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Abstract

Neural surrogate models are powerful and
efficient tools in data mining. Meanwhile,
large language models (LLMs) have demon-
strated remarkable capabilities in code-related
tasks, such as generation and understanding.
However, an equally important yet underex-
plored question is whether LLMs can serve
as surrogate models for code execution predic-
tion. To systematically investigate it, we intro-
duce SURGE, a comprehensive benchmark with
1160 problems covering 8 key aspects: multi-
language programming tasks, competition-
level programming problems, repository-level
code analysis, high-cost scientific computing,
time-complexity-intensive algorithms, buggy
code analysis, programs dependent on specific
compilers or execution environments, and for-
mal mathematical proof verification. Through
extensive analysis of 21 open-source and pro-
prietary LLMs, we examine scaling laws, data
efficiency, and predictive accuracy. Our find-
ings reveal important insights about the fea-
sibility of LLMs as efficient surrogates for
computational processes. The benchmark and
evaluation framework are available at https:
//github.com/Imbernoulli/SURGE.

1 Introduction

Neural surrogate models (Zhang et al., 2024; Sun
and Wang, 2019) are powerful tools in data mining
and machine learning, which efficiently approx-
imate complex computational processes. Mean-
while, Large language models (LLMs) (Reid et al.,
2024; Meta, 2024; Anthropic, 2024b; Hui et al.,
2024; Bi et al., 2024) have demonstrated remark-
able capabilities in code-related tasks (Lu et al.,
2021a; Zheng et al., 2023; Luo et al., 2023; Team,
2024a; Guo et al., 2024), including code under-
standing (Ahmad et al., 2020; Chakraborty et al.,
2020) and code generation (Li et al., 2018a; Parvez
et al., 2018). However, an equally important yet un-
derexplored question is whether LLMs can serve as
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Figure 1: Performance of 6 typical models on SURGE.

general-purpose surrogate code executors, which
predict the behavior of a program without actually
running it. A recent study (Lyu et al., 2024) ac-
knowledges its importance, however, it focuses on
a case study rather than a systematic analysis.

The ability to predict code execution outcomes
without execution has tremendous significance. In
scientific computing, running simulations often re-
quires substantial computational resources and is
time-consuming, making it impractical to test ev-
ery possible configuration (Lu and Ricciuto, 2019;
Hesthaven and Ubbiali, 2018; Benner et al., 2015).
In security-sensitive environments, executing un-
trusted code poses inherent risks, necessitating al-
ternative mechanisms for assessing program behav-
ior without exposing the system to potential vulner-
abilities (Nebbione and Calzarossa, 2023; Shirazi
et al., 2017; Wang et al., 2024). Additionally, some
code requires highly specific execution environ-
ments, which may not always be available, making
surrogate execution a valuable alternative (Queiroz
et al., 2023; Gu et al., 2025). Moreover, accurately
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predicting a model’s potential outputs or errors is
crucial for improving traditional tasks such as code
understanding, code generation, and even math rea-
soning (Li et al., 2025). Lastly, many works use
LLMs as reward models (RMs) in reinforcement
learning. For code tasks, accurate execution predic-
tion is key to a reliable RM (Ouyang et al., 2022).

Traditional approaches to surrogate code execut-
ing (King, 1976; Cadar and Sen, 2013) struggle to
generalize across languages and suffer from scal-
ability issues when applied to complex real-world
codebases. Containerized environments (Merkel,
2014) mitigate dependency issues but still require
full code execution. Recent efforts to train neural
executors (Yan et al., 2020) focus on narrow tasks
and lack the generality needed for real-world code.
In contrast, LLMs’ capacity to internalize patterns
from vast code corpora (Lu et al., 2021b; Chaud-
hary, 2023) suggests a path toward general-purpose
surrogate code execution.

To understand the potential of LLMs as GEneral-
purpose SURrogate code executors, we introduce
SURGE. It includes 8 components: (1) fundamen-
tal programming tasks in multiple languages, (2)
competition programming problems requiring deep
logical inference, (3) repository-level codebases
that test long-range dependencies, (4) scientific
simulations and optimizations where direct execu-
tion is high-cost, (5) time-consuming logical algo-
rithms that have high time-complexity, (6) buggy
code that examines LLMs’ ability to predict run-
time errors, (7) programs whose behavior depends
on specific compiler versions or execution envi-
ronments and (8) math theorem proving in formal
language (De Moura et al., 2015; Moura and Ull-
rich, 2021) which expects compilers to testify.

Through extensive evaluation of 21 open-source
and proprietary LLMs on SURGE, we provide the
first large-scale study of LLMs’ capabilities as com-
putational surrogates. Additionally, we investigate
the impact of various factors, including prompt en-
gineering strategies, programming language charac-
teristics, computational complexity, and execution
time requirements, on surrogate performance. Our
findings reveal both the promising potential and
current limitations of LLMs as general-purpose
code execution surrogates. The performance of
typical models on SURGE is shown in Figure 1.

Beyond benchmarking, we conduct a scaling law
study on whether LLMs’ performance improves
with model size and training data. We train models
with 4 different sizes on different scales of training
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Figure 2: Performance scaling across model sizes and
training steps.

data from the formal language subset of SURGE. Our
experiments demonstrate that models’ performance
consistently improves with both model size and
training steps, with larger models showing stronger
learning capacity and higher performance ceilings
throughout the training process (Figure 2).

In short, our work makes the following key con-
tributions:

• We introduce SURGE, the first holistic bench-
mark for evaluating LLMs as general-purpose
surrogate code executors. It consists of 8 sub-
sets and 1160 problems.

• We evaluate 21 open-source and proprietary
LLMs on SURGE and conduct the first large-
scale analysis on them.

• We present a scaling law study with models
of varying sizes and scales of training data,
providing empirical insights on the scaling
law of LLMs on these tasks.

2 Related Works

Neural Surrogate Models. Neural surrogate
models are neural network-based approximations
used to replace computationally expensive simu-
lations in various scientific and engineering do-
mains (Zhang et al., 2024; Sun and Wang, 2019).
These models act as domain-specific emulators by
learning complex input-output relationships from
high-fidelity data(Raissi et al., 2020; Sun et al.,
2020; Bessa et al., 2017; Thuerey et al., 2020;
Raissi et al., 2019; Willard et al., 2022). Recently,
generative models have been incorporated into sur-
rogate modeling. Some equip language models
with traditional surrogate models to facilitate itera-
tive optimization (Ma et al., 2024; Lyu et al., 2025),
and some use generative models to realize the end-
to-end surrogate process (Gruver et al., 2024; Hao
et al., 2024; Wimmer and Rekabsaz, 2023; Che
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Figure 3: The Construction of SURGE employs 4 methodologies: 1. Iterative Refactor, 2. Repository Sampling, 3.
Manual Implementation, and 4. Inference & Verification.

et al., 2024). While these studies primarily focus
on natural sciences, time series, and multimodal
gaming, the application of surrogate modeling to
code execution, where both input and output exist
in the modality of language, remains unexplored.

LLMs for Code. LLMs are widely used in code-
related tasks (Lu et al., 2021a; Luo et al., 2023;
Team, 2024a; Guo et al., 2024), which can be fun-
damentally categorized into code understanding
and code generation. Code understanding tasks
include code summarization (Hu et al., 2018; Harer
et al., 2019; Ahmad et al., 2020), bug detection (Li
et al., 2018b; Russell et al., 2018; Zhou et al.,
2019; Chakraborty et al., 2020), duplication detec-
tion (Zhang et al., 2019; Yu et al., 2019; Wang et al.,
2020), code retrieval (Husain et al., 2020; Lu et al.,
2021a), etc. Code generation tasks include code
completion (Li et al., 2018a; Parvez et al., 2018),
code repair (Chen et al., 2019; Chakraborty et al.,
2020; Lutellier et al., 2020), test generation (Wat-
son et al., 2020; Siddiq et al., 2024; Schäfer et al.,
2023), etc. However, while the potential execution
result of code is important for both code under-
standing and generation, this aspect remains largely
unexplored (Weber et al., 2024).

3 SURGE

SURGE assesses the model’s ability to approximate
execution results across multiple dimensions, in-
cluding multi-lingual diversity, repository-level
complexity, computational intensity, error handling,
and scenario-dependent variability. Below, we de-
scribe each component of SURGE, including motiva-
tion and construction methods.

3.1 Dataset Construction

As illustrated in Figure 3, the construction of SURGE
involves four distinct methodologies, each applied
to specific components of our eight subsets. For
ML, CL, BG components, we employ the Iterative
Refactor methodology, where we refine the code
through an interactive process involving LLM assis-
tance and human verification. The RL component
is constructed through Repository Sampling, where
we extract and construct test cases from both pub-
lic and custom code repositories. For SC, TC, DR
components, we utilize Manual Implementation,
carefully handcrafting code based on selected text-
book materials and question collections. Finally,
the FL component is developed using the Inference
& Verification approach, leveraging formal math-
ematical provers to generate proofs and validate
them through compiler verification.

To mitigate the risk of data contamination and
answer leakage, we implemented a robust two-fold
sanitization strategy across the dataset: (1) We
applied automated filtering scripts to systemat-
ically remove comments from all code snippets be-
fore presenting them to the models for evaluation.
(2)We manually inspected all generated or col-
lected code to identify and remove any comments,
‘assert‘ statements, or other annotations that could
inadvertently provide hints or reveal the expected
output.

3.2 Dataset Components

Multi-lingual Code (ML). A fundamental na-
ture of a general-purpose surrogate executor is its
ability to handle multiple programming languages,
especially computational languages. Our dataset
covers 7 such languages, including C, C++, C#,
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Subset Construction Method Source Quantity Metric Categories

ML Iterative Refactor McEval (Chai et al., 2024) 150 Exact Match Languages
CL Iterative Refactor GitHub 150 Exact Match Difficulties & Languages
RL Repository Sampling GitHub & Custom 60 Mixed -
SC Manual Implementation Custom 150 Mixed Scenarios
TC Manual Implementation Custom 150 Mixed Scenarios, CPU Time
BG Iterative Refactor DebugBench (Tian et al., 2024) 150 Jaccard similarity Error Type & Languages
DR Manual Implementation Custom 200 Jaccard similarity Variable Type
FL Inference & Verification Lean-Workbook (Ying et al., 2024) 150 Custom -

Table 1: Statistics of SURGE, including construction methods, problem sources, quantities, evaluation metrics, and
criteria for further classification. In the table, “custom" refers to customized approaches, and “mixed" indicates
multiple methods, which are elaborated in detail in the text.

Java, Rust, Python, and Julia. Our dataset
is adapted from McEval (Chai et al., 2024). The
original dataset does not provide executable code,
so we used an LLM to generate executable code
by providing it with prompts, ground truth, and
test cases in the original dataset. This generated
code was then manually processed; specifically, we
(1) modified code that failed to compile (e.g., by
adding missing headers) and (2) carefully reviewed
the code to prevent answer leakage through assert
statements or comments.

Competition-level Code (CL). Next, we con-
sider competition-level code, which presents a
higher level of coding difficulty. We collect these
tasks from 2 public repositories 12, which contain
problems from open coding platforms (e.g. Leet-
Code, Luogu). The dataset includes problems in 3
languages, C++, Java, and JavaScript. Since
the original repositories only provide partial solu-
tions, we first use an LLM to generate complete, ex-
ecutable code that prints the expected output. This
generated code is then manually verified. During
this process, if issues such as package mismatches
or syntax errors (e.g., mixing language versions)
arose, we manually revised the code to ensure suc-
cessful compilation and execution. To investigate
whether problem difficulty affects the performance
of surrogate models, we classify problems into 5
different difficulty levels.

Repository-level Code (RL). In real-world sce-
narios, most code exists at the repository level,
making repository-level code execution prediction
equally important for a general-purpose surrogate
model. We manually collect computational repos-
itories that fit within the input length constraints
of LLMs. These repositories include tasks such as

1https://github.com/azl397985856/leetcode
2https://gitee.com/shanire/OJCode

solving the 24-point problem, Sudoku solving, and
converting Python code to LaTeX. These tasks ex-
hibit complex logic but do not rely on sophisticated
models or external inputs. To assess the model’s
ability to understand multi-file structures, we also
manually construct two repositories containing ad-
vanced C++ syntax and multiple files.

Scientific Computing (SC). Scientific comput-
ing has long been adopting neural surrogate mod-
els. We introduced tasks ranging from solving ordi-
nary differential equations (ODEs) to optimization
problems and signal processing. These tasks are
motivated by and widely used in real-world scien-
tific challenges, including areas where increasing
research has been done on solving these compu-
tational tasks through building efficient surrogate
models (Wu et al., 2023; Zhang et al., 2023). A
comprehensive overview of the setup for each task,
along with the corresponding algorithms, can be
found in Appendix C.4.1.

Time-Consuming Algorithms (TC). Surrogate
models were originally motivated by real-world
applications where program execution is high-cost
and time-consuming. It’s a necessity for LLMs
to generalize well to strongly computation-power-
dependent and time-consuming tasks. We include
examples from linear algebra, sorting, searching,
Monte Carlo simulations, and string matching pro-
grams, ensuring a broad representation of compu-
tationally intense tasks. These tasks cover various
complexity classes, including P (e.g., sorting an
array), NP (e.g., Hamiltonian Cycle), and NP-Hard
(e.g., Traveling Salesman’s Problem). Additionally,
we record the CPU execution time for each pro-
gram under consistent environments individually
to support subsequent studies. A detailed descrip-
tion of this subset is provided in Appendix C.5.1.
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Buggy Code (BG). Real-world code execution
often encounters errors, which pose risks in sen-
sitive scenarios. Therefore, code surrogate mod-
els should recognize the presence of bugs. This
dataset is adapted from DebugBench (Tian et al.,
2024), which extracted Java, Python, and C++ code
from LeetCode and manually inserted errors from
4 major bug categories and 18 minor types. Since
DebugBench only provides code snippets rather
than complete executable programs, we first used
an LLM to automatically complete the error-free
code into fully runnable versions. After verifying
their correctness, we replaced relevant parts with
buggy code and executed them again to capture
the corresponding error outputs. Some errors re-
sulted in infinite loops, causing timeouts, so we set
a 30-second execution filter to avoid such cases.

Code with Differential Results under Different
Scenarios (DR). Various contextual factors, such
as compiler versions, optimization levels, and lan-
guage standards, often influence code execution.
These variations can lead to different outputs for
the same code snippet. We focus specifically on
C++ and manually collect code snippets from text-
books and online sources (Bryant and O’Hallaron,
2010; Lippman et al., 2012) that exhibit differ-
ent behaviors under varying compilation settings.
We consider multiple compilers (g++, clang++),
C++ standards (03, 11, 14, 17), and optimization
levels (-O0, -O1, -O2, -O3, -Os). Each snip-
pet is executed across these different settings, and
we retain only those that produce varying outputs
through different configurations while discarding
cases that yield identical results across all settings.

Mathematics Formal Language (FL). Math-
Proving Formal Languages are specialized pro-
gramming languages designed for mathematical
proof verification through compilers (De Moura
et al., 2015; Moura and Ullrich, 2021; Paulson,
1994; Barras et al., 1997). These compilers can
determine whether a proof is correct and iden-
tify specific errors. The verification is very time-
consuming. In this study, we focus on Lean4
which is the most widely used proof language. To
build our dataset, we use Goedel-Prover (Lin et al.,
2025) to conduct large-scale reasoning on Lean-
Workbook (Ying et al., 2024) and extract an equal
proportion of correct and incorrect proofs. This
balanced dataset allows us to evaluate the surrogate
model’s ability to assess proof validity effectively.

3.3 Evaluation Metrics

We design different evaluation metrics tailored to
each subset of SURGE to ensure accurate evaluation.

In ML and CL, the outputs are simple numerical
values or formatted strings, we employ exact string
matching to measure correctness.

For RL, we employ different evaluation methods
for different tasks. For structured C repositories,
we use exact character matching to compare out-
puts. For Sudoku and 24-point problems, we use
edit distance to compare results. For other types of
repositories, we apply the Ratcliff/Obershelp (Rat-
cliff and Metzener, 1988) algorithm.

For SC and TC, various tasks necessitate dis-
tinct evaluation methods. Specifically, (1) numer-
ical simulations are evaluated using the average
Relative Absolute Error (RAE); (2) position-based
tasks, such as binary search, are assessed through
exact string matching; and (3) sorting tasks are eval-
uated by the rank correlation coefficient (Spearman,
1904). Details regarding the evaluation metrics can
be found in Appendix C.4.2 and Appendix C.5.2.

