tabs. 29, 30, 31, 32, 33, 34, 35, 36, and 37 present
the results of MMLU-ProX under the same set-
tings as MKQA task, as described in §6.2 and Ap-
pendix J.1. These are the results for Japanese, Ko-
rean and French. While our original experiments
used Japanese, Korean, Italian, and Dutch, the eval-
uation tool used in the original paper (Xuan et al.,
2025)3 have limited language coverage. Therefore,
we report results for Japanese and Korean, and ad-
ditionally include French as a linguistically closer
language to English such as Italian and Dutch. As
shown, deactivating top-1k Type-1 neurons signifi-
cantly degrade performance, whereas deactivating
a baseline set of 1k randomly sampled neurons
(from the same layers as the Type-1 neurons) re-
sults in negligible change compared to the orig-

8https://github.com/EleutherAl/
Im-evaluation-harness
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ALL ja-nl

ja-ko

nl-it ja-it nl-ko it-ko

Type-1TN 030 042 048
Type-2TN  0.09 0.18 031

075 043 054 052
042 019 026 0.29

Table 8: Jaccard index for top-1k Transfer Neurons across language pairs. (Mistral-7B).

ALL ja-nl

ja-ko

nl-it ja-it nl-ko it-ko

Type-1 TN 030 042 046
Type-2TN 008 0.18 031

075 040 055 053
035 0.18 022 021

Table 9: Jaccard index for top-1k Transfer Neurons across language pairs. (Aya expanse-8B).

inal states (w/o intervention). These results are
consistent with the results of MKQA task, further
highlighting the critical role of Type-1 neurons in
reasoning.

J.3 Open-Ended Text Generations while
Deactivating Transfer Neurons

To evaluate the models’ generation quality while
nullifying the influence of top-1k transfer neurons
during the generation process, we use PolyWrite (Ji
et al., 2025), a multilingual open-ended generation
task with no single correct answer. The following
are some example questions in English.

¢ Describe a day on Earth where gravity

suddenly reverses for a few hours.

How do people and animals react?

e Create a character who was once a hero
but has become a villain due to a
tragic misunderstanding.

e Write an email to your supervisor
asking for feedback on a recent report
you submitted. Express your interest
in improving your work and ask for
specific suggestions.

We manually evaluate the quality of 50 generated
texts for each language under the following settings:
(a) without any intervention, (b) with top-1k Type-1
neurons intervention, and (c) with top-1k Type-2
neurons intervention. The evaluation, conducted by
the authors, focus on how interventions in settings
(b) and (c) alter the generated outputs compared to
setting (a)’. We conduct generations under greedy
decoding to compare outputs before and after the
intervention.

°The authors are not proficient in Dutch, Korean, and Ital-
ian; However, we still made an effort to assess outputs of these
languages by using machine translation.

Top-1k Type-1 Neurons Deactivated.

* LL.aMA3-8B: Generated gibberish, suggest-
ing that the model is no longer capable of
reasoning or producing coherent output. This
effect was consistent across languages.

* Mistral-7B: Fluency degrades, but not to
full gibberish. In Italian, repetition spikes
markedly and unique sentence variety drops,
indicating looping and reduced coherence. In
Dutch, outputs shorten with more line breaks
and fewer unique sentences, suggesting frag-
menting/early truncation. In Japanese and Ko-
rean, mild increase in repetition with overall
structure mostly intact.

* Aya expanse-8B: Generally stable and coher-
ent across languages with mild regression.
Italian and Dutch keep length and repeti-
tion near normal but lose sentence variety.
Japanese shows more line breaks and higher
repetition, less fluent. Korean is close to nor-
mal with a small drop in variety.

Top-1k Type-2 Neurons Deactivated.

* LL.aMA3-8B: Although it produced gibber-
ish for many samples (similar to when Type-
1 neurons were deactivated), in some cases
it generated coherent text in other languages
(e.g., English), different from the input lan-
guage, yet still aligned with the question con-
text. We show an example in Tab. 38. This
phenomena support the fact that Type-2 neu-
rons critically move internal reasoned repre-
sentations to the latent space of output lan-
guage in model space.

* Mistral-7B: A moderate decline in fluency
is observed. In Italian, this manifests as in-
creased looping and reduced sentence vari-
ety, while in Dutch the generations tend to be
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Top-1000 ja nl ko it Top-100 ja nl ko it
Type-1 TN | 0.14 0.08 0.11 0.08 Type-1TN [0.15 0.11 0.12 0.11

ooerrs O W [ S wer B BN B G
n 0 it

Top-10 ja L L .
Type-1 TN 0.10 0.04 0.13
Type2 TN o085 03 om

Table 10: Correlation ratio of top-10, top-100, and top-1k Transfer Neurons for language-family specificity
(LLaMA3-8B). Typically, a correlation ratio above 0.1 indicates a correlation, above 0.25 indicates a moderately

strong correlation, and above 0.5 indicates a strong correlation.

Top-1000 ja nl ko it

Top-100

ja nl ko it

Type-1TN [0.13 008 0.0  0.07
Type-2 TN - 0.17 0.17 0.16

Type-1 TN 0.6 010 0.5  0.10

Type-2 TN - - - -

Top-10 ja nl - ko it
Type-1 TN 0.16 0.14 0.14

weeery [ SN R

Table 11: Correlation ratio of top-10, top-100, and top-1k Transfer Neurons for language-family specificity

(Mistral-7B).

shorter, more fragmented, and frequently cut
off prematurely. Nevertheless, the model oc-
casionally produces coherent text in another
language. For instance, Table 39 presents a
case where the output switches from Italian to
English.