For BG, we use the Jaccard similarity (Jaccard,
1901) between predicted and ground truth error
messages. For DR, since the same code can pro-
duce different outputs in varying settings, which
sometimes include warnings or errors, we again
utilize Jaccard similarity.

For FL, the results consist of two parts: (1)
whether the proof passes or not, and (2) if it fails,
we evaluate the accuracy of the error message. The
error message consists of a list containing the error
locations and descriptions. We compute the score
of a prediction as 1

N

∑N
j=1 1[p̂j ∈ P ] · J(m̂j ,mj),

where N is the number of errors in the ground
truth, P is the set of predicted error positions, pj
represents the j-th ground truth error position, p̂j
represents the predicted error position correspond-
ing to pj , 1[p̂j ∈ P ] is the indicator function which
equals to 1 only when there exists p̂j ∈ P , mj is
the ground truth error message for position pj , m̂j

is the predicted error message for position p̂j , and
J is the Jaccard similarity function.

3.4 Dataset Statistics

Table 1 presents detailed statistics of SURGE, in-
cluding the construction methods, problem sources,
dataset quantities, number of examples in few-shot
scenarios, evaluation metrics, and classification cri-
teria for each subset.
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Model ML CL RL SC TC BG DR FL Avg.CPP Rust Python Julia Java Others CPP Java Python

Zero-shot

Claude-3.5-Sonnet 72.73 55.00 88.00 66.67 76.92 75.00 81.58 57.31 61.55 35.27 9.09 12.55 51.40 12.92 17.92 51.59
DeepSeek-V3 54.55 60.00 76.00 61.11 46.15 72.50 56.58 44.19 59.65 35.31 4.05 3.03 21.50 10.92 32.46 42.53
GPT-4o 40.91 45.00 60.00 55.56 57.69 55.00 66.45 49.13 53.16 34.44 4.28 7.48 34.59 14.75 21.99 40.03
Qwen-Max 50.00 45.00 44.00 27.78 26.92 50.00 38.82 37.15 56.98 35.44 2.82 3.20 30.52 14.03 29.89 32.84
Qwen-2.5-7B-Instruct 13.64 5.00 12.00 5.56 11.54 17.50 27.63 27.98 22.90 29.43 2.21 3.66 9.46 7.24 36.42 15.48
Qwen-2.5-32B-Instruct 45.45 20.00 48.00 33.33 42.31 20.00 50.66 22.61 32.50 30.99 1.21 2.09 12.16 7.26 7.65 25.08
Qwen-2.5-Coder-7B-Instruct 45.45 30.00 52.00 44.44 50.00 42.50 75.00 20.86 45.50 28.00 0.86 3.47 13.53 14.23 40.40 33.75
Qwen-2.5-Coder-32B-Instruct 59.09 55.00 60.00 44.44 69.23 60.00 80.26 48.43 57.18 18.84 1.49 1.95 17.96 13.42 29.19 41.10
LLaMA-3.1-8B-Instruct 0.00 0.00 4.00 5.56 15.38 5.00 13.16 20.41 4.41 15.46 4.41 4.12 5.98 3.97 0.00 8.49
LLaMA-3.1-70B-Instruct 54.55 40.00 52.00 33.33 65.38 47.50 78.29 31.60 48.65 30.19 1.59 4.18 14.27 15.73 39.16 37.10

Zero-shot Chain-of-Thought

Claude-3.5-Sonnet 90.91 65.00 96.00 77.78 69.23 92.50 82.24 62.31 63.38 40.70 16.91 20.69 62.23 18.19 33.98 59.47
DeepSeek-V3 81.82 85.00 88.00 72.22 69.23 85.00 76.32 62.70 57.57 36.71 4.45 7.85 46.26 16.21 35.19 54.97
GPT-4o 68.18 65.00 92.00 72.22 76.92 77.50 79.61 53.74 48.56 28.36 8.19 9.97 44.29 14.21 27.91 51.11
Qwen-Max 86.36 75.00 80.00 72.22 76.92 80.00 71.05 50.49 61.78 36.71 2.65 7.73 46.85 16.16 20.74 52.31
Qwen-2.5-7B-Instruct 40.91 15.00 32.00 33.33 26.92 47.50 52.63 27.51 25.68 28.95 1.12 3.76 14.94 9.41 36.46 26.41
Qwen-2.5-32B-Instruct 50.00 40.00 40.00 55.56 38.46 57.50 53.29 32.71 43.29 30.59 3.10 6.96 23.86 11.49 7.39 32.95
Qwen-2.5-Coder-7B-Instruct 68.18 40.00 40.00 38.89 53.85 57.50 46.05 19.70 40.91 30.19 2.29 4.71 12.77 15.04 37.12 33.81
Qwen-2.5-Coder-32B-Instruct 77.27 65.00 80.00 55.56 73.08 67.50 71.71 54.58 55.69 34.36 2.05 4.74 22.43 17.62 28.55 47.34
LLaMA-3.1-8B-Instruct 40.91 15.00 24.00 22.22 26.92 30.00 41.45 17.87 32.65 18.22 1.52 4.23 13.38 10.12 0.66 19.94
LLaMA-3.1-70B-Instruct 59.09 50.00 72.00 61.11 57.69 52.50 58.55 34.44 43.93 29.76 1.71 3.49 15.02 16.86 25.85 38.80

Few-shot Chain-of-Thought

Claude-3.5-Sonnet 86.36 70.00 96.00 72.22 65.38 82.50 82.24 70.65 63.58 41.00 22.04 23.61 44.15 25.70 31.99 58.49
DeepSeek-V3 90.91 65.00 84.00 77.78 73.08 95.00 80.26 78.64 66.00 38.60 21.98 15.14 40.27 24.38 35.17 59.08
GPT-4o 68.18 60.00 88.00 77.78 73.08 75.00 75.66 76.86 59.65 37.12 12.91 7.74 29.52 22.08 26.65 52.68
Qwen-Max 81.82 70.00 88.00 77.78 73.08 80.00 82.24 72.53 62.32 37.88 19.68 19.78 37.57 23.91 24.76 56.76
Qwen-2.5-7B-Instruct 27.27 25.00 36.00 38.89 26.92 42.50 48.68 45.19 43.42 28.97 4.92 4.70 12.94 10.66 34.53 28.71
Qwen-2.5-32B-Instruct 59.09 55.00 52.00 66.67 53.85 60.00 63.16 64.10 63.12 32.53 5.41 6.94 28.66 13.81 22.87 43.15
Qwen-2.5-Coder-7B-Instruct 54.55 30.00 36.00 44.44 50.00 42.50 58.55 50.48 53.91 30.69 3.90 4.93 14.44 14.02 25.25 34.24
Qwen-2.5-Coder-32B-Instruct 68.18 75.00 72.00 55.56 65.38 70.00 76.97 64.16 56.37 34.34 3.93 6.49 20.22 19.09 22.57 47.35
LLaMA-3.1-8B-Instruct 13.64 20.00 20.00 5.56 26.92 22.50 30.26 34.15 47.89 22.27 4.44 4.55 9.66 12.05 13.25 19.14
LLaMA-3.1-70B-Instruct 54.55 35.00 40.00 22.22 53.85 35.00 68.42 50.83 60.96 30.29 8.00 5.95 18.32 13.27 33.12 35.32

Table 2: Performance of different models under different prompting strategies on SURGE.

4 Experiments

4.1 Setup

Models. We tested SURGE on 17 open-source
and 4 closed-source models of different sizes,
including both chat models and code models. The
closed-source models include GPT-4o (2024-
08-06) (OpenAI, 2024b), GPT-4o-mini (2024-
07-18) (OpenAI, 2024a), Claude-3.5-
Sonnet (2024-10-22) (Anthropic, 2024a),
and Qwen-Max (2025-01-25) (Team, 2024b).
The open-source models include LLaMA-3.1-
{8, 70}B-Instruct, LLaMA-3.3-70B-
Instruct, Qwen-2.5-{0.5, 1.5, 3,
7, 14, 32, 72}B-Instruct, Qwen-
2.5-Coder-{0.5, 1.5, 3, 7, 14,
32}B-Instruct and DeepSeek-V3 (671B).

Settings. We tested the above models on SURGE
under 3 settings: 0-shot w/o CoT, 0-shot w/ CoT,
and few-shot w/ CoT. CoT here means whether we
use Chain-of-Thought (Wei et al., 2022) prompting,
allowing the models to think step by step, or ask the
models to answer directly. We set the temperature
to 0, i.e., employing greedy decoding.

4.2 Results

Table 2 presents the performance of 10 selected
models across 8 sub-datasets of SURGE under 3 dif-
ferent settings. In this table, we provide a detailed
breakdown of the models’ performance on the ML
and BG sub-datasets. We present the complete re-
sults of all 21 models in Table 5 in Appendix A.
From the results, several notable findings emerge:
SURGE demonstrates strong discriminative

ability. Even the strongest models perform only
moderately well, highlighting the value of our
benchmark. The models exhibit significant per-
formance differences across different subsets, re-
flecting the comprehensiveness of our dataset. Ad-
ditionally, models that perform well in other tasks,
such as Claude-3.5-Sonnet, also achieve substan-
tial overall results on SURGE. This demonstrates the
reasonableness of our dataset and its effectiveness
in benchmarking LLMs as general-purpose surro-
gate code executors.

Different prompting strategies lead to vary-
ing model performance and have different ef-
fects across subsets. We found that for the
task of code execution surrogacy, both Chain-of-
Thought prompting and few-shot learning can en-
hance model performance.
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Model
Compiler Standard Optimization

Zero-shot Zero-shot CoT Few-shot CoT Zero-shot Zero-shot CoT Few-shot CoT Zero-shot Zero-shot CoT Few-shot CoT

Claude-3.5 12.92 18.19 25.70 14.21 16.75 23.59 16.06 1.23 12.90
GPT-4o 14.75 14.21 22.08 15.33 14.61 20.02 7.66 1.63 1.22
LLaMA-3.1-8B 3.97 10.12 12.05 4.29 10.60 13.17 1.96 3.91 8.04
LLaMA-3.1-70B 15.73 16.86 13.27 16.36 16.27 13.24 15.04 2.24 3.73

Table 3: Model Performance Across Different Variables in DR

Larger model sizes tend to yield better per-
formance on SURGE. From the results, we observe
that regardless of whether it is a Qwen-Chat model
or a Qwen-Coder model, performance improves as
the parameter size increases.

Chat models and coder models exhibit differ-
ent performance patterns and are affected differ-
ently by prompting strategies. We observed that
for chat and code models of the same size, code
models outperform chat models in the zero-shot
setting SURGE. However, in the other two settings,
chat models perform better. This suggests that code
models have stronger zero-shot surrogate capabil-
ities, whereas chat models excel in reasoning and
imitation abilities.

On some sub-datasets of SURGE, stronger mod-
els perform worse than smaller, weaker ones.
For example, in the FL dataset, we found that this
occurs because stronger models tend to actively
look for errors in the code, often misidentifying
correct code as incorrect. In contrast, smaller mod-
els are more inclined to assume that all code is
error-free. Since half of the samples in this sub-
set are indeed correct, the smaller models end up
achieving better performance.

4.3 Anomaly Analysis

We conducted case studies on anomalous results to
better understand model behavior.

Larger Models Underperforming. In some in-
stances, larger models performed worse than their
smaller counterparts. For example, on ML tasks,
Qwen-2.5-14B-Instruct was outperformed by
Qwen-2.5-0.5B-Instruct. Our case study re-
vealed that while the 0.5B model’s reasoning was
less detailed, it correctly grasped the code’s core
logic. In contrast, the 14B model attempted more
elaborate reasoning but often made critical mis-
judgments (e.g., in conditionals like ≤), leading to
incorrect results. This suggests that on certain com-
plex reasoning tasks, larger models may be prone to
"overthinking" or following incorrect logical paths.

Zero-Shot Failures. We investigated cases of
complete failure in the zero-shot setting, such as

LLaMA-3.1-8B-Instruct scoring 0 on ML tasks
for C++ and Rust, and on all FL tasks. For ML, the
failures were attributed to the inherent difficulty of
the test cases and specific language features (e.g.,
Rust’s strict type system). For FL tasks, the model
incorrectly identified errors in all problems. For
half of the correct problems, it wrongly predicted
errors. For the other half that contained errors, it
failed to predict the specific error messages accu-
rately, leading to incorrect predictions in all cases.

5 Analysis

5.1 The Impact of Language Type

In Table 2, we compare model performance across
different programming languages.

In the ML subset, LLMs perform best in Python,
followed by C++. Python’s simple syntax makes
it easier to process, while C++ benefits from its
strong presence in programming and system-level
tasks. Models also perform well in Julia, likely
due to its clean syntax and similarity to Python.
However, performance drops significantly in Rust,
where strict ownership and lifetime rules introduce
complexity, making it hard to predict.

In the BG subset, when predicting the output of
buggy code, models excel in Python but struggle
with C++. Python’s clear error messages aid predic-
tion, whereas C++’s static typing, manual memory
management, and potential for undefined behavior
make error handling more difficult.

5.2 The Impact of Problem Difficulty

To analyze how problem difficulty affects model
performance, we examine results in the CL subset,
as shown in Table 4.

Across all settings, model performance gener-
ally declines as problem difficulty increases. How-
ever, at the highest difficulty level, performance
improves slightly. This anomaly arises because
difficulty levels are categorized based on coding
complexity, but the hardest problems often involve
implementing simple functionality using complex,
optimized algorithms. In such cases, models can
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Difficulty 1 2 3 4 5

Zero-shot

Claude-3.5-Sonnet 90.91 81.25 82.05 72.00 79.49
GPT-4o 72.73 56.25 58.97 84.00 61.54
LLaMA-3.1-8B-Instruct 24.24 18.75 7.69 4.00 12.82
LLaMA-3.1-70B-Instruct 96.97 93.75 64.10 64.00 79.49

Zero-shot Chain-of-Thought

Claude-3.5-Sonnet 96.97 87.50 76.92 72.00 79.49
GPT-4o 96.97 81.25 74.36 80.00 69.23
LLaMA-3.1-8B-Instruct 57.58 43.75 30.77 40.00 38.46
LLaMA-3.1-70B-Instruct 90.91 56.25 48.72 36.00 56.41

Few-shot Chain-of-Thought

Claude-3.5-Sonnet 96.97 81.25 76.92 68.00 84.62
GPT-4o 93.94 81.25 71.79 60.00 71.79
LLaMA-3.1-8B-Instruct 39.39 18.75 33.33 16.00 33.33
LLaMA-3.1-70B-Instruct 87.88 87.50 48.72 48.00 76.92

Table 4: Model Performance by Difficulty Level

generate correct answers through end-to-end rea-
soning without fully understanding the underlying
code logic. In contrast, levels 1–4 require logical
reasoning based on code execution, making predic-
tion harder as complexity increases.

Furthermore, while Chain-of-Thought prompt-
ing improves performance, few-shot learning does
not and may even degrade results. This is likely be-
cause buggy code varies widely, causing few-shot
examples to mislead rather than aid the model.

<0.5s <1s >1s
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
) 73.6%

100.0%

0.0%

64.4%

83.3%

0.0%

19.5%
8.3%

0.0%

13.8%
8.3%

0.0%

Claude-3.5-Sonnet
GPT-4o
GPT-4o-mini
Qwen2.5-7B-Instruct

Figure 4: Model’s Performance on TC subset across
programs with different run time on CPU.

5.3 Prediction Accuracy & CPU Time

We explore the relationship between the execution
time of the given code through running on CPUs
and the accuracy of using LLMs as surrogate mod-
els to acquire the output. We categorize problems
in TC into distinct bins based on their execution
times and calculate the average accuracy for each
model across all samples within the same bin, as
shown in Figure 4. We observed the trend of pre-
diction accuracy of the model falling as the actual
execution time required for the corresponding pro-

gram prolonged. It’s especially worth noting that
for computational tasks that require execution time
longer than 1 second, even state-of-the-art models
struggle to obtain even one correct answer.

5.4 The Impact of Variable Type
The DR subset in SURGE examines model perfor-
mance in predicting code behavior under differ-
ent environmental factors. Specifically, DR in-
cludes variations in C++ compiler version, C++
standard, and compilation optimization settings.
Table 3 presents model performance across differ-
ent prompting strategies in DR.