* Aya expanse-8B: Although severely broken
sentences are less likely to be generated com-
pared to the other two models, the outputs
tend to contain many repetitions. However,
in a subset of samples, the model (1) gener-
ated answers in another language that were
well aligned with the input question, or (2)
produced answers in a code-switching—like
form, combining the input language with an-
other language. Some examples are shown in
in Tabs. 40 and 41.

Overall, for Type-2 neurons, certain samples
yielded answers in a different language than those
in the without-intervention setting, yet the re-
sponses remained coherent with the input question.
In particular, the generated language tended to be
linguistically proximate to the input language (e.g.,
input: Italian — output: English; input: Japanese
— output: Chinese). These results in line with
the PCA visualization of the geometry of language
latent spaces in the hidden state space, where la-
tent spaces corresponding to linguistically related
languages remain closely clustered when the top-
1k Type-2 neurons are deactivated (see Figs. 28
and 29).

K Statements

K.1 License for Artifacts
Models.

e LLLaMA3-8B: License for Llama family
e Mistral-7B: apache-2.0
* Aya expanse-8B: cc-by-nc-4.0
Datasets.
e Tatoeba: cc-by-2.90
* MKQA: cc-by-3.0
* MMLU-ProX: MIT License
* PolyWrite: odc-by-1.0
Evaluation Tools.
* Im-evaluation-harness: MIT License

Consistency of Usage. All models, datasets and
a evaluation tool were used in accordance with their
original intended usage.

K.2 AI Agent Usage

Al agents were used for grammar checking during
the writing of this paper.
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Top-1000 ja nl ko it Top-100 ja nl ko it

Type-1 TN  0.11 0.07 0.08 007 Type-1TN [0.14 0.08 0.08 0.08
Type2TN  [0:19] 015 0.17 015 mpe2TN (088 088 088 055
Top-10 ja nl ko it

Type-1TN 0.10 [0.15 [0.15 [0.15

petl BB N

Table 12: Correlation ratio of top-10, top-100, and top-1k Transfer Neurons for language-family specificity

(Aya expanse-8B).

LLaMA3-8B Mistral-7B  Aya expanse-8B

Japanese
Dutch
Korean
Italian

0.433
0.300
0.337
0.297

0.412
0.261
0.305
0.253

0.386
0.245
0.287
0.254

Table 13: % of Type-1 Transfer Neurons with correlation ratio > 0.1 and p < 0.05

LLaMA3-8B Mistral-7B  Aya expanse-8B

Japanese
Dutch
Korean
Italian

0.624
0.635
0.556
0.631

0.615
0.559
0.484
0.507

0.530
0.379
0.471
0.390

Table 14: % of Type-2 Transfer Neurons with correlation ratio > 0.1 and p < 0.05

LLaMA3-8B Mistral-7B  Aya expanse-8B

Japanese
Dutch
Korean
Italian

0.203
0.094
0.136
0.089

0.188
0.076
0.125
0.066

0.155
0.064
0.098
0.065

Table 15: % of Type-1 Transfer Neurons with correlation ratio > 0.25 and p < 0.05

LLaMA3-8B Mistral-7B  Aya expanse-8B

Japanese
Dutch
Korean
Italian

0.413
0.377
0.345
0.383

0.363
0.232
0.254
0.221

0.282
0.165
0.233
0.144

Table 16: % of Type-2 Transfer Neurons with correlation ratio > 0.25 and p < 0.05

LLaMA3-8B Mistral-7B  Aya expanse-8B

Japanese
Dutch
Korean
Italian

0.433
0.300
0.337
0.297

0412
0.261
0.305
0.253

0.386
0.245
0.287
0.254

Table 17: % of Type-1 Transfer Neurons with correlation ratio > 0.1 and p < 0.05, Language-family label

LLaMA3-8B Mistral-7B  Aya expanse-8B

Japanese
Dutch
Korean
Italian

0.624
0.635
0.556
0.631

0.615
0.559
0.484
0.507

0.530
0.379
0.471
0.390

Table 18: % of Type-2 Transfer Neurons with correlation ratio > 0.1 and p < 0.05, Language-family label
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Figure 14: The distance among centroids of language latent spaces (LLaMA3-8B).

LLaMA3-8B Mistral-7B  Aya expanse-8B

Japanese
Dutch
Korean
Italian

0.203
0.094
0.136
0.089

0.188
0.076
0.125
0.066

0.155
0.064
0.098
0.065

0.4

0.2

-0.0

1.0

0.4

0.2

-0.0

1.0

0.4

0.2

-0.0

1.0

0.4

0.2

-0.0

1.0

0.4

0.2

-0.0

1.0

0.4

0.2

-0.0

Table 19: % of Type-1 Transfer Neurons with correlation ratio > 0.25 and p < 0.05, Language-family label
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Table 20: % of Type-2 Transfer Neurons with correlation ratio > 0.25 and p < 0.05, Language-family label

31766



Figure 16: The resutls of PCA applied to the hidden representations across layers (LLaMA3-8B).

Principal Component II

Figure 17: The resutls of PCA applied to the hidden representations across layers (Aya expanse-8B).
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Figure 18: Kernel-Based Similarity with Deactivation of Top-1k Type-1 Transfer Neurons (k=10). The middle
column presents the results after deactivating the top-1k Type-1 Transfer Neurons. The right column shows the
results after deactivating 1k randomly sampled neurons from the same layers as Type-1 neurons for a baseline, while
the left column shows the original results without any intervention.
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Figure 19: Kernel-Based Similarity with Deactivation of Top-1k Type-1 Transfer Neurons (k=5).
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Figure 20: Similarity of hidden states across layers while deactivating Type-1 Transfer Neurons (LLaMA3-8B).
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Figure 21: Similarity of hidden states across layers while deactivating Type-1 Transfer Neurons (Mistral-7B).

31770



en-ja
BN same semantics
0. mmm different semantics | 0.

en-ja L
BN same semantics EEE same semantics
s different semantics | 0.1 mmm different semantics | 0.8

. en-nl | en-nl

[
0. ‘

Cosine Sim
L e o o
g 8
Cosine Sim

I
Cosine Sim
L s o o o
g 8 R
Cosine Sim
.‘O e e =2 2
8 S 8 8

W same semantics

0. 0. -0.4 —0.4{ ™ different semantics
1 . 2 3 10 20 10 2 30 6 lb . 2 3
Layer index Layer index Layer index Layer index
(a) en-ja (b) en-ja (baseline) (c) en-nl (d) en-nl (baseline)
B en-ko L en-ko L en-it B en-it
W same semantics W same semantics W same semantics
0.3 mmm different semantics | 0.8 mmm different semantics | 0. mmm different semantics |
| |
g 0.4 ‘ g 0.6 g 0.1 g
0 o4 0 o4 N 04 %3]
Q @ (] Q
g 02 g 02 S 02 =1
=] =] & 5
1%] 1% %2} 1%
Q 00 Q 0.0 Q 00 Q
&) (&) &) &)
~0. -0. -0.
EEE same semantics
—=0.: =0. -0.4 different semantics
1 2 3 10 20 10 2 30 6 lb 2 3
Layer index Layer index Layer index Layer index

(e) en-ko (f) en-ko (baseline) (g) en-it (h) en-it (baseline)
(a) top-1000 (representing 0.2% of all neurons)
en-ja_ i N en-ja_ i N en-nl i en-nl

T 1.
EEE same semantics ‘ BN same semantics B same semantics
0. e different semantics | 0. mmm different semantics | 0. mmm different semantics | 0.8

0.6 | 0. |

[
0. ‘

0.4 0.4

0.2

Cosine Sim
Lo o o
g 8
Cosine Sim

s o
b
Cosine Sim
5 s o
g 8
Cosine Sim
o o o o
g § R 8

EEE same semantics

iy ~0. —04 _0.4| === different semantics
1 2 3 10 20 10 2 0 6 lb 2 3
Layer index Layer index Layer index Layer index

(i) en-ja (j) en-ja (baseline) (k) en-nl (1) en-nl (baseline)

| en-ko . en-ko | en-it | en-it
N same semantics EEE same semantics N same semantics ‘ ‘
0. - different semantics | 0.8 mm different semantics | 0. m different semantics | 08
[

0 0.6 0. 06 ]
g BE g g
N o4 0 o4 D 04 N 04
o [ [} o
g 02 g o2 g o2 g 02
=} =} =} H
1%} 1%} 1] 1%}
Q 0.0 Q 0.0 Q 0.0 Q 0.0
o &) &} O

0. -0 -o. 0.

=== same semantics

—0.: —0.: —0.4 —0.4{ ™ different semantics
1 2 3 1 20 3 10 2 30 l‘] l‘ﬂ 2 3
Layer index Layer index Layer index Layer index
(m) en-ko (n) en-ko (baseline) (o) en-it (p) en-it (baseline)
(b) top-3000 (representing 0.6 % of all neurons)
| en-ja i i N en-ja i i | en-nl i i | en-nl
’ W same semantics ’ ‘ = same semantics ’ W same semantics ’
0. mmm different semantics | 0. mmm different semantics | 0 W different semantics |
| |
é 0.1 é 0.6 g 0.1 ‘ é
0 o 0 04 N 04 %)
Q @ (] Q
g 02 £ 02 g o2 £
1%] 1% %2} 1%]
Q 00 Q 0.0 Q 0.0 Q
&) &) &) &)
=0.: =0. =0.:
EEE same semantics
—0.: -0.: —-04 —0.4{ W different semantics
1 2 3 10 20 3 10 2 30 6 1‘0 2
Layer index Layer index Layer index Layer index
(q) en-ja (r) en-ja (baseline) (s) en-nl (t) en-nl (baseline)
| en-ko_ i . en-ko. i | en-it i | en-it
BN same semantics BN same semantics : BN same semantics ‘ ‘
0.4 mmm different semantics | 0.8 mwm different semantics | 0.1 mmm different semantics | 0.8
E 0.4 i E 0.6 E 0.1 E 0.6 —
(75 0.4 (';J‘ 0.4 5 0.4 (;5 0.4
@ ) @ @
02 g 02 S 02 02
@ ) @ D
O 0.0 O 0.0 O 0.0 O 0.0
&) (&) &) &)
0. -0. -0. 0.

W same semantics

-0. =0.: -0.4 —0.4{ ™= different semantics
1 2 3 10 20 10 21 30 6 lb 2 3
Layer index Layer index Layer index Layer index
(u) en-ko (v) en-ko (baseline) (w) en-it (x) en-it (baseline)

(b) top-5000 (representing 1% of all neurons)

Figure 22: Similarity of hidden states across layers while deactivating Type-1 Transfer Neurons (Aya expanse-
8B).
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Figure 23: Similarity of activation patterns across layers while deactivating Type-1 Transfer Neurons
(LLaMA3-8B).
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Figure 24: Similarity of activation patterns across layers while deactivating Type-1 Transfer Neurons (Mistral-

7B).
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Figure 25: Similarity of activation patterns across layers while deactivating Type-1 Transfer Neurons (Aya

expanse-8B).