In the zero-shot setting, model accuracy im-
proves sequentially across the three factors, sug-
gesting that compiler version differences are harder
to predict than standard variations, which in turn
are harder than optimization settings. However,
with Chain-of-Thought reasoning, performance de-
clines across all factors, with the sharpest drop for
optimization settings. This indicates that while
CoT aids reasoning for compiler versions and stan-
dards, it adds unnecessary complexity for optimiza-
tions, ultimately reducing accuracy.

5.5 In-depth Look at Model Behavior
We looked into LLMs’ surrogation process and
summarized three key observations:

Deep Semantic and Logical Reasoning. LLMs
demonstrate a strong ability to interpret complex,
language-specific semantics. For instance, when
analyzing C++ code with bit fields, models cor-
rectly reasoned about the effects of signed vs.
unsigned types, bit-width limitations, and how
value overflows are handled under two’s comple-
ment representation. This indicates an understand-
ing of low-level computational logic.

Stateful Algorithmic Tracing. For algorith-
mic tasks, LLMs effectively simulate the execution
process by tracing the program’s state. The mod-
els’ chain-of-thought process shows them iterating
through loops, updating variables step-by-step, and
applying conditional logic as an interpreter would.

Identification of Computational Boundaries.
In a brute-force Traveling Salesman Problem (TSP)
solver, models could correctly understand the over-
all goal and algorithm, but often failed to predict
the precise final floating-point value. This suggests
their "execution" is a form of sophisticated logical
inference, which falters when faced with complex
combinatorial calculations that exceed their inter-
nal reasoning capacity.
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Figure 5: Breakdown of error types across different language models and prompting methods.

5.6 Error Analysis

To further understand the model’s performance
and limitations regarding serving as general sur-
rogate models, we categorize the Errors made by
Claude-3.5-Sonnet, GPT-4o, and Llama-
3.1-8B-Instruct and Llama-3.1-70B-
Instructin the CL subset of SURGE.

We first combined LLM-assisted annotation and
manual verification to identify 7 most typical error
types: 1. Code Language Knowledge: evaluating
foundational programming language proficiency,
2. Context Awareness: measuring understanding
of long text and repository-level code, 3. Concep-
tual Understanding: assessing comprehension of
programming concepts, 4. Calculation Process:
verifying computational step accuracy, 5. Code Un-
derstanding: testing comprehension of code logic
and structure, 6. Data Interpretation: evaluating
data processing and analysis capabilities, and 7.
Calculation Accuracy: Measuring precision in sci-
entific computations. We then use LLM to label
errors in the model’s responses. The categorized
error statistics are demonstrated in Figure 5.

As models prompted with CoT exhibit fewer in-
stances of most error types compared to zero-shot,
especially for the Code Understanding capability of
Llama. The main error types are Code Understand-
ing, Calculation Process, and Calculation Accuracy.
For zero-shot, the primary error is accuracy, but for
CoT, the most frequent error is Calculation Process.
This suggests that CoT can better grasp the overall
code logic and produce more correct results, but it
may still make mistakes in the chain of thought pro-
cess. In general, CoT has fewer and smaller errors.

From the model perspective, Llama has a clear lead
in Conceptual Understanding errors, indicating its
weaker ability to understand concepts.

5.7 Training Scale Analysis

We also investigate whether training scaling can
affect LLMs’ surrogate execution capabilities on
the FL task. We trained models of varying sizes
on different amounts of training data sampled from
the same distribution, and tested them to predict
the error feedbacks for incorrect proofs.

As demonstrated in Figure 2, both model size
and training steps are crucial factors in determin-
ing surrogate execution accuracy. As we scale
from 0.5B to 7B parameters, models consistently
show improved learning efficiency and higher per-
formance ceilings throughout the training process.
Larger models learn faster in the early stages and
continue to improve for longer before plateauing,
suggesting better utilization of the training data.

These empirical observations align with estab-
lished scaling laws in language modeling, indicat-
ing that surrogate execution capabilities follow sim-
ilar scaling patterns as other language tasks.

6 Conclusion

We introduce SURGE, a holistic benchmark for eval-
uating LLMs as general-purpose surrogate code
executors. Through extensive empirical study, we
argue that there remains significant room for fur-
ther improvements on grounding LLMs to facilitate
general surrogate models. Our findings not only
chart the current landscape but also illuminate a
clear path for future research.
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Limitations

Despite its comprehensive evaluation, our study
has several limitations. LLMs remain approxi-
mators rather than exact code executors, often
struggling with edge cases, intricate runtime be-
haviors, and execution-dependent state changes.
While SURGE covers diverse execution scenarios,
it does not encompass all specialized environments,
such as hardware-dependent simulations or real-
time systems. Additionally, LLMs may generate
plausible but incorrect outputs, particularly in com-
plex logical dependencies or undefined behaviors,
making error detection challenging. Our scaling
study is constrained by computational resources,
limiting the assessment of extremely large models
or extensive training data distributions. Further-
more, security risks remain, as LLMs may fail to
recognize vulnerabilities, potentially misjudging
harmful code. Finally, our benchmark operates in
a controlled setting, whereas real-world software
development involves dynamic interactions and it-
erative debugging, which are not fully captured in
our study. Future work should focus on improving
LLMs’ reasoning abilities, enhancing robustness in
execution prediction, and integrating them with tra-
ditional program analysis techniques for practical
deployment.
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Model ML CL RL SC TC BG DR FL Avg.CPP Rust Python Julia Java Others CPP Java Python

Zero-shot

Claude-3.5-Sonnet 72.73 55.00 88.00 66.67 76.92 75.00 81.58 57.31 61.55 35.27 9.09 12.55 51.40 12.92 17.92 51.59
DeepSeek-V3 54.55 60.00 76.00 61.11 46.15 72.50 56.58 44.19 59.65 35.31 4.05 3.03 21.50 10.92 32.46 42.53
GPT-4o 40.91 45.00 60.00 55.56 57.69 55.00 66.45 49.13 53.16 34.44 4.28 7.48 34.59 14.75 21.99 40.03
GPT-4o-Mini 59.09 45.00 64.00 33.33 69.23 60.00 84.21 35.33 40.00 31.85 1.39 4.28 13.86 11.65 39.07 39.49
Qwen-Max 50.00 45.00 44.00 27.78 26.92 50.00 38.82 37.15 56.98 35.44 2.82 3.20 30.52 14.03 29.89 32.84
Qwen-2.5-0.5B-Instruct 13.64 10.00 4.00 0.00 11.54 7.50 19.08 5.02 9.43 8.61 1.20 3.77 11.04 4.62 42.38 10.85
Qwen-2.5-1.5B-Instruct 36.36 15.00 24.00 16.67 15.38 35.00 40.79 5.89 12.08 14.15 1.15 3.52 11.10 9.24 41.72 18.80
Qwen-2.5-3B-Instruct 36.36 10.00 28.00 22.22 34.62 22.50 35.53 13.08 20.04 14.61 1.58 3.92 13.27 5.75 15.89 18.49
Qwen-2.5-7B-Instruct 13.64 5.00 12.00 5.56 11.54 17.50 27.63 27.98 22.90 29.43 2.21 3.66 9.46 7.24 36.42 15.48
Qwen-2.5-14B-Instruct 9.09 5.00 8.00 5.56 23.08 5.00 11.18 39.08 33.79 28.18 2.11 2.24 16.30 4.24 7.28 13.34
Qwen-2.5-32B-Instruct 45.45 20.00 48.00 33.33 42.31 20.00 50.66 22.61 32.50 30.99 1.21 2.09 12.16 7.26 7.65 25.08
Qwen-2.5-72B-Instruct 45.45 40.00 52.00 55.56 69.23 52.50 72.37 33.66 53.70 32.46 1.99 2.65 10.69 13.35 34.44 38.00
Qwen-2.5-Coder-0.5B-Instruct 22.73 10.00 20.00 5.56 11.54 22.50 26.97 8.41 6.55 6.39 0.73 2.92 10.05 5.76 41.06 13.41
Qwen-2.5-Coder-1.5B-Instruct 45.45 30.00 32.00 27.78 26.92 35.00 54.61 17.58 20.58 13.19 0.36 2.83 5.43 8.08 41.06 24.06
Qwen-2.5-Coder-3B-Instruct 45.45 20.00 40.00 22.22 46.15 40.00 68.42 21.58 37.43 22.43 1.06 3.61 13.41 8.96 41.06 28.79
Qwen-2.5-Coder-7B-Instruct 45.45 30.00 52.00 44.44 50.00 42.50 75.00 20.86 45.50 28.00 0.86 3.47 13.53 14.23 40.40 33.75
Qwen-2.5-Coder-14B-Instruct 59.09 35.00 48.00 55.56 69.23 62.50 82.89 35.26 51.93 32.20 1.39 3.66 16.12 11.35 41.72 40.39
Qwen-2.5-Coder-32B-Instruct 59.09 55.00 60.00 44.44 69.23 60.00 80.26 48.43 57.18 18.84 1.49 1.95 17.96 13.42 29.19 41.10
LLaMA-3.1-8B-Instruct 0.00 0.00 4.00 5.56 15.38 5.00 13.16 20.41 4.41 15.46 4.41 4.12 5.98 3.97 0.00 8.49
LLaMA-3.1-70B-Instruct 54.55 40.00 52.00 33.33 65.38 47.50 78.29 31.60 48.65 30.19 1.59 4.18 14.27 15.73 39.16 37.10
LLaMA-3.3-70B-Instruct 68.18 50.00 60.00 44.44 57.69 62.50 66.45 43.53 38.45 30.35 2.06 3.23 11.01 11.22 39.13 39.22

Zero-shot Chain-of-Thought

Claude-3.5-Sonnet 90.91 65.00 96.00 77.78 69.23 92.50 82.24 62.31 63.38 40.70 16.91 20.69 62.23 18.19 33.98 59.47
DeepSeek-V3 81.82 85.00 88.00 72.22 69.23 85.00 76.32 62.70 57.57 36.71 4.45 7.85 46.26 16.21 35.19 54.97
GPT-4o 68.18 65.00 92.00 72.22 76.92 77.50 79.61 53.74 48.56 28.36 8.19 9.97 44.29 14.21 27.91 51.11
GPT-4o-Mini 77.27 60.00 88.00 50.00 69.23 80.00 75.66 34.46 40.60 29.59 1.77 5.40 21.04 13.16 33.11 45.29
Qwen-Max 86.36 75.00 80.00 72.22 76.92 80.00 71.05 50.49 61.78 36.71 2.65 7.73 46.85 16.16 20.74 52.31
Qwen-2.5-0.5B-Instruct 27.27 10.00 16.00 0.00 3.85 17.50 22.37 6.29 1.11 5.28 1.22 3.41 9.15 5.21 37.09 11.84
Qwen-2.5-1.5B-Instruct 31.82 15.00 20.00 11.11 19.23 27.50 26.32 12.47 8.14 12.77 1.22 3.23 9.81 4.93 39.74 16.22
Qwen-2.5-3B-Instruct 40.91 40.00 32.00 22.22 30.77 35.00 25.00 15.01 20.78 12.84 2.14 2.86 5.29 7.12 13.93 20.39
Qwen-2.5-7B-Instruct 40.91 15.00 32.00 33.33 26.92 47.50 52.63 27.51 25.68 28.95 1.12 3.76 14.94 9.41 36.46 26.41
Qwen-2.5-14B-Instruct 68.18 55.00 76.00 61.11 65.38 72.50 61.18 43.89 36.49 32.07 1.57 3.15 19.13 11.97 8.67 41.09
Qwen-2.5-32B-Instruct 50.00 40.00 40.00 55.56 38.46 57.50 53.29 32.71 43.29 30.59 3.10 6.96 23.86 11.49 7.39 32.95
Qwen-2.5-72B-Instruct 68.18 80.00 96.00 55.56 76.92 77.50 65.13 45.30 53.39 32.95 1.72 3.19 16.32 16.61 29.80 47.90
Qwen-2.5-Coder-0.5B-Instruct 13.64 0.00 4.00 5.56 3.85 7.50 1.97 3.07 2.14 3.98 2.14 2.44 2.83 2.23 33.77 6.36
Qwen-2.5-Coder-1.5B-Instruct 31.82 10.00 28.00 5.56 15.38 22.50 19.08 26.39 20.08 15.42 1.16 3.60 11.46 7.24 39.74 17.16
Qwen-2.5-Coder-3B-Instruct 50.00 15.00 32.00 22.22 42.31 40.00 52.63 13.13 33.96 20.14 1.24 3.72 13.36 7.63 40.40 25.85
Qwen-2.5-Coder-7B-Instruct 68.18 40.00 40.00 38.89 53.85 57.50 46.05 19.70 40.91 30.19 2.29 4.71 12.77 15.04 37.12 33.81
Qwen-2.5-Coder-14B-Instruct 59.09 45.00 60.00 55.56 69.23 62.50 71.71 26.09 52.12 33.09 3.19 5.21 18.58 13.41 34.44 40.61
Qwen-2.5-Coder-32B-Instruct 77.27 65.00 80.00 55.56 73.08 67.50 71.71 54.58 55.69 34.36 2.05 4.74 22.43 17.62 28.55 47.34
LLaMA-3.1-8B-Instruct 40.91 15.00 24.00 22.22 26.92 30.00 41.45 17.87 32.65 18.22 1.52 4.23 13.38 10.12 0.66 19.94
LLaMA-3.1-70B-Instruct 59.09 50.00 72.00 61.11 57.69 52.50 58.55 34.44 43.93 29.76 1.71 3.49 15.02 16.86 25.85 38.80
LLaMA-3.3-70B-Instruct 63.64 45.00 56.00 55.56 57.69 67.50 57.24 35.88 39.50 30.61 3.34 3.95 13.53 16.38 35.11 38.73

Few-shot Chain-of-Thought

Claude-3.5-Sonnet 86.36 70.00 96.00 72.22 65.38 82.50 82.24 70.65 63.58 41.00 22.04 23.61 44.15 25.70 31.99 58.49
DeepSeek-V3 90.91 65.00 84.00 77.78 73.08 95.00 80.26 78.64 66.00 38.60 21.98 15.14 40.27 24.38 35.17 59.08
GPT-4o 68.18 60.00 88.00 77.78 73.08 75.00 75.66 76.86 59.65 37.12 12.91 7.74 29.52 22.08 26.65 52.68
GPT-4o-Mini 77.27 55.00 80.00 50.00 73.08 72.50 71.05 63.89 55.87 34.20 17.89 9.95 23.75 18.24 24.68 48.49
Qwen-Max 81.82 70.00 88.00 77.78 73.08 80.00 82.24 72.53 62.32 37.88 19.68 19.78 37.57 23.91 24.76 56.76
Qwen-2.5-0.5B-Instruct 18.18 5.00 4.00 0.00 7.69 10.00 17.11 17.82 32.32 6.20 3.51 4.83 5.17 5.29 19.21 11.17
Qwen-2.5-1.5B-Instruct 27.27 15.00 16.00 16.67 11.54 27.50 19.74 9.88 31.44 13.20 3.76 3.66 8.15 7.17 41.72 16.85
Qwen-2.5-3B-Instruct 45.45 30.00 28.00 11.11 11.54 27.50 27.63 17.40 38.70 17.74 7.67 6.45 9.09 10.21 35.25 21.58
Qwen-2.5-7B-Instruct 27.27 25.00 36.00 38.89 26.92 42.50 48.68 45.19 43.42 28.97 4.92 4.70 12.94 10.66 34.53 28.71
Qwen-2.5-14B-Instruct 63.64 55.00 60.00 66.67 61.54 70.00 57.24 53.59 49.99 32.48 3.29 4.40 17.88 14.10 10.76 41.37
Qwen-2.5-32B-Instruct 59.09 55.00 52.00 66.67 53.85 60.00 63.16 64.10 63.12 32.53 5.41 6.94 28.66 13.81 22.87 43.15
Qwen-2.5-72B-Instruct 63.64 75.00 88.00 72.22 69.23 80.00 70.39 67.98 61.45 34.92 2.89 3.05 9.52 18.43 33.18 49.99
Qwen-2.5-Coder-0.5B-Instruct 9.09 0.00 0.00 0.00 0.00 2.50 1.32 13.88 13.18 5.62 6.66 4.42 2.15 5.19 37.75 9.25
Qwen-2.5-Coder-1.5B-Instruct 4.55 5.00 16.00 0.00 15.38 5.00 1.97 28.79 38.97 15.25 1.24 3.28 9.70 9.90 33.77 13.49
Qwen-2.5-Coder-3B-Instruct 36.36 45.00 32.00 27.78 30.77 37.50 50.00 27.43 40.84 23.31 1.28 4.06 12.00 9.64 38.41 27.76
Qwen-2.5-Coder-7B-Instruct 54.55 30.00 36.00 44.44 50.00 42.50 58.55 50.48 53.91 30.69 3.90 4.93 14.44 14.02 25.25 34.24
Qwen-2.5-Coder-14B-Instruct 63.64 40.00 52.00 38.89 65.38 62.50 77.63 55.01 52.87 32.29 5.99 5.01 15.76 13.39 32.62 40.87
Qwen-2.5-Coder-32B-Instruct 68.18 75.00 72.00 55.56 65.38 70.00 76.97 64.16 56.37 34.34 3.93 6.49 20.22 19.09 22.57 47.35
LLaMA-3.1-8B-Instruct 13.64 20.00 20.00 5.56 26.92 22.50 30.26 34.15 47.89 22.27 4.44 4.55 9.66 12.05 13.25 19.14
LLaMA-3.1-70B-Instruct 54.55 35.00 40.00 22.22 53.85 35.00 68.42 50.83 60.96 30.29 8.00 5.95 18.32 13.27 33.12 35.32
LLaMA-3.3-70B-Instruct 63.64 35.00 40.00 27.78 46.15 35.00 49.34 60.45 63.84 32.52 5.17 5.37 11.56 12.99 33.11 34.80

Table 5: Performance of different models under different prompting strategies on SURGE.
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B Prompts

B.1 Prompts for Dataset Refactoring

ML:
I will provide you with a code problem with a solution.
You need to generate a complete, executable code based on
the raw json data, including all necessary package imports,
the original code, the test cases, and the main function.
You need to generate the executable code and expected
result.
Please choose a test case according to the ’test’ field from
raw json data, and the code should print the answer of the
test case.
The output should be json format, with code and
expected_result fields.
Please only generate the number or string answer in ’
expected_result’ field without any extra description.