(b) top-5000 (representing 1% of all neurons)
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Figure 26: Distance among language latent spaces while deactivating Top-1k Type-1 Transfer Neurons
(LLaMA3-8B). Layer (Type-1) indicates the result of deactivating the top-1k Type-1 Transfer Neurons, whereas

“baseline” refers to the result of deactivating 1k randomly sampled neurons from the same layers as the Type-1
Transfer Neurons.
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Figure 27: Distance among language latent spaces while deactivating Top-1k Type-1 Transfer Neurons (Aya

expanse-8B).

31776

Ava expanse-8B - Layer 2

Aya expanse-8B - Layer 8

10 Aya expanse-8B - Layer 11

10

10

(Type-1)

0N 100 | 069

100
ko it en

ayer 6
(Type-1)

ja nl

Aya expanse-8B - Layer 9

0.59

ja nl ko en

layer 9

(Type-1)

I 100 056

56| 100 | 064
4| 100 00

003 1080 100 08
nl ko it en

: layer 12
(Type-1)

Aya expanse-8B - Layer 15

100 (088
0551 1.00 | 062
1.00 050

089 1.00 | 0.82

ja nl ko it en

ayer 15
(Type-1)

Aya expanse-8B - Layer 18

100 | 0:60

it en

layer 18
(Type-1)

Aya expanse-8B - Layer 20

I 100 [050

1.00
063 | 1.00 062

062 1.00

ayer 120
(baseline)

Aya expanse-8B - Layer 6

Aya expanse-8B - Layer 12

10

10

00

10

2
08

Aya expanse-8B - Layer 3 [f*°
layer 3
(baseline)
Aya expanse-8B - Layer 6 [*°
(baseline)
Aya expanse-8B - Layer 9 [Jf*°
ja nl ko it em g,
layer
(baseline)
Aya expanse-8B - Layer 12 [ *°
ja nl ko it en 00
ayer 12
(baseline)

er 15

nayé:r l 1 8
(baseline)



Layer 21 Layer 21 Layer 22 Layer 22

8 8.0
® Japanese 8.0) 60
= 80 ® Dutch o 60 = =
Z Korean S & Fhe
= =
§“ Italian g . S 40 § 20
ézu English l( ézﬂ g ézn é"’”
Sl § oo JE? AL S ‘@ﬁ S0
S0 5. % ® Japanese L. | T Japanese ggfy. |
g £ P o pun TWE 20 Dutch ~ WeEet || 57
£ Eaof W Korean £ Korean E oo
A 6o A Italian A Italian A o0 Italian
oo ® English 50 ® English h M ® English
VB"ED -40 20 00 20 40 60 80 100 -40_-20 00 _ 20 40 60 80 100 -6.0 -4.0 20 00 2.0 40 60 80 100 -6.0 40 20 00 20 40 60 80 100
Principal Component I Principal Component I Principal Component I Principal Component I
layer 21 (Type-2) layer 21 (baseline) layer 22 (Type-2) layer 22 (baseline)
e Layer 23 Layer 23 Layer 24 Layer 24
® Japanese ) 100 ® Japanese 100
= 75 ® Dutch =7 — s ® Dutch =
= : Korean | = 30 e b Korean 2
g s . & o =] g 50 e
g 50 Malon | & | I3 g so Italian g
é‘ . English | S i- S, 25 English 2 j
JrEy, £ o0 g £ o0
S oo =R S8 | S S W
) - G Japanese T = ® Japanese
s B 50 Dutch &7 £ 5ol @ Dutch
£ s - Korean £ 50 & Korean 3 .
A a Italian a [ Italian ey
75 -100) " ® English 7 1001 @ English e
S5 25 00 25 50 75 100 50 25 00 25 50 75 100 135 550 25 00 25 50 75 100 15 - 00
Principal Component I Principal Component I Principal Component I Principal Component I
layer 23 (Type-2) layer 23 (baseline) layer 24 (Type-2) layer 24 (baseline)
Layer 25 Layer 25 Layer 26 Layer 26
10,0 100 ® Japanese 100
= 7 = = 100 il ® Dutch =
= ek - =
= = = R Korean g2
g g = § 0 Italian 2 % E
é 25 é S English é. i
£ : 0.0 ST
S 8" 8 o 5o WL s
3 25 Japanese = = T | ® Japanese 3 m»
=2 Dutch £ 50 - £° @ Duen 3
£ Korean g Korean - £ £ Korean §
RGN Italian & ol Italian  BEESR. & d &100 talian SR
00l | ® English ® English s 3 100 ® English ~ ﬁ’
75 50 25 00 25 50 75 100 125 50 o0 50 W0 © Bt 5000 _ 50 100 150 30 00 50 100 To
Principal Component I Principal Component I Principal Component I Principal Component I
layer 25 (Type-2) layer 25 (baseline) layer 26 (Type-2) layer 26 (baseline)
Layer 27 Layer 27 Layer 28 - Layer 28
50,
. ® Japanese 150 Japanese O japanese%
= 100 2, ® Dutch = 100 = Dutch = 100 ® Dutch %
z :(oll'ean z Fo :(ml'ean 2 :(nalrean i
talian 5 talian talian d'
] 2 5.0] o g s g
g ™ nglish | § S 5o English | § ! | | ® English M?
£ £ £ g N ) PR
3 S 00 3 | 8 oo,
O 00 o O 0.0 v | O
g E_ 0| @ Japanese T‘i Tg sl
£ 5 ® Dutch g o 5 -
£ £ Korean £ £
& ; &% o ntalian 10 &0
-10.0f | 9 ® English
-10.0 -5.0 0.0 5.0 10.0 15.0 ho—mu 5.0 00 5.0 10.0 15.0 -100 5.0 0.0 5.0 100 150 ‘)0—100 -5.0 0 5.0 10.0 15.0
Principal Component I Principal Component I Principal Component I Principal Component I
layer 27 (Type-2) layer 27 (baseline) layer 28 (Type-2) layer 28 (baseline)
Layer 29 Layer 29 Layer 30 Layer 30
2001 ® Japanese 150 00| @ Japanese o
= ® Dutch = = ® Dutch =
Z 2 100) = Korean = 100)
= Korean || = g ° £
g 100 Italian g v g 100 Italian g L Japanese
2 o English || 8 =3 2 Dutch
g £, g £ o Koroan
o o .
8 oo S . S oo o Italian
E S 0| © Japanese 3 S 50 English
O E o S é‘—]uu -E) . nglis|
£ 0o £ 100 Korean 8 100
& = Italian & S
150 -s0f ® English i 200 20
150 100 50 50 100 150 200 0 300 0 150 00 150 200

100 5000 _ 50
Principal Component I

ayer 29 (baseline) layer 30 (Type-2) layer 30 (baseline)

Layer 31 Layer 31

00 0050 00 50 100 200 160 00 00
Principal Component I Principal Component I Principal Component I

layer 29 (Type-2)

—

Layer 32 Layer 32

300 ® Japanese 200
= ® Duich = 75.0
H Korean - = =
£ © nalian g 109 g0 £
g s H W £
3 ® English S .
2100 2 - S 2s0; g

X " o3
g £ o z = £
S 8 < S oo S
=5 00 = = -
g g ® Japanese T 50| ® Japanese g ® Japanese
£ £ h & -
3] G100 @ Dutcl 7] ® Dutch ;’ ‘g 500 @® Dutch
£ 100 £ Korean £ 500 Korean i g Korean
£ Hk

~ & Italian & o Italian =% & 759 Italian

200 209" @ English ® English 1000 ® English

E 00 00 100300 200 100 00 100 200 750 500 250 00 250 500 750 1000 1000 750, 500 250 00 250 500 75
Principal Component I Principal Component I Principal Component [ Principal Component I

layer 31 (Type-2) layer 31 (baseline) layer 32 (Type-2) layer 32 (baseline)

Figure 28: The resutls of PCA while deactivating Top-1k Type-2 Transfer Neurons (LLaMA3-8B).

Layer (Type-2) indicates the result of deactivating the top-1k Type-2 Transfer Neurons, whereas “baseline” refers
to the result of deactivating 1k randomly sampled neurons from the same layers as the Type-2 Transfer Neurons.
The English features are the only ones visualized without intervention.
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Figure 29: The resutls of PCA while deactivating Top-1k Type-2 Transfer Neurons (Aya expanse-8B).
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Figure 30: Distance among centroids of language latent spaces while deactivating top-1k Type-2 Transfer
Neurons (LLaMA3-8B). Layer (Type-2) indicates the result of deactivating Type-2 neurons, whereas "baseline"
refers tot the result of deactivating randomly sampled neurons.
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Figure 31: Distance among centroids of language latent spaces while deactivating Top-1k Type-2 Transfer
Neurons (Aya expanse-8B).
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Figure 32: Distribution of Type-1 Transfer Neurons (LLaMA3-8B, Mistral-7B, and Aya expanse-8B). 1-20
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Figure 33: Distribution of Type-2 Transfer Neurons (LLaMA3-8B, Mistral-7B, and Aya expanse-8B). 21-32
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Figure 36: Distribution of language-specific neurons (LLaMA3-8B). Each label below the figure indicates the
target language and the threshold for correlation ratio. Typically, a correlation ratio above 0.1 indicates a correlation,
above 0.25 indicates a moderately strong correlation, and above 0.5 indicates a strong correlation. horizontal-axis
denotes the layer indices, and vertical-axis represents the number of neurons.

mistral: ja

mistral: ja

mistral: nl

mistral: nl

mistral: ja

ja, > 0.1

ja, > 0.25

mistral: ko

mistral: ko

ja, > 0.5

nl, > 0.

mistral: ko

nl, > 0.25

mistral: it

mistral: nl

Figure 37: Distribution of language-specific neurons (Mistral-7B).

mistral: it

ko, > 0.25

ko, > 0.5

mistral: it

ko, > 0.1

it

,>0.25

31783

it, > 0.5

it, > 0.1



aya: ja aya:ja aya:ja aya: nl aya: nl

ja, > 0.1 ja, > 0.25 ja, > 0.5 nl, > 0.1 nl, > 0.25

aya: nl aya: ko aya: ko aya: ko aya: it

ko, > 0.5 it, > 0.1

aya: it aya: it

ko, > 0.25

-

it, > 0.25 it, > 0.5
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Lang TISame Tl:ja Tl:nl TIl:ko TIl:it T2Same T2:ja T2:nl T2:ko T2:it
ja -0.021 - 0.051 0.042  0.053 0.386 - 0777 0.520 0.742
nl -0.090 -0.128 - -0.092 -0.089 0.542 0.710 - 0.744 0.600
ko 0.055 0.004 0.085 - 0.087 0.344 0.628 0.788 - 0.805
it -0.150 -0.187 -0.150 -0.154 - 0.520 0.675 0.586 0.702 -

Table 21: Hidden states similarity under cross-lingual deactivation across layers (LLaMA3-8B). T1 refers to
Type-1 neurons, while T2 refers to Type-2 neurons. The “Same” columns denote results obtained under non-cross-

lingual deactivation, i.e., when the Transfer Neurons correspond to the same language as the input.