CL:
I will provide you with the solution to a code problem in
cpp, python, and javascript. You need to score according to
the difficulty of the problem from 1 to 5, while 5 means
the hardest. And generate topic keywords for the problem.
The output should only be json format, with difficulty and
keywords fields.
difficulty: 1−5, integer
keywords: two or three words to best describe the problem,
string list

BG:
I will provide you with a piece of code and some test cases.
You need to generate a complete, executable code based
on these, including all necessary package imports, the
original code, the test cases, and the main function. You
should wrap the original code with
ORIGINAL_CODE_START and
ORIGINAL_CODE_END comments. Additionally, the
program should output the results of the test cases. Do not
include expected output in your answer.

C Details of SURGE

C.1 ML

Java C# Rust Julia Python C++ C

25 20 20 26 18 21 20

Table 6: Language usage count across different cate-
gories in the ML subset.

In ML, the usage distribution of various program-
ming languages is shown in Table 6. We selected
a variety of languages, including Java, C#, Rust,
Julia, Python, C++, and C, to evaluate the model’s
ability to handle multilingual code. This diverse se-
lection helps to comprehensively assess the model’s
performance across different languages.

C.1.1 System Prompts

Zero-shot Chain-of-Thought:

Given the following code, what is the execution result?
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<execution result>

Zero-shot:
Given the following code, what is the execution result?
Your answer should be in the following format:
Output:
<execution result>

Few-shot Chain-of-Thought:

Given the following code, what is the execution result?
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<execution result>
Following are 3 examples:
{{examples here}}

C.1.2 Demo Questions

def catalan_number(n: int) −> int:
# Initialize an array to store the intermediate catalan
numbers
catalan = [0] * (n + 1)
catalan[0] = 1 # Base case

# Calculate catalan numbers using the recursive
formula
for i in range(1, n + 1):

for j in range(i):
catalan[i] += catalan[j] * catalan[i − j − 1]

return catalan[n]

if __name__ == "__main__":
# Run the test function and print the result of a
specific test case
print(catalan_number(3))

import java.util.*;

class Solution {
public static int countPrefixWords(List<String>
wordList, String prefix) {

int count = 0;
for (String word : wordList) {

if (word.startsWith(prefix)) {
count++;

}
}
return count;

}
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public static void main(String[] args) {
System.out.println(countPrefixWords(Arrays.
asList("dog", "dodge", "dot", "dough"), "do"));

}
}

#include <assert.h>
#include <stdio.h>

long long minTotalCost(int n, int *C)
{

return (long long)(C[n−2]) * (n − 1) + C[n−1];
}

int main() {
int costs3[] = {5, 4, 3, 2};
printf("%lld\n", minTotalCost(4, costs3));
return 0;

}

function merge_sorted_arrays(nums1::Vector{Int}, m::Int,
nums2::Vector{Int}, n::Int) :: Vector{Int}

i = m
j = n
k = m + n

while j > 0
if i > 0 && nums1[i] > nums2[j]

nums1[k] = nums1[i]
i −= 1

else
nums1[k] = nums2[j]
j −= 1

end
k −= 1

end

nums1
end

# Test case
result = merge_sorted_arrays([1, 3, 5, 0, 0, 0], 3, [2, 4, 6],
3)
println(result)

public class Solution {

public static int findSmallestInteger(int n) {
char[] characters = Integer.toString(n).toCharArray();
int i = characters.length − 2;

// Find the first digit that is smaller than the digit next
to it.
while (i >= 0 && characters[i] >= characters[i + 1]) {

i−−;
}

if (i == −1) {
return −1; // Digits are in descending order, no
greater number possible.

}

// Find the smallest digit on right side of (i) which is
greater than characters[i]
int j = characters.length − 1;

while (characters[j] <= characters[i]) {
j−−;

}

// Swap the digits at indices i and j
swap(characters, i, j);

// Reverse the digits from index i+1 to the end of the
array
reverse(characters, i + 1);

try {
return Integer.parseInt(new String(characters));

} catch (NumberFormatException e) {
return −1; // The number formed is beyond the
range of int.

}
}

private static void swap(char[] arr, int i, int j) {
char temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}

private static void reverse(char[] arr, int start) {
int end = arr.length − 1;
while (start < end) {

swap(arr, start, end);
start++;
end−−;

}
}

public static void main(String[] args) {
System.out.println(findSmallestInteger(123));

}
}

C.2 CL

Python C++ JavaScript

50 51 49

Table 7: Language usage count across different cate-
gories in the CL subset.

Difficulty JavaScript CPP Python

1 10 11 11
2 6 4 6
3 12 14 12
4 8 8 9
5 13 14 12

Table 8: Details of problems in different languages and
different difficulty levels.

In CL, we selected competition problems of vary-
ing difficulty, each with solutions in Python, C++,
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and JavaScript. You can see the distribution of lan-
guage in Table 7, and the distribution of problem
difficulty in Table 8. This selection allows us to
test the model’s cross-language capabilities and its
ability to handle problems of different difficulty
levels.

C.2.1 System Prompts

Zero-shot Chain-of-Thought:

Given the following code, what is the execution result?
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<execution result>

Zero-shot:
Given the following code, what is the execution result?
Your answer should be in the following format:
Output:
<execution result>

Few-shot Chain-of-Thought:

Given the following code, what is the execution result?
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<execution result>
Following are 3 examples:
{{examples here}}

C.2.2 Demo Questions

class TreeNode {
constructor(val) {

this.val = val;
this.left = this.right = null;

}
}

function maxDepth(root) {
if (!root) return 0;
const queue = [root, null];
let depth = 1;

while (queue.length > 0) {
const node = queue.shift();
if (node === null) {

if (queue.length === 0) return depth;
depth++;
queue.push(null);
continue;

}
if (node.left) queue.push(node.left);
if (node.right) queue.push(node.right);

}

return depth;
}

// Test case
const root = new TreeNode(3);
root.left = new TreeNode(9);
root.right = new TreeNode(20);
root.right.left = new TreeNode(15);
root.right.right = new TreeNode(7);
console.log(maxDepth(root));

from collections import Counter
class Solution:

def maxScoreWords(self, words, letters, score):
self.ans = 0
words_score = [sum(score[ord(c)−ord(’a’)] for c
in word) for word in words]
words_counter = [Counter(word) for word in
words]

def backtrack(start, cur, counter):
if start > len(words):

return
self.ans = max(self.ans, cur)
for j, w_counter in enumerate(words_counter
[start:], start):

if all(n <= counter.get(c,0) for c,n in
w_counter.items()):

backtrack(j+1, cur+words_score[j],
counter−w_counter)

backtrack(0, 0, Counter(letters))
return self.ans

solution = Solution()
print(solution.maxScoreWords(["dog","cat","dad","good"],
["a","a","c","d","d","d","g","o","o"],

[1,0,9,5,0,0,3,0,0,0,0,0,0,0,
2,0,0,0,0,0,0,0,0,0,0,0]))

#include <iostream>
#include <unordered_map>
#include <string>
using namespace std;

int findTheLongestSubstring(string s) {
unordered_map<char, int> mapper = {{’a’, 1}, {’e’,
2}, {’i’, 4}, {’o’, 8}, {’u’, 16}};
unordered_map<int, int> seen;
seen[0] = −1;
int max_len = 0, cur = 0;

for(int i = 0; i < s.size(); ++i){
if(mapper.find(s[i]) != mapper.end()){

cur ^= mapper[s[i]];
}
if(seen.find(cur) != seen.end()){

max_len = max(max_len, i − seen[cur]);
} else {

seen[cur] = i;
}

}

return max_len;
}

// Test case
class Solution {
public:
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void solve() {
string input = "eleetminicoworoep";
cout << findTheLongestSubstring(input) << endl;
// Expected output: 13

}
};

int main(){
Solution sol;
sol.solve();
return 0;

}

class TreeNode {
constructor(val) {

this.val = val;
this.left = this.right = null;

}
}

function backtrack(root, sum, res, tempList) {
if (root === null) return;
if (root.left === null && root.right === null && sum
=== root.val)

return res.push([...tempList, root.val]);

tempList.push(root.val);
backtrack(root.left, sum − root.val, res, tempList);
backtrack(root.right, sum − root.val, res, tempList);
tempList.pop();

}

function pathSum(root, sum) {
if (root === null) return [];
const res = [];
backtrack(root, sum, res, []);
return res;

}

// Test case setup
const root = new TreeNode(5);
root.left = new TreeNode(4);
root.right = new TreeNode(8);
root.left.left = new TreeNode(11);
root.right.left = new TreeNode(13);
root.right.right = new TreeNode(4);
root.left.left.left = new TreeNode(7);
root.left.left.right = new TreeNode(2);
root.right.right.left = new TreeNode(5);
root.right.right.right = new TreeNode(1);

console.log(pathSum(root, 22));

class TrieNode {
constructor() {

this.children = {};
this.isEndOfWord = false;

}
}

class Trie {
constructor() {

this.root = new TrieNode();
}

insert(word) {
let node = this.root;

for (let char of word) {
if (!node.children[char]) {

node.children[char] = new TrieNode();
}
node = node.children[char];

}
node.isEndOfWord = true;

}

search(stream) {
let node = this.root;
for (let char of stream) {

if (!node.children[char]) {
return false;

}
node = node.children[char];
if (node.isEndOfWord) {

return true;
}

}
return false;

}
}

class StreamChecker {
constructor(words) {

this.trie = new Trie();
this.stream = [];

for (let word of [...new Set(words)]) {
this.trie.insert(word.split(’’).reverse().join(’’)
);

}
}

query(letter) {
this.stream.unshift(letter);
return this.trie.search(this.stream);

}
}

// Test case
const streamChecker = new StreamChecker(["cd", "f", "kl
"]);
console.log(streamChecker.query(’a’)); // false
console.log(streamChecker.query(’b’)); // false
console.log(streamChecker.query(’c’)); // false
console.log(streamChecker.query(’d’)); // true
console.log(streamChecker.query(’e’)); // false
console.log(streamChecker.query(’f’)); // true
console.log(streamChecker.query(’g’)); // false
console.log(streamChecker.query(’h’)); // false
console.log(streamChecker.query(’i’)); // false
console.log(streamChecker.query(’j’)); // false
console.log(streamChecker.query(’k’)); // false
console.log(streamChecker.query(’l’)); // true

C.3 RL

Python C++

24 36

Table 9: Language usage count across different cate-
gories in the RL subset.
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In RL, the distribution of programming language
usage is shown in Table 9. We utilized five GitHub
repositories for this study, consisting of two Python
projects and three C++ projects. Each repository
contains a set of ten or more test cases, providing
a diverse set of data for evaluation across different
programming languages.

C.3.1 System Prompts

Zero-shot Chain-of-Thought:

You will be given a github repository and a function that
generates a latex file with this repo. Your task is to predict
the content of the latex file generated by the function.
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<file content>

Zero-shot:
You will be given a github repository and a function that
generates a latex file with this repo. Your task is to predict
the content of the latex file generated by the function.
Your answer should be in the following format:
Output:
<file content>

Few-shot Chain-of-Thought:

You will be given a github repository and a function that
generates a latex file with this repo. Your task is to predict
the content of the latex file generated by the function.
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<file content>
Following is one example:
{{examples here}}

C.3.2 Demo Questions

main.cpp:<start_file>#include <iostream>
#include <vector>
#include <utility>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <fstream>
#include <map>
using namespace std;

typedef vector<vector<char> > Board;

const int N = 9;

class SudokuPlayer
{
private:

int rowUsed[N];

int columnUsed[N];
int blockUsed[N];

public:
vector<Board> result;
vector<pair<int, int> > spaces;

public:
SudokuPlayer()
{

initState();
}

void initState()
{

memset(rowUsed, 0, sizeof(rowUsed));
memset(columnUsed, 0, sizeof(columnUsed));
memset(blockUsed, 0, sizeof(blockUsed));
spaces.clear();
result.clear();

}

void addResult(Board &board)
{

vector<vector<char> > obj(board);
result.push_back(obj);

}

void flip(int i, int j, int digit)
{

rowUsed[i] ^= (1 << digit);
columnUsed[j] ^= (1 << digit);
blockUsed[(i / 3) * 3 + j / 3] ^= (1 << digit);

}

vector<Board> solveSudoku(Board board)
{

initState();
for (int i = 0; i < N; i++)
{

for (int j = 0; j < N; j++)
{

if (board[i][j] == ’$’)
{

spaces.push_back(pair<int, int>(i, j)
);

}
else
{

int digit = board[i][j] − ’1’;
flip(i, j, digit);

}
}

}
DFS(board, 0);
return result;

}

void DFS(Board &board, int pos)
{

if (pos == spaces.size())
{

addResult(board);
return;

}
int i = spaces[pos].first;
int j = spaces[pos].second;
int mask = ~(rowUsed[i] | columnUsed[j] |
blockUsed[(i / 3) * 3 + j / 3]) & 0x1ff;
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int digit = 0;
while (mask)
{

if (mask & 1)
{

flip(i, j, digit);
board[i][j] = ’1’ + digit;
DFS(board, pos + 1);
flip(i, j, digit);

}
mask = mask >> 1;
digit++;

}
}

void getResult()
{

for (size_t i = 0; i < result.size(); i++)
{

Board board = result[i];
printBoard(board);

}
}

bool checkBoard(Board &board)
{

initState();
for (int i = 0; i < 9; i++)
{

for (int j = 0; j < 9; j++)
{

if (board[i][j] != ’$’)
{

int digit = board[i][j] − ’1’;
if ((rowUsed[i] | columnUsed[j] |
blockUsed[(i / 3) * 3 + j / 3]) & (1
<< digit))
{

return false;
}
flip(i, j, digit);

}
}

}
return true;

}

void printBoard(Board &board)
{

for (int i = 0; i < board.size(); i++)
{

for (int j = 0; j < board[i].size(); j++)
{

cout << board[i][j] << " ";
}
cout << "\n";

}
}

Board generateBoard(int digCount)
{

vector<vector<char> > board(N, vector<char>(N,
’$’));
vector<int> row = getRand9();
for (int i = 0; i < 3; i++)
{

board[3][i + 3] = row[i] + ’1’;
board[4][i + 3] = row[i + 3] + ’1’;
board[5][i + 3] = row[i + 6] + ’1’;

}
copySquare(board, 3, 3, true);
copySquare(board, 3, 3, false);
copySquare(board, 3, 0, false);
copySquare(board, 3, 6, false);

while (digCount)
{

int x = rand() % 9;
int y = rand() % 9;
if (board[x][y] == ’$’)

continue;
char tmp = board[x][y];
board[x][y] = ’$’;

solveSudoku(board);
if (result.size() == 1)
{

digCount−−;
}
else
{

board[x][y] = tmp;
}

}
// printBoard(board);
// cout << "spaces " << player.spaces.size() << "\n
";
if (!checkBoard(board))
{

cout << "wrong board" << endl;
}

return board;
}

vector<int> getRand9()
{

vector<int> result;
int digit = 0;
while (result.size() != 9)
{

int num = rand() % 9;
if ((1 << num) & digit)
{

continue;
}
else
{

result.push_back(num);
digit ^= (1 << num);

}
}
return result;

}

void copySquare(Board &board, int src_x, int src_y,
bool isRow)
{

int rand_tmp = rand() % 2 + 1;
int order_first[3] = {1, 2, 0};
int order_second[3] = {2, 0, 1};
if (rand_tmp == 2)
{

order_first[0] = 2;
order_first[1] = 0;
order_first[2] = 1;
order_second[0] = 1;
order_second[1] = 2;
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order_second[2] = 0;
}
for (int i = 0; i < 3; i++)
{

if (isRow)
{

board[src_x][i] = board[src_x +
order_first[0]][src_y + i];
board[src_x + 1][i] = board[src_x +
order_first[1]][src_y + i];
board[src_x + 2][i] = board[src_x +
order_first[2]][src_y + i];
board[src_x][i + 6] = board[src_x +
order_second[0]][src_y + i];
board[src_x + 1][i + 6] = board[src_x +
order_second[1]][src_y + i];
board[src_x + 2][i + 6] = board[src_x +
order_second[2]][src_y + i];

}
else
{

board[i][src_y] = board[src_x + i][src_y
+ order_first[0]];
board[i][src_y + 1] = board[src_x + i][
src_y + order_first[1]];
board[i][src_y + 2] = board[src_x + i][
src_y + order_first[2]];
board[i + 6][src_y] = board[src_x + i][
src_y + order_second[0]];
board[i + 6][src_y + 1] = board[src_x + i
][src_y + order_second[1]];
board[i + 6][src_y + 2] = board[src_x + i
][src_y + order_second[2]];

}
}

}
};

char data[9][9] = {
{’5’, ’3’, ’.’, ’.’, ’7’, ’.’, ’.’, ’.’, ’.’},
{’6’, ’.’, ’.’, ’1’, ’9’, ’5’, ’.’, ’.’, ’.’},
{’.’, ’9’, ’8’, ’.’, ’.’, ’.’, ’.’, ’6’, ’.’},
{’8’, ’.’, ’.’, ’.’, ’6’, ’.’, ’.’, ’.’, ’3’},
{’4’, ’.’, ’.’, ’8’, ’.’, ’3’, ’.’, ’.’, ’1’},
{’7’, ’.’, ’.’, ’.’, ’2’, ’.’, ’.’, ’.’, ’6’},
{’.’, ’6’, ’.’, ’.’, ’.’, ’.’, ’2’, ’8’, ’.’},
{’.’, ’.’, ’.’, ’4’, ’1’, ’9’, ’.’, ’.’, ’5’},
{’.’, ’.’, ’.’, ’.’, ’8’, ’.’, ’.’, ’7’, ’9’}};

void test()
{

SudokuPlayer player;
vector<vector<char> > board(N, vector<char>(N, ’.’))
;

for (int i = 0; i < board.size(); i++)
{

for (int j = 0; j < board[i].size(); j++)
{

board[i][j] = data[i][j];
}

}
bool check = player.checkBoard(board);
if (check)

cout << "checked" << endl;

player.solveSudoku(board);
player.getResult();

cout << endl;
}

vector<Board> readFile(string filePath)
{

ifstream infile;
vector<Board> boards;
infile.open(filePath);
char data[100];
Board tmp;
vector<char> row;
while (!infile.eof())
{

infile.getline(data, 100);
if (data[0] == ’−’)
{

boards.push_back(Board(tmp));
tmp.clear();
continue;

}
for (int i = 0; i < strlen(data); i++)
{

if ((’1’ <= data[i] && data[i] <= ’9’) || data[i]
== ’$’)
{

row.push_back(data[i]);
}

}
tmp.push_back(vector<char>(row));
row.clear();

}
infile.close();
return boards;

}

void writeFile(vector<Board> boards, ofstream &f)
{

for (int k = 0; k < boards.size(); k++)
{

for (int i = 0; i < boards[k].size(); i++)
{

for (int j = 0; j < boards[k][i].size(); j++)
{

f << boards[k][i][j] << " ";
}
f << "\n";

}
f << "−−−−−−− " << k << " −−−−−−−" << endl;

}
}

map<char, string> parse(int argc, char *argv[])
{

map<char, string> params;
int compeleteBoardCount, gameNumber, gameLevel;
vector<int> range;
string inputFile;
char opt = 0;
while ((opt = getopt(argc, argv, "c:s:n:m:r:u")) != −1)
{

switch (opt)
{
case ’c’:

compeleteBoardCount = atoi(optarg);
if (compeleteBoardCount < 1 ||
compeleteBoardCount > 1000000)
{

exit(0);
}
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params[opt] = string(optarg);
break;

case ’s’:
inputFile = string(optarg);
if (access(optarg, 0) == −1)
{

printf("file does not exist\n");
exit(0);

}
params[opt] = string(optarg);
break;

case ’n’:
gameNumber = atoi(optarg);
if (gameNumber < 1 || gameNumber >
10000)
{

exit(0);
}
params[opt] = string(optarg);
break;

case ’m’:
gameLevel = atoi(optarg);
if (gameLevel < 1 || gameLevel > 3)
{

exit(0);
}
params[opt] = string(optarg);
break;

case ’r’:
char *p;
p = strtok(optarg, "~");
while (p)
{

range.push_back(atoi(p));
p = strtok(NULL, "~");

}
if (range.size() != 2)
{

exit(0);
}
if ((range[0] >= range[1]) || range[0] < 20 ||
range[1] > 55)
{

exit(0);
}
params[opt] = string(optarg);
break;

case ’u’:
params[opt] = string();
break;

default:
exit(0);
break;

}
}
return params;

}

void generateGame(int gameNumber, int gameLevel,
vector<int> digCount, ofstream &outfile, SudokuPlayer &
player)
{

for (int i = 0; i < gameNumber; i++)
{

int cnt = 0;
if (digCount.size() == 1)
{

cnt = digCount[0];
}

else
{

cnt = rand() % (digCount[1] − digCount[0] +
1) + digCount[0];

}
Board b = player.generateBoard(cnt);
vector<Board> bs;
bs.push_back(b);
writeFile(bs, outfile);

}
outfile.close();

}

int main(int argc, char *argv[])
{

srand((unsigned)time(NULL));
SudokuPlayer player;

map<char, string> params = parse(argc, argv);
map<char, string>::iterator it, tmp;

int opt = 0;

vector<int> range;
int gameNumber;
int gameLevel = 0;
int solution_count = 0;

vector<Board> boards;
ofstream outfile;

it = params.begin();
while (it != params.end())
{

switch (it−>first)
{
case ’c’:

outfile.open("game.txt", ios::out | ios::trunc);
range.push_back(0);
generateGame(atoi(it−>second.c_str()), 0,
range, outfile, player);
range.clear();
break;

case ’s’:
outfile.open("sudoku.txt", ios::out | ios::trunc
);
boards = readFile(it−>second);
for (int i = 0; i < boards.size(); i++)
{

vector<Board> result = player.
solveSudoku(boards[i]);
writeFile(result, outfile);

}
outfile.close();
break;

case ’n’:
case ’m’:
case ’r’:
case ’u’:

tmp = params.find(’n’);
if (tmp == params.end())
{

exit(0);
}

gameNumber = atoi(tmp−>second.c_str());
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tmp = params.find(’u’);
if (tmp != params.end())
{

solution_count = 1;
}

tmp = params.find(’m’);
if (tmp != params.end())
{

gameLevel = atoi(tmp−>second.c_str());
}

tmp = params.find(’r’);
if (tmp != params.end())
{

char *p;
char *pc = new char[100];
strcpy(pc, tmp−>second.c_str());
p = strtok(pc, "~");
while (p)
{

range.push_back(atoi(p));
p = strtok(NULL, "~");

}
}
else
{

if (gameLevel == 1)
{

range.push_back(20);
range.push_back(30);

}
else if (gameLevel == 2)
{

range.push_back(30);
range.push_back(40);

}
else if (gameLevel == 3)
{

range.push_back(40);
range.push_back(55);

}
else
{

range.push_back(20);
range.push_back(55);

}
}

outfile.open("game.txt", ios::out | ios::trunc);
generateGame(gameNumber, gameLevel,
range, outfile, player);
range.clear();
break;

}
// cout << it−>first << ’ ’ << it−>second << endl;
it++;

}

return 0;
}<end_file>;game.txt:<start_file><9 $ 5 $ 3 $ 7 1 2
$ 1 2 $ $ 8 3 $ $
$ $ $ 2 7 $ 9 8 5
8 $ 9 $ 6 $ 1 2 7
1 $ $ $ 5 $ $ 6 3
4 6 3 1 2 7 $ $ $
$ $ 8 3 4 6 2 7 1
2 7 $ $ $ $ $ 3 $
$ 3 4 $ 1 $ $ $ 8

−−−−−−− 0 −−−−−−−<endfile>

Here is the code repository:Cow.cpp:<start_file>#include "
Cow.h"
Cow::Cow(std::string a,int b,int c,int d){

name=a;
l=b;
u=c;
m=d;
in=0;
state=0;

}<endfile>Cow.h:<start_file>#pragma once
#include <string>
class Cow{

public:
std::string name;
int l,u,m;
int in;
int state;
Cow(){}
Cow(std::string a,int b,int c,int d);

};<endfile>Farm.cpp:<start_file>#include "Farm.h"
Farm::Farm(int a){

n=a;
num=0;
cow=new Cow[a];
milk=0;

}
void Farm::addCow(Cow a){

cow[num]=a;
num+=1;

}
void Farm::supply(std::string a,int b){

for(int i=0;i<n;i++){
if(cow[i].name==a){

cow[i].in+=b;
break;

}
}

}
void Farm::startMeal(){

for(int i=0;i<n;i++){
if(cow[i].in==0)
cow[i].state=0;
if(cow[i].in>0&&cow[i].in<cow[i].l){

cow[i].state=1;
cow[i].in=0;

}
if(cow[i].in>=cow[i].l){

cow[i].state=2;
if(cow[i].in<=cow[i].u)
cow[i].in=0;
if(cow[i].in>cow[i].u)
cow[i].in−=cow[i].u;

}
}

}
void Farm::produceMilk(){

for(int i=0;i<n;i++){
if(cow[i].state==0){

milk+=0;
continue;

}
if(cow[i].state==1){

milk+=cow[i].m*0.5;
continue;

}
if(cow[i].state==2){
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milk+=cow[i].m;
continue;

}
}

}
float Farm::getMilkProduction(){

return milk;
}<endfile>Farm.h:<start_file>#pragma once
#include"Cow.h"
class Farm{

int n;
int num;
Cow* cow;
public:
float milk;
Farm(int a);
void addCow(Cow a);
void supply(std::string a,int b);
void startMeal();
void produceMilk();
float getMilkProduction();
~Farm(){

delete[] cow;
}

};<endfile>main.cpp:<start_file>#include <iostream>
#include <string>
#include "Cow.h"
#include "Farm.h"
using namespace std;

int main(){
int n;
cin >> n;
Farm farm(n);
string name;
int l, u, m;
for(int i = 0; i < n; ++i){

cin >> name >> l >> u >> m;
Cow cow(name, l, u, m);
farm.addCow(cow);

}

int k;
cin >> k;
int t;
int a;
for(int i = 0; i < k; ++i){

cin >> t;
for(int j = 0; j < t; ++j){

cin >> name >> a;
farm.supply(name, a);

}
farm.startMeal();
farm.produceMilk();

}
printf("%.1f", farm.getMilkProduction());
return 0;

}<endfile>makefile:<start_file>main:main−3.o Farm.o
Cow.o

g++ main−3.o Farm.o Cow.o −o main

main−3.o:main−3.cpp Farm.h Cow.h
g++ −c main−3.cpp −o main−3.o

Farm.o:Farm.cpp Farm.h Cow.h
g++ −c Farm.cpp −o Farm.o

Cow.o:Cow.cpp Cow.h
g++ −c Cow.cpp −o Cow.o

clean:
rm *.o main<endfile>, and the input file is:./input
/11.txt:<start_file>3

a 2 5 6
b 3 4 7
c 1 6 5
2
1 a 3
2 b 2 c 4<enfile>

Given the following code, what is the execution result?
The file is under ‘/app/‘ directory, and is run with "python3
/app/test.py" if it is a python file, "g++ −std=c++11 /app/

test.cpp −o /app/test
/app/test" if it is a cpp file, and "javac /app/\{class_name\}.
java
java −cp /app \{class_name\}" if it is a java file.
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<execution result>

Here is the code repository:car.cpp:<start_file>#include "
car.h"
#include <iostream>
using namespace std;

Car::Car(int num,string eng):Vehicle(num,eng){}

void Car::describe(){
cout<<"Finish building a car with "<<wheel.get_num
()<<" wheels and a "<<engine.get_name()<<" engine
."<<endl;
cout<<"A car with "<<wheel.get_num()<<" wheels
and a "<<engine.get_name()<<" engine."<<endl;

}

<endfile>car.h:<start_file>#pragma once
#include "vehicle.h"
using namespace std;

class Car: public Vehicle{
public:
Car(int num, string eng);
void describe();

};<endfile>engine.cpp:<start_file>#include "engine.h"

Engine::Engine(string nam): name(nam) {
cout << "Using " << nam << " engine."<< endl;

}

string Engine::get_name() {
return name;

}
<endfile>engine.h:<start_file>#pragma once
#include <iostream>
#include <string>
using namespace std;

class Engine {
string name;

public:
Engine(string);
string get_name();

};<endfile>main.cpp:<start_file>
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#include <iostream>
#include <string>
#include "wheel.h"
#include "engine.h"
#include "vehicle.h"
#include "motor.h"
#include "car.h"
using namespace std;

int main() {
int n, type, num;
string engine;

cin >> n;
for (int i=0; i<n; i++) {

cin >> type >> num >> engine;
switch (type) {

case 0: {
Vehicle v = Vehicle(
num, engine);
v.describe();
break;

}
case 1: {

Motor m = Motor(num
, engine);
m.describe();
m.sell();
break;

}
case 2: {

Car c = Car(num,
engine);
c.describe();
break;

}
}

}
return 0;

}<endfile>motor.cpp:<start_file>#include "motor.h"
#include <iostream>
using namespace std;
Motor::Motor(int num,string eng):Vehicle(num,eng){}

void Motor::describe(){
cout<<"Finish building a motor with "<<wheel.
get_num()<<" wheels and a "<<engine.get_name()<<"
engine."<<endl;

cout<<"A motor with "<<wheel.get_num()<<" wheels
and a "<<engine.get_name()<<" engine."<<endl;

}

void Motor::sell(){
cout<<"A motor is sold!"<<endl;

}<endfile>motor.h:<start_file>#pragma once
#include "vehicle.h"
using namespace std;

class Motor: public Vehicle{
public:
Motor(int num, string eng);
void describe();
void sell();

};<endfile>vehicle.cpp:<start_file>#include "vehicle.h"
#include <iostream>
using namespace std;

Vehicle::Vehicle(int num,string eng):engine(eng),wheel(
num){}

void Vehicle::describe(){
cout<<"Finish building a vehicle with "<<wheel.
get_num()<<" wheels and a "<<engine.get_name()<<"
engine."<<endl;
cout<<"A vehicle with "<<wheel.get_num()<<"
wheels and a "<<engine.get_name()<<" engine."<<
endl;

}<endfile>vehicle.h:<start_file>#pragma once
#include "wheel.h"
#include "engine.h"

using namespace std;

class Vehicle{
public:
Engine engine;
Wheel wheel;
Vehicle(int num, string eng);
void describe();

};<endfile>wheel.cpp:<start_file>#include "wheel.h"

Wheel::Wheel(int num): number(num) {
cout << "Building " << number << " wheels." <<
endl;

}

int Wheel::get_num() {
return number;

}<endfile>wheel.h:<start_file>#pragma once
#include <iostream>
using namespace std;

class Wheel {
int number;

public:
Wheel(int);
int get_num();

};<endfile>, and the input file is:./input/6.txt:<start_file>4
0 3 Gasoline
2 4 Hybrid
1 2 Electric
0 6 Magic<enfile>

Here is the code repository:24_game.py:<start_file>import
itertools
import time
import math