Lang TISame Tl:ja TIl:nl TIl:ko TIl:it T2Same T2:ja T2:nl T2:ko T2:it
ja 0.875 - 0.879 0.852 0.884 0.754 - 0981 0912  0.960
nl 0.845 0.875 - 0843 0.864 0.880 0.955 - 0928 0.906
ko 0.829 0.856  0.869 - 0.874 0.805 0.864 0.949 - 0.897
it 0.840 0.857 0.825 0.821 - 0.901 0962 0919 0.932 -

Table 22: Hidden states similarity under cross-lingual deactivation across layers (Mistral-7B).

Lang TISame Tl:ja Tl:nl TIl:ko TI:it T2Same T2:ja T2:nl T2:ko T2:it
ja 0.885 - 0.896 0.890 0.891 0.699 - 0945 0936 0.947
nl 0.951 0.955 - 0956 0.949 0.755 0.922 - 0909 0.899
ko 0.923 0.933  0.930 - 0928 0.718 0.886 0.936 - 00958
it 0946 0.952 0947 0952 - 0.774 0944 0919  0.926 —

Table 23: Hidden states similarity under cross-lingual deactivation across layers (Aya expanse-8B).
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Figure 40: Token-based F1 score when deactivating top-1k Type-1 transfer neurons (LLaMA3-8B). Green
denotes the score with intervention in the Type-1 neurons, while red represents the score with intervention in the
randomly sampled neurons. Points below the y = x line indicate a decrease in the score due to the intervention,
whereas points above the y = x line indicate an increase in the score. Points on the y = x line denote no change in
the score before and after the intervention.

MKQA (F1) ja nl ko it

(a) normal 0.84 0.83 0.84 0.82
(b) Type-1 A -0.30 -0.41 -0.15 -0.62
(c) baseline A -0.03 -0.09 -0.04 -0.07

Table 24: Changes in token-based F1 scores for questions with original scores above 0.8 (LLaMA3-8B).

MKQA (F1) ja nl ko it

(a) normal 0.68 0.72 0.68 0.72
(b) Type-1 A -0.06 -0.13 -0.05 -0.21
(c) baseline A -0.01 -0.01 +0 -0.02

Table 25: Changes in token-based F1 scores for questions with original scores above 0.5 (Mistral-7B).

MKQA (F1) ja ko it

(a) normal 0.90 0.96 0.90 0.96
(b) Type-1 A -0.09 -0.06 -0.05 -0.28
(c) baseline A -0.03 -0.02 -0.01 -0.02

Table 26: Changes in token-based F1 scores for questions with original scores above 0.8 (Mistral-7B).
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Figure 41: Token-based F1 score when deactivating top-1k Type-1 transfer neurons (Mistral-7B).
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Figure 42: Token-based F1 score when deactivating top-1k Type-1 transfer neurons (Aya expanse-8B).

MKQA (F1) ja nl ko it

(a) normal 0.71 0.72 0.69 0.73
(b) Type-1 A -0.05 -0.16 -0.11 -0.28
(c) baseline A +0 -0.02 +0 -0.01

Table 27: Changes in token-based F1 scores for questions with original scores above 0.5 (Aya expanse-8B).
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MKQA (F1) ja nl ko it

(a) normal 0.90 0.93 0.89 0.94
(b) Type-1 A -0.06 -0.19 -0.14 -0.26
(c) baseline A +0 -0.02 +0 -0.02

Table 28: Changes in token-based F1 scores for questions with original scores above 0.8 (Aya expanse-8B).

Table 29: MMLU-ProX: Type-1 deactivated vs Baseline deactivated vs w/o intervention (LLaMA3-8B, Japanese)

Tasks Type-1 Score  Baseline Score  w/o intervention

OVERALL 0. 0.1996 0.2033
- biology 0. 0.2873 0.2887
- business 0. 0.2180 0.2294
- chemistry 0. 0.1590 0.1564
- computer_science 0. 0.2756 0.2707
- economics 0. 0.2915 0.3009
- engineering 0. 0.1362 0.1414
- health 0. 0.2052 0.2038
- history 0. 0.1942 0.2152
- law 0. 0.1043 0.1178
- math 0. 0.1887 0.1828
- other 0. 0.1959 0.2045
- philosophy 0. 0.2285 0.2265
- physics 0. 0.1316 0.1355
- psychology 0. 0.3283 0.3308

Table 30: MMLU-ProX: Type-1 deactivated vs Baseline deactivated vs w/o intervention (LLaMA3-8B, Korean)

Tasks Type-1 Score  Baseline Score  w/o intervention

OVERALL 0. 0.2097 0.2115
- biology 0. 0.2580 0.2524
- business 0. 0.2408 0.2598
- chemistry 0. 0.1793 0.1661
- computer_science 0. 0.2829 0.2561
- economics 0. 0.2867 0.2950
- engineering 0. 0.1754 0.1816
- health 0. 0.1747 0.1921
- history 0. 0.1890 0.2073
- law 0. 0.1283 0.1220
- math 0. 0.2095 0.2250
- other 0. 0.2348 0.2424
- philosophy 0. 0.2084 0.1944
- physics 0. 0.1486 0.1470
- psychology 0. 0.3108 0.2995

Table 31: MMLU-ProX: Type-1 deactivated vs Baseline deactivated vs w/o intervention (LLaMA3-8B, French)

Tasks Type-1 Score  Baseline Score  w/o intervention

OVERALL 0. 0.2728 0.2705
- biology 0. 0.4170 0.4338
- business 0. 0.2738 0.2801
- chemistry 0. 0.1820 0.1988
- computer_science 0. 0.2683 0.2390
- economics 0. 0.3744 0.3756
- engineering 0. 0.2054 0.2002
- health 0. 0.2780 0.2838
- history 0. 0.3123 0.2992
- law 0. 0.1512 0.1293
- math 0. 0.2494 0.2428
- other 0. 0.3202 0.3139
- philosophy 0. 0.3026 0.2926
- physics 0. 0.2271 0.2248
- psychology 0. 0.4110 0.4085
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Table 32: MMLU-ProX: Type-1 deactivated vs Baseline deactivated vs w/o intervention (Mistral-7B, Japanese)

Tasks Type-1 Score  Baseline Score  w/o intervention

OVERALL 0.0717 0.1712 0.1750
- biology 0.0293 0.2594 0.2664
- business 0.1179 0.2155 0.2231
- chemistry 0.0221 0.1210 0.1193
- computer_science 0.1488 0.2341 0.2366
- economics 0.1197 0.2393 0.2512
- engineering 0.0485 0.1620 0.1465
- health 0.0815 0.1718 0.1659
- history 0.0919 0.1470 0.1575
- law 0.0083 0.0949 0.1116
- math 0.0607 0.1392 0.1540
- other 0.1061 0.1753 0.1742
- philosophy 0.1062 0.1764 0.1723
- physics 0.0370 0.1055 0.070
- psychology 0.1441 0.2820 0.2882

Table 33: MMLU-ProX: Type-1 deactivated vs Baseline deactivated vs w/o intervention (Mistral-7B, Korean)

Tasks Type-1 Score  Baseline Score  w/o intervention

OVERALL 0.0454 0.1606 0.1593
- biology 0.0014 0.1520 0.1632
- business 0.0963 0.2243 0.2281
- chemistry 0.0053 0.1042 0.0989
- computer_science 0.0829 0.2561 0.2439
- economics 0.1126 0.2192 0.2121
- engineering 0.0444 0.1486 0.1465
- health 0.0757 0.1645 0.1587
- history 0.0367 0.1286 0.1312
- law 0.0083 0.1137 0.0980
- math 0.0200 0.1340 0.1295
- other 0.0714 0.1634 0.1688
- philosophy 0.0641 0.1383 0.1242
- physics 0.0200 0.1162 0.1309
- psychology 0.0677 0.2845 0.2845

Table 34: MMLU-ProX: Type-1 deactivated vs Baseline deactivated vs w/o intervention (Mistral-7B, French)

Tasks Type-1 Score  Baseline Score  w/o intervention

OVERALL 0.1477 0.2462 0.2460
- biology 0.1311 0.4254 0.4045
- business 0.1584 0.2459 0.2446
- chemistry 0.0972 0.1572 0.1705
- computer_science 0.1488 0.2488 0.2537
- economics 0.1765 0.3436 0.3389
- engineering 0.0939 0.1806 0.1734
- health 0.2227 0.2693 0.2780
- history 0.2283 0.2625 0.2756
- law 0.0667 0.1397 0.1335
- math 0.0888 0.1969 0.1895
- other 0.1861 0.2825 0.2955
- philosophy 0.2204 0.2565 0.2545
- physics 0.1532 0.2009 0.1971
- psychology 0.2531 0.3960 0.4048
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Table 35: MMLU-ProX: Type-1 deactivated vs Baseline deactivated vs w/o intervention (Aya expanse-8B, Japanese)

Tasks Type-1 Score  Baseline Score  w/o intervention

OVERALL 0.1685 0.2636 0.2648
- biology 0.2734 0.4184 0.4017
- business 0.1762 0.2801 0.2842
- chemistry 0.1166 0.2147 0.2138
- computer_science 0.1610 0.2585 0.2610
- economics 0.1339 0.2133 0.2097
- engineering 0.1589 0.2116 0.2260
- health 0.1426 0.2402 0.2402
- history 0.1706 0.2808 0.2756
- law 0.1074 0.1616 0.1814
- math 0.1651 0.3168 0.3101
- other 0.1926 0.2587 0.2554
- philosophy 0.1583 0.2325 0.2305
- physics 0.1463 0.2325 0.2394
- psychology 0.3070 0.4173 0.4148

Table 36: MMLU-ProX: Type-1 deactivated vs Baseline deactivated vs w/o intervention (Aya expanse-8B, Korean)

Tasks Type-1 Score  Baseline Score  w/o intervention

OVERALL 0.1854 0.2696 0.2702
- biology 0.2148 0.3250 0.3543
- business 0.1952 0.2864 0.2864
- chemistry 0.1466 0.2094 0.2191
- computer_science 0.1244 0.3000 0.30981
- economics 0.2666 0.3318 0.3412
- engineering 0.1476 0.2652 0.2487
- health 0.1587 0.2213 0.2183
- history 0.1496 0.2598 0.2415
- law 0.1241 0.1814 0.1700
- math 0.1858 0.3198 0.3183
- other 0.1991 0.2630 0.2727
- philosophy 0.1743 0.1924 0.1864
- physics 0.1586 0.2232 0.2186
- psychology 0.3434 0.4110 0.4123

Table 37: MMLU-ProX: Type-1 deactivated vs Baseline deactivated vs w/o intervention (Aya expanse-8B, French)

Tasks Type-1 Score  Baseline Score  w/o intervention

OVERALL 0.2371 0.3191 0.3207
- biology 0.3501 0.5397 0.5300
- business 0.2383 0.3131 0.3105
- chemistry 0.1590 0.2182 0.2279
- computer_science 0.2220 0.3049 0.3000
- economics 0.3235 0.4218 0.4336
- engineering 0.1827 0.2693 0.2869
- health 0.2606 0.3290 0.3115
- history 0.1444 0.3360 0.3150
- law 0.1470 0.1741 0.18777
- math 0.2865 0.3434 0.3501
- other 0.2522 0.3290 0.3323
- philosophy 0.2064 0.2866 0.2786
- physics 0.1964 0.2594 0.2594
- psychology 0.3446 0.4511 0.4398
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Question (Japanese) Jay o/ hofifRICHICEbE >~ &% il
ICHIET 2 A — L =k L £ 9. EEDOHH %]
L. B FEREIOSTWEIICTE2HD
FIHZHIIL £
Write an email to your supervisor apologizing for not meet-
ing the project deadline. Explain the reasons for the delay
and describe the steps that will be taken to ensure that the
same issue does not occur again.