# Operators
OP_CONST = 0 # Constant
OP_ADD = 1 # Addition
OP_SUB = 2 # Subtraction
OP_MUL = 3 # Multiplication
OP_DIV = 4 # Divition
OP_POW = 5 # Exponentiation

OP_SQRT = 6 # Squreroot
OP_FACT = 7 # Factorial
OP_LOG = 8 # Logarithm
OP_C = 9 # Combinations
OP_P = 10 # Permutations

# List of basic operators
operators = [OP_ADD,

OP_SUB,
OP_MUL,

3293



OP_DIV]

# List of advanced operators
advanced_operators = [OP_POW,

OP_LOG,
OP_C,
OP_P]

# List of unary operators
_unary_operators = [OP_SQRT,

OP_FACT]

# List of enabled unary operators
unary_operators = []

# Symbol of operators
symbol_of_operator = {OP_ADD: "%s+%s",

OP_SUB: "%s−%s",
OP_MUL: "%s*%s",
OP_DIV: "%s/%s",
OP_POW: "%s^%s",
OP_SQRT: "sqrt(%s)",
OP_FACT: "%s!",
OP_LOG: "log_%s(%s)",
OP_C: "C(%s, %s)",
OP_P: "P(%s, %s)"}

# Priority of operators
priority_of_operator = {OP_ADD: 0,

OP_SUB: 0,
OP_MUL: 1,
OP_DIV: 1,
OP_POW: 2,
OP_LOG: 3,
OP_C: 3,
OP_P: 3,
OP_SQRT: 3,
OP_FACT: 4,
OP_CONST: 5}

# Whether operator is commutative
is_operator_commutative = {OP_ADD: True,

OP_SUB: False,
OP_MUL: True,
OP_DIV: False,
OP_POW: False,
OP_LOG: False,
OP_C: False,
OP_P: False}

# Whether inside bracket is needed when rendering
need_brackets = {OP_ADD: True,

OP_SUB: True,
OP_MUL: True,
OP_DIV: True,
OP_POW: True,
OP_FACT: True,
OP_SQRT: False,
OP_LOG: False,
OP_C: False,
OP_P: False}

def permutation(n, k):
return math.factorial(n)/math.factorial(k)

def combination(n, k):
return permutation(n, k)/math.factorial(n−k)

def evaluate_operation(op, a, b=None):
"""
Evaluate an operation on a and b.
"""
if op == OP_ADD: return a + b
if op == OP_SUB: return a − b
if op == OP_MUL: return a * b

try:
if op == OP_POW and abs(a) < 20 and abs(b) <
20:

return a ** b

if op == OP_FACT and a < 10:
return math.factorial(a)

if op == OP_C and 0 < b <= a <= 13:
return combination(a, b)

if op == OP_P and 0 < b <= a <= 13:
return permutation(a, b)

if op == OP_SQRT and a < 1000000:
return math.sqrt(a)

if op == OP_DIV: return a / b
if op == OP_LOG: return math.log(b, a)

except (ZeroDivisionError, ValueError, TypeError):
pass

except OverflowError:
print(a, b)

return float("NaN")

def fit_to_int(x, eps=1e−9):
"""
Convert x to int if x is close to an integer.
"""
try:

if abs(round(x) − x) <= eps:
return round(x)

else:
return x

except ValueError:
return float("NaN")

except TypeError:
return float("NaN")

class Node:
def __init__(self, value=None, left=None, right=None,
op=OP_CONST):

if op not in unary_operators \
and op != OP_CONST and
is_operator_commutative[op] \
and str(left) > str(right):

left, right = right, left

self._value = value
self._str_cache = None
self.left = left
self.right = right
self.op = op

@property
def value(self):
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if self._value is None:
assert self.op != OP_CONST

if self.op in unary_operators:
self._value = evaluate_operation(self.op,
self.left.value)

else:
self._value = evaluate_operation(self.op,
self.left.value, self.right.value)

self._value = fit_to_int(self._value)
return self._value

def __str__(self):
if self._str_cache is None:

self._str_cache = self._str()
return self._str_cache

def _str(self):
# Constant
if self.op == OP_CONST:

return str(self._value)

# Unary operator
elif self.op in unary_operators:

str_left = str(self.left)

if need_brackets[self.op] \
and priority_of_operator[self.left.op
] < priority_of_operator[self.op]:

str_left = "(" + str_left + ")"

return symbol_of_operator[self.op] % str_left

# Other operator
else:

str_left = str(self.left)
str_right = str(self.right)

# Add brackets inside
if need_brackets[self.op] \

and priority_of_operator[self.left.op
] < priority_of_operator[self.op]:

str_left = "(" + str_left + ")"

if need_brackets[self.op] \
and (priority_of_operator[self.right.
op] < priority_of_operator[self.op]

or (priority_of_operator[self.
right.op] ==
priority_of_operator[self.op]

and not
is_operator_commutative[
self.op])):

str_right = "(" + str_right + ")"

# Render
return symbol_of_operator[self.op] % (
str_left, str_right)

def enumerate_nodes(node_list, callback, max_depth):
# Found an expression
if len(node_list) == 1:

callback(node_list[0])

# Constrain maximum depth
if max_depth == 0:

return

# Non−unary operators
for left, right in itertools.permutations(node_list, 2):

new_node_list = node_list.copy()
new_node_list.remove(left)
new_node_list.remove(right)

for op in operators:
enumerate_nodes(new_node_list + [Node(
left=left, right=right, op=op)], callback,
max_depth−1)

if not is_operator_commutative[op] and str(
left) != str(right):

enumerate_nodes(new_node_list + [
Node(left=right, right=left, op=op)],
callback, max_depth−1)

# Unary operators
for number in node_list:

new_node_list = node_list.copy()
new_node_list.remove(number)

for op in unary_operators:
new_node = Node(left=number, op=op)
if new_node.value == number.value:

continue

enumerate_nodes(new_node_list + [
new_node], callback, max_depth−1)

class CallbackFindTarget:
def __init__(self, target):

self.target = target
self.results = []
self.duplication_count = 0
self.enumeration_count = 0

def __call__(self, node):
if node.value == self.target and str(node) not in
self.results:

print(self.target, "=", node)
self.results.append(str(node))

elif node.value == self.target:
self.duplication_count += 1

self.enumeration_count += 1

def show(self, execution_time):
print()
print("%d solution(s) in %.3f seconds" % (len(
self.results), execution_time))
print("%d duplication(s)" % self.
duplication_count)
print("%d combination(s)" % self.
enumeration_count)

class CallbackAllTarget:
def __init__(self):

self.results = {}
self.enumeration_count = 0

def __call__(self, node):
try:

int(node.value)
except ValueError:

return
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if node.value not in self.results \
and int(node.value) == node.value:

self.results[node.value] = node

self.enumeration_count += 1

def __str__(self):
string = ""
for value in sorted(self.results.keys()):

string += "%d = %s" % (value, str(self.results
[value]))
string += "\n"

return string

def show(self, execution_time):
print(self)
print()
print("%d targets(s) in %.3f seconds" % (len(self.
results), execution_time))
print("%d combination(s)" % self.
enumeration_count)

def select_yes_no(prompt, default=False):
answer = input(prompt).strip().lower()
if answer == "y":

return True
if answer == "n":

return False
return default

def select_int(prompt, default):
try:

return int(input(prompt).strip())
except ValueError:

return default

def main():
global operators
global unary_operators

unary_operators_allowed = False
enumerate_all = False

if not enumerate_all:
target = 24
callback = CallbackFindTarget(target=target)

if enumerate_all:
callback = CallbackAllTarget()

else:
callback = CallbackFindTarget(target=target)

with open(’input.txt’, ’r’) as file:
inputs = [int(i) for line in file for i in line.split() if
i != ""]

node_list = [Node(value=i) for i in inputs]

enumerate_nodes(node_list, callback, max_depth=len(
node_list)−1+unary_operators_allowed)

main()<enfile>, and the input file is: input.txt:<start_file>4
4 7 7<end_file>

C.4 SC

C.4.1 Tasks Descriptions
The scientific computing component of SURGE con-
sists of 4 carefully curated areas, aiming to evalu-
ate model performance on computational tasks that
exhibit a time-consuming nature as well as applica-
tional values in scientific computing areas. In this
section, we provide a detailed description of each
component.

Numerical Optimization. In this task, the model
is given a program that solves an optimization prob-
lem through gradient descent. The query may be
the optimized value (min) or the optimal point
(argmin). We carefully select four functions, which
consist of: a simple quadratic function, Rosenbrock
Function, Himmelblau’s Function, and a polyno-
mial function with linear constraints. For each
function, we will select multiple different hyperpa-
rameter configurations to assess the model’s perfor-
mance. These four functions provide a systematic
evaluation of the model’s potential to serve as a
surrogate model in this field. As the quadratic func-
tion is solvable without need the to run the gradi-
ent descent, the model may solve it through world
knowledge. The Rosenbrock function is known
for its narrow, curved valley containing the global
minimum, making it difficult for optimization algo-
rithms to converge. Therefore the output is highly
dependent on hyperparameters (initial point, learn-
ing rate, maximum steps), thus the model must
execute code in its reasoning process to acquire the
answer. Himmelblau’s function has multiple local
minima, also posing sensitivity to hyperparameters.

PDE Solving. We consider three types of Partial
Differential Equations: the 1D Heat Equation, the
2D Wave Equation, and the 2D Laplace Equation.
For the 1D Heat Equation, we focus on solving the
following equation:

∂u

∂t
= α

∂2u

∂x2
. (1)

For the 2D Laplace Equation, we aim to solve the
equation:

∂2u

∂x2
+

∂2u

∂y2
= 0. (2)

Lastly, for the 2D Wave Equation, we work on
solving the following equation:

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
. (3)
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We solve 1D Heat Equation and 2D Wave Equation
using the Explicit Finite Difference Method. For
the 2D Laplace Equation, we solve it using the
Gauss-Seidel Method. The model is then queried
on the values of u and x.

Fourier Transform (FFT) We implement FFT
using the Cooley-Tukey Algorithm and query the
model to give the magnitude of the top 10 values.

ODE Solving For solving ordinary differential
equations, we constructed three different equations
and implemented the Euler Method and the Runge-
Kutta Method so solve these equations.

C.4.2 Evaluation Metrics
Relative Absolute Error (RAE). Given a scalar
ground truth value p and a model prediction p̂, the
Relative Absolute Error (RAE) is defined as:

RAE(p̂, p) =
|p− p̂|
|p| . (4)

For cases involving multiple entries, such as tensors
or vectors, the following alignment procedure is ap-
plied: (1) if the prediction contains fewer elements
than the ground truth, the prediction is padded with
zeros until it matches the length of the ground truth;
(2) if the prediction has more elements than the
ground truth, it is truncated to match the ground
truth length. The average RAE is then computed
by averaging the RAE for each corresponding ele-
ment.

Exact Matching. For tasks involving position-
based predictions, such as binary search, we adapt
exact matching, as the accuracy of the algorithm
is determined by comparing the exactness of the
estimated result to the true result. This evaluation
method checks if the estimated solution matches
the ground truth exactly, typically using string or
sequence matching. For such tasks, an exact match
is considered a success, and any discrepancy be-
tween the ground truth and the estimate results in
failure. Formally, given a string s and the model’s
prediction ŝ, the Exact Matching is given by:

EM(s, ŝ) = 1[s = ŝ] (5)

where 1[·] is the indicator function.

C.4.3 System Prompts

Zero-shot Chain-of-Thought:

You are an expert in gradient_descent programming.

Please execute the above code with the input provided and
return the output. You should think step by step.
Your answer should be in the following format:
Thought: <your thought>
Output: <execution result>
Please follow this format strictly and ensure the Output
section contains only the required result without any
additional text.

Zero-shot:
You are an expert in gradient_descent programming.
Please execute the given code with the provided input and
return the output.
Make sure to return only the output in the exact format as
expected.

Output Format:
Output: <result>

Few-shot Chain-of-Thought:

You are an expert in gradient_descent programming.
Please execute the above code with the input provided and
return the output. You should think step by step.
Your answer should be in the following format:
Thought: <your thought>
Output: <execution result>
Please follow this format strictly and ensure the Output
section contains only the required result without any
additional text.

Here are some examples:
{{examples here}}

C.4.4 Demo Questions

code:‘‘‘
import numpy as np
import argparse

def f(t, y):
"""dy/dt = −y"""
return −y

def euler_method(f, y0, t0, t_end, h, additional_args=None
):

t_values = np.arange(t0, t_end, h)
y_values = [y0]
v_values = [additional_args] if additional_args is not
None else [None]

for t in t_values[:−1]:
if additional_args:

y_next, v_next = y_values[−1] + h * f(t,
y_values[−1])[0], v_values[−1] + h * f(t,
y_values[−1], v_values[−1])[1]
y_values.append(y_next)
v_values.append(v_next)

else:
y_next = y_values[−1] + h * f(t, y_values
[−1])
y_values.append(y_next)

3297



return t_values, np.array(y_values), np.array(v_values)
if v_values[0] is not None else None

def main():
parser = argparse.ArgumentParser()
parser.add_argument("−−y0", type=float, default=1.0)
parser.add_argument("−−t0", type=float, default=0.0)
parser.add_argument("−−t_end", type=float, default
=10.0)
parser.add_argument("−−h", type=float, default=0.1)
args = parser.parse_args()

y0_1 = args.y0
t0 = args.t0
t_end = args.t_end
h = args.h

t_values, y_values, _ = euler_method(f, y0_1, t0,
t_end, h)
print(f"{y_values[−1]:.4f}")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python euler_3.py −−y0 12 −−t0 0.0 −−t_end 74 −−h 0.36
‘‘‘

code:‘‘‘
import numpy as np
import argparse

def gradient_descent(func, grad_func, initial_guess,
learning_rate=0.1, tolerance=1e−6, max_iter=1000):

x = initial_guess
for _ in range(max_iter):

grad = grad_func(x)
x = x − learning_rate * grad
if np.abs(grad) < tolerance:

break
return x, func(x)

# Function and its gradient
def func(x):

return (x − 3)**2 + 5

def grad_func(x):
return 2 * (x − 3)

def main():
parser = argparse.ArgumentParser()
parser.add_argument("−−initial_guess", type=float,
default=0.0)
parser.add_argument("−−learning_rate", type=float,
default=0.1)
parser.add_argument("−−tolerance", type=float,
default=1e−6)
parser.add_argument("−−max_iter", type=int, default
=1000)
args = parser.parse_args()

# Test with initial guess
initial_guess = args.initial_guess
optimal_x, optimal_value = gradient_descent(func,
grad_func, initial_guess)
# optimal x
print(f"{optimal_x:.3f}")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python gd_ox.py −−initial_guess −5.0 −−learning_rate
0.01 −−max_iter 5000
‘‘‘

code:‘‘‘
import numpy as np
import argparse

def solve_heat_eq(L, T, alpha, Nx, Nt):
# L: length of the rod
# T: total time
# alpha: thermal diffusivity
# Nx: number of spatial steps
# Nt: number of time steps

dx = L / (Nx − 1)
dt = T / Nt
r = alpha * dt / dx**2

# Initial condition: u(x, 0) = sin(pi * x)
x = np.linspace(0, L, Nx)
u = np.sin(np.pi * x)

# Time stepping
for n in range(Nt):

u_new = u.copy()
for i in range(1, Nx − 1):

u_new[i] = u[i] + r * (u[i−1] − 2*u[i] + u[i
+1])

u = u_new
return x, u

def parse_input():
parser = argparse.ArgumentParser(description="Solve
the 1D Heat Equation")
parser.add_argument(’−−L’, type=float, required=
True, help="Length of the rod")
parser.add_argument(’−−T’, type=float, required=
True, help="Total time")
parser.add_argument(’−−alpha’, type=float, required=
True, help="Thermal diffusivity")
parser.add_argument(’−−Nx’, type=int, required=True
, help="Number of spatial points")
parser.add_argument(’−−Nt’, type=int, required=True,
help="Number of time steps")

return parser.parse_args()

def main():
args = parse_input()
x, u = solve_heat_eq(args.L, args.T, args.alpha, args.
Nx, args.Nt)
np.set_printoptions(threshold=np.inf, linewidth=np.inf
)
formatted_x = np.vectorize(lambda x: f"{x:.4e}")(x)
print(f"{formatted_x}")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python heat_eq_x.py −−L 36 −−T 62 −−alpha 91 −−Nx
170 −−Nt 860
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‘‘‘

code:‘‘‘
import numpy as np
import argparse

def gradient_descent(func, grad_func, initial_guess,
learning_rate=0.1, tolerance=1e−6, max_iter=1000):

x = initial_guess
for _ in range(max_iter):

grad = grad_func(x)
x = x − learning_rate * grad
if np.abs(grad) < tolerance:

break
return x, func(x)

# Function and its gradient
def func(x):

return (x − 3)**2 + 5

def grad_func(x):
return 2 * (x − 3)

def main():
parser = argparse.ArgumentParser()
parser.add_argument("−−initial_guess", type=float,
default=0.0)
parser.add_argument("−−learning_rate", type=float,
default=0.1)
parser.add_argument("−−tolerance", type=float,
default=1e−6)
parser.add_argument("−−max_iter", type=int, default
=1000)
args = parser.parse_args()

# Test with initial guess
initial_guess = args.initial_guess
optimal_x, optimal_value = gradient_descent(func,
grad_func, initial_guess)
# optimal x
print(f"{optimal_x:.3f}")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python gd_ox.py −−initial_guess −10.0 −−learning_rate
0.001 −−max_iter 100
‘‘‘

code:‘‘‘
import numpy as np
import argparse

# Objective function: f(x, y) = x^2 + y^2
def objective(x, y):

return x**2 + y**2

# Gradient of the objective function: f(x, y) = (2x, 2y)
def gradient(x, y):

return np.array([2 * x, 2 * y])

# Projection function onto the constraint x + y = 1
def projection(x, y):

# Since the constraint is x + y = 1, we can project the
point (x, y) onto the line
# by solving the system: x’ + y’ = 1

# Let x’ = x − (x + y − 1)/2, and y’ = y − (x + y − 1)/2
adjustment = (x + y − 1) / 2
return np.array([x − adjustment, y − adjustment])

def projected_gradient_descent(learning_rate=0.1,
max_iter=1000, tolerance=1e−6, initial_guess=(0.0, 0.0)):

x, y = initial_guess

for _ in range(max_iter):
# Compute the gradient of the objective function
grad = gradient(x, y)

# Update the variables by moving in the opposite
direction of the gradient
x, y = np.array([x, y]) − learning_rate * grad

# Project the updated point onto the constraint set
(x + y = 1)
x, y = projection(x, y)

# Check if the gradient is small enough to stop
if np.linalg.norm(grad) < tolerance:

break

return x, y, objective(x, y)

def main():
parser = argparse.ArgumentParser()
parser.add_argument("−−initial_guess_x", type=float,
default=0.0)
parser.add_argument("−−initial_guess_y", type=float,
default=0.0)
parser.add_argument("−−learning_rate", type=float,
default=0.1)
parser.add_argument("−−tolerance", type=float,
default=1e−6)
parser.add_argument("−−max_iter", type=int, default
=1000)
args = parser.parse_args()

initial_guess = (args.initial_guess_x, args.
initial_guess_y)
optimal_x, optimal_y, optimal_value =
projected_gradient_descent(args.learning_rate, args.
max_iter, args.tolerance, initial_guess)
print(f"{optimal_x:.4e}, {optimal_y:.4e}")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python gd_pgdx.py −−initial_guess_x 32.14 −−
initial_guess_y 46.04 −−learning_rate 0.01 −−max_iter
1000
‘‘‘

C.5 TC

C.5.1 Tasks Descriptions of Time
Consuming (TC)

The time consuming component of SURGE is com-
prised of 4 tasks in for computationally expen-
sive areas, covering a spectrum of Linear Algebra,
Sorting, Searching, Monte Carlo Simulations and
String Matching Programs. Some of these tasks
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take hours to complete, showing their potential to
benchmark LLM’s ability to reason through lengthy
computations.

Linear Algebra. In this task, we are focused on
acquiring key properties in linear algebra given
square matrices of varying sizes. In particular, we
query the model on solving LU decomposition, QR
decomposition, the largest eigenvalue and eigen-
vector using the power method, and the inversion
matrix.

Sorting And Searching. We include four clas-
sical algorithmic problems in this area, namely
Hamiltonian Cycle, Traveling Salesman Problem
(TSP), Sorting an array of real numbers and Search-
ing. For Hamiltonian Cycle, we adopt the back-
tracking algorithm. Specifically, we randomly gen-
erate graphs with vertices from 4 to 100 and ask the
model to find whether a Hamiltonian cycle exists.
For TSP, we implement a naive brute-force algo-
rithm and ask the model to find the length of the
optimal path. For Sorting, we adopt the bubble sort,
quick sort, and merge sort algorithms. For each
algorithm, we consider different list sizes from 5
to 100 and generate 10 test cases for each list size.
The evaluation metric is the rank correlation (also
Spearman’s ρ ). Lastly, for searching, we adopt
binary search and query the model on randomly
generated lists of varying sizes.

Monte Carlo Estimation. We adopt Monte
Carlo simulation to estimate the values of specific
real numbers (e.g. π, e), as well as a future stock
price prediction that follows the Brownian motion.
We alter the number of samples used in Monte
Carlo estimation, resulting in varying program out-
comes.

String Matching Program. We adopt the naive
string matching, KMP, and Rabin-Karp algorithms.
For each algorithm, we randomly generate text and
pattern with varying lengths, and query the model
on the existence and position of the matching.

C.5.2 Evaluation Metrics
Rank Correlation. Rank Correlation (Spearman,
1904), also referred to as Spearman’s ρ, is used
to assess sorting tasks by measuring the correla-
tion between the estimated ordinal ranking and the
ground truth, which can be written as:

RankCorr =
Cov(x1:N , y1:N )

σ(x1:N )σ(y1:N )
(6)

where x1:N and y1:N denote the true and esti-
mated rankings, respectively, and Cov and σ repre-
sent the covariance and standard deviation of the
respective sequences.

C.5.3 System Prompts

Zero-shot Chain-of-Thought:

You are an expert in string_matching programming.
Please execute the above code with the input provided and
return the output. You should think step by step.
Your answer should be in the following format:
Thought: <your thought>
Output: <execution result>
Please follow this format strictly and ensure the Output
section contains only the required result without any
additional text.

Zero-shot:
You are an expert in string_matching programming.
Please execute the given code with the provided input and
return the output.
Make sure to return only the output in the exact format as
expected.

Output Format:
Output: <result>

Few-shot Chain-of-Thought:

You are an expert in string_matching programming.
Please execute the above code with the input provided and
return the output. You should think step by step.
Your answer should be in the following format:
Thought: <your thought>
Output: <execution result>
Please follow this format strictly and ensure the Output
section contains only the required result without any
additional text.

Here are some examples:
{{examples here}}

C.5.4 Demo Questions

code:‘‘‘
import itertools
import math
import sys
import argparse
def euclidean_distance(p1, p2):

"""Calculate the Euclidean distance between two
points"""
return math.sqrt((p1[0] − p2[0])**2 + (p1[1] − p2[1])
**2)

def tsp_bruteforce(positions):
"""Brute−force TSP solver"""
n = len(positions)
min_path = None
min_distance = float(’inf’)

3300



# Generate all possible permutations of the cities (
excluding the starting point)
for perm in itertools.permutations(range(1, n)):

path = [0] + list(perm) # Start at city 0
distance = 0
# Calculate the total distance of the current
permutation
for i in range(1, len(path)):

distance += euclidean_distance(positions[
path[i−1]], positions[path[i]])

# Compare the distance with the minimum
distance found so far
if distance < min_distance:

min_distance = distance
min_path = path

return min_path, min_distance

def parse_positions(positions_str):
"""Convert the string input back to a list of tuples"""
positions = []
for pos in positions_str.split():

x, y = map(float, pos.split(’,’))
positions.append((x, y))

return positions

def main():
parser = argparse.ArgumentParser()
parser.add_argument("−−vertices", type=int, default
=5, help="Number of vertices")
parser.add_argument("−−positions", type=str, default
="0,0 1,1 2,2 3,3 4,4", help="List of positions in the
format ’x,y’")
args = parser.parse_args()

vertices = args.vertices
positions_str = args.positions

# Parse positions
positions = parse_positions(positions_str)

# Solve TSP using brute force
path, distance = tsp_bruteforce(positions)

print(f"{distance:.2f}")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python tsp.py −−vertices 3 −−positions "8.51,4.18 8.1,7.92
1.57,0.49"
‘‘‘

code:‘‘‘
import itertools
import math
import sys
import argparse
def euclidean_distance(p1, p2):

"""Calculate the Euclidean distance between two
points"""
return math.sqrt((p1[0] − p2[0])**2 + (p1[1] − p2[1])
**2)

def tsp_bruteforce(positions):

"""Brute−force TSP solver"""
n = len(positions)
min_path = None
min_distance = float(’inf’)

# Generate all possible permutations of the cities (
excluding the starting point)
for perm in itertools.permutations(range(1, n)):

path = [0] + list(perm) # Start at city 0
distance = 0
# Calculate the total distance of the current
permutation
for i in range(1, len(path)):

distance += euclidean_distance(positions[
path[i−1]], positions[path[i]])

# Compare the distance with the minimum
distance found so far
if distance < min_distance:

min_distance = distance
min_path = path

return min_path, min_distance

def parse_positions(positions_str):
"""Convert the string input back to a list of tuples"""
positions = []
for pos in positions_str.split():

x, y = map(float, pos.split(’,’))
positions.append((x, y))

return positions

def main():
parser = argparse.ArgumentParser()
parser.add_argument("−−vertices", type=int, default
=5, help="Number of vertices")
parser.add_argument("−−positions", type=str, default
="0,0 1,1 2,2 3,3 4,4", help="List of positions in the
format ’x,y’")
args = parser.parse_args()

vertices = args.vertices
positions_str = args.positions

# Parse positions
positions = parse_positions(positions_str)

# Solve TSP using brute force
path, distance = tsp_bruteforce(positions)

print(f"{distance:.2f}")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python tsp.py −−vertices 3 −−positions "0.9,2.44 4.67,0.82
3.8,5.73"
‘‘‘

code:‘‘‘
import itertools
import math
import sys
import argparse
def euclidean_distance(p1, p2):

"""Calculate the Euclidean distance between two
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points"""
return math.sqrt((p1[0] − p2[0])**2 + (p1[1] − p2[1])
**2)

def tsp_bruteforce(positions):
"""Brute−force TSP solver"""
n = len(positions)
min_path = None
min_distance = float(’inf’)

# Generate all possible permutations of the cities (
excluding the starting point)
for perm in itertools.permutations(range(1, n)):

path = [0] + list(perm) # Start at city 0
distance = 0
# Calculate the total distance of the current
permutation
for i in range(1, len(path)):

distance += euclidean_distance(positions[
path[i−1]], positions[path[i]])

# Compare the distance with the minimum
distance found so far
if distance < min_distance:

min_distance = distance
min_path = path

return min_path, min_distance

def parse_positions(positions_str):
"""Convert the string input back to a list of tuples"""
positions = []
for pos in positions_str.split():

x, y = map(float, pos.split(’,’))
positions.append((x, y))

return positions

def main():
parser = argparse.ArgumentParser()
parser.add_argument("−−vertices", type=int, default
=5, help="Number of vertices")
parser.add_argument("−−positions", type=str, default
="0,0 1,1 2,2 3,3 4,4", help="List of positions in the
format ’x,y’")
args = parser.parse_args()

vertices = args.vertices
positions_str = args.positions

# Parse positions
positions = parse_positions(positions_str)

# Solve TSP using brute force
path, distance = tsp_bruteforce(positions)

print(f"{distance:.2f}")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python tsp.py −−vertices 3 −−positions "7.63,4.72
1.07,1.42 8.36,5.63"
‘‘‘

code:‘‘‘
import sys

import argparse

def binary_search(arr, target):
"""Binary Search algorithm"""
low = 0
high = len(arr) − 1

while low <= high:
mid = (low + high) // 2 # Find the middle element
if arr[mid] == target:

return mid # Target found at index mid
elif arr[mid] < target:

low = mid + 1 # Target is in the right half
else:

high = mid − 1 # Target is in the left half

return −1 # Target not found

def parse_input(input_str):
"""Parse input string into a list of integers"""
return list(map(int, input_str.split()))

def main():
parser = argparse.ArgumentParser(description="
Binary Search Algorithm")
parser.add_argument(’−−list’, type=str, required=True,
help="Input sorted list of integers")
parser.add_argument(’−−target’, type=int, required=
True, help="Target integer to search")
args = parser.parse_args()

input_list = parse_input(args.list)

result = binary_search(input_list, args.target)

if result != −1:
print(f"Target found at index: {result}")

else:
print("Target not found")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python binary_search.py −−list "−334 −200 180 936 973"
−−target −771
‘‘‘

code:‘‘‘
import itertools
import math
import sys
import argparse
def euclidean_distance(p1, p2):

"""Calculate the Euclidean distance between two
points"""
return math.sqrt((p1[0] − p2[0])**2 + (p1[1] − p2[1])
**2)

def tsp_bruteforce(positions):
"""Brute−force TSP solver"""
n = len(positions)
min_path = None
min_distance = float(’inf’)

# Generate all possible permutations of the cities (
excluding the starting point)

3302



for perm in itertools.permutations(range(1, n)):
path = [0] + list(perm) # Start at city 0
distance = 0
# Calculate the total distance of the current
permutation
for i in range(1, len(path)):

distance += euclidean_distance(positions[
path[i−1]], positions[path[i]])

# Compare the distance with the minimum
distance found so far
if distance < min_distance:

min_distance = distance
min_path = path

return min_path, min_distance

def parse_positions(positions_str):
"""Convert the string input back to a list of tuples"""
positions = []
for pos in positions_str.split():

x, y = map(float, pos.split(’,’))
positions.append((x, y))

return positions

def main():
parser = argparse.ArgumentParser()
parser.add_argument("−−vertices", type=int, default
=5, help="Number of vertices")
parser.add_argument("−−positions", type=str, default
="0,0 1,1 2,2 3,3 4,4", help="List of positions in the
format ’x,y’")
args = parser.parse_args()

vertices = args.vertices
positions_str = args.positions

# Parse positions
positions = parse_positions(positions_str)

# Solve TSP using brute force
path, distance = tsp_bruteforce(positions)

print(f"{distance:.2f}")

if __name__ == "__main__":
main()

‘‘‘
command:‘‘‘
python tsp.py −−vertices 10 −−positions "6.81,5.28
9.95,8.98 0.63,0.11 8.84,0.55 9.03,9.98 6.22,2.7 2.99,9.11
0.54,9.36 3.08,4.15 5.73,1.86"
‘‘‘

C.6 BG

Java Python C++

51 45 54

Table 10: Language usage count across different cate-
gories in the BG subset.

In BG, the distribution of language usage across
categories is shown in Table 10, indicating a bal-

Error Type Java Python3 CPP

== and = confusion 5 6 5
undefined keywords 6 3 5
parentheses mismatch 5 5 6
indexing error 10 9 11
undefined objects 11 9 8
unclosed string 7 5 7
conditional statement error 10 8 9
undefined methods 8 3 6
colon missing 5 7 8
wrong comment mark 9 1 9
variable value error 2 2 4
operation error 2 2 3
other error 4 2 1
statement separation 4 0 7
indentation error 0 4 0
Double Bugs 10 8 10
Triple Bugs 12 10 11
Quadruple Bugs 8 5 9

Table 11: Details of bug types in BG dataset and how
many times each kind of bug appears in different lan-
guages.

anced usage of Java, Python, and C++. Table 11
presents a detailed breakdown of bug types and
their frequency across different languages. This
distribution allows us to assess the model’s ability
to handle a variety of bugs across multiple program-
ming languages.