Output without any intervention (Japanese) WOy BMEEICL>THEYET. mSHIZ. 7o
v hoIBRICEICED L 522 EZ BRUH
LLEFEFT. mZoMAET. ..
Thank you always for your support.\n Today, I would like to
apologize for not meeting the project deadline\n The reason
08, v oo

Output with top-1k Type-2 neurons deactivated (English) Dear Mr. Smith,\n \n I’m writing to apologize for missing
the project’s deadline. The reason for the delay was ...

Table 38: Example of generated text in which the output language changed from the input language after
deactivating the top-1k Type-2 neurons (LLaMA3-8B).

Question (Italian) Scrivi un&#39;email a un venditore che ha consegnato
prodotti errati o danneggiati. Spiega educatamente il prob-
lema, fornisci dettagli e richiedi un rimborso o una sosti-
tuzione.

Write an email to a seller who has delivered incorrect or
damaged products. Politely explain the problem, provide
details, and request a refund or a replacement.

Output without any intervention (Italian) Grazie per aver contattato il nostro team di supporto.\n\n
Siamo molto scioccati per il problema che hai avuto con
il nostro prodotto. Siamo dispiaciuti per il disagio che hai
subito e siamo pronti a fornire una soluzione. ...
Thank you for contacting our support team. We are very
shocked about the issue you experienced with our product.
We are sorry for the inconvenience you have suffered, and
we are ready to provide a solution. ...

QOutput with top-1k Type-2 neurons deactivated (English)  Hello,\n\nl recently purchased a product from your store and
unfortunately, it arrived damaged. I’m writing to request a
replacement or a refund for the item.\n\nHere are the details
of the issue: ...

Table 39: Example of generated text in which the output language changed from the input language after
deactivating the top-1k Type-2 neurons (Mistral-7B).
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Question (Japanese) SUEZEENIHERIC KRS e 52 TwWEd. TlE
EEioF 2RI E 72 EBWE9h, £ AR
FNAIRIEIC &0 & O Gz 52 Z2u]REME e ) X
RS
Climate change is having a significant impact on the Earth.
What do you think are the main causes of climate change,
and what potential impacts might it have on the environ-

ment?
Output without any intervention (Japanese) SUEZE O 2 HNIE. Ao EENIC X 5 EEW)

RAZoPETT. BRI (LOFREIOBRRE (5.
. RIRT 2% ) CHRMEUE» RS 2EHR &
LToTWET. SNSOIHHENIC & o> T FLRHR
(CO2) . A% (CH4) . (=3 (N20) 7
EDWENE 7 Z b KEICHUE 2 . HiERo K
ICERLTOET. ..
The main cause of climate change is the emission of green-
house gases from human activities. In particular, the burn-
ing of fossil fuels (such as coal, oil, and natural gas) and
deforestation are major factors. These activities release
large amounts of greenhouse gases, including carbon diox-
ide (CO), methane (CH), and nitrous oxide (NO), which
accumulate in the Earth’s atmosphere. ...

Output with top-1k Type-2 neurons deactivated (Chinese)  &{FAsE Ay 3= HHHA 2 — 2 AFEE, FRHIEIE (L
FRREE (. IR IRR) FOARAIRAX, 12880,
R KR Iy S5 (i A B i), R
FORwUE h 808, EmEsEesm b
One of the main causes of climate change is human activity,
particularly the burning of fossil fuels (such as coal, oil,
and natural gas) and deforestation. These activities release
large amounts of greenhouse gases (such as carbon dioxide
and methane), which intensify the greenhouse effect in the
Earth’s atmosphere and, in turn, lead to a rise in global
temperatures. ...

Table 40: Example of generated text in which the output language changed from the input language after
deactivating the top-1k Type-2 neurons (Aya expanse-8B).
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Question (Korean) ol ge T St
%l%‘/] th. Cd:lL 3’4'%] o 4

Overpopulation is becoming a serious prob-
lem in many cities. What are the causes of
overpopulation, and what effects does it have
on urban life?

b
>
il
rlo

Output without any intervention (Korean) 214 71 9]
7t2 Ql3f 0]
ok A 3
P e A
4y EP o] A%
AHEAH YT
Many cities in the 21st century are experienc-
ing problems of overpopulation due to rapid
population growth. Overpopulation refers to
the phenomenon in which too many people
live concentrated in a particular area or city.
Let us examine the causes and effects of this
phenomenon. ...
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Output with top-1k Type-2 neurons deactivated (Korean and Japanese) A [ ﬁitj 59

‘] bl 6‘]:_2 E}—,—j—
Di@bﬂ%% gfﬁl‘ﬁiﬁa
Overpopulation, that is, excessive popula-
tion, refers to a number of people in a region
or an entire country that exceeds the ecolog-
ical capacity of that region or country. The
causes of overpopulation and its effects on
urban life are as follows.\n\n 1. Population
growth rate and limited resources: ...

L

1/]E]—\n\n 1. A

Table 41: Example of generated text in code-switching-like form in Korean and Japanese after deactivating
the top-1k Type-2 neurons (Aya expanse-8B).
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