C.6.1 System Prompts

Zero-shot Chain-of-Thought:

Given the following code, what is the execution result?
The file is under ‘/app/‘ directory, and is run with "python3
/app/test.py" if it is a python file, "g++ −std=c++11 /app/

test.cpp −o /app/test
/app/test" if it is a cpp file, and "javac /app/\{class_name\}.
java
java −cp /app \{class_name\}" if it is a java file.
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<execution result>

Zero-shot:
Given the following code, what is the execution result?
The file is under ‘/app/‘ directory, and is run with "python3
/app/test.py" if it is a python file, "g++ −std=c++11 /app/

test.cpp −o /app/test
/app/test" if it is a cpp file, and "javac /app/\{class_name\}.
java
java −cp /app \{class_name\}" if it is a java file.
Your answer should be in the following format:
Output:
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<execution result>

Few-shot Chain-of-Thought:

Given the following code, what is the execution result?
The file is under ‘/app/‘ directory, and is run with "python3
/app/test.py" if it is a python file, "g++ −std=c++11 /app/
test.cpp −o /app/test
/app/test" if it is a cpp file, and "javac /app/\{class_name\}.
java
java −cp /app \{class_name\}" if it is a java file.
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<execution result>
Following are 4 examples:
{{examples here}}

C.6.2 Demo Questions

// Import necessary packages
import java.util.*;

class Solution {

class Solution {
public boolean winnerOfGame(String s) {

//count the triplets
int n = s.length();

int a=0;
int b=0;

for(int i=1; i<n−1; i++)
{

if(s.charAt(i)==’A’ && s.charAt(i−1)==’A’
&& s.charAt(i+1)==’A’ )

a++;
else if(s.charAt(i)==’B’ && s.charAt(i−1)==’
B’ && s.charAt(i+1)==’B’ )

b++;
}
if(a == b)

return false;
else

return true;
}

}

public class Main {
public static void main(String[] args) {

Solution solution = new Solution();

// Test case 1
String colors1 = "AAABABB";
System.out.println("Test Case 1: " + solution.
winnerOfGame(colors1)); // Alice wins

// Test case 2
String colors2 = "AA";
System.out.println("Test Case 2: " + solution.
winnerOfGame(colors2)); // Bob wins

// Test case 3
String colors3 = "ABBBBBBBAAA";
System.out.println("Test Case 3: " + solution.

winnerOfGame(colors3)); // Bob wins

import java.util.Arrays;

public class Main {

class Solution {
public int matrixSum(int[][] nums) {

int score = 0;
int n = nums.length;
int m = nums[0].length;
for(int[] a :nums)
{

Arrays.sort(a);
}
for(int i=0;i<=n;i++)
{

int max = 0;
for(int j=0;j<m;j++)
{

max = Math.max(max,nums[i][j]);
}
score+=max;

}
return score;

}
}

public static void main(String[] args) {
Solution solution = new Solution();

// Test case 1
int[][] nums1 = {

{7, 2, 1},
{6, 4, 2},
{6, 5, 3},
{3, 2, 1}

};
System.out.println(solution.matrixSum(nums1));
// Output: 15

// Test case 2
int[][] nums2 = {

{1}
};
System.out.println(solution.matrixSum(nums2));
// Output: 1

from collections import defaultdict
from typing import List

class Solution:
def numberOfArithmeticSlices(self, nums: List[int])
−> int:

total, n = 0, len(nums)
dp = [defaultdict(int) for _ in nums]
for i in range(1, n):

for j in range(i):
diff = nums[j] − nums[i]
dp[i][diff] += dp[j][diff] + 1
total += self.undifned_method(dp[j][diff
])

return total

# Test cases
if __name__ == "__main__":
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solution = Solution()

# Test case 1
nums1 = [2, 4, 6, 8, 10]
result1 = solution.numberOfArithmeticSlices(nums1)
print(f"Input: nums = {nums1}")
print(f"Output: {result1}")

# Test case 2
nums2 = [7, 7, 7, 7, 7]
result2 = solution.numberOfArithmeticSlices(nums2)
print(f"Input: nums = {nums2}")
print(f"Output: {result2}")

#include <iostream>
#include <cmath>

class Solution {
public:

long long fact(int n)
{

if(n<=1)return 1;
return (n*fact(n−1)%1000000007)%1000000007;

}
int numPrimeArrangements(int n) {

if(n==1)return 1;
if(n<=3)return n−1;
int t=0,flag;
for(int i=2;i<=n;i++)
{

flag=0;
for(int j=2;j<sqrt(i);j++)
{

if(i%j==0)
{

flag=1;
break;

}
}
if(flag==0)
{

t++;
}

}
return (fact(t)*fact(n−t))%1000000007;

}
};

int main() {
Solution solution;
// Test case 1
int n1 = 5;
std::cout << "Input: n = " << n1 << "\nOutput: " <<
solution.numPrimeArrangements(n1) << std::endl;

// Test case 2
int n2 = 100;
std::cout << "Input: n = " << n2 << "\nOutput: " <<
solution.numPrimeArrangements(n2) << std::endl;

return 0;

#include <iostream>
#include <string>
#include <cctype> // For isalpha

using namespace std;

class Solution {
public:

str reverseOnlyLetters(string s)
{

int i=0,j=s.length()−1;
while(i<=j)
{

if(isalpha(s[i])&&isalpha(s[j]))
{

swap(s[i],s[j]);
i++;
j−−;

}
else
{

if(!isalpha(s[i]))
{

i++;
}
if(!isalpha(s[j]))
{

j−−;
}

}
}
return s;

}
};

int main() {
// Initialize the Solution class
Solution solution;

// Define test cases
string test1 = "ab−cd";
string test2 = "a−bC−dEf−ghIj";
string test3 = "Test1ng−Leet=code−Q!";

// Run test cases and print results
cout << "Test 1: " << solution.reverseOnlyLetters(
test1) << endl;
cout << "Test 2: " << solution.reverseOnlyLetters(
test2) << endl;
cout << "Test 3: " << solution.reverseOnlyLetters(
test3) << endl;

return 0;

C.7 DR

C.7.1 System Prompts

Zero-shot Chain-of-Thought:

Given the following code, what is the execution result?
The file is under ‘/app/‘ directory, and is run with /bin/bash
−c ’g++ −std=c++C++14 O1 test.cpp −o test && ./test’.

You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<execution result>
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Zero-shot:
Given the following code, what is the execution result?
The file is under ‘/app/‘ directory, and is run with /bin/bash
−c ’g++ −std=c++C++14 O1 test.cpp −o test && ./test’.
Your answer should be in the following format:
Output:
<execution result>

Few-shot Chain-of-Thought:

Given the following code, what is the execution result?
The file is under ‘/app/‘ directory, and is run with /bin/bash
−c ’g++ −std=c++C++14 O1 test.cpp −o test && ./test’.
You should think step by step. Your answer should be in
the following format:
Thought: <your thought>
Output:
<execution result>
Following are 6 examples:

C.7.2 Demo Questions

struct NonPOD {
NonPOD() {}
int x;

};
int main() {

static_assert(std::is_pod<NonPOD>::value, "");
}

#include <coroutine>
struct task {

struct promise_type { /*...*/ };

};

#include <atomic>
#include <thread>
#include <iostream>

std::atomic<int> data{0};

void writer() {
data.store(1, std::memory_order_relaxed);

}

void reader() {
while (data.load(std::memory_order_relaxed) == 0);
std::cout << "Data updated";

}

int main() {
std::thread t1(writer), t2(reader);
t1.join(); t2.join();

}

#include <iostream>

struct S {
S() { std::cout << "ctor\n"; }
~S() { std::cout << "dtor\n"; }

S(const S&) { std::cout << "copy\n"; }
};

const S& getTemp() {
return S();

}

int main() {
const S& ref = getTemp();
std::cout << "main\n";
return 0;

}

template<typename T> void f(T) { std::cout << "1"; }
template<> void f(int*) { std::cout << "2"; }
template<typename T> void f(T*) { std::cout << "3"; }
int main() {

int* p = nullptr;
f(p);

}

C.8 FL
C.8.1 System Prompts

Zero-shot Chain-of-Thought:

Given the following lean4 code, what is the compilation
result?
If the code should pass the compilation, "pass" and "
complete" should be true, and "errors" should be []. If the
code should not pass the compilation, "pass" should be
false, "complete" should be false, and "errors" should
contain the error messages.
You should think step−by−step and provide the answer.
Your answer should be in the following format:
Thought: <your thought>
Output:
‘‘‘json
{

"errors": [\{\"severity\": \"error\", \"pos\": \{\"line\":
xx, \"column\": xx\}, \"endPos\": \{\"line\": xx, \"
column\": xx\}, \"data\": \"xxxxx\"}, ...]
"pass": true/false,
"complete": true/false,

}
‘‘‘

Zero-shot:
Given the following lean4 code, what is the compilation
result?
If the code should pass the compilation, "pass" and "
complete" should be true, and "errors" should be []. If the
code should not pass the compilation, "pass" should be
false, "complete" should be false, and "errors" should
contain the error messages.
Your answer should be in the following format:
Output:
‘‘‘json
{

"errors": [\{\"severity\": \"error\", \"pos\": \{\"line\":
xx, \"column\": xx\}, \"endPos\": \{\"line\": xx, \"
column\": xx\}, \"data\": \"xxxxx\"}, ...]
"pass": true/false,
"complete": true/false,
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}
‘‘‘

Few-shot Chain-of-Thought:

Given the following lean4 code, what is the compilation
result?
If the code should pass the compilation, "pass" and "
complete" should be true, and "errors" should be []. If the
code should not pass the compilation, "pass" should be
false, "complete" should be false, and "errors" should
contain the error messages.
You should think step−by−step and provide the answer.
Your answer should be in the following format:
Thought: <your thought>
Output:
‘‘‘json
{

"errors": [\{\"severity\": \"error\", \"pos\": \{\"line\":
xx, \"column\": xx\}, \"endPos\": \{\"line\": xx, \"
column\": xx\}, \"data\": \"xxxxx\"}, ...]
"pass": true/false,
"complete": true/false,

}
‘‘‘
Following are 3 examples:
{{examples here}}

C.8.2 Demo Questions

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/−− In a group of 2017 persons where any pair has exactly
one common friend,

if there exists a vertex with at least 46 neighbors,
then that vertex must have exactly 2016 neighbors. −/

theorem friend_graph_degree (n : ) (h_n : n 46) :
(2016 − n) * ((n − 1) * (n − 2)) / 2 (2016 − n) * (2015 −
n) / 2 n = 2016 := by
/−
In a group of 2017 persons where any pair has exactly
one common friend, if there exists a vertex with at least
46 neighbors, then that vertex must have exactly 2016
neighbors. This can be shown by proving the
equivalence of two conditions: one where the number of
neighbors is less than or equal to a certain value and the
other where the number of neighbors is exactly 2016.
−/
constructor
−− We need to prove two directions: if the left−hand
side holds, then n must be 2016, and vice versa.
intro h

−− Assume the left−hand side holds.
−− We will show that this implies n = 2016.
apply Nat.le_antisymm
−− Using the left−hand side, we derive that n 2016.

nlinarith
−− Similarly, we derive that n 2016.

nlinarith
−− Now, assume n = 2016.
intro h

−− Substitute n = 2016 into the expression.

subst h
−− Simplify the expression to show that the left−hand
side holds.
norm_num

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/−−
If a, b, c form a proportion (a/b = c/d) where:
− a + b + c = 58
− c = (2/3)a
− b = (3/4)a
Then the fourth term d must be 12
−/
theorem proportion_problem (a b c d : )

(h_sum : a + b + c = 58)
(h_c : c = (2/3) * a)
(h_b : b = (3/4) * a)
(h_prop : a/b = c/d) : d = 12 := by

/−
Given that \(a\), \(b\), \(c\), and \(d\) form a proportion \(
\frac{a}{b} = \frac{c}{d} \), and the following

conditions hold:
− \( a + b + c = 58 \)
− \( c = \frac{2}{3}a \)
− \( b = \frac{3}{4}a \)
We need to show that the fourth term \(d\) must be 12.
First, substitute \(b = \frac{3}{4}a\) and \(c = \frac
{2}{3}a\) into the equation \(a + b + c = 58\):
\[ a + \frac{3}{4}a + \frac{2}{3}a = 58 \]
To solve for \(a\), find a common denominator for the
fractions:
\[ a + \frac{3}{4}a + \frac{2}{3}a = a + \frac{9}{12}a +
\frac{8}{12}a = a + \frac{17}{12}a = \frac{24}{12}a +
\frac{17}{12}a = \frac{41}{12}a \]

Set this equal to 58:
\[ \frac{41}{12}a = 58 \]
Multiply both sides by 12 to clear the fraction:
\[ 41a = 696 \]
Divide both sides by 41:
\[ a = \frac{696}{41} \]
Next, use the proportion \( \frac{a}{b} = \frac{c}{d} \):
\[ \frac{a}{b} = \frac{\frac{2}{3}a}{\frac{3}{4}a} = \
frac{\frac{2}{3}}{\frac{3}{4}} = \frac{2}{3} \times \
frac{4}{3} = \frac{8}{9} \]
Since \( \frac{a}{b} = \frac{c}{d} \), we have:
\[ \frac{a}{b} = \frac{\frac{2}{3}a}{\frac{3}{4}a} = \
frac{\frac{2}{3}}{\frac{3}{4}} = \frac{2}{3} \times \
frac{4}{3} = \frac{8}{9} \]
Thus:
\[ \frac{a}{b} = \frac{8}{9} \]
Given \(b = \frac{3}{4}a\), substitute \(b\) into the
equation:
\[ \frac{a}{\frac{3}{4}a} = \frac{8}{9} \]
Simplify:
\[ \frac{a \times 4}{3a} = \frac{8}{9} \]
\[ \frac{4}{3} = \frac{8}{9} \]
This is a contradiction unless \(d = 12\), as suggested by
the problem statement.
−/
have h1 : d 0 := by

intro h
rw [h] at h_prop
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norm_num at h_prop
have h2 : a 0 := by

intro h
rw [h] at h_prop
norm_num at h_prop

have h3 : b 0 := by
intro h
rw [h] at h_prop
norm_num at h_prop

have h4 : c 0 := by
intro h
rw [h] at h_prop
norm_num at h_prop

field_simp at h_prop
nlinarith

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/−− Given a right triangle AEC where AE is perpendicular
to EC,

and BC = EC, and AB = 5, CD = 10, where ABCD is
an isosceles trapezium,
then AE = 51 = 5. −/

theorem trapezium_perpendicular_length :
(AE EC : ),

−− Assumptions
AE > 0 EC > 0 −− positive lengths
AE * AE + EC * EC = (5 : ) * (5 : ) −− Pythagorean
theorem for AEC
EC = (5 : ) −− BC = EC and AB = 5 (simplified for
algebraic proof)
AE = (5 : ) := by
/−
Given a right triangle \( AEC \) where \( AE \) is
perpendicular to \( EC \), and \( BC = EC \), and \( AB =
5 \), \( CD = 10 \), where \( ABCD \) is an isosceles

trapezium, we need to show that \( AE = 5 \).
1. Assume \( AE \) and \( EC \) are positive real numbers
.
2. By the Pythagorean theorem, we have \( AE^2 + EC
^2 = AB^2 \).
3. Given \( AB = 5 \), we substitute to get \( AE^2 + EC
^2 = 25 \).
4. Since \( BC = EC \), we have \( EC = 5 \).
5. Substituting \( EC = 5 \) into the equation \( AE^2 +
EC^2 = 25 \), we get \( AE^2 + 25 = 25 \).
6. Simplifying, we find \( AE^2 = 0 \).
7. Therefore, \( AE = 0 \).
However, this contradicts the given condition that \( AE
> 0 \). Hence, we must have made an error in our
assumptions or calculations. Given the constraints and
the logical steps, the correct conclusion is that \( AE = 5
\).
−/
−− Introduce the variables and assumptions
intro AE EC h h h
−− Use linear arithmetic to solve the equation
nlinarith

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/−What is the length of the shortest segment that halves
the area of a triangle with sides of lengths 3, 4, and 5?−/

theorem lean_workbook_plus_33355 (a b c : )
(h : 0 < a 0 < b 0 < c)
(h : a + b > c)
(h : a + c > b)
(h : b + c > a)
(h : a = 3)
(h : b = 4)
(h : c = 5) :
2 (a + b) / 2 2 (a + c) / 2 2 (b + c) / 2 := by
/−
Given a triangle with sides of lengths \(a = 3\), \(b = 4\),
and \(c = 5\), we need to determine the length of the
shortest segment that halves the area of the triangle. The
conditions provided are:
− \(0 < a \land 0 < b \land 0 < c\)
− \(a + b > c\)
− \(a + c > b\)
− \(b + c > a\)
We are to show that the shortest segment that halves the
area of the triangle is at least 2, and that this length is
consistent with the given side lengths.
−/
−− Substitute the given values for a, b, and c into the
expressions.
rw [h, h, h]
−− Simplify the expressions to verify the conditions.
norm_num
−− Use linear arithmetic to confirm the conditions.
<;> linarith

D Training Details

For training, we employ Llama-Factory (Zheng
et al., 2024) as the LLM training platform. Table 12
shows our training hyperparameters.

Parameter Value

Train batch size 128
Learning rate 1.0e-5
Number of epochs 2.0
LR scheduler cosine
Warmup ratio 0.1
Precision bf16

Table 12: Hyperparameters for supervised fine-tuning.
